AD 5962-89805012A

FEATURES
True rms-to-dc conversion
Laser trimmed to high accuracy
±0.2% maximum error (AD536AK)
±0.5% maximum error (AD536AJ)
Wide response capability
Computes rms of ac and dc signals
450 kHz bandwidth: V rms > 100 mV
2 MHz bandwidth: V rms > 1 V
Signal crest factor of 7 for 1% error
dB output with 60 dB range
Low power: 1.2 mA quiescent current
Single- or dual-supply operation
Monolithic integrated circuit
−55°C to +125°C operation (AD536AS)
GENERAL DESCRIPTION
The AD536A is a complete monolithic integrated circuit that
performs true rms-to-dc conversion. It offers performance
comparable or superior to that of hybrid or modular units costing
much more. The AD536A directly computes the true rms value of
any complex input waveform containing ac and dc components.
A crest factor compensation scheme allows measurements with 1%
error at crest factors up to 7. The wide bandwidth of the device
extends the measurement capability to 300 kHz with less than 3 dB
errors for signal levels greater than 100 mV.
An important feature of the AD536A, not previously available
in rms converters, is an auxiliary dB output pin. The logarithm
of the rms output signal is brought out to a separate pin to allow
the dB conversion, with a useful dynamic range of 60 dB. Using
an externally supplied reference current, the 0 dB level can be
conveniently set to correspond to any input level from 0.1 V to
2 V rms.
The AD536A is laser trimmed to minimize input and output offset
voltage, to optimize positive and negative waveform symmetry
(dc reversal error), and to provide full-scale accuracy at 7 V rms.
As a result, no external trims are required to achieve the rated
unit accuracy.
The input and output pins are fully protected. The input circuitry
can take overload voltages well beyond the supply levels. Loss of
supply voltage with the input connected to external circuitry does
not cause the device to fail. The output is short-circuit protected.
FUNCTIONAL BLOCK DIAGRAM
AD536A
+VS
VIN
ABSOLUTE
VALUE
COM
SQUARER/
DIVIDER
dB
+
CAV
CURRENT
MIRROR
25kΩ
RL
IOUT
BUFFER IN
BUF
25kΩ
80kΩ
BUFFER
OUT
00504-001
Data Sheet
Integrated Circuit
True RMS-to-DC Converter
AD536A
–VS
Figure 1.
The AD536A is available in two accuracy grades (J and K) for
commercial temperature range (0°C to 70°C) applications, and
one grade (S) rated for the −55°C to +125°C extended range.
The AD536AK offers a maximum total error of ±2 mV ± 0.2%
of reading, while the AD536AJ and AD536AS have maximum
errors of ±5 mV ± 0.5% of reading. All three versions are available
in a hermetically sealed 14-lead DIP or a 10-pin TO-100 metal
header package. The AD536AS is also available in a 20-terminal
leadless hermetically sealed ceramic chip carrier.
The AD536A computes the true root-mean-square level of a
complex ac (or ac plus dc) input signal and provides an equivalent dc output level. The true rms value of a waveform is a more
useful quantity than the average rectified value because it relates
directly to the power of the signal. The rms value of a statistical
signal also relates to its standard deviation.
An external capacitor is required to perform measurements to the
fully specified accuracy. The value of this capacitor determines the
low frequency ac accuracy, ripple amplitude, and settling time.
The AD536A operates equally well from split supplies or a
single supply with total supply levels from 5 V to 36 V. With
1 mA quiescent supply current, the device is well suited for a
wide variety of remote controllers and battery-powered
instruments.
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©1976–2012 Analog Devices, Inc. All rights reserved.
Powered by TCPDF (www.tcpdf.org)
IMPORTANT LINKS for the AD536A*
Last content update 09/07/2013 04:37 pm
PARAMETRIC SELECTION TABLES
DESIGN COLLABORATION COMMUNITY
Find Similar Products By Operating Parameters
Collaborate Online with the ADI support team and other designers
about select ADI products.
DOCUMENTATION
AD536A Military Data Sheet
AN-653: Improving Temperature, Stability, and Linearity of High
Dynamic Range RMS RF Power Detectors
AN-214: Ground Rules for High Speed Circuits
AN-268: RMS-to-DC Converters Ease Measurement Tasks
RMS-to-DC Application Guide Second Edition
Follow us on Twitter: www.twitter.com/ADI_News
Like us on Facebook: www.facebook.com/AnalogDevicesInc
* Section I: RMS-DC Conversion - Theory
* Section II: RMS-DC Conversion - Basic Design Considerations
* Section III: RMS Application Circuits
* Appendix A: Testing the Critical Parameters of RMS Converters
* Appendix B: Input Buffer Amplifier Requirements
* Appendix C: Computer Programs for Determining Computational
Errors, Output Ripple, and 1% Settling Time of RMS Converter
* Appendix D: New Products Appendix to the RMS-to-DC Conversion
Application Guide (October 2002)
* Download the entire guide in .zip format
Introduction to Analog RMS-to-DC Technology: Converters and
Applications Audio Version
Introduction to Analog RMS-to-DC Technology: Converters and
Applications Non-Audio Version
ADI Warns Against Misuse of COTS Integrated Circuits
Space Qualified Parts List
Linear and Data Converters
Embedded Processing and DSP
DESIGN SUPPORT
Submit your support request here:
Telephone our Customer Interaction Centers toll free:
Americas:
Europe:
China:
India:
Russia:
1-800-262-5643
00800-266-822-82
4006-100-006
1800-419-0108
8-800-555-45-90
Quality and Reliability
Lead(Pb)-Free Data
SAMPLE & BUY
AD536A
View Price & Packaging
Request Evaluation Board
Request Samples
Check Inventory & Purchase
Find Local Distributors
DESIGN TOOLS, MODELS, DRIVERS & SOFTWARE
AD536A SPICE Macro Model
EVALUATION KITS & SYMBOLS & FOOTPRINTS
Symbols and Footprints
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet.
