STMICROELECTRONICS STV2145

STV2145
I2C BUS CONTROLLED EAST-WEST
AND VERTICAL INTERFACE
.
.
.
.
.
.
.
INTEGRATED VERTICAL SAWTOOTH GENERATOR WITH AMPLITUDE CONTROL
LOOP (50Hz - 60Hz)
INTERLACE MODE INTRINSICALLY CONTROLLED BY STV2118A
VERTICAL SIZE CORRECTION (BREATHING) TO ADAPT DEFLECTION SENSITIVITY
TO THE CURRENT BEAM (HIGH VOLTAGE
VARIATION)
BUS ADJUSTED VERTICAL PARAMETERS :
VERTICAL AMPLITUDE, VERTICAL POSITION AND S-CORRECTION
EAST-WEST FUNCTION GENERATOR WITH
INTEGRATED ERROR AMPLIFIER (THUS,
ONLY 1 EXTERNAL POWER DARLINGTON
IS NECESSARY FOR EW-FUNCTION)
BUS CONTROLLED EAST-WEST FUNCTIONS : EW-AMPLITUDE, HORIZONTAL
WIDTH, EW-TILT AND EW-SHAPE (CORNER
CORRECTