AD EVAL-AD7982SDZ

18-Bit, 1 MSPS PulSAR 7.0 mW
ADC in MSOP/QFN
AD7982
Data Sheet
FEATURES
APPLICATION DIAGRAM EXAMPLE
2.5V TO 5V 2.5V
IN+
REF VDD VIO
SDI
AD7982
±10V, ±5V, ..
IN–
ADA4941
SCK
SDO
GND
CNV
1.8V TO 5V
3- OR 4-WIRE
INTERFACE
(SPI, CS
DAISY CHAIN)
06513-001
18-bit resolution with no missing codes
Throughput: 1 MSPS
Low power dissipation
4 mW at 1 MSPS (VDD only)
7 mW at 1 MSPS (total)
70 μW at 10 kSPS
INL: ±1 LSB typical, ±2 LSB maximum
Dynamic range: 99 dB
True differential analog input range: ±VREF
0 V to VREF with VREF between 2.5 V to 5.0 V
Allows use of any input range
Easy to drive with the ADA4941
No pipeline delay
Single-supply 2.5 V operation with 1.8 V/2.5 V/3 V/5 V logic
interface
Serial interface SPI®-/QSPI™-/MICROWIRE™-/DSP-compatible
Ability to daisy-chain multiple ADCs and busy indicator
10-lead package: MSOP (MSOP-8 size) and 3 mm × 3 mm QFN
(LFCSP), SOT-23 size
Figure 1.
GENERAL DESCRIPTION
APPLICATIONS
The AD7982 is an 18-bit, successive approximation, analog-todigital converter (ADC) that operates from a single power supply,
VDD. It contains a low power, high speed, 18-bit sampling ADC
and a versatile serial interface port. On the CNV rising edge,
the AD7982 samples the voltage difference between the IN+
and IN− pins. The voltages on these pins usually swing in
opposite phases between 0 V and VREF. The reference voltage,
REF, is applied externally and can be set independent of the
supply voltage, VDD. Its power scales linearly with throughput.
Battery-powered equipment
Data acquisition systems
Medical instruments
Seismic data acquisition systems
The SPI-compatible serial interface also features the ability,
using the SDI input, to daisy-chain several ADCs on a single
3-wire bus and provides an optional busy indicator. It is compatible
with 1.8 V, 2.5 V, 3 V, and 5 V logic, using the separate VIO supply.
The AD7982 is available in a 10-lead MSOP or a 10-lead QFN
(LFCSP) with operation specified from −40°C to +85°C.
Table 1. MSOP, QFN (LFCSP) 14-/16-/18-Bit PulSAR® ADCs
Type
18-Bit True Differential
100 kSPS
250 kSPS
AD7691
400 kSPS to 500 kSPS
AD7690
16-Bit True Differential
AD7684
AD7687
16-Bit Pseudo Differential
AD7680
AD7683
AD7940
AD7685
AD7694
AD7942
AD7688
AD7693
AD7686
14-Bit Pseudo Differential
Rev. B
AD7946
≥1000 kSPS
AD7982
AD7984
AD7980
ADC Driver
ADA4941
ADA4841
ADA4941
ADA4841
ADA4841
ADA4841
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2007–2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD7982
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Driver Amplifier Choice ........................................................... 14
Applications ....................................................................................... 1
Single-to-Differential Driver .................................................... 15
Application Diagram Example........................................................ 1
Voltage Reference Input ............................................................ 15
General Description ......................................................................... 1
Power Supply............................................................................... 15
Revision History ............................................................................... 2
Digital Interface .......................................................................... 16
Specifications..................................................................................... 3
CS Mode, 3-Wire Without Busy Indicator ............................. 17
Timing Specifications .................................................................. 5
CS Mode, 3-Wire with Busy Indicator .................................... 18
Absolute Maximum Ratings ............................................................ 6
CS Mode, 4-Wire Without Busy Indicator ............................. 19
ESD Caution .................................................................................. 6
CS Mode, 4-Wire with Busy Indicator .................................... 20
Pin Configurations and Function Descriptions ........................... 7
Chain Mode Without Busy Indicator ...................................... 21
Terminology ...................................................................................... 8
Chain Mode with Busy Indicator ............................................. 22
Typical Performance Characteristics ............................................. 9
Application Hints ........................................................................... 23
Theory of Operation ...................................................................... 12
Layout .......................................................................................... 23
Circuit Information .................................................................... 12
Evaluating AD7982 Performance............................................. 23
Converter Operation .................................................................. 12
Outline Dimensions ....................................................................... 24
Typical Connection Diagram.................................................... 13
Ordering Guide .......................................................................... 24
Analog Inputs .............................................................................. 14
REVISION HISTORY
7/13—Rev. A to Rev. B
Added Low Power Dissipation of 4 mW at 1 MSPS (VDD only)
to Features Section............................................................................ 1
Changes to Power Dissipation; Table 3 .......................................... 4
Added EPAD Notation to Figure 5 and Table 6............................ 7
Updated Outline Dimensions ....................................................... 24
Changes to Ordering Guide .......................................................... 24
10/07—Rev. 0 to Rev. A
Changes to Table 1 and Layout ........................................................1
Changes to Table 2.............................................................................3
Changes to Layout .............................................................................5
Changes to Layout .............................................................................6
Changes to Figure 5 ...........................................................................7
Changes to Figure 18 and Figure 20 ............................................ 11
Changes to Figure 23...................................................................... 13
Changers to Figure 26 .................................................................... 15
Changes to Digital Interface Section ........................................... 16
Changes to Figure 38...................................................................... 21
Changes to Figure 40...................................................................... 22
Updated Outline Dimensions ....................................................... 24
Changes to Ordering Guide .......................................................... 24
3/07—Revision 0: Initial Version
Rev. B | Page 2 of 24
Data Sheet
AD7982
SPECIFICATIONS
VDD = 2.5 V, VIO = 2.3 V to 5.5 V, REF = 5 V, TA = −40°C to +85°C, unless otherwise noted.
Table 2.
Parameter
RESOLUTION
ANALOG INPUT
Voltage Range
Absolute Input Voltage
Common-Mode Input Range
Analog Input CMRR
Leakage Current at 25°C
Input Impedance
ACCURACY
No Missing Codes
Differential Linearity Error
Integral Linearity Error
Transition Noise
Gain Error, TMIN to TMAX 2
Gain Error Temperature Drift
Zero Error, TMIN to TMAX2
Zero Temperature Drift
Power Supply Rejection Ratio
THROUGHPUT
Conversion Rate
Transient Response
AC ACCURACY
Dynamic Range
Oversampled Dynamic Range 4
Signal-to-Noise
Spurious-Free Dynamic Range
Total Harmonic Distortion 5
Signal-to-(Noise + Distortion)
Conditions
Min
18
Typ
IN+ − IN−
IN+, IN−
IN+, IN−
fIN = 450 kHz
Acquisition phase
−VREF
−0.1
VREF × 0.475
Max
Unit
Bits
+VREF
VREF + 0.1
VREF × 0.525
V
V
V
dB
nA
VREF × 0.5
67
200
See the Analog Inputs section
18
−0.85
−2
REF = 5 V
−0.023
VDD = 2.5 V ± 5%
±0.5
±1
1.05
+0.004
±1
±100
0.5
90
0
97
95.5
+0.023
+700
1
290
Full-scale step
VREF = 5 V
VREF = 2.5 V
FO = 1 kSPS
fIN = 1 kHz, VREF = 5 V, TA = 25°C
fIN = 1 kHz, VREF = 2.5 V, TA = 25°C
fIN = 10 kHz
fIN = 10 kHz
fIN = 1 kHz, VREF = 5 V, TA = 25°C
+1.5
+2
99
93
129
98
92.5
−115
−120
97
Bits
LSB 1
LSB1
LSB1
% of FS
ppm/°C
µV
ppm/°C
dB
MSPS
ns
dB 3
dB3
dB3
dB3
dB3
dB3
dB3
dB3
LSB means least significant bit. With the ±5 V input range, 1 LSB is 38.15 µV.
