MAXIM MAX9718AETB

19-3050; Rev 0; 10/03
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
Applications
Features
♦ 2.7V to 5.5V Single-Supply Operation
♦ Very High -93dB PSRR at 217Hz
♦ 1.4W into 4Ω at 1% THD+N (per Channel)
♦ Differential Input
♦ Internal Fixed Gain to Reduce Component Count
♦ Adjustable Gain Option (MAX9718A/MAX9719A)
♦ 100nA Low-Power Shutdown Mode
♦ No Audible Clicks or Pops at Power-Up/Down
♦ Improved Performance Pin-Compatible Upgrade
to LM4895 (MAX9718D)
Ordering Information
PART
TEMP
RANGE
PINPACKAGE
GAIN
(dB)
MAX9718AEBL-T* -40°C to +85°C 3 x 3 UCSP
Adj
MAX9718AETB*
-40°C to +85°C 10 TDFN-EP**
Adj
MAX9718AEUB
-40°C to +85°C 10 µMAX-EP**
Adj
*Future product—contact factory for availability.
**EP = Exposed paddle.
Ordering Information continued at end of data sheet.
Pin Configurations appear at end of data sheet.
Mobile Phones
UCSP is a trademark of Maxim Integrated Products, Inc.
PDAs
Portable Devices
Simplified Block Diagram
SINGLE SUPPLY
2.7V TO 5.5V
SINGLE SUPPLY
2.7V TO 5.5V
OUTL+
INL+
OUT+
IN+
INL-
IN-
OUT-
OUTLOUTR+
INR+
SHDN
INRSHDM
OUTR-
MAX9718
SHDN
MAX9719
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX9718/MAX9719
General Description
The MAX9718/MAX9719 differential input audio power
amplifiers are ideal for portable audio devices with
internal speakers. The differential input structure
improves noise rejection and provides common-mode
rejection. A bridge-tied load (BTL) architecture minimizes external component count, while providing highquality, power audio amplification. The MAX9718 is a
single-channel amplifier while the MAX9719 is a dualchannel amplifier for stereo systems. Both devices
deliver 1.4W continuous average power per channel to
a 4Ω load with less than 1% THD+N while operating
from a single +5V supply. The devices are available as
adjustable gain amplifiers or with internally fixed gains
of 0dB, 3dB, and 6dB to reduce component count.
A shutdown input disables the bias generator and
amplifiers and reduces quiescent current consumption
to less than 100nA. The MAX9718 shutdown input can
be set as active high or active low. These devices feature Maxim’s comprehensive click-and-pop suppression circuitry that reduces audible clicks and pops
during startup and shutdown.
The MAX9718 is pin compatible with the LM4895,
and is available in 9-bump UCSP™, 10-pin TDFN, and
10-pin µMAX packages. The MAX9719 is available in
16-pin TQFN, 16-pin TSSOP, and 16-bump UCSP packages. Both devices operate over the -40°C to +85°C
extended temperature range.
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to GND) ..................................-0.3V to +6V
Any Other Pin to GND ...............................-0.3V to (VCC + 0.3V)
IN_, BIAS, SHDM, SHDN, SHDN Continuous Current ........20mA
OUT_ Short-Circuit Duration to GND or VCC .............Continuous
Continuous Power Dissipation (TA = +70°C)
9-Bump UCSP (derate 5.2mW/°C above +70°C)..........412mW
10-Pin TDFN (derate 24.4mW/°C above +70°C) ........1951mW
10-Pin µMAX (derate 10.3mW/°C above +70°C) ..........825mW
16-Bump UCSP (derate 8.2mW/°C above +70°C) .......659mW
16-Pin TQFN (derate 16.9mW/°C above +70°C) ........1349mW
16-Pin TSSOP (derate 21.3mW/°C above +70°C) ......1702mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature .....................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Bump Temperature (soldering) Reflow............................+235°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS—5V Supply
(VCC = 5V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A),
TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
Supply Voltage
Supply Current
Shutdown Supply Current
SHDN, SHDN, SHDM
Threshold
Common-Mode Bias Voltage
Output Offset Voltage
SYMBOL
VCC
ICC
ISHDN
VBIAS
VOS
Input Impedance
RIN
Common-Mode Rejection Ratio
CMRR
Power-Supply Rejection Ratio
PSRR
2
TYP
MAX
UNITS
5.5
V
5.0
7.5
mA
0.1
1
µA
2.7
SHDN = SHDM = SHDN = GND, per amplifier
0.7 x VCC
0.3 x VCC
VIL
VIC
Total Harmonic Distortion Plus
Noise
MIN
VIN- = VIN+ = VBIAS, TA = -40°C to +85°C,
per amplifier (Note 2)
VIH
Common-Mode Input Voltage
Output Power
CONDITIONS
POUT
THD+N
VCC/2
- 5%
VCC/2
VCC/2 +
5%
AV = 0dB, MAX971_A,
MAX971_B
±1
±10
AV = 3dB, MAX971_C
±1
±15
AV = 6dB, MAX971_D
±1
±20
(Note 3)
VIN- = VIN+ = VBIAS
Inferred from
CMRR test
AV = 0dB, MAX971_B
0.5
VCC - 0.5
AV = 3dB, MAX971_C
0.5
VCC - 0.6
AV = 6dB, MAX971_D
0.5
VCC - 0.8
External gain, MAX971_A
0.5
MAX971_B, MAX971_C, MAX971_D
10
15
-50
-60
fn = 1kHz
VIN- = VIN+ = VBIAS,
VRIPPLE = 200mVP-P,
RL = 8Ω, CBIAS = 1µF
THD+N = 1%,
fIN = 1kHz (Note 4)
V
V
mV
V
VCC - 1.2
-60
f = 217Hz
-93
f = 1kHz
-90
20
kΩ
dB
dB
RL = 8Ω
RL = 4Ω
RL = 8Ω, fIN = 1kHz, POUT = 0.75W,
VCC = 5V, AV = 6dB (Note 5)
0.8
1.1
1.4
0.002
_______________________________________________________________________________________
W
%
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
(VCC = 5V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A),
TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Gain Accuracy
MAX971_B/MAX971_C/MAX971_D
±1
%
Channel-to-Channel Gain
Matching
MAX9719B/MAX9719C/MAX9719D
±1
%
Signal-to-Noise Ratio
-104
dB
Thermal-Shutdown Threshold
+160
°C
Thermal-Shutdown Hysteresis
15
°C
500
pF
10
ms
Maximum Capacitive Drive
Power-Up/Enable from
Shutdown Time
SNR
CLOAD
POUT = 1W, RL = 8Ω
Bridge-tied capacitance
tPU
Shutdown Time
tSHDN
Turn-Off Transient
VPOP
Crosstalk
3.5
µs
(Note 6)
50
mV
MAX9719, fIN = 1kHz
-85
dB
ELECTRICAL CHARACTERISTICS—3V Supply
(VCC = 3V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A),
TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
Supply Current
SYMBOL
ICC
Shutdown Supply Current
SHDN, SHDN, SHDM
Threshold
Common-Mode Bias Voltage
Output Offset Voltage
ISHDN
CONDITIONS
TYP
MAX
UNITS
VIN- = VIN+ = VBIAS, TA = -40°C to +85°C,
per amplifier (Note 2)
3.8
6.0
mA
SHDN = SHDM = SHDN = GND, per amplifier
0.1
1
µA
VIH
MIN
0.7 x VCC
0.3 x VCC
VIL
VBIAS
VOS
VCC/2
- 5%
VCC/2
VCC/2
+ 5%
AV = 0dB, MAX971_A/
MAX971_B
±1
±10
AV = 3dB, MAX971_C
±1
±15
(Note 3)
VIN- = VIN+ = VBIAS
AV = 6dB, MAX971_D
Common-Mode Input Voltage
VIC
Inferred from
CMRR test
RIN
0.5
VCC - 0.7
AV = 3dB, MAX971_C
0.5
VCC - 0.8
AV = 6dB, MAX971_D
0.5
VCC - 1.0
0.5
VCC - 1.2
Common-Mode Rejection Ratio
Power-Supply Rejection Ratio
CMRR
PSRR
MAX971_B/MAX971_C/MAX971_D
fN = 1kHz
VIN- = VIN+ = VBIAS,
VRIPPLE = 200mVP-P,
RL = 8Ω,
CBIAS = 1µF
10
15
-50
-60
-70
f = 217Hz
V
mV
±20
AV = 0dB, MAX971_B
External gain, MAX971_A
Input Impedance
±1
V
20
V
kΩ
dB
-93
dB
f = 1kHz
-90
_______________________________________________________________________________________
3
MAX9718/MAX9719
ELECTRICAL CHARACTERISTICS—5V Supply (continued)
ELECTRICAL CHARACTERISTICS—3V Supply (continued)
(VCC = 3V, GND = 0, SHDN/SHDN = VCC (MAX9718/MAX9719), SHDM = GND (MAX9718), RIN = RF = 10kΩ (MAX971_A),
TA = +25°C. CBIAS = 0.1µF, no load. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1)
PARAMETER
SYMBOL
Output Power
POUT
CONDITIONS
MIN
TYP
RL = 8Ω, THD+N = 1%, fIN = 1kHz (Note 4)
MAX
UNITS
475
mW
0.003
%
Thermal-Shutdown Threshold
+160
°C
Thermal-Shutdown Hysteresis
15
°C
500
pF
tPU
10
ms
Shutdown Time
tSHDN
3
µs
Turn-Off Transient
VPOP
(Note 6)
40
mV
MAX9719, fN = 1kHz
-85
dB
Total Harmonic Distortion Plus
Noise
THD+N
Maximum Capacitive Drive
CLOAD
Power-Up/Enable from
Shutdown Time
Crosstalk
RL = 8Ω, fIN = 1kHz, POUT = 0.25W,
AV = 6dB
Bridge-tied capacitance
Note 1: All specifications are 100% tested at TA = +25°C. Specifications over temperature (TA = TMIN to TMAX) are guaranteed by
design, not production tested.
Note 2: Quiescent power-supply current is specified and tested with no load. Quiescent power-supply current depends on the offset
voltage when a practical load is connected to the amplifier. Guaranteed by design.
Note 3: Common-mode bias voltage is the voltage on BIAS and is nominally VCC/2.
Note 4: Output power is specified by a combination of a functional output current test and characterization analysis.
Note 5: Measurement bandwidth for THD+N is 22Hz to 22kHz.
Note 6: Peak voltage measured at power-on, power-off, into or out of SHDN. Bandwidth defined by A-weighted filters, inputs at AC
GND. VCC rise and fall times greater than or equal to 1ms.
Typical Operating Characteristics
(VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
0.1
OUTPUT POWER = 1W
0.01
OUTPUT POWER = 1W
0.1
0.01
0.001
0.001
1k
FREQUENCY (Hz)
4
MAX9718 toc03
1
0.1
OUTPUT POWER = 750mW
0.01
0.001
0.0001
0.0001
100
VCC = 5V
RL = 8Ω
AV = 2
OUTPUT POWER = 200mW
OUTPUT POWER = 50mW
10
10
MAX9718 toc02
VCC = 5V
RL = 4Ω
AV = 4
1
THD+N (%)
VCC = 5V
RL = 4Ω
AV = 2
1
10
MAX9718 toc01
10
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
THD+N (%)
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
THD+N (%)
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
10k
100k
OUTPUT POWER = 250mW
0.0001
10
100
1k
FREQUENCY (Hz)
10k
100k
10
100
1k
FREQUENCY (Hz)
_______________________________________________________________________________________
10k
100k
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
OUTPUT POWER = 800mW
0.01
0.1
OUTPUT POWER = 50mW
0.01
MAX9718 toc06
MAX9718 toc05
10
VCC = 3V
RL = 4Ω
AV = 4
1
THD+N (%)
THD+N (%)
0.1
VCC = 3V
RL = 4Ω
AV = 2
1
THD+N (%)
VCC = 5V
RL = 8Ω
AV = 4
1
10
MAX9718 toc04
10
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
OUTPUT POWER = 175mW
0.1
0.01
OUTPUT POWER = 70mW
OUTPUT POWER = 200mW
0.001
0.001
0.001
0.0001
0.0001
0.0001
10
100
1k
10k
10
100k
100
1k
10k
10
100k
100
1k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs. FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
OUTPUT POWER = 100mW
0.01
0.1
OUTPUT POWER = 50mW
0.01
OUTPUT POWER = 200mW
0.001
0.001
MAX9718 toc09
VCC = 5V
RL = 4Ω
AV = 2
10
THD+N (%)
THD+N (%)
0.1
VCC = 3V
RL = 8Ω
AV = 4
1
100
MAX9718 toc08
10
MAX9718 toc07
VCC = 3V
RL = 8Ω
AV = 2
1
1
fIN = 10kHz
fIN = 100Hz
0.1
0.01
fIN = 1kHz
OUTPUT POWER = 250mW
0.0001
0.0001
10
100
1k
10k
0.001
10
100k
100
1k
100k
10k
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
FREQUENCY (Hz)
FREQUENCY (Hz)
OUTPUT POWER (W)
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
fIN = 100Hz
fIN = 10kHz
0.1
fIN = 1kHz
0.1
0.001
0.5
1.0
OUTPUT POWER (W)
1.5
2.0
10
1
fIN = 100Hz
fIN = 1kHz
0.1
fIN = 10kHz
0.01
0.001
0.001
0
VCC = 5V
RL = 8Ω
AV = 4
fIN = 10kHz
0.01
fIN = 1kHz
MAX9718 toc12
MAX9718 toc11
1
fIN = 100Hz
0.01
100
THD+N (%)
1
VCC = 5V
RL = 8Ω
AV = 2
10
THD+N (%)
VCC = 5V
RL = 4Ω
AV = 4
10
100
MAX9718 toc10
100
THD+N (%)
10k
FREQUENCY (Hz)
10
THD+N (%)
OUTPUT POWER = 250mW
0
0.2
0.4
0.6
0.8
1.0
OUTPUT POWER (W)
1.2
1.4
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
OUTPUT POWER (W)
_______________________________________________________________________________________
5
MAX9718/MAX9719
Typical Operating Characteristics (continued)
(VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)
0.1
fIN = 1kHz
100
1
fIN = 10kHz
0.1
VCC = 3V
RL = 8Ω
AV = 2
10
THD+N (%)
THD+N (%)
THD+N (%)
fIN = 10kHz
1
VCC = 3V
RL = 4Ω
AV = 4
10
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
MAX9718 toc14
VCC = 3V
RL = 4Ω
AV = 2
10
100
MAX9718 toc13
100
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
1
0.1
fIN = 1kHz
fIN = 100Hz
0.01
MAX9718 toc15
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
fIN = 10kHz
fIN = 1kHz
0.01
0.01
fIN = 100Hz
fIN = 100Hz
0.001
0.001
0
100
200
300
400
500
600
0
100
200
300
400
500
600
0
100
200
300
400
500
600
OUTPUT POWER (mW)
OUTPUT POWER (mW)
TOTAL HARMONIC DISTORTION + NOISE
vs. OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs. COMMON-MODE VOLTAGE
TOTAL HARMONIC DISTORTION + NOISE
vs. COMMON-MODE VOLTAGE
fIN = 10kHz
0.001
MAX9718 toc18
VCC = 3V
PO = 200mW
AV = 2
THD+N (%)
fIN = 1kHz
0.1
VCC = 5V
PO = 200mW
AV = 2
THD+N (%)
1
0.01
MAX9718 toc17
0.01
MAX9718 toc16
VCC = 3V
RL = 8Ω
AV = 4
10
THD+N (%)
0.001
OUTPUT POWER (mW)
100
0.001
0.01
fIN = 100Hz
200
300
400
2
3
4
0
5
1.5
2.0
2.5
OUTPUT POWER
vs. SUPPLY VOLTAGE
OUTPUT POWER
vs. SUPPLY VOLTAGE
OUTPUT POWER
vs. LOAD RESISTANCE
THD+N = 1%
0.5
0
1.2
THD+N = 10%
1.0
0.8
THD+N = 1%
0.6
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
1.6
1.4
THD+N = 10%
1.2
1.0
0.8
THD+N = 1%
0.6
0.4
0.4
0.2
0.2
0
0
3.5
VCC = 5V
f = 1kHz
AV = 2
1.8
3.0
MAX9718 toc21
RL = 8Ω
f = 1kHz
AV = 2
1.6
2.0
MAX9718 toc20
1.8
1.4
1.0
3.0
1.0
COMMON-MODE VOLTAGE (VRMS)
THD+N = 10%
2.5
0.5
COMMON-MODE VOLTAGE (VRMS)
OUTPUT POWER (W)
1.5
1
OUTPUT POWER (mW)
RL = 4Ω
f = 1kHz
AV = 2
2.0
0
500
OUTPUT POWER (W)
2.5
100
MAX9718 toc19
0
6
0.0001
0.0001
0.001
OUTPUT POWER
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
2.5
3.0
3.5
4.0
4.5
SUPPLY VOLTAGE (V)
5.0
5.5
1
10
LOAD RESISTANCE (Ω)
_______________________________________________________________________________________
100
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
400
300
THD+N = 1%
200
1.4
POWER DISSIPATION (W)
THD+N = 10%
VCC = 5V
RL = 4Ω
f = 1kHz
AV = 2
1.6
1.0
MAX9718 toc23
VCC = 3V
f = 1kHz
AV = 2
POWER DISSIPATION (W)
OUTPUT POWER (mW)
1.8
MAX9718 toc22
600
500
POWER DISSIPATION
vs. OUTPUT POWER
POWER DISSIPATION
vs. OUTPUT POWER
1.2
1.0
0.8
0.6
0.4
100
MAX9718 toc24
OUTPUT POWER
vs. LOAD RESISTANCE
VCC = 5V
RL = 8Ω
f = 1kHz
AV = 2
0.8
0.6
0.4
0.2
0.2
0
10
100
0.6
0.9
1.2
1.5
0
1.8
0.2
0.4
0.6
0.8
1.0
OUTPUT POWER (W)
POWER DISSIPATION
vs. OUTPUT POWER
POWER DISSIPATION
vs. OUTPUT POWER
OUTPUT NOISE
vs. FREQUENCY
300
200
250
200
150
AV = 2
120
90
OUTPUT NOISE (dB)
400
VCC = 3V
RL = 8Ω
f = 1kHz
AV = 2
300
150
MAX9718 toc26
350
1.4
1.2
MAX9718 toc27
OUTPUT POWER (W)
POWER DISSIPATION (mW)
500
0.3
LOAD RESISTANCE (Ω)
VCC = 3V
RL = 4Ω
f = 1kHz
AV = 2
600
0
MAX9718 toc25
700
POWER DISSIPATION (mW)
0
0
1
100
60
30
0
-30
-60
-90
100
50
0
-150
0
200
300
400
500
700
0
200
300
400
10
500
100
1k
10k
FREQUENCY (Hz)
GAIN AND PHASE
vs. FREQUENCY
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
COMMON-MODE REJECTION RATIO
vs. FREQUENCY
0
-20
30
-40
-30
-60
-70
-90
-80
-120
-90
-150
-100
100
1k
FREQUENCY (Hz)
10k
100k
VRIPPLE = 200mVP-P
RL = 8Ω
CBIAS = 1µF
-20
-30
-50
-60
0
-10
CMRR (dB)
-30
PSRR (dB)
60
0
VRIPPLE = 200mVP-P
RL = 8Ω
CBIAS = 1µF
-10
100k
MAX9718 toc30
OUTPUT POWER (mW)
90
10
100
OUTPUT POWER (mW)
AV = 60dB
120
600
MAX9718 toc29
150
100
MAX9718 toc28
0
GAIN/PHASE (°/dB)
-120
-40
-50
VCC = 5V
-60
-70
VCC = 5V
VCC = 3V
-80
-90
VCC = 3V
10
100
1k
FREQUENCY (Hz)
10k
-100
100k
10
100
1k
10k
100k
FREQUENCY (Hz)
_______________________________________________________________________________________
7
MAX9718/MAX9719
Typical Operating Characteristics (continued)
(VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)
CROSSTALK
vs. FREQUENCY
CROSSTALK
vs. FREQUENCY
-60
-70
CHANNEL 2
-80
-90
-100
-110
-120
CHANNEL 1
10
100
1k
10k
-20
-30
-40
-50
-60
-70
CHANNEL 2
-80
-90
-100
-110
-120
CHANNEL 1
10
100k
MAX9718 toc32
VCC = 3V
VRIPPLE = 200mVP-P
RL = 8Ω
CBIAS = 1µF
-10
CROSSTALK (dB)
VCC = 5V
VRIPPLE = 200mVP-P
RL = 8Ω,
CBIAS = 1µF
-20
-30
-40
-50
0
MAX9718 toc31
0
-10
CROSSTALK (dB)
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
100
1k
10k
100k
FREQUENCY (Hz)
FREQUENCY (Hz)
ENTERING SHUTDOWN
EXITING SHUTDOWN
MAX9718 toc33
CBIAS = 0.1µF
VCC = 3V
RL = 8Ω
MAX9718 toc34
CBIAS = 0.1µF
VCC = 3V
RL = 8Ω
SHDN
2V/div
OUT+
1V/div
OUT+
1V/div
OUT1V/div
OUT1V/div
OUT+ - OUT200mV/div
OUT+ - OUT200mV/div
100µs/div
4ms/div
EXITING POWER-DOWN
ENTERING POWER-DOWN
MAX9718 toc36
MAX9718 toc35
CBIAS = 0.1µF
VCC = 3V
RL = 8Ω
SHDN
2V/div
OUT+
1V/div
SHDN
1V/div
OUT+
1V/div
OUT1V/div
OUT1V/div
OUT+ - OUT200mV/div
100µs/div
8
SHDN
2V/div
OUT+ - OUT200mV/div
CBIAS = 0.1µF
VCC = 3V
RL = 8Ω
4ms/div
_______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
4
VCC = 3V
2
0.01
0
-0.03
35
60
TO -3dB OF FINAL VALUE
70
VCC = 5V
60
50
40
VCC = 3V
30
20
0
10
VCC = 3V
-0.01
-0.02
-15
MAX9718 toc38
VCC = 5V
1
-40
80
TURN-ON TIME (ms)
SUPPLY CURRENT (mA)
0.02
SHUTDOWN CURRENT (µA)
VCC = 5V
3
0.03
MAX9718 toc37
6
5
TURN-ON TIME
vs. DC BIAS BYPASS CAPACITOR
SHUTDOWN CURRENT
vs. TEMPERATURE
MAX9718 toc39
SUPPLY CURRENT
vs. TEMPERATURE
85
10
0
-40
TEMPERATURE (°C)
-15
10
35
60
85
0
0.20
TEMPERATURE (°C)
0.40
0.60
0.80
1.00
CBIAS (µF)
Pin Description
PIN
MAX9718
MAX9719
NAME
FUNCTION
—
SHDN
Shutdown Input. The polarity of SHDN is dependent on the state
of SHDM.