Note: Dynamic changes to the content on this page (labeled 'Important Links') does not
constitute a change to the revision number of the product data sheet.
This content may be frequently modified.
AD536A
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Frequency Response .....................................................................9
General Description ......................................................................... 1
AC Measurement Accuracy and Crest Factor ...........................9
Functional Block Diagram .............................................................. 1
Applications Information .............................................................. 11
Revision History ............................................................................... 2
Typical Connections .................................................................. 11
Specifications..................................................................................... 3
Optional External Trims For High Accuracy ......................... 11
Absolute Maximum Ratings ............................................................ 5
Single-Supply Operation ........................................................... 12
ESD Caution .................................................................................. 5
Choosing the Averaging Time Constant ................................. 12
Pin Configurations and Function Descriptions ........................... 6
Outline Dimensions ....................................................................... 14
Theory of Operation ........................................................................ 8
Ordering Guide .......................................................................... 15
Connections for dB Operation ................................................... 8
REVISION HISTORY
7/12—Rev. D to Rev. E
Reorganized Layout ............................................................ Universal
Changes to Figure 1 .......................................................................... 1
Changes to Figure 6 .......................................................................... 8
Changes to Figure 7 .......................................................................... 9
Changes to Figure 13, Figure 14, and Figure 15 ......................... 11
Changes to Figure 16, Figure 17, and Single-Supply Operation
Section .............................................................................................. 12
Changes to Figure 21 ...................................................................... 13
Updated Outline Dimensions ....................................................... 14
8/08—Rev. C to Rev. D
Changes to Features Section............................................................ 1
Changes to General Description Section ...................................... 1
Changes to Figure 1 .......................................................................... 1
Changes to Table 2 ............................................................................ 5
Change to Figure 2 ........................................................................... 5
Changes to Figure 15 ...................................................................... 10
Changes to Connections for dB Operation Section ................... 11
Changes to Figure 17 ...................................................................... 12
Changes to Frequency Response Section .................................... 12
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 15
3/06—Rev. B to Rev. C
Updated Format .................................................................. Universal
Changed Product Description to General Description ................1
Changes to General Description .....................................................1
Changes to Table 1.............................................................................3
Changes to Table 2.............................................................................5
Added Pin Configurations and Function Descriptions ...............6
Changed Standard Connection to Typical Connections .............8
Changed Single Supply Connection to Single Supply
Operation............................................................................................9
Changes to Connections for dB Operation................................. 11
Changes to Figure 17...................................................................... 12
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 15
6/99—Rev. A to Rev. B
1/76—Revision 0: Initial Version
Rev. E | Page 2 of 16
Data Sheet
AD536A
SPECIFICATIONS
TA = +25°C and ±15 V dc, unless otherwise noted.