See Terminology section. These specifications include full temperature range variation but not the error contribution from the external reference.
3
All specifications expressed in decibels are referred to a full-scale input FSR and tested with an input signal at 0.5 dB below full scale, unless otherwise specified.
4
Dynamic range is obtained by oversampling the ADC running at a throughput Fs of 1 MSPS followed by postdigital filtering with an output word rate of FO.
5
Tested fully in production at fIN = 1 kHz.
1
2
Rev. B | Page 3 of 24
AD7982
Data Sheet
VDD = 2.5 V, VIO = 2.3 V to 5.5 V, REF = 5 V, TA = −40°C to +85°C, unless otherwise noted.
Table 3.
Parameter
REFERENCE
Voltage Range
Load Current
SAMPLING DYNAMICS
−3 dB Input Bandwidth
Aperture Delay
DIGITAL INPUTS
Logic Levels
VIL
VIH
VIL
VIH
IIL
IIH
DIGITAL OUTPUTS
Data Format
Pipeline Delay
VOL
VOH
POWER SUPPLIES
VDD
VIO
VIO Range
Standby Current 1, 2
Power Dissipation
Total
VDD only
REF only
VIO only
Energy per Conversion
TEMPERATURE RANGE 3
Specified Performance
Conditions
Min
Typ
2.4
Max
Unit
5.1
1 MSPS, REF = 5 V
350
V
µA
VDD = 2.5 V
10
2
MHz
ns
VIO > 3 V
VIO > 3 V
VIO ≤ 3 V
VIO ≤ 3 V
–0.3
0.7 × VIO
–0.3
0.9 × VIO
−1
−1
Serial 18 bits, twos complement
Conversion results available immediately
after completed conversion
0.4
VIO − 0.3
ISINK = +500 µA
ISOURCE = −500 µA
2.375
2.3
1.8
Specified performance
VDD and VIO = 2.5 V, 25°C
VDD = 2.625 V, VREF = 5 V, VIO = 3 V
10 kSPS throughput
1 MSPS throughput
TMIN to TMAX
+0.3 × VIO
VIO + 0.3
+0.1 × VIO
VIO + 0.3
+1
+1
2.5
−40
With all digital inputs forced to VIO or GND as required.
During acquisition phase.
3
Contact an Analog Devices, Inc. sales representative for the extended temperature range.
1
2
Rev. B | Page 4 of 24
V
V
2.625
5.5
5.5
V
V
V
µA
86
8.6
µW
mW
mW
mW
mW
nJ/sample
+85
°C
0.35
70
7
4
1.7
1.3
7.0
V
V
V
V
µA
µA
Data Sheet
AD7982
TIMING SPECIFICATIONS
TA = −40°C to +85°C, VDD = 2.37 V to 2.63 V, VIO = 2.3 V to 5.5 V, unless otherwise noted.1
Table 4.
Parameter
Conversion Time: CNV Rising Edge to Data Available
Acquisition Time
Time Between Conversions
CNV Pulse Width (CS Mode)
SCK Period (CS Mode)
VIO Above 4.5 V
VIO Above 3 V
VIO Above 2.7 V
VIO Above 2.3 V
SCK Period (Chain Mode)
VIO Above 4.5 V
VIO Above 3 V
VIO Above 2.7 V
VIO Above 2.3 V
SCK Low Time
SCK High Time
SCK Falling Edge to Data Remains Valid
SCK Falling Edge to Data Valid Delay
VIO Above 4.5 V
VIO Above 3 V
VIO Above 2.7 V
VIO Above 2.3 V
CNV or SDI Low to SDO D15 MSB Valid (CS Mode)
VIO Above 3 V
VIO Above 2.3 V
CNV or SDI High or Last SCK Falling Edge to SDO High Impedance (CS Mode)
SDI Valid Setup Time from CNV Rising Edge
SDI Valid Hold Time from CNV Rising Edge (CS Mode)
SDI Valid Hold Time from CNV Rising Edge (Chain Mode)
SCK Valid Setup Time from CNV Rising Edge (Chain Mode)
SCK Valid Hold Time from CNV Rising Edge (Chain Mode)
SDI Valid Setup Time from SCK Falling Edge (Chain Mode)
SDI Valid Hold Time from SCK Falling Edge (Chain Mode)
SDI High to SDO High (Chain Mode with Busy Indicator)
Min
500
290
1000
10
Typ
Max
710
Unit
ns
ns
ns
ns
10.5
12
13
15
ns
ns
ns
ns
11.5
13
14
16
4.5
4.5
3
ns
ns
ns
ns
ns
ns
ns
tSCK
tSCKL
tSCKH
tHSDO
tDSDO
9.5
11
12
14
ns
ns
ns
ns
10
15
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
tEN
tDIS
tSSDICNV
tHSDICNV
tHSDICNV
tSSCKCNV
tHSCKCNV
tSSDISCK
tHSDISCK
tDSDOSDI
5
2
0
5
5
2
3
15
See Figure 2 and Figure 3 for load conditions.
IOL
Y% VIO1
X% VIO1
tDELAY
1.4V
TO SDO
CL
20pF
500µA
IOH
tDELAY
VIH2
VIL2
VIH2
VIL2
1FOR VIO ≤ 3.0V, X = 90, AND Y = 10; FOR VIO > 3.0V, X = 70, AND Y = 30.
2MINIMUM V AND MAXIMUM V USED. SEE DIGITAL INPUTS
IH
IL
SPECIFICATIONS IN TABLE 3.
Figure 2. Load Circuit for Digital Interface Timing
Figure 3. Voltage Levels for Timing
Rev. B | Page 5 of 24
06513-003
500µA
06513-002
1
Symbol
tCONV
tACQ
tCYC
tCNVH
tSCK
AD7982
Data Sheet
ABSOLUTE MAXIMUM RATINGS
Table 5.