TDFN/
µMAX
UCSP
TQFN
UCSP
TSSOP
1
C2
—
—
—
—
9
B3
11
SHDN
2
C1
—
—
—
IN-
3
B2
—
—
—
SHDM
4
A1
—
—
—
IN+
Noninverting Input
5
A2
5
B2
7
BIAS
DC Bias Bypass
6
A3
—
—
—
OUT-
Bridge Amplifier Negative Output
7
B3
1, 6, 11
A2,
C2, C4
3, 8,13
GND
Ground
8
—
13
—
15
N.C.
No Connection. Not internally connected.
Shutdown Input. Active-low shutdown input.
Inverting Input
Shutdown-Mode Polarity Input. SHDM controls the polarity of
SHDN. Connect SHDM high for an active-high SHDN input.
Connect SHDM low for an active-low SHDN input (see Table 1).
9
B1
8, 14
A4, D3
16, 10
C3
—
—
—
VCC
OUT+
Power Supply
10
—
—
2
C1
4
INR+
Right-Channel Noninverting Input
—
—
3
B1
5
INL-
Left-Channel Inverting Input
—
—
4
A1
6
INL+
Left-Channel Noninverting Input
—
—
7
A3
9
OUTL+
Left-Channel Bridge Amplifier Positive Output
—
—
10
B4
12
OUTL-
Left-Channel Bridge Amplifier Negative Output
Bridge Amplifier Positive Output
_______________________________________________________________________________________
9
MAX9718/MAX9719
Typical Operating Characteristics (continued)
(VCC = 5V, CBIAS = 0.1µF, THD+N measurement bandwidth = 22Hz to 22kHz, TA = +25°C, unless otherwise noted.)
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
Pin Description (continued)
PIN
MAX9718
MAX9719
NAME
FUNCTION
TDFN/
µMAX
UCSP
TQFN
UCSP
TSSOP
—
—
12
D4
14
OUTR+
Right-Channel Bridge Amplifier Positive Output
—
—
15
D2
1
OUTR-
Right-Channel Bridge Amplifier Negative Output
—
—
16
D1
2
INR-
EP
—
EP
—
EP
EP
Detailed Description
The MAX9718/MAX9719 are 1.4W BTL speaker amplifiers. The MAX9718 is a mono speaker amplifier, while
the MAX9719 is a stereo speaker amplifier. Both
devices feature a low-power shutdown mode, and
industry-leading click-and-pop suppression. The
MAX9718 features a two-input shutdown scheme to
configure shutdown for active high or active low. These
devices consist of high output-current audio amps configured as BTL amplifiers (see the Functional Diagrams).
Both adjustable and fixed gain (0dB, 3dB, 6dB) versions
are available.
BIAS
These devices operate from a single 2.7V to 5.5V supply and feature an internally generated, common-mode
bias voltage of VCC / 2 referenced to ground. BIAS provides both click-and-pop suppression and sets the DC
bias level for the audio outputs. Choose the value of the
bypass capacitor as described in the BIAS Capacitor
section. Do not connect external loads to BIAS as this
can affect the overall performance.
Shutdown Mode
The MAX9718/MAX9719 feature a 100nA low-power
shutdown mode that reduces quiescent current consumption. Entering shutdown disables the device’s bias
circuitry, the amplifier outputs go high impedance, and
BIAS is driven to GND. The MAX9718 SHDM input controls the polarity of SHDN. Drive SHDM high for an
active-high SHDN input. Drive SHDM low for an activelow SHDN input (see Table 1). The MAX9719 features
an active-low shutdown input, SHDN.
Click-and-Pop Suppression
The MAX9718/MAX9719 feature Maxim’s industry-leading click-and-pop suppression circuitry. During startup,
the amplifier common-mode bias voltage ramps to the
DC bias point. When entering shutdown, the amplifier
outputs are high impedance to 100kΩ between both
outputs. This scheme minimizes the energy present in
the audio band.
10
Right-Channel Noninverting Input
Exposed Pad. Connect EP to GND.
Table 1. Shutdown Mode Selection
(MAX9718 Only)
SHDM
SHDN
0
0
OPERATIONAL MODE
Shutdown
0
1
Normal operation
1
0
Normal operation
1
1
Shutdown
Applications Information
BTL Amplifier
The MAX9718/MAX9719 are designed to drive a load
differentially, a configuration referred to as bridge-tied
load or BTL. The BTL configuration (Figure 1) offers
advantages over the single-ended configuration, where
one side of the load is connected to ground. Driving the
load differentially doubles the output voltage compared
to a single-ended amplifier under similar conditions.