Table 1.
Parameter
TRANSFER FUNCTION
CONVERSION ACCURACY
Total Error, Internal Trim 1
(See Figure 13)
vs. Temperature
TMIN to +70°C
+70°C to +125°C
vs. Supply Voltage
AD536AJ
Typ
Max
VOUT = √Avg(VIN)2
Min
AD536AK
Typ
Max
VOUT = √Avg(VIN)2
mV ± % of rdg
±0.1 ± 0.01
±0.05 ± 0.005
±0.1 ± 0.005
±0.3 ± 0.005
mV ± % of rdg/°C
mV ± % of rdg/°C
mV ± % of rdg/°C
±0.1 ± 0.01
±0.1
±0.01
±0.2
±3 ± 0.3
±0.1
±2 ± 0.1
Specified accuracy
−0.1
−1.0
mV ± % of rdg
mV ± % of rdg
Specified accuracy
−0.1
−1.0
% of rdg
% of rdg
5
45
120
5
45
120
5
45
120
kHz
kHz
kHz
90
450
2.3
25
90
450
2.3
25
90
450
2.3
25
kHz
kHz
MHz
ms/µF
0 to 7
±20
0 to 2
V rms
V peak
V rms
0 to 2
±7
±7
V peak
±25
±25
±25
V peak
20
±2
kΩ
mV
±2
mV
±0.2
mV/°C
mV/V
V
V
±0.6
dB
mV/dB
dB/°C
20
±2
±1
±2
±0.1
±0.1
+12.5
+0.33
20
±20
±7
16.67
0.8
±0.4
−3
−0.033
0 to 7
±20
0 to 2
5
1
Unit
±5 ± 0.5
0 to 7
0 to +11
0 to +2
AD536AS
Typ
Max
VOUT = √Avg(VIN)2
±2 ± 0.2
Specified accuracy
−0.1
−1.0
13.33
Min
±5 ± 0.5
±0.1
±0.01
±0.2
±3 ± 0.3
dc Reversal Error
Total Error, External Trim1
(See Figure 16)
ERROR VS. CREST FACTOR 2
Crest Factor 1 to Crest Factor 2
Crest Factor = 3
Crest Factor = 7
FREQUENCY RESPONSE 3
Bandwidth for 1% Additional
Error (0.09 dB)
VIN = 10 mV
VIN = 100 mV
VIN = 1 V
±3 dB Bandwidth
VIN = 10 mV
VIN = 100 mV
VIN = 1 V
AVERAGING TIME CONSTANT
(See Figure 19)
INPUT CHARACTERISTICS
Signal Range, ±15 V Supplies
Continuous RMS Level
Peak Transient Input
Continuous RMS Level,
VS = ±5 V
Peak Transient Input,
VS = ±5 V
Maximum Continuous
Nondestructive Input Level
(All Supply Voltages)
Input Resistance
Input Offset Voltage
OUTPUT CHARACTERISTICS
Offset Voltage, VIN = COM
(See Figure 13)
vs. Temperature
vs. Supply Voltage
Voltage Swing, ±15 V Supplies
± 5 V Supply
dB OUTPUT, 0 dB = 1 V rms
(See Figure 7)
Error, 7 mV < VIN < 7 V rms
Scale Factor
Scale Factor Temperature
Coefficient
Uncompensated
IREF for 0 dB = 1 V rms
IREF Range
Min
13.33
0 to +11
0 to +2
±0.6
80
100
16.67
0.5
20
±1
±0.5
±1
±0.1
±0.1
+12.5
±0.2
−3
−0.033
5
1
+0.33
20
Rev. E | Page 3 of 16
13.33
0 to +11
0 to +2
±0.3
80
100
16.67
0.8
±0.2
+12.5
±0.5
−3
−0.033
5
1
+0.33
20
80
100
% of rdg/°C
µA
µA
AD536A
Parameter
IOUT TERMINAL
IOUT Scale Factor
IOUT Scale Factor Tolerance
Output Resistance
Voltage Compliance
BUFFER AMPLIFIER
Input and Output Voltage
Range
Input Offset Voltage, RS = 25 kΩ
Input Bias Current
Input Resistance
Output Current
Short-Circuit Current
Output Resistance
Small-Signal Bandwidth
Slew Rate 4
POWER SUPPLY
Voltage Rated Performance
Dual Supply
Single Supply
Quiescent Current
Total VS, 5 V to 36 V, TMIN to TMAX
TEMPERATURE RANGE
Rated Performance
Storage
NUMBER OF TRANSISTORS
Data Sheet
Min
20
AD536AJ
Typ
Max
40
±10
±20
25
30
−VS to
(+VS − 2.5 V)
−VS to
(+VS − 2.5V)
Min
AD536AK
Typ
Max
40
±10
±20
25
30
−VS to
(+VS − 2.5 V)
20
−VS to
(+VS − 2.5V)
±0.5
20
108
±4
60
(+5 mA,
−130 µA)
0
−55
1
5
±15
±3.0
+5
2
+70
+150
65
0.5
1
5
±15
±4
60
20
0.5
1
5
µA/V rms
%
kΩ
V
V
±0.5
20
108
20
±18
+36
40
±10
±20
25
30
−VS to
(+VS − 2.5 V)
Unit
mV
nA
Ω
(+5 mA,
−130 µA)
0.5
1.2
20
±4
60
(+5 mA,
−130 µA)
±3.0
+5
AD536AS
Typ
Max
−VS to
(+VS − 2.5V)
±0.5
20
108
20
Min
±15
±18
+36
1.2
0
−55
2
+70
+150
65
1
±3.0
+5
1.2
−55
−55
65
Accuracy is specified for 0 V to 7 V rms, dc or 1 kHz sine wave input with the AD536A connected as in the figure referenced.
Error vs. crest factor is specified as an additional error for 1 V rms rectangular pulse input, pulse width = 200 μs.
Input voltages are expressed in volts rms, and error is expressed as a percentage of the reading.
4
With 2kΩ external pull-down resistor.
2
3
Rev. E | Page 4 of 16
mA
Ω
MHz
V/µs
±18
+36
V
V
V
2
mA
+125
+150
°C
°C
Data Sheet
AD536A
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage
Dual Supply
Single Supply
Internal Power Dissipation
Maximum Input Voltage
Buffer Maximum Input Voltage
Maximum Input Voltage
Storage Temperature Range
Operating Temperature Range
AD536AJ/AD536AK
AD536AS
Lead Temperature (Soldering, 60 sec)
ESD Rating
Thermal Resistance θJA1
10-Pin Header (H-10 Package)
20-Terminal LCC (E-20 Package)
14-Lead SBDIP (D-14 Package)
14-Lead CERDIP (Q-14 Package)
±18 V
+36 V
500 mW
±25 V peak
±VS
±25 V peak
−55°C to +150°C
ESD CAUTION
0°C to +70°C
−55°C to +125°C
300°C
1000 V
150°C/W
95°C/W
95°C/W
95°C/W
θJA is specified for the worst-case conditions, that is, a device soldered in a
circuit board for surface-mount packages.
0.1315 (3.340)
COM
10
+VS
14
RL
9
IOUT
8
0.0807
(2.050)
VIN
1A1
VIN
1B1
BUF IN
7
–VS
CAV dB
BUF OUT
3
4 5
6
PAD NUMBERS CORRESPOND TO PIN NUMBERS FOR THE
TO-100 14-LEAD CERAMIC DIP PACKAGE.
1BOTH PADS SHOWN MUST BE CONNECTED TO V .
IN
THE AD536A IS AVAILABLE IN LASER-TRIMMED CHIP FORM.
SUBSTRATE CONNECTED TO –VS.