Parameter
Analog Inputs
IN+, IN− to GND 1
Supply Voltage
REF, VIO to GND
VDD to GND
VDD to VIO
Digital Inputs to GND
Digital Outputs to GND
Storage Temperature Range
Junction Temperature
θJA Thermal Impedance
10-Lead MSOP
10-Lead QFN (LFCSP_WD)
θJC Thermal Impedance
10-Lead MSOP
10-Lead QFN (LFCSP_WD)
Lead Temperatures
Vapor Phase (60 sec)
Infrared (15 sec)
1
Rating
−0.3 V to VREF + 0.3 V
or ±130 mA
−0.3 V to +6.0 V
−0.3 V to +3.0 V
+3 V to −6 V
−0.3 V to VIO + 0.3 V
−0.3 V to VIO + 0.3 V
−65°C to +150°C
150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
200°C/W
48.7°C/W
44°C/W
2.96°C/W
215°C
220°C
See the Analog Inputs section for an explanation of IN+ and IN−.
Rev. B | Page 6 of 24
Data Sheet
AD7982
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
REF 1
9
SDI
8
SCK
IN– 4
7
SDO
GND 5
6
CNV
IN+ 3
10
VIO
VDD 2
AD7982
9
SDI
IN+ 3
TOP VIEW
(Not to Scale)
8
SCK
7
SDO
6
CNV
IN– 4
GND 5
TOP VIEW
NOTES
1. THE EXPOSED PAD SHOULD BE CONNECTED
TO GND. THIS CONNECTION IS NOT REQUIRED
TO MEET THE ELECTRICAL PERFORMANCES.
06513-004
REF 1
AD7982
06513-005
10 VIO
VDD 2
Figure 5. 10-Lead QFN (LFCSP) Pin Configuration
Figure 4. 10-Lead MSOP Pin Configuration
Table 6. Pin Function Descriptions
Pin
No.
1
Mnemonic
REF
Type 1
AI
2
3
4
5
6
VDD
IN+
IN−
GND
CNV
P
AI
AI
P
DI
7
8
9
SDO
SCK
SDI
DO
DI
DI
10
VIO
EPAD
P
Description
Reference Input Voltage. The REF range is 2.4 V to 5.1 V. This pin is referred to the GND pin and should
be decoupled closely to the GND pin with a 10 µF capacitor.
Power Supply.
Differential Positive Analog Input.
Differential Negative Analog Input.
Power Supply Ground.
Convert Input. This input has multiple functions. On its leading edge, it initiates the conversions and
selects the interface mode of the part: chain mode or CS mode. In CS mode, the SDO pin is enabled
when CNV is low. In chain mode, the data should be read when CNV is high.
Serial Data Output. The conversion result is output on this pin. It is synchronized to SCK.
Serial Data Clock Input. When the part is selected, the conversion result is shifted out by this clock.
Serial Data Input. This input provides multiple features. It selects the interface mode of the ADC as follows:
Chain mode is selected if SDI is low during the CNV rising edge. In this mode, SDI is used as a data input to
daisy-chain the conversion results of two or more ADCs onto a single SDO line. The digital data level on SDI is
output on SDO with a delay of 18 SCK cycles.
CS mode is selected if SDI is high during the CNV rising edge. In this mode, either SDI or CNV can enable
the serial output signals when low. If SDI or CNV is low when the conversion is complete, the busy indicator
feature is enabled.
Input/Output Interface Digital Power. Nominally at the same supply as the host interface (1.8 V, 2.5 V, 3 V, or 5 V).
Exposed Pad. For the lead frame chip scale package (LFCSP), the exposed pad should be connected to GND.
this connection is not required to meet the electrical performances.
AI = analog input, DI = digital input, DO = digital output, and P = power.
1
Rev. B | Page 7 of 24
AD7982
Data Sheet
TERMINOLOGY
Integral Nonlinearity Error (INL)
INL refers to the deviation of each individual code from a line
drawn from negative full scale through positive full scale. The
point used as negative full scale occurs ½ LSB before the first
code transition. Positive full scale is defined as a level 1½ LSB
beyond the last code transition. The deviation is measured from
the middle of each code to the true straight line (see Figure 22).
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. DNL is the
maximum deviation from this ideal value. It is often specified in
terms of resolution for which no missing codes are guaranteed.
Zero Error
Zero error is the difference between the ideal midscale voltage,
that is, 0 V, from the actual voltage producing the midscale
output code, that is, 0 LSB.
Gain Error
The first transition (from 100 ... 00 to 100 ... 01) should occur at
a level ½ LSB above nominal negative full scale (−4.999981 V
for the ±5 V range). The last transition (from 011 … 10 to
011 … 11) should occur for an analog voltage 1½ LSB below
the nominal full scale (+4.999943 V for the ±5 V range). The
gain error is the deviation of the difference between the actual
level of the last transition and the actual level of the first transition
from the difference between the ideal levels.
Spurious-Free Dynamic Range (SFDR)
SFDR is the difference, in decibels (dB), between the rms
amplitude of the input signal and the peak spurious signal.
Effective Resolution
Effective resolution is calculated as
Effective Resolution = log2(2N/RMS Input Noise)
and is expressed in bits.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal and is
expressed in decibels.
Dynamic Range
Dynamic range is the ratio of the rms value of the full scale to
the total rms noise measured with the inputs shorted together.
The value for dynamic range is expressed in decibels. It is
measured with a signal at −60 dBF so that it includes all noise
sources and DNL artifacts.
Signal-to-Noise Ratio (SNR)
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Signal-to-(Noise + Distortion) Ratio (SINAD)
SINAD is the ratio of the rms value of the actual input signal to
the rms sum of all other spectral components that are less than
the Nyquist frequency, including harmonics but excluding dc.
The value of SINAD is expressed in decibels.
Aperture Delay
Aperture delay is the measure of the acquisition performance
and is the time between the rising edge of the CNV input and
when the input signal is held for a conversion.
Effective Number of Bits (ENOB)
ENOB is a measurement of the resolution with a sine wave
input. It is related to SINAD as follows
Transient Response
Transient response is the time required for the ADC to accurately
acquire its input after a full-scale step function is applied.
ENOB = (SINADdB − 1.76)/6.02
and is expressed in bits.
Noise-Free Code Resolution
Noise-free code resolution is the number of bits beyond which it is
impossible to distinctly resolve individual codes. It is calculated as
Noise-Free Code Resolution = log2(2N/Peak-to-Peak Noise)
and is expressed in bits.
Rev. B | Page 8 of 24
Data Sheet
AD7982
TYPICAL PERFORMANCE CHARACTERISTICS
VDD = 2.5 V, REF = 5.0 V, VIO = 3.3 V.