Thus, the differential gain of the device is twice the
closed-loop gain of the input amplifier. The effective
gain is given by:
R
A VD = 2 × F
RIN
Substituting 2 x VOUT(P-P) for VOUT(P-P) into the following
equations yields four times the output power due to
doubling of the output voltage:
VRMS =
VOUT(P−P)
2 2
2
V
POUT = RMS
RL
Since the differential outputs are biased at midsupply,
there is no net DC voltage across the load. This eliminates the need for DC-blocking capacitors required for
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
MAX9718/MAX9719
RF
RF
VOUT(P-P)
+1
2 x VOUT(P-P)
VOUT(P-P)
-1
INVERTING
DIFFERENTIAL
INPUT
RIN
MAX9718A
MAX9719A
IN-
(OPTIONAL)
OUT+
BIAS
GENERATOR
Figure 1. Bridge-Tied Load Configuration
single-ended amplifiers. These capacitors can be
large, expensive, consume board space, and degrade
low-frequency performance.
RIN
NONINVERTING
DIFFERENTIAL
INPUT (OPTIONAL)
OUT-
IN+
Power Dissipation and Heat Sinking
Under normal operating conditions, the MAX9718/
MAX9719 dissipate a significant amount of power. The
maximum power dissipation for each package is given
in the Absolute Maximum Ratings section under
Continuous Power Dissipation or can be calculated by
the following equation:
TJ(MAX) − TA
PDISSPKG(MAX) =
θJA
where TJ(MAX) is +150°C, TA is the ambient temperature, and θJA is the reciprocal of the derating factor in
°C/W as specified in the Absolute Maximum Ratings
section. For example, θJA of the TQFN package is
+59.2°C/W.
The increase in power delivered by the BTL configuration directly results in an increase in internal power dissipation over the single-ended configuration. The
maximum internal power dissipation for a given VCC
and load is given by the following equation:
PDISSPKG(MAX) =
2VCC2
π 2RL
If the internal power dissipation for a given application
exceeds the maximum allowed for a given package,
reduce power dissipation by increasing the ground
plane heat-sinking capability and the size of the traces
to the device (see the Layout and Grounding section).
Other methods for reducing power dissipation are to
reduce VCC, increase load impedance, decrease ambient temperature, reduce gain, or reduce input signal.
Thermal-overload protection limits total power dissipation in the MAX9718/MAX9719. When the junction temperature exceeds +160°C, the thermal protection
Figure 2. Setting the MAX9718A/MAX9719A Gain
circuitry disables the amplifier output stage. The amplifiers are enabled once the junction temperature cools
by 15°C. A pulsing output under continuous thermal
overload results as the device heats and cools.
For optimum power dissipation and heat sinking, connect the exposed pad found on the µMAX, TDFN,
TQFN, and TSSOP packages to a large ground plane.
Fixed Differential Gain
The MAX9718B, MAX9718C, MAX9718D, MAX9719B,
MAX9719C, and MAX9719D feature internally fixed
gains (see the Selector Guide). This simplifies design,
decreases required footprint size, and eliminates external gain-setting resistors. Resistors R1 and R2 shown in
the Typical Operating Circuit are used to achieve each
fixed gain.
Adjustable Differential Gain
Gain-Setting Resistors
External feedback resistors set the gain of the
MAX9718A and MAX9719A. Resistors R F and R IN
(Figure 2) set the gain of the amplifier as follows:
R
AV = F
RIN
where AV is the desired voltage gain. Hence, an RIN of
10kΩ and an RF of 20kΩ yields a gain of 2V/V, or 6dB.
RF can be either fixed or variable, allowing the use of a
digitally controlled potentiometer to alter the gain under
software control.
______________________________________________________________________________________
11
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
Input Filter
The fully differential amplifier inputs can be biased at
voltages other than midsupply. The common-mode
feedback circuit adjusts for input bias, ensuring the
outputs are still biased at midsupply. Input capacitors
are not required as long as the common-mode input
voltage is within the specified range listed in the
Electrical Characteristics table.
If input capacitors are used, input capacitor CIN, in
conjunction with R IN , forms a highpass filter that
removes the DC bias from an incoming signal. The ACcoupling capacitor allows the amplifier to bias the signal to an optimum DC level. Assuming zero-source
impedance, the -3dB point of the highpass filter is
given by:
1
f −3dB =
2πRINCIN
Setting f -3dB too high affects the low-frequency
response of the amplifier. Use capacitors with
dielectrics that have low-voltage coefficients, such as
tantalum or aluminum electrolytic. Capacitors with highvoltage coefficients, such as ceramics, can increase
distortion at low frequencies.
BIAS Capacitor
BIAS is the output of the internally generated VCC / 2
bias voltage. The BIAS bypass capacitor, C BIAS ,
improves PSRR and THD+N by reducing power supply
and other noise sources at the common-mode bias
node, and also generates the clickless/popless startup
DC bias waveform for the speaker amplifiers. Bypass
BIAS with a 0.1µF capacitor to GND. Larger values of
C BIAS (up to 1µF) improve PSRR, but slow down
tON/tOFF times. A 1µF CBIAS capacitor slows turn-on
and turn-off times by 10 and improves PSRR by 20dB
(at 1kHz). Do not connect external loads to BIAS.
Supply Bypassing
Proper power-supply bypassing ensures low-noise,
low-distortion performance. Connect a 1µF ceramic
capacitor from V CC to GND. Add additional bulk
capacitance as required by the application. Locate the
bypass capacitor as close to the device as possible.
12
Layout and Grounding
Good PC board layout is essential for optimizing performance. Use large traces for the power-supply inputs and
amplifier outputs to minimize losses due to parasitic trace
resistance and route heat away from the device. Good
grounding improves audio performance, minimizes
crosstalk between channels, and prevents any digital
switching noise from coupling into the audio signal.