Figure 2. Die Dimensions and Pad Layout
Dimensions shown in inches and (millimeters)
Rev. E | Page 5 of 16
00504-002
1
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rating
AD536A
Data Sheet
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
VIN 1
14
+VS
NC 2
13
NC
12
NC
–VS 3
AD536A
TOP VIEW 11 NC
(Not to Scale)
10 COM
dB 5
BUF OUT 6
9
RL
BUF IN 7
8
IOUT
NC = NO CONNECT
00504-003
CAV 4
Figure 3. D-14 and Q-14 Packages Pin Configuration
Table 3. D-14 and Q-14 Packages Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Mnemonic
VIN
NC
−VS
CAV
dB
BUF OUT
BUF IN
IOUT
RL
COM
NC
NC
NC
+VS
Description
Input Voltage
No Connection
Negative Supply Voltage
Averaging Capacitor
Log (dB) Value of the RMS Output Voltage
Buffer Output
Buffer Input
RMS Output Current
Load Resistor
Common
No Connection
No Connection
No Connection
Positive Supply Voltage
IOUT
BUF IN
10
1
COM 2
9
AD536A
TOP VIEW
(Not to Scale)
+VS 3
4
VIN
8
BUF OUT
7
dB
6
5
CAV
–VS
00504-004
RL
Figure 4. H-10 Package Pin Configuration
Table 4. H-10 Package Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
Mnemonic
RL
COM
+VS
VIN
−VS
CAV
dB
BUF OUT
BUF IN
IOUT
Description
Load Resistor
Common
Positive Supply Voltage
Input Voltage
Negative Supply Voltage
Averaging Capacitor
Log (dB) Value of the RMS Output Voltage
Buffer Output
Buffer Input
RMS Output Current
Rev. E | Page 6 of 16
+VS
NC
2
1
20
19
–VS 4
NC 5
AD536A
CAV 6
TOP VIEW
(Not to Scale)
NC 7
9
10
11
12
13
BUF OUT
BUF IN
NC
IOUT
RL
dB 8
18
NC
17
NC
16
NC
15
NC
14
COM
NC = NO CONNECT
00504-005
VIN
3
NC
AD536A
NC
Data Sheet
Figure 5. E-20 Package Pin Configuration
Table 5. E-20 Package Pin Function Descriptions
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Mnemonic
NC
VIN
NC
−VS
NC
CAV
NC
dB
BUF OUT
BUF IN
NC
IOUT
RL
COM
NC
NC
NC
NC
NC
+VS
Description
No Connection
Input Voltage
No Connection
Negative Supply Voltage
No Connection
Averaging Capacitor
No Connection
Log (dB) Value of the RMS Output Voltage
Buffer Output
Buffer Input
No Connection
RMS Output Current
Load Resistor
Common
No Connection
No Connection
No Connection
No Connection
No Connection
Positive Supply Voltage
Rev. E | Page 7 of 16
AD536A
Data Sheet
THEORY OF OPERATION
The AD536A embodies an implicit solution of the rms equation
that overcomes the dynamic range as well as other limitations
inherent in a straightforward computation of rms. The actual
computation performed by the AD536A follows the equation
V 2 
V rms = Avg  IN 
 V rms 
VOUT = 2R2 × I rms = VIN rms
Figure 6 is a simplified schematic of the AD536A. Note that it is
subdivided into four major sections: absolute value circuit
(active rectifier), squarer/divider, current mirror, and buffer
amplifier. The input voltage (VIN), which can be ac or dc, is
converted to a unipolar current (I1) by the active rectifiers
(A1, A2). I1 drives one input of the squarer/divider, which has
the transfer function
2
I4 = II /I3
The output current, I4, of the squarer/divider drives the current
mirror through a low-pass filter formed by R1 and the externally connected capacitor, CAV. If the R1 CAV time constant is
much greater than the longest period of the input signal, then
I4 is effectively averaged. The current mirror returns a current
I3, which equals Avg[I4], back to the squarer/divider to complete
the implicit rms computation. Thus,
I4 = Avg[II2/I4] = II rms
CURRENT MIRROR
14
+VS
10
COM
4
A3
I2
I1
VIN
Q3
Q2
A1
12kΩ
Q4
R2
25kΩ
RL
25kΩ
ONE-QUADRANT
SQUARER/DIVIDER
NOTES
1. PINOUTS ARE FOR 14-LEAD DIP.
Figure 6. Simplified Schematic
80kΩ
The dB output is derived from the emitter of Q3 because the
voltage at this point is proportional to –log VIN. The emitter
follower, Q5, buffers and level shifts this voltage so that the dB
output voltage is zero when the externally supplied emitter
current (IREF) to Q5 approximates I3.
CONNECTIONS FOR dB OPERATION
The logarithmic (or decibel) output of the AD536A is one of
its most powerful features. The internal circuit computing dB
works accurately over a 60 dB range. The connections for dB
measurements are shown in Figure 7.
Select the 0 dB level by adjusting R1 for the proper 0 dB reference
current (which is set to cancel the log output current from the
squarer/divider at the desired 0 dB point). The external op amp
provides a more convenient scale and allows compensation of
the +0.33%/°C scale factor drift of the dB output pin.
The temperature-compensating resistor, R2, is available online
in several styles from Precision Resistor Company, Inc., (Part
Number AT35 and Part Number ST35). The average temperature
coefficients of R2 and R3 result in the +3300 ppm required to
compensate for the dB output. The linear rms output is available
at Pin 8 on the DIP or Pin 10 on the header device with an output
impedance of 25 kΩ. Some applications require an additional
buffer amplifier if this output is desired.
5
For dB calibration,
6
1.
2.
3.
4.