2.0
POSITIVE INL: +0.79 LSB
NEGATIVE INL: –0.68 LSB
1.5
1.0
1.0
0.5
0.5
DNL (LSB)
1.5
0
–0.5
–0.5
–1.0
–1.0
–1.5
–1.5
0
65536
131072
CODE
196608
262144
–2.0
0
65536
44806
43239
45000
50975
50000
40000
35000
40000
COUNTS
32476
29064
30000
20000
30000
25000
20013
20000
16682
15000
10000
9064
7795
3FFF0
0
29
3FFF2
745
881
3FFF4
3FFF6
3FFF8
43
0
0
3FFFA
3FFFC
CODE IN HEX
06513-007
5000
0
0
0
7
145
0
1
2
3
4
5
6
7
8
9
222
7
0
0
A
B
C
D
CODE IN HEX
Figure 10. Histogram of a DC Input at the Code Transition
Figure 7. Histogram of a DC Input at the Code Center
0
100
SNR (dB REFERRED TO FULL SCALE)
fS = 1MSPS
fIN = 2kHz
–20
SNR = 97.3dB
THD = –121.8dB
SFDR = 120.2dB
SINAD = 97.3dB
–40
–60
–80
–100
–120
–140
–160
–180
100
300
200
FREQUENCY (kHz)
400
500
06513-008
AMPLITUDE (dB OF FULL SCALE)
3158
2793
0
06513-010
10000
0
262144
50000
60000
0
196608
Figure 9. Differential Nonlinearity vs. Code
Figure 6. Integral Nonlinearity vs. Code
COUNTS
131072
CODE
99
98
97
96
95
94
93
92
91
90
–10
–9
–8
–7
–5
–4
–3
–6
INPUT LEVEL (dB)
Figure 11. SNR vs. Input Level
Figure 8. FFT Plot
Rev. B | Page 9 of 24
–2
–1
0
06513-032
–2.0
POSITIVE INL: +0.46 LSB
NEGATIVE INL: –0.49 LSB
06513-009
0
06513-006
INL (LSB)
2.0
AD7982
Data Sheet
18
100
SNR, SINAD
–100
130
–105
125
17
115
–115
110
–120
THD
15
85
105
–125
2.75
3.25
3.75
4.25
REFERENCE VOLTAGE (V)
4.75
14
5.25
–130
2.25
06513-034
Figure 12. SNR, SINAD, and ENOB vs. Reference Voltage
98
–117
96
–119
THD (dB)
–115
100
5.25
4.75
94
92
–121
–35
–15
5
25
45
65
TEMPERATURE (°C)
85
105
125
06513-042
–123
–125
–55
Figure 13. SNR vs. Temperature
–35
–15
5
25
45
65
TEMPERATURE (°C)
85
105
125
06513-041
SNR (dB)
3.25
3.75
4.25
REFERENCE VOLTAGE (V)
Figure 15. THD, SFDR vs. Reference Voltage
100
90
–55
2.75
1000
06513-030
80
2.25
SFDR (dB)
ENOB
120
SFDR
THD (dB)
16
90
ENOB (Bits)
SNR, SINAD (dB)
–110
06513-033
95
Figure 16. THD vs. Temperature
100
–80
–85
–90
95
THD (dB)
90
–100
–105
–110
85
–115
–120
80
0.1
1
10
FREQUENCY (kHz)
100
1000
–125
0.1
06513-031
SINAD (dB)
–95
1
10
FREQUENCY (kHz)
100
Figure 17. THD vs. Frequency
Figure 14. SINAD vs. Frequency
Rev. B | Page 10 of 24
Data Sheet
AD7982
1.4
1.4
IVDD
IVDD
1.2
OPERATING CURRENTS (mA)
1.0
0.8
0.6
IREF
0.4
IVIO
0.2
2.475
2.525
SUPPLY VOLTAGE (V)
2.575
2.625
06513-036
2.425
Figure 18. Operating Currents vs. Supply Voltage
0.6
IREF
0.4
IVIO
7
6
5
4
3
IVDD + IVIO
2
–15
5
25
45
65
TEMPERATURE (°C)
85
105
125
06513-038
1
–35
0
–55
–35
–15
5
25
45
65
TEMPERATURE (°C)
85
105
Figure 20. Operating Currents vs. Temperature
8
POWER-DOWN CURRENTS (µA)
0.8
0.2
0
2.375
0
–55
1.0
Figure 19. Power-Down Currents vs. Temperature
Rev. B | Page 11 of 24
125
06513-035
OPERATING CURRENTS (mA)
1.2
AD7982
Data Sheet
THEORY OF OPERATION
IN+
SWITCHES CONTROL
MSB
REF
131,072C
65,536C
LSB
2C
4C
C
SW+
C
BUSY
COMP
GND
131,072C
65,536C
2C
4C
C
CONTROL
LOGIC
C
MSB
OUTPUT CODE
LSB
SW–
06513-011
CNV
IN–
Figure 21. ADC Simplified Schematic
CIRCUIT INFORMATION
The AD7982 is a fast, low power, single-supply, precise, 18-bit
ADC using a successive approximation architecture.
The AD7982 is capable of converting 1,000,000 samples per
second (1 MSPS) and powers down between conversions. When
operating at 10 kSPS, for example, it typically consumes 70 µW,
making it ideal for battery-powered applications.
The AD7982 provides the user with an on-chip track-and-hold
and does not exhibit any pipeline delay or latency, making it
ideal for multiple multiplexed channel applications.
The AD7982 can be interfaced to any 1.8 V to 5 V digital logic
family. It is available in a 10-lead MSOP or a tiny 10-lead QFN
(LFCSP) that allows space savings and flexible configurations.
It is pin-for-pin-compatible with the 16-bit AD7980.
CONVERTER OPERATION
The AD7982 is a successive approximation ADC based on a
charge redistribution DAC. Figure 21 shows the simplified
schematic of the ADC. The capacitive DAC consists of two
identical arrays of 18 binary-weighted capacitors, which are
connected to the two comparator inputs.
During the acquisition phase, terminals of the array tied to the
input of the comparator are connected to GND via SW+ and
SW−. All independent switches are connected to the analog
inputs. Therefore, the capacitor arrays are used as sampling
capacitors and acquire the analog signal on the IN+ and IN−
inputs. When the acquisition phase is complete and the CNV
input goes high, a conversion phase is initiated. When the
conversion phase begins, SW+ and SW− are opened first. The
two capacitor arrays are then disconnected from the inputs and
connected to the GND input. Therefore, the differential voltage
between the inputs IN+ and IN− captured at the end of the
acquisition phase is applied to the comparator inputs, causing
the comparator to become unbalanced. By switching each
element of the capacitor array between GND and REF, the
comparator input varies by binary-weighted voltage steps
(VREF/2, VREF/4 ... VREF/262,144). The control logic toggles these
switches, starting with the MSB, to bring the comparator back
into a balanced condition. After the completion of this process,
the part returns to the acquisition phase, and the control logic
generates the ADC output code and a busy signal indicator.
Because the AD7982 has an on-board conversion clock, the
serial clock, SCK, is not required for the conversion process.
Rev. B | Page 12 of 24
Data Sheet
AD7982
Transfer Functions
Table 7. Output Codes and Ideal Input Voltages
Description
FSR – 1 LSB
Midscale + 1 LSB
Midscale
Midscale – 1 LSB
–FSR + 1 LSB
–FSR
011...111
011...110
011...101
1
2
100...010
Analog Input
VREF = 5 V
+4.999962 V
+38.15 μV
0V
−38.15 μV
−4.999962 V
−5 V
Digital Output
Code (Hex)
0x1FFFF1
0x00001
0x00000
0x3FFFF
0x20001
0x200002
This is also the code for an overranged analog input (VIN+ − VIN− above VREF − VGND).