The MAX9718/MAX9719 TDFN, TQFN, TSSOP, and
µMAX packages feature exposed thermal pads on their
undersides. This pad lowers the thermal resistance of the
package by providing a direct-heat conduction path
from the die to the PC board. Connect the exposed pad
to the ground plane using multiple vias, if required.
UCSP Applications Information
For the latest application details on UCSP construction,
dimensions, tape carrier information, PC board techniques, bump-pad layout, and recommended reflow
temperature profile, as well as the latest information on
reliability testing results, refer to the Application Note:
UCSP—A Wafer-Level Chip-Scale Package available
on Maxim’s website at www.maxim-ic.com/ucsp.
Selector Guide
PART
MONO
STEREO
GAIN
(dB)
SELECTABLE
SHUTDOWN
POLARITY
MAX9718A
√
—
Adjustable
√
MAX9718B
√
—
0
√
MAX9718C
√
—
3
√
MAX9718D
√
—
6
√
MAX9719A
—
√
Adjustable
—
MAX9719B
—
√
0
—
MAX9719C
—
√
3
—
MAX9719D
—
√
6
—
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
PART
TEMP
RANGE
PINPACKAGE
MAX9718BEBL-T* -40°C to +85°C 3 x 3 UCSP
UCSP Marking Information:
GAIN
(dB)
AAA
XXX
0
MAX9718BETB
-40°C to +85°C 10 TDFN-EP**
0
MAX9718BEUB
-40°C to +85°C 10 µMAX-EP**
0
■: A1 Bump indicator
3
AAA: Product code
XXX: Lot code
MAX9718CEBL-T* -40°C to +85°C 3 x 3 UCSP
MAX9718CETB
-40°C to +85°C 10 TDFN-EP**
3
MAX9718CEUB
-40°C to +85°C 10 µMAX-EP**
3
MAX9718DEBL-T* -40°C to +85°C 3 x 3 UCSP
6
MAX9718DETB
-40°C to +85°C 10 TDFN-EP**
6
MAX9718DEUB
-40°C to +85°C 10 µMAX-EP**
6
MAX9719AEBE-T* -40°C to +85°C 4 x 4 UCSP
Adj
MAX9719AETE
-40°C to +85°C 16 TQFN-EP**
Adj
MAX9719AEAE*
-40°C to +85°C 16 TSSOP-EP**
Adj
MAX9719BEBE-T* -40°C to +85°C 4 x 4 UCSP
0
MAX9719BETE
-40°C to +85°C 16 TQFN-EP**
0
MAX9719BEAE*
-40°C to +85°C 16 TSSOP-EP**
0
MAX9719CEBE-T* -40°C to +85°C 4 x 4 UCSP
3
MAX9719CETE
-40°C to +85°C 16 TQFN-EP**
3
MAX9719CEAE*
-40°C to +85°C 16 TSSOP-EP**
3
MAX9719DEBE-T* -40°C to +85°C 4 x 4 UCSP
6
MAX9719DETE
-40°C to +85°C 16 TQFN-EP**
6
MAX9719DEAE*
-40°C to +85°C 16 TSSOP-EP**
6
Chip Information
MAX9718 TRANSISTOR COUNT: 2359
MAX9719 TRANSISTOR COUNT: 4447
PROCESS: BiCMOS
*Future product—contact factory for availability.
**EP = Exposed paddle.
______________________________________________________________________________________
13
MAX9718/MAX9719
Ordering Information (continued)
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
System Diagram
2.7V TO 5.5V
10µF
1µF
VCC
MAX9719
IN1+
INL+
OUTL+
IN1-
INL-
OUTL-
IN2+
INR+
IN2-
INR-
OUTR+
OUTRGND
BIAS
SHDN
0.1µF
2.7V TO 5.5V
Q
MAX961
Q
220kΩ
VCC
IN+
IN-
0.1µF
0.1µF
SHDN
MAX9722B
1µF
INL
OUTL
1µF
OUTR
INR
2.7V TO 5.5V
PVDD
PVSS
SVSS
SVDD
1µF
0.1µF
C1P
CIN
1µF
1µF
AUTOMATIC HEADPHONE DETECTION AND SPEAKER DISABLE CIRCUIT
14
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
2.7V TO 5.5V
SUPPLY
VCC
1.0µF
INVERTING
DIFFERENTIAL
INPUT
NONINVERTING
DIFFERENTIAL
INPUT
R2
CIN
R1
IN-
OUT+
(OPTIONAL)
CIN
R1
IN+
OUTR2
(OPTIONAL)
BIAS
CBIAS
0.1µF
BIAS
GENERATOR
SHDN
SHDM
MAX9718B
MAX9718C
MAX9718D
SHUTDOWN
CONTROL
GND
RF
RF
2.7V TO 5.5V
SUPPLY
VCC
1.0µF
INVERTING
DIFFERENTIAL
INPUT
NONINVERTING
DIFFERENTIAL
INPUT
CIN
RIN
INOUT+
(OPTIONAL)
CIN
RIN
IN+
(OPTIONAL)
BIAS
CBIAS
0.1µF
MAX9718A
AV = 2
fC = 1Hz
CIN = 10µF
RIN = 10kΩ
RF = 20kΩ
OUTBIAS
GENERATOR
MAX9718A
SHDN
SHDM
SHUTDOWN
CONTROL
GND
______________________________________________________________________________________
15
MAX9718/MAX9719
Functional Diagrams
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
Functional Diagrams (continued)
2.7V TO 5.5V
SUPPLY
VCC
1.0µF
INVERTING
DIFFERENTIAL
INPUT
NONINVERTING
DIFFERENTIAL
INPUT
CIN
OUTL+
(OPTIONAL)
CIN
R1
INL+
OUTLR2
(OPTIONAL)
CBIAS
0.1µF
NONINVERTING
DIFFERENTIAL
INPUT
R2
R1
INL-
BIAS
INVERTING
DIFFERENTIAL
INPUT
MAX9719B
MAX9719C
MAX9719D
BIAS
GENERATOR
SHDN
CIN
SHUTDOWN
CONTROL
R2
R1
INR-
OUTR+
(OPTIONAL)
CIN
R1
INR+
(OPTIONAL)
OUTRR2
GND
RF
RF
2.7V TO 5.5V
SUPPLY
VCC
MAX9719A
1.0µF
INVERTING
DIFFERENTIAL
INPUT
NONINVERTING
DIFFERENTIAL
INPUT
CIN
RIN
INLOUTL+
(OPTIONAL)
CIN
RIN
INL+
(OPTIONAL)
BIAS
CBIAS
0.1µF
INVERTING
DIFFERENTIAL
INPUT
MAX9719A
AV = 2
fC = 1Hz
CIN = 10µF
RIN = 10kΩ
RF = 20kΩ
16
NONINVERTING
DIFFERENTIAL
INPUT
OUTL-
CIN
RIN
BIAS
GENERATOR
SHDN
SHUTDOWN
CONTROL
INROUTR+
(OPTIONAL)
CIN
(OPTIONAL)
RIN
INR+
OUTR-
GND
RF
RF
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
TOP VIEW
TOP VIEW
(BUMPS ON BOTTOM)
SHDN 1
IN-
2
SHDM
3
IN+
4
BIAS
5
10 OUT+
MAX9718
9
VCC
8
N.C.