Q5
A2
12kΩ
9
8
IOUT
BUF
IN BUFFER dB
OUT
7
A4
Q1
|VIN|R–1
1
R3
25kΩ
R1
0.4mA
25kΩ FS
I3
BUF
OUT
3
–VS
00504-106
0.2mA
FS
ABSOLUTE VALUE;
VOLTAGE-CURRENT
CONVERTER
R4
50kΩ
The current mirror also produces the output current, IOUT, which
equals 2I4. IOUT can be used directly or can be converted to a
voltage with R2 and buffered by A4 to provide a low impedance
voltage output. The transfer function of the AD536A results in
the following:
Set VIN = 1.00 V dc or 1.00 V rms.
Adjust R1 for dB output = 0.00 V.
Set VIN = +0.1 V dc or 0.10 V rms.
Adjust R5 for dB output = −2.00 V.
Any other desired 0 dB reference level can be used by setting
VIN and adjusting R1 accordingly. Note that adjusting R5 for the
proper gain automatically provides the correct temperature
compensation.
Rev. E | Page 8 of 16
Data Sheet
AD536A
VIN
NC 2
–VS
–VS
+
C1, CAV
+VS
C2
CAV
dB
0.1µF
BUF OUT
dB OUT
3mV/dB
BUF IN
ABSOLUTE
VALUE
1
14
+VS
4.6V TO 18V
+E
AD536A
13 NC
SQUARER/
DIVIDER
3
+VS
12 NC
EOUT
AD580J
2.5V
R4
33.2kΩ
11 NC
4
CURRENT
MIRROR
5
6
10
9
25kΩ
8
BUF
7
COM
RL
IOUT
–E
R1
500kΩ
0dB
REF
ADJUST
dB SCALE
FACTOR ADJUST
+VS
7
R6
24.9kΩ
LINEAR
rms
OUTPUT
R5
5kΩ
2
R3
60.4Ω
OP77
6
TEMPERATURE
COMPENSATED
dB OUTPUT
+100mV/dB
3
4
R21
1kΩ
00504-107
–VS
1SPECIAL
TC COMPENSATION RESISTOR, +3300ppm/°C,
PRECISION RESISTOR COMPANY PART NUMBER AT 35 OR PART NUMBER ST35.
Figure 7. dB Connection
FREQUENCY RESPONSE
The AD536A utilizes a logarithmic circuit in performing the
implicit rms computation. As with any log circuit, bandwidth
is proportional to signal level. The solid lines in the graph of
Figure 8 represent the frequency response of the AD536A at
input levels from 10 mV rms to 7 V rms. The dashed lines indicate
the upper frequency limits for 1%, 10%, and ±3 dB of reading
additional error. For example, note that a 1 V rms signal produces
less than 1% of reading additional error up to 120 kHz. A 10 mV
signal can be measured with 1% of reading additional error
(100 µV) up to only 5 kHz.
Figure 9 illustrates a curve of reading error for the AD536A for
a 1 V rms input signal with crest factors from 1 to 11. A rectangular pulse train (pulse width = 100 µs) was used for this test
because it is the worst-case waveform for rms measurement (all
of the energy is contained in the peaks). The duty cycle and
peak amplitude were varied to produce crest factors from 1 to
11 while maintaining a constant 1 V rms input amplitude.
T
өO
η = DUTY CYCLE =
CF = 1/√η
өIN (rms) = 1 V rms
VP
0
100µs
T
100µs
1
VOUT (V)
10%
±3dB
1V rms INPUT
0.1
100mV rms INPUT
0.01
1k
10k
100k
FREQUENCY (Hz)
1M
10M
00504-016
10mV rms INPUT
0
–1
–2
–3
–4
1
2
3
4
Figure 8. High Frequency Response
5
6
7
CREST FACTOR
8
9
10
Figure 9. Error vs. Crest Factor
Crest factor is often overlooked when determining the accuracy
of an ac measurement. The definition of crest factor is the ratio
of the peak signal amplitude to the rms value of the signal
(CF = VP/V rms). Most common waveforms, such as sine and
triangle waves, have relatively low crest factors (<2). Waveforms
that resemble low duty cycle pulse trains, such as those occurring
in switching power supplies and SCR circuits, have high crest
factors. For example, a rectangular pulse train with a 1% duty
cycle has a crest factor of 10 (CF = 1√n).
Rev. E | Page 9 of 16
INCREASE IN ERROR
(% OF READING)
AC MEASUREMENT ACCURACY AND CREST
FACTOR
10
1V rms CF = 10
1
0.1
1µs
1V rms CF = 3
10µs
100µs
PULSE WIDTH (µs)
1000µs
Figure 10. Error vs. Pulse Width Rectangular Pulse
11
00504-017
1%
1
00504-018
7V rms INPUT
INCREASE IN ERROR (% of Reading)
10
AD536A
Data Sheet
25
±PEAK INPUT OR OUTPUT (V)
20
VIN
15
10
VOUT
5
20
VIN
15
VOUT
10
5
0
±6
±10
±16
VOLTS (DUAL SUPPLY)
±18
0
5
10
20
30
VOLTS (SINGLE SUPPLY)
Figure 12. Input and Output Voltage Ranges vs.
Single Supply
Figure 11. Input and Output Voltage Ranges vs.
Dual Supply
Rev. E | Page 10 of 16
00504-022
2.5
00504-019
±PEAK INPUT OR OUTPUT (V)
25
Data Sheet
AD536A
APPLICATIONS INFORMATION
NC
The AD536A is simple to connect to for the majority of high
accuracy rms measurements, requiring only an external capacitor to set the averaging time constant. The standard connection
is shown in Figure 13 through Figure 15. In this configuration,
the AD536A measures the rms of the ac and dc levels present at
the input, but shows an error for low frequency input as a function
of the filter capacitor, CAV, as shown in Figure 19. Thus, if a 4 µF
capacitor is used, the additional average error at 10 Hz is 0.1%;
at 3 Hz, the additional average error is 1%.