This is also the code for an underranged analog input (VIN+ − VIN− below VGND).
TYPICAL CONNECTION DIAGRAM
100...001
100...000
–FSR
–FSR + 1 LSB
–FSR + 0.5 LSB
+FSR – 1 LSB
+FSR – 1.5 LSB
ANALOG INPUT
Figure 23 shows an example of the recommended connection
diagram for the AD7982 when multiple supplies are available.
06513-012
Figure 22. ADC Ideal Transfer Function
V+
REF1
2.5V
10µF2
100nF
V+
1.8V TO 5V
100nF
20Ω
0 TO VREF
REF
2.7nF
VDD
V–
AD7982
4
V+
20Ω
ADA48412, 3
SCK
SDO
IN–
VREF TO 0
VIO
SDI
IN+
GND
3-WIRE INTERFACE
CNV
2.7nF
V–
4
NOTES
1SEE VOLTAGE REFERENCE INPUT SECTION FOR REFERENCE SELECTION.
2C
REF IS USUALLY A 10µF CERAMIC CAPACITOR (X5R).
SEE RECOMMENDED LAYOUT FIGURE 41 AND FIGURE 42.
3SEE DRIVER AMPLIFIER CHOICE SECTION.
4OPTIONAL FILTER. SEE ANALOG INPUT SECTION.
Figure 23. Typical Application Diagram with Multiple Supplies
Rev. B | Page 13 of 24
06513-013
ADC CODE (TWOS COMPLEMENT)
The ideal transfer characteristic for the AD7982 is shown in
Figure 22 and Table 7.
AD7982
Data Sheet
ANALOG INPUTS
Figure 24 shows an equivalent circuit of the input structure of
the AD7982.
The two diodes, D1 and D2, provide ESD protection for the
analog inputs, IN+ and IN−. Care must be taken to ensure that
the analog input signal does not exceed the reference input
voltage (REF) by more than 0.3 V. If the analog input signal
exceeds this level, the diodes become forward biased and start
conducting current. These diodes can handle a forward-biased
current of 130 mA maximum. However, if the supplies of the
input buffer (for example, the supplies of the ADA4841 in
Figure 23) are different from those of the REF, the analog input
signal may eventually exceed the supply rails by more than
0.3 V. In such a case (for example, an input buffer with a shortcircuit), the current limitation can be used to protect the part.
When the source impedance of the driving circuit is low, the
AD7982 can be driven directly. Large source impedances
significantly affect the ac performance, especially THD. The
dc performances are less sensitive to the input impedance. The
maximum source impedance depends on the amount of THD
that can be tolerated. The THD degrades as a function of the
source impedance and the maximum input frequency.
DRIVER AMPLIFIER CHOICE
Although the AD7982 is easy to drive, the driver amplifier must
meet the following requirements:

REF
D1
RIN
The noise generated by the driver amplifier must be kept
as low as possible to preserve the SNR and transition noise
performance of the AD7982. The noise from the driver is
filtered by the AD7982 analog input circuit’s 1-pole, lowpass filter made by RIN and CIN or by the external filter, if
one is used. Because the typical noise of the AD7982 is
40 μV rms, the SNR degradation due to the amplifier is
CIN
IN+ OR IN–
D2
06513-014
CPIN
GND
SNRLOSS
Figure 24. Equivalent Analog Input Circuit
90
85
CMRR (dB)
80

75

70
10
100
FREQUENCY (kHz)
1000
10000
06513-040
65
1
Figure 25. Analog Input CMRR vs. Frequency
During the acquisition phase, the impedance of the analog
inputs (IN+ or IN−) can be modeled as a parallel combination
of Capacitor CPIN and the network formed by the series connection
of RIN and CIN. CPIN is primarily the pin capacitance. RIN is typically
400 Ω and is a lumped component composed of serial resistors
and the on resistance of the switches. CIN is typically 30 pF and
is mainly the ADC sampling capacitor.
During the sampling phase, where the switches are closed, the
input impedance is limited to CPIN. RIN and CIN make a 1-pole,
low-pass filter that reduces undesirable aliasing effects and
limits noise.






where:
f–3dB is the input bandwidth, in megahertz, of the AD7982
(10 MHz) or the cutoff frequency of the input filter, if
one is used.
N is the noise gain of the amplifier (for example, 1 in buffer
configuration).
eN is the equivalent input noise voltage of the op amp, in
nV/√Hz.
The analog input structure allows the sampling of the true
differential signal between IN+ and IN−. By using these
differential inputs, signals common to both inputs are rejected.
60


40
 20 log 

π
2
2
 40  f  3dB (NeN )
2

For ac applications, the driver should have a THD performance commensurate with the AD7982.
For multichannel multiplexed applications, the driver
amplifier and the AD7982 analog input circuit must settle
for a full-scale step onto the capacitor array at an 18-bit level
(0.0004%, 4 ppm). In the data sheet of the amplifier,
settling at 0.1% to 0.01% is more commonly specified. This
may differ significantly from the settling time at an 18-bit
level and should be verified prior to driver selection.
Table 8. Recommended Driver Amplifiers
Amplifier
ADA4941-1
ADA4841
AD8021
AD8022
OP184
AD8655
AD8605, AD8615
Rev. B | Page 14 of 24
Typical Application
Very low noise, low power, single to differential
Very low noise, small, and low power
Very low noise and high frequency
Low noise and high frequency
Low power, low noise, and low frequency
5 V single supply, low noise
5 V single supply, low power
Data Sheet
AD7982
SINGLE-TO-DIFFERENTIAL DRIVER
POWER SUPPLY
For applications using a single-ended analog signal, either
bipolar or unipolar, the ADA4941 single-ended-to-differential
driver allows for a differential input to the part. The schematic
is shown in Figure 26.
The AD7982 uses two power supply pins: a core supply (VDD) and
a digital input/output interface supply (VIO). VIO allows direct
interface with any logic between 1.8 V and 5.5 V. To reduce the
number of supplies needed, VIO and VDD can be tied together.
The AD7982 is independent of power supply sequencing between
VIO and VDD. Additionally, it is very insensitive to power supply
variations over a wide frequency range, as shown in Figure 27.
R1 and R2 set the attenuation ratio between the input range and
the ADC range (VREF). R1, R2, and CF are chosen depending on
the desired input resistance, signal bandwidth, antialiasing, and
noise contribution. For example, for the ±10 V range with a 4 kΩ
impedance, R2 = 1 kΩ and R1 = 4 kΩ.
95
90
R3 and R4 set the common mode on the IN− input, and R5 and R6
set the common mode on the IN+ input of the ADC. The common
mode should be close to VREF/2. For example, for the ±10 V range
with a single supply, R3 = 8.45 kΩ, R4 = 11.8 kΩ, R5 = 10.5 kΩ,
and R6 = 9.76 kΩ.