7
GND
6
OUT-
MAX9718
3
1
2
A
IN+
BIAS
OUT-
B
VCC
SHDM
GND
C
IN-
SHDN
OUT+
µMAX
3 × 3 UCSP
TOP VIEW
TOP VIEW
(BUMPS ON BOTTOM)
SHDN 1
10 OUT+
IN-
2
SHDM
3
IN+
4
7 GND
BIAS
5
6 OUT-
MAX9719
4
1
2
3
A
INL+
GND
OUTL+
VCC
B
INL-
BIAS
SHDN
OUTL-
C
INR+
GND
D
INR-
OUTR-
9 VCC
8 N.C.
MAX9718
3mm × 3mm × 0.8mm TDFN
GND
VCC
OUTR+
4 × 4 UCSP
GND
INR+
OUTR-
VCC
N.C.
TOP VIEW
INR-
TOP VIEW
16
15
14
13
12 OUTR+
1
2
INL+ 6
11 SHDN
BIAS 7
10 VCC
GND 8
9 OUTL+
VCC
9
OUTL+
4
GND
INL+
BIAS
14 OUTR+
12 OUTL-
10 OUTL-
8
15 N.C.
INL- 5
3
7
INR- 2
GND 3
INR+ 4
INL-
6
16 VCC
11 GND
MAX9719
5
OUTR- 1
SHDN
MAX9719
13 GND
TSSOP-EP
4mm × 4mm × 0.8mm TQFN
______________________________________________________________________________________
17
MAX9718/MAX9719
Pin Configurations
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
18
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
6, 8, &10L, DFN THIN.EPS
L
A
D
D2
A2
PIN 1 ID
1
N
1
C0.35
b
E
PIN 1
INDEX
AREA
[(N/2)-1] x e
REF.
E2
DETAIL A
e
k
A1
CL
CL
L
L
e
e
A
DALLAS
SEMICONDUCTOR
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, 6, 8 & 10L,
TDFN, EXPOSED PAD, 3x3x0.80 mm
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY
APPROVAL
DOCUMENT CONTROL NO.
21-0137
REV.
1
D
2
COMMON DIMENSIONS
SYMBOL
A
MIN.
MAX.
0.70
0.80
D
2.90
3.10
E
2.90
3.10
A1
0.00
0.05
L
k
0.20
0.40
0.25 MIN.
A2
0.20 REF.
PACKAGE VARIATIONS
PKG. CODE
N
D2
E2
e
JEDEC SPEC
b
T633-1
6
1.50–0.10
2.30–0.10
0.95 BSC
MO229 / WEEA
0.40–0.05
1.90 REF
T833-1
8
1.50–0.10
2.30–0.10
0.65 BSC
MO229 / WEEC
0.30–0.05
1.95 REF
T1033-1
10
1.50–0.10
2.30–0.10
0.50 BSC
MO229 / WEED-3
0.25–0.05
2.00 REF
[(N/2)-1] x e
DALLAS
SEMICONDUCTOR
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, 6, 8 & 10L,
TDFN, EXPOSED PAD, 3x3x0.80 mm
APPROVAL
DOCUMENT CONTROL NO.
21-0137
REV.
D
2
2
______________________________________________________________________________________
19
MAX9718/MAX9719
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
10L UMAX, EXPPADS.EPS
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
20
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
16L,UCSP.EPS
PACKAGE OUTLINE, 4x4 UCSP
21-0101
G
1
1
______________________________________________________________________________________
21
MAX9718/MAX9719
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
24L QFN THIN.EPS
MAX9718/MAX9719
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
PACKAGE OUTLINE
12,16,20,24L QFN THIN, 4x4x0.8 mm
21-0139
A
PACKAGE OUTLINE
12,16,20,24L QFN THIN, 4x4x0.8 mm
21-0139
22
A
______________________________________________________________________________________
Low-Cost, Mono/Stereo,
1.4W Differential Audio Power Amplifiers
TSSOP 4.4mm BODY.EPS
PACKAGE OUTLINE, TSSOP, 4.40 MM BODY
EXPOSED PAD
21-0108
C
1
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
MAX9718/MAX9719
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)