CAV
AD536A
1
NC 2
–VS
–VS
3
dB 5
BUF OUT
13 NC
SQUARER/
DIVIDER
12 NC
11 NC
7
10
25kΩ
BUF
9
RL
8
IOUT
Figure 13. 14-Lead Standard RMS Connection
IOUT
RL
BUF IN
25kΩ
AD536A
CURRENT
MIRROR
+VS
BUF
BUF OUT
VOUT
SQUARER/
DIVIDER
+VS
VIN
CAV
dB
CAV
–VS
1
NC
20
19
ABSOLUTE
VALUE
4
NC 5
CAV
AD536A
SQUARER/
DIVIDER
6
CURRENT
MIRROR
11
12
13
RL
10
NC
9
BUF IN
VOUT
25kΩ
BUF
dB 8
IOUT
NC 7
18
NC
17
NC
16
NC
15
NC
COM
14
Figure 15. 20-Terminal Standard RMS Connection
The input and output signal ranges are a function of the supply
voltages; these ranges are shown in Figure 11 and Figure 12.
The AD536A can also be used in an unbuffered voltage output
mode by disconnecting the input to the buffer. The output then
appears unbuffered across the 25 kΩ resistor. The buffer amplifier can then be used for other purposes. Further, the AD536A
can be used in a current output mode by disconnecting the
25 kΩ resistor from ground. The output current is available at
Pin 8 (IOUT, Pin 10 on the H-10 package) with a nominal scale of
40 μA per V rms input positive output.
The accuracy and offset voltage of the AD536A is adjustable
with external trims, as shown in Figure 16. R4 trims the offset.
Note that the offset trim circuit adds 365 Ω in series with the
internal 25 kΩ resistor. This causes a 1.5% increase in scale factor,
which is compensated for by R1. The scale factor adjustment
range is ±1.5%.
The trimming procedure is as follows:
1.
2.
ABSOLUTE
VALUE
00504-020
COM
–VS
–VS
2
OPTIONAL EXTERNAL TRIMS FOR HIGH
ACCURACY
COM
CURRENT
MIRROR
6
BUF IN
+VS
14
4
CAV
VOUT
+VS
ABSOLUTE
VALUE
00504-006
VIN
3
+VS
NC
BUF OUT
The accuracy at higher frequencies is according to specification.
To reject the dc input, add a capacitor in series with the input,
as shown in Figure 17. Note that the capacitor must be nonpolar.
If the AD536A supply rails contain a considerable amount of
high frequency ripple, it is advisable to bypass both supply pins
to ground with 0.1 µF ceramic capacitors, located as close to the
device as possible.
VIN
VIN
CAV
00504-021
TYPICAL CONNECTIONS
3.
Figure 14. 10-Pin Standard RMS Connection
Ground the input signal, VIN, and adjust R4 to provide 0 V
output from Pin 6. Alternatively, adjust R4 to provide the
correct output with the lowest expected value of VIN.
Connect the desired full-scale input level to VIN, either dc
or a calibrated ac signal (1 kHz is the optimum frequency).
Trim R1 to provide the correct output at Pin 6. For example,
1.000 V dc input provides 1.000 V dc output. A ±1.000 V
peak-to-peak sine wave should provide a 0.707 V dc output.
Any residual errors are caused by device nonlinearity.
The major advantage of external trimming is to optimize device
performance for a reduced signal range; the AD536A is
internally trimmed for a 7 V rms full-scale range.
Rev. E | Page 11 of 16
AD536A
Data Sheet
CAV
CAV
1
R1
500Ω
–VS
NC 2
–VS
CAV
VOUT
dB
BUF OUT
3
ABSOLUTE
VALUE
AD536A
SQUARER/
DIVIDER
7
12 NC
11 NC
CURRENT
MIRROR
6
BUF IN
13 NC
4
5
14
25kΩ
BUF
25kΩ
10
9
8
COM
RL
C2
1µF
VIN
+VS
+VS
NONPOLARIZED
R4
OFFSET
50kΩ ADJUST
VIN
–VS
CAV
R3
750kΩ
dB
VOUT
R2
365Ω
BUF OUT
RL
BUF IN
10kΩ
TO
1kΩ
IOUT
1
NC 2
–VS
00504-007
VIN
+VS
3
ABSOLUTE
VALUE
+VS
13 NC
SQUARER/
DIVIDER
12 NC
20kΩ
11 NC
CURRENT
MIRROR
6
7
+VS
0.1µF
AD536A
4
5
14
25kΩ
10
9
8
BUF
COM
0.1µF
RL
10kΩ
IOUT
00504-008
SCALE
FACTOR
ADJUST
Figure 17. Single-Supply Connection
Figure 16. Optional External Gain and Output Offset Trims
SINGLE-SUPPLY OPERATION
CHOOSING THE AVERAGING TIME CONSTANT
Refer to Figure 17 for single supply-rail configurations between
5 V and 36 V. When powered from a single supply, the input
stage (VIN pin) is internally biased at a voltage between ground
and the supply, and the input signal ac coupled. Biasing the
device between the supply and ground is simply a matter of
connecting the COM pin to an external resistor divider and
bypassing to ground. The resistor values are large, minimizing
power consumption, as the COM pin current is only 5 μA.