R4
+5V REF
10µF
OUTN
20Ω
2.7nF
2.7nF
OUTP
+2.5V
20Ω
IN
IN+
REF
10
100
FREQUENCY (kHz)
1000
Figure 27. PSRR vs. Frequency
AD7982
IN–
To ensure optimum performance, VDD should be roughly half
of REF, the voltage reference input. For example, if REF is 5.0 V,
VDD should be set to 2.5 V (±5%).
GND
ADA4941
–0.2V
R2
06513-015
R1
1
VDD
FB
±10V,
±5V, ..
65
60
REF
100nF
PSRR (dB)
70
+5.2V
100nF
75
06513-039
R3
80
CF
Figure 26. Single-Ended-to-Differential Driver Circuit
The AD7982 powers down automatically at the end of each
conversion phase; therefore, the power scales linearly with the
sampling rate. This makes the part ideal for low sampling rates
(even of a few hertz) and low battery-powered applications.
10.000
VOLTAGE REFERENCE INPUT
The AD7982 voltage reference input, REF, has a dynamic input
impedance and should therefore be driven by a low impedance
source with efficient decoupling between the REF and GND
pins, as explained in the Layout section.
When REF is driven by a very low impedance source (for
example, a reference buffer using the AD8031 or the AD8605),
a 10 μF (X5R, 0805 size) ceramic chip capacitor is appropriate
for optimum performance.
If an unbuffered reference voltage is used, the decoupling value
depends on the reference used. For instance, a 22 μF (X5R,
1206 size) ceramic chip capacitor is appropriate for optimum
performance using a low temperature drift ADR43x reference.
If desired, a reference decoupling capacitor with values as small
as 2.2 μF can be used with a minimal impact on performance,
especially DNL.
Regardless, there is no need for an additional lower value ceramic
decoupling capacitor (for example, 100 nF) between the REF
and GND pins.
Rev. B | Page 15 of 24
1.000
IVDD
0.100
IREF
IVIO
0.010
0.001
10000
100000
SAMPLING RATE (SPS)
Figure 28. Operating Currents vs. Sampling Rate
1000000
06513-037
R6
OPERATING CURRENTS (mA)
R5
85
AD7982
Data Sheet
DIGITAL INTERFACE
Although the AD7982 has a reduced number of pins, it offers
flexibility in its serial interface modes.
When in CS mode, the AD7982 is compatible with SPI, QSPI,
digital hosts, and DSPs. In this mode, the AD7982 can use
either a 3-wire or 4-wire interface. A 3-wire interface using the
CNV, SCK, and SDO signals minimizes wiring connections
useful, for instance, in isolated applications. A 4-wire interface
using the SDI, CNV, SCK, and SDO signals allows CNV, which
initiates the conversions, to be independent of the readback
timing (SDI). This is useful in low jitter sampling or
simultaneous sampling applications.
When in chain mode, the AD7982 provides a daisy-chain feature
using the SDI input for cascading multiple ADCs on a single
data line similar to a shift register.
The mode in which the part operates depends on the SDI level
when the CNV rising edge occurs. The CS mode is selected if
SDI is high, and the chain mode is selected if SDI is low. The
SDI hold time is such that when SDI and CNV are connected
together, the chain mode is always selected.
In either mode, the AD7982 offers the option of forcing a start
bit in front of the data bits. This start bit can be used as a busy
signal indicator to interrupt the digital host and trigger the data
reading. Otherwise, without a busy indicator, the user must timeout
the maximum conversion time prior to readback.
The busy indicator feature is enabled
•
•
Rev. B | Page 16 of 24
In the CS mode if CNV or SDI is low when the ADC
conversion ends (see Figure 32 and Figure 36).
In the chain mode if SCK is high during the CNV rising
edge (see Figure 40).
Data Sheet
AD7982
high for the maximum possible conversion time to avoid the
generation of the busy signal indicator. When the conversion is
complete, the AD7982 enters the acquisition phase and powers
down. When CNV goes low, the MSB is output onto SDO. The
remaining data bits are clocked by subsequent SCK falling edges.
The data is valid on both SCK edges. Although the rising edge
can be used to capture the data, a digital host using the SCK
falling edge allows a faster reading rate, provided it has an
acceptable hold time. After the 18th SCK falling edge or when
CNV goes high (whichever occurs first), SDO returns to high
impedance.
CS MODE, 3-WIRE WITHOUT BUSY INDICATOR
This mode is usually used when a single AD7982 is connected
to an SPI-compatible digital host. The connection diagram is
shown in Figure 29, and the corresponding timing is given in
Figure 30.
With SDI tied to VIO, a rising edge on CNV initiates a
conversion, selects the CS mode, and forces SDO to high
impedance. Once a conversion is initiated, it continues until
completion irrespective of the state of CNV. This can be useful,
for instance, to bring CNV low to select other SPI devices, such
as analog multiplexers; however, CNV must be returned high
before the minimum conversion time elapses and then held
CONVERT
DIGITAL HOST
CNV
VIO
SDI
AD7982
DATA IN
SDO
06513-016
SCK
CLK
Figure 29. CS Mode, 3-Wire Without Busy Indicator Connection Diagram (SDI High)
SDI = 1
tCYC
tCNVH
CNV
ACQUISITION
tCONV
tACQ
CONVERSION
ACQUISITION
tSCK
tSCKL
1
2
3
16
tHSDO
18
tSCKH
tDSDO
tEN
SDO
17
D17
D16
D15
tDIS
D1
D0
Figure 30. CS Mode, 3-Wire Without Busy Indicator Serial Interface Timing (SDI High)
Rev. B | Page 17 of 24
06513-017
SCK
AD7982
Data Sheet
CS MODE, 3-WIRE WITH BUSY INDICATOR
When the conversion is complete, SDO goes from high
impedance to low impedance. With a pull-up on the SDO line,
this transition can be used as an interrupt signal to initiate the
data reading controlled by the digital host. The AD7982 then
enters the acquisition phase and powers down. The data bits are
then clocked out, MSB first, by subsequent SCK falling edges.
The data is valid on both SCK edges. Although the rising edge
can be used to capture the data, a digital host using the SCK
falling edge allows a faster reading rate, provided it has an
acceptable hold time. After the optional 19th SCK falling edge
or when CNV goes high (whichever occurs first), SDO returns
to high impedance.
This mode is usually used when a single AD7982 is connected
to an SPI-compatible digital host having an interrupt input.
The connection diagram is shown in Figure 31, and the
corresponding timing is given in Figure 32.
With SDI tied to VIO, a rising edge on CNV initiates a
conversion, selects the CS mode, and forces SDO to high
impedance. SDO is maintained in high impedance until the
completion of the conversion irrespective of the state of CNV.
Prior to the minimum conversion time, CNV can be used to
select other SPI devices, such as analog multiplexers, but CNV
must be returned low before the minimum conversion time
elapses and then held low for the maximum possible conversion
time to guarantee the generation of the busy signal indicator.
If multiple AD7982s are selected at the same time, the SDO
output pin handles this contention without damage or induced
latch-up. Meanwhile, it is recommended to keep this contention
as short as possible to limit extra power dissipation.