The AD536A computes the rms of both ac and dc signals. If the
input is a slowly varying dc signal, the output of the AD536A
tracks the input exactly.
At higher frequencies, the average output of the AD536A
approaches the rms value of the input signal. The actual output
of the AD536A differs from the ideal output by a dc (or average)
error and some amount of ripple, as shown in Figure 18.
EO
Note that the 10 kΩ and 20 kΩ resistors connected to the COM pin
(Figure 17) are asymmetrical, that is, the voltage at the COM pin is
1/3 of the supply. This ratio of input bias to supply is optimum
for the precision rectifier (aka absolute value circuit) input
circuit employed for rectifying ac input waveforms and ensures
full input symmetry for low signal voltages.
DC ERROR = EO – EO (IDEAL)
DOUBLE FREQUENCY
RIPPLE
AVERAGE EO – EO
TIME
00504-009
Capacitor C2 is required for AC input coupling, however an
external dc return is unnecessary because biasing occurs
internally. SelectC2 for the desired low frequency breakpoint
using an input resistance of 16.7 kΩ for the 1/ωRC calculation;
C2 = 1 μF for a cutoff at 10 Hz. Figure 11 and Figure 12 show
the input and output signal ranges for dual and single supply
configurations, respectively. The load resistor, RL, provides a
path to sink output sink current when an input signal is
disconnected.
IDEAL EO
Figure 18. Typical Output Waveform for Sinusoidal Input
The dc error is dependent on the input signal frequency and
the value of CAV. Use Figure 19 to determine the minimum value
of CAV, which yields a given percentage of dc error above a given
frequency using the standard rms connection.
The ac component of the output signal is the ripple. There are
two ways to reduce the ripple. The first method involves using a
large value of CAV. Because the ripple is inversely proportional
to CAV, a tenfold increase in this capacitance affects a tenfold
reduction in ripple.
When measuring waveforms with high crest factors, such as low
duty cycle pulse trains, the averaging time constant should be at
least 10 times the signal period. For example, a 100 Hz pulse
rate requires a 100 ms time constant, which corresponds to a
4 μF capacitor (time constant = 25 ms per μF).
Rev. E | Page 12 of 16
Data Sheet
AD536A
The primary disadvantage in using a large CAV to remove ripple
is that the settling time for a step change in input level is
increased proportionately. Figure 19 illustrates that the
relationship between CAV and 1% settling time is 115 ms for
each microfarad of CAV. The settling time is twice as great for
decreasing signals as it is for increasing signals. The values in
Figure 19 are for decreasing signals. Settling time also increases
for low signal levels, as shown in Figure 20.
%
01
0.
10
R
R
O
R
ER
R
1
O
R
ER
R
VALUES FOR CAV AND
1% SETTLING TIME
0.1 FOR STATED % OF READING
AVERAGING ERROR1
ACCURACY ± 20% DUE TO
COMPONENT TOLERANCE
0.1
0.01
10
1
100
1k
INPUT FREQUENCY (Hz)
10k
For a more detailed explanation of these topics, refer to the RMS to
DC Conversion Application Guide, 2nd Edition, available online
from Analog Devices, Inc., at www.analog.com.
–VS
NC
–VS
CAV
0.01
100k
1
2
3
dB
BUF OUT
Figure 19. Error/Settling Time Graph for Use with the Standard RMS
Connection (See Figure 13 Through Figure 15)
BUF IN
+
–
10.0
ABSOLUTE
VALUE
AD536A
5
+VS
12 NC
11 NC
CURRENT
MIRROR
6
7
+VS
14
13 NC
SQUARER/
DIVIDER
4
CAV
1PERCENT DC ERROR AND PERCENT RIPPLE (PEAK)
25kΩ
9
8
BUF
Rx
24kΩ
C2
10
COM
RL
IOUT
–
C31
+
Vrms OUT
1FOR SINGLE POLE, SHORT Rx, REMOVE C3.
7.5
Figure 21. Two-Pole Postfilter
2.5
1m
10m
100m
1
rms INPUT LEVEL (V)
10
00504-011
1.0
Figure 20. Settling Time vs. Input Level
A better method to reduce output ripple is the use of a postfilter.
Figure 21 shows a suggested circuit. If a single-pole filter is used
(C3 removed, RX shorted) and C2 is approximately twice the
value of CAV, the ripple is reduced, as shown in Figure 22, and
settling time is increased. For example, with CAV = 1 µF and C2
= 2.2 μF, the ripple for a 60 Hz input is reduced from 10% of
reading to approximately 0.3% of reading.
Rev. E | Page 13 of 16
DC ERROR OR RIPPLE (% of Reading)
5.0
10
PEAK-TO-PEAK RIPPLE
CAV = 1µF
PEAK-TO-PEAK
RIPPLE (ONE POLE)
CAV = 1µF, C2 = 2.2µF
1
Rx = 0Ω
DC ERROR
CAV = 1µF
(ALL FILTERS)
PEAK-TO-PEAK RIPPLE
CAV = 1µF
C2 = C3 = 2.2µF (TWO-POLE)
0.1
10
100
1k
10k
FREQUENCY (Hz)
Figure 22. Performance Features of Various Filter Types
(See Figure 13 to Figure 15 for Standard RMS Connection)
00504-013
SETTLING TIME RELATIVE TO 1V rms
INPUT SETTLING TIME
VIN
VIN
00504-010
O
R
ER
1%
1
%
10
REQUIRED CAV (µF)
O
R
ER
1%
0.