CONVERT
VIO
CNV
AD7982
DATA IN
SDO
IRQ
SCK
06513-018
SDI
DIGITAL HOST
47kΩ
VIO
CLK
Figure 31. CS Mode, 3-Wire with Busy Indicator Connection Diagram (SDI High)
SDI = 1
tCYC
tCNVH
CNV
ACQUISITION
tCONV
tACQ
CONVERSION
ACQUISITION
tSCK
tSCKL
1
2
3
17
tHSDO
18
19
tSCKH
tDSDO
SDO
D17
D16
tDIS
D1
D0
Figure 32. CS Mode, 3-Wire with Busy Indicator Serial Interface Timing (SDI High)
Rev. B | Page 18 of 24
06513-019
SCK
Data Sheet
AD7982
time elapses and then held high for the maximum possible
conversion time to avoid the generation of the busy signal
indicator. When the conversion is complete, the AD7982 enters
the acquisition phase and powers down. Each ADC result can
be read by bringing its SDI input low, which consequently
outputs the MSB onto SDO. The remaining data bits are then
clocked by subsequent SCK falling edges. The data is valid on
both SCK edges. Although the rising edge can be used to
capture the data, a digital host using the SCK falling edge allows
a faster reading rate, provided it has an acceptable hold time.
After the 18th SCK falling edge or when SDI goes high (whichever
occurs first), SDO returns to high impedance and another
AD7982 can be read.
CS MODE, 4-WIRE WITHOUT BUSY INDICATOR
This mode is usually used when multiple AD7982s are
connected to an SPI-compatible digital host.
A connection diagram example using two AD7982s is shown in
Figure 33, and the corresponding timing is given in Figure 34.
With SDI high, a rising edge on CNV initiates a conversion,
selects the CS mode, and forces SDO to high impedance. In this
mode, CNV must be held high during the conversion phase and
the subsequent data readback. (If SDI and CNV are low, SDO is
driven low.) Prior to the minimum conversion time, SDI can be
used to select other SPI devices, such as analog multiplexers,
but SDI must be returned high before the minimum conversion
CS2
CS1
CONVERT
CNV
AD7982
SDO
SDI
AD7982
SCK
DIGITAL HOST
SDO
SCK
DATA IN
CLK
06513-020
SDI
CNV
Figure 33. CS Mode, 4-Wire Without Busy Indicator Connection Diagram
tCYC
CNV
ACQUISITION
tCONV
tACQ
CONVERSION
ACQUISITION
tSSDICNV
SDI(CS1)
tHSDICNV
SDI(CS2)
tSCK
tSCKL
1
2
3
16
tHSDO
18
19
20
D1
D0
D17
D16
34
35
36
D1
D0
tSCKH
tDSDO
tEN
SDO
17
D17
D16
D15
tDIS
Figure 34. CS Mode, 4-Wire Without Busy Indicator Serial Interface Timing
Rev. B | Page 19 of 24
06513-021
SCK
AD7982
Data Sheet
used to select other SPI devices, such as analog multiplexers,
but SDI must be returned low before the minimum conversion
time elapses and then held low for the maximum possible
conversion time to guarantee the generation of the busy signal
indicator. When the conversion is complete, SDO goes from
high impedance to low impedance. With a pull-up on the SDO
line, this transition can be used as an interrupt signal to initiate
the data readback controlled by the digital host. The AD7982
then enters the acquisition phase and powers down. The data
bits are then clocked out, MSB first, by subsequent SCK falling
edges. The data is valid on both SCK edges. Although the rising
edge can be used to capture the data, a digital host using the
SCK falling edge allows a faster reading rate, provided it has an
acceptable hold time. After the optional 19th SCK falling edge or
SDI going high (whichever occurs first), SDO returns to high
impedance.
CS MODE, 4-WIRE WITH BUSY INDICATOR
This mode is usually used when a single AD7982 is connected
to an SPI-compatible digital host with an interrupt input and
when it is desired to keep CNV, which is used to sample the
analog input, independent of the signal used to select the data
reading. This independence is particularly important in
applications where low jitter on CNV is desired.
The connection diagram is shown in Figure 35, and the
corresponding timing is given in Figure 36.
With SDI high, a rising edge on CNV initiates a conversion,
selects the CS mode, and forces SDO to high impedance. In this
mode, CNV must be held high during the conversion phase and
the subsequent data readback. (If SDI and CNV are low, SDO is
driven low.) Prior to the minimum conversion time, SDI can be
CS1
CONVERT
VIO
CNV
AD7982
DATA IN
SDO
IRQ
SCK
06513-022
SDI
DIGITAL HOST
47kΩ
CLK
Figure 35. CS Mode, 4-Wire with Busy Indicator Connection Diagram
tCYC
CNV
ACQUISITION
tCONV
tACQ
CONVERSION
ACQUISITION
tSSDICNV
SDI
tSCK
tHSDICNV
tSCKL
1
2
3
tHSDO
17
18
19
tSCKH
tDSDO
tDIS
tEN
SDO
D17
D16
D1
Figure 36. CS Mode, 4-Wire with Busy Indicator Serial Interface Timing
Rev. B | Page 20 of 24
D0
06513-023
SCK
Data Sheet
AD7982
held high during the conversion phase and the subsequent data
readback. When the conversion is complete, the MSB is output
onto SDO and the AD7982 enters the acquisition phase and
powers down. The remaining data bits stored in the internal
shift register are clocked by subsequent SCK falling edges. For
each ADC, SDI feeds the input of the internal shift register and
is clocked by the SCK falling edge. Each ADC in the chain
outputs its data MSB first, and 18 × N clocks are required to
read back the N ADCs. The data is valid on both SCK edges.
Although the rising edge can be used to capture the data, a
digital host using the SCK falling edge allows a faster reading
rate and consequently more AD7982s in the chain, provided the
digital host has an acceptable hold time. The maximum conversion
rate may be reduced due to the total readback time.
CHAIN MODE WITHOUT BUSY INDICATOR
This mode can be used to daisy-chain multiple AD7982s on
a 3-wire serial interface. This feature is useful for reducing
component count and wiring connections, for example, in
isolated multiconverter applications or for systems with a
limited interfacing capacity. Data readback is analogous to
clocking a shift register.
A connection diagram example using two AD7982s is shown in
Figure 37, and the corresponding timing is given in Figure 38.
When SDI and CNV are low, SDO is driven low. With SCK low,
a rising edge on CNV initiates a conversion, selects the chain
mode, and disables the busy indicator. In this mode, CNV is
CONVERT
CNV
AD7982
SDO
SDI
DIGITAL HOST
AD7982
A
SCK
SDO
DATA IN
B
SCK
06513-024
SDI
CNV
CLK
Figure 37. Chain Mode Without Busy Indicator Connection Diagram
SDIA = 0
tCYC
CNV
ACQUISITION
tCONV
tACQ
CONVERSION
ACQUISITION
tSCK
tSCKL
tSSCKCNV
SCK
1
tHSCKCNV
2
3
16
17
tSSDISCK
18
19
20
DA17
DA16
34
35
36
DA1
D A0
tSCKH
tHSDISCK
tEN
SDOA = SDIB
DA17
DA16
DA15
D A1
DA0
DB17
DB16
DB15
D B1
DB0
SDOB
Figure 38. Chain Mode Without Busy Indicator Serial Interface Timing
Rev. B | Page 21 of 24
06513-025
tHSDO
tDSDO
AD7982
Data Sheet
subsequent data readback. When all ADCs in the chain have
completed their conversions, the SDO pin of the ADC closest to
the digital host (see the AD7982 ADC labeled C in Figure 39) is
driven high. This transition on SDO can be used as a busy indicator
to trigger the data readback controlled by the digital host. The
AD7982 then enters the acquisition phase and powers down.
The data bits stored in the internal shift register are clocked out,
MSB first, by subsequent SCK falling edges. For each ADC, SDI
feeds the input of the internal shift register and is clocked by the
SCK falling edge. Each ADC in the chain outputs its data MSB
first, and 18 × N + 1 clocks are required to read back the N ADCs.
Although the rising edge can be used to capture the data, a digital
host using the SCK falling edge allows a faster reading rate and
consequently more AD7982s in the chain, provided the digital
host has an acceptable hold time.
CHAIN MODE WITH BUSY INDICATOR
This mode can also be used to daisy-chain multiple AD7982s
on a 3-wire serial interface while providing a busy indicator.
This feature is useful for reducing component count and wiring
connections, for example, in isolated multiconverter applications or
for systems with a limited interfacing capacity. Data readback is
analogous to clocking a shift register.
A connection diagram example using three AD7982s is shown
in Figure 39, and the corresponding timing is given in Figure 40.
When SDI and CNV are low, SDO is driven low. With SCK
high, a rising edge on CNV initiates a conversion, selects the
chain mode, and enables the busy indicator feature. In this
mode, CNV is held high during the conversion phase and the
CONVERT
SDI
CNV
AD7982
SDO
SDI
CNV
AD7982
SDO
AD7982
SDI
B
SCK
A
SCK
DIGITAL HOST
SDO
DATA IN
C
SCK
IRQ
06513-026
CNV
CLK
Figure 39. Chain Mode with Busy Indicator Connection Diagram
tCYC
ACQUISITION
tCONV
tACQ
ACQUISITION
CONVERSION
tSSCKCNV
SCK
1
tHSCKCNV
tSCK
tSCKH
2
tSSDISCK
tEN
SDOA = SDIB
3
4
17
18
tHSDISCK
DA17 DA16 DA15
19
20
21
35
36
37
38
39
tSCKL
DA1
SDOB = SDIC
55
DA0
tDSDOSDI
DB17 DB16 DB15
DB1
DB0 DA17 DA16
DA1
D A0
DC17 DC16 DC15
DC1
DC0 DB17 DB16
DB1
DB0 DA17 DA16
tDSDOSDI
SDOC
54
tDSDOSDI
tHSDO
tDSDO
tDSDOSDI
53
tDSDOSDI
Figure 40. Chain Mode with Busy Indicator Serial Interface Timing
Rev. B | Page 22 of 24
DA1
DA0
06513-027
CNV = SDIA
Data Sheet
AD7982
APPLICATION HINTS
LAYOUT
The printed circuit board that houses the AD7982 should be
designed so that the analog and digital sections are separated
and confined to certain areas of the board. The pinout of the
AD7982, with its analog signals on the left side and its digital
signals on the right side, eases this task.
AD7982
At least one ground plane should be used. It can be common or
split between the digital and analog sections. In the latter case,
the planes should be joined underneath the AD7982s.
06513-028
Avoid running digital lines under the device because these
couple noise onto the die, unless a ground plane under the
AD7982 is used as a shield. Fast switching signals, such as CNV
or clocks, should not run near analog signal paths. Crossover of
digital and analog signals should be avoided.
Figure 41. Example Layout of the AD7982 (Top Layer)
The AD7982 voltage reference input REF has a dynamic input
impedance and should be decoupled with minimal parasitic
inductances. This is done by placing the reference decoupling
ceramic capacitor close to, ideally right up against, the REF and
GND pins and connecting them with wide, low impedance traces.
Finally, the power supplies VDD and VIO of the AD7982
should be decoupled with ceramic capacitors, typically 100 nF,
placed close to the AD7982 and connected using short, wide
traces to provide low impedance paths and to reduce the effect
of glitches on the power supply lines.
06513-029
An example of layout following these rules is shown in
Figure 41 and Figure 42.
EVALUATING AD7982 PERFORMANCE
Other recommended layouts for the AD7982 are outlined
in the documentation of the evaluation board for the AD7982
(EVAL-AD7982SDZ). The evaluation board package includes
a fully assembled and tested evaluation board, documentation,
and software for controlling the board from a PC via the
EVAL-SDP-CB1Z.
Rev. B | Page 23 of 24
Figure 42. Example Layout of the AD7982 (Bottom Layer)
AD7982
Data Sheet
OUTLINE DIMENSIONS
3.10
3.00
2.90
10
3.10
3.00
2.90
1
5.15
4.90
4.65
6
5
PIN 1
IDENTIFIER
0.50 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.30
0.15
0.70
0.55
0.40
0.23
0.13
6°
0°
091709-A
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-BA
Figure 43. 10-Lead Mini Small Outline Package [MSOP]
(RM-10)
Dimensions shown in millimeters
2.48
2.38
2.23
3.10
3.00 SQ
2.90
0.50 BSC
10
6
1.74
1.64
1.49
EXPOSED
PAD
0.50
0.40
0.30
1
5
BOTTOM VIEW
TOP VIEW
0.80
0.75
0.70
SEATING
PLANE
0.30
0.25
0.20
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 MIN
PIN 1
INDICATOR
(R 0.15)
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
02-05-2013-C
PIN 1 INDEX
AREA
0.20 REF
Figure 44. 10-Lead Lead Frame Chip Scale Package [QFN (LFCSP_WD)]
3 mm × 3 mm Body, Very Very Thin, Dual Lead
(CP-10-9)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
AD7982BRMZ
AD7982BRMZRL7
AD7982BCPZ-RL7
AD7982BCPZ-RL
EVAL-AD7982SDZ
EVAL-SDP-CB1Z
1
2
3
Notes
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
2
3
Package Description
10-Lead MSOP
10-Lead MSOP
10-Lead QFN (LFCSP_WD)
10-Lead QFN (LFCSP_WD)
Evaluation Board
Controller Board
Package
Option
RM-10
RM-10
CP-10-9
CP-10-9
Ordering
Quantity
Tube, 50
Reel, 1000
Reel, 1500
Reel, 5000
Z = RoHS compliant part.
This board can be used as a standalone evaluation board or in conjunction with the EVAL-SDP-CB1Z for evaluation/demonstration purposes.
This board allows a PC to control and communicate with all Analog Devices evaluation boards ending in the SDZ designator.
©2007–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06513–0–7/13(B)
Rev. B | Page 24 of 24
Branding
C5F
C5F
C5F
C5F