10
FOR 1% SETTLING TIME IN SECONDS
MULTIPLY READING BY 0.115
100
The two-pole postfilter uses an active filter stage to provide
even greater ripple reduction without substantially increasing
the settling times over a circuit with a one-pole filter. The values
of CAV, C2, and C3 can then be reduced to allow extremely fast
settling times for a constant amount of ripple. Caution should
be exercised in choosing the value of CAV, because the dc error
is dependent on this value and is independent of the postfilter.
00504-012
100
The settling time, however, is increased by approximately a
factor of 3. Therefore, the values of CAV and C2 can be reduced
to permit faster settling times while still providing substantial
ripple reduction.
AD536A
Data Sheet
OUTLINE DIMENSIONS
0.005 (0.13) MIN
0.080 (2.03) MAX
8
14
1
PIN 1
0.310 (7.87)
0.220 (5.59)
7
0.100 (2.54)
BSC
0.765 (19.43) MAX
0.200 (5.08)
MAX
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.320 (8.13)
0.290 (7.37)
0.060 (1.52)
0.015 (0.38)
0.150
(3.81)
MIN
SEATING
PLANE
0.070 (1.78)
0.030 (0.76)
0.015 (0.38)
0.008 (0.20)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
\REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 23. 14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
(D-14)
Dimensions shown in inches and (millimeters)
0.200 (5.08)
REF
0.100 (2.54) REF
0.015 (0.38)
MIN
0.075 (1.91)
REF
0.095 (2.41)
0.075 (1.90)
19
18
0.358 (9.09)
0.342 (8.69)
SQ
0.358
(9.09)
MAX
SQ
0.011 (0.28)
0.007 (0.18)
R TYP
0.075 (1.91)
REF
0.088 (2.24)
0.054 (1.37)
3
20
4
0.028 (0.71)
0.022 (0.56)
1
BOTTOM
VIEW
0.050 (1.27)
BSC
8
14
13
9
45° TYP
0.055 (1.40)
0.045 (1.14)
0.150 (3.81)
BSC
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 24. 20-Terminal Ceramic Leadless Chip Carrier [LCC]
(E-20-1)
Dimensions shown in inches and (millimeters)
0.005 (0.13) MIN
14
1
PIN 1
0.098 (2.49) MAX
8
0.310 (7.87)
0.220 (5.59)
7
0.100 (2.54) BSC
0.785 (19.94) MAX
0.200 (5.08)
MAX
0.200 (5.08)
0.125 (3.18)
0.023 (0.58)
0.014 (0.36)
0.320 (8.13)
0.290 (7.37)
0.060 (1.52)
0.015 (0.38)
0.150
(3.81)
MIN
SEATING
0.070 (1.78) PLANE
0.030 (0.76)
15°
0°
0.015 (0.38)
0.008 (0.20)
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 25. 14-Lead Ceramic Dual In-Line Package [CERDIP]
(Q-14)
Dimensions shown in inches and (millimeters)
Rev. E | Page 14 of 16
022106-A
0.100 (2.54)
0.064 (1.63)
Data Sheet
AD536A
REFERENCE PLANE
0.500 (12.70)
MIN
0.185 (4.70)
0.165 (4.19)
0.160 (4.06)
0.110 (2.79)
0.335 (8.51)
0.305 (7.75)
0.370 (9.40)
0.335 (8.51)
6
7
5
0.021 (0.53)
0.016 (0.40)
0.115
(2.92)
BSC
8
4
9
0.045 (1.14)
0.025 (0.65)
3
2
0.040 (1.02) MAX
BASE & SEATING PLANE
10
1
0.034 (0.86)
0.025 (0.64)
0.230 (5.84)
BSC
36° BSC
DIMENSIONS PER JEDEC STANDARDS MO-006-AF
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
022306-A
0.050 (1.27) MAX
Figure 26. 10-Pin Metal Header Package [TO-100]
(H-10)
Dimensions shown in inches and (millimeters)
ORDERING GUIDE
Model 1
AD536AJD
AD536AJDZ
AD536AKD
AD536AKDZ
AD536AJH
AD536AJHZ
AD536AKH
AD536AKHZ
AD536AJQ
AD536AKQ
AD536ASD
AD536ASD/883B
AD536ASE/883B
AD536ASH
AD536ASH/883B
AD536ASCHIPS
5962-89805012A
5962-8980501CA
5962-8980501IA
1
Temperature Range
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
−55°C to +125°C
Package Description
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
10-Pin Metal Header Package [TO-100]
10-Pin Metal Header Package [TO-100]
10-Pin Metal Header Package [TO-100]
10-Pin Metal Header Package [TO-100]
14-Lead Ceramic Dual In-Line Package [CERDIP]
14-Lead Ceramic Dual In-Line Package [CERDIP]
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
20-Terminal Ceramic Leadless Chip Carrier [LCC]
10-Pin Metal Header Package [TO-100]
10-Pin Metal Header Package [TO-100]
Die
20-Terminal Ceramic Leadless Chip Carrier [LCC]
14-Lead Side-Brazed Ceramic Dual In-Line Package [SBDIP]
10-Pin Metal Header Package [TO-100]
Z = RoHS Compliant Part.
Rev. E | Page 15 of 16
Package Option
D-14
D-14
D-14
D-14
H-10
H-10
H-10
H-10
Q-14
Q-14
D-14
D-14
E-20-1
H-10
H-10
E-20-1
D-14
H-10
AD536A
Data Sheet
NOTES
©1976–2012 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00504-0-7/12(E)
Rev. E | Page 16 of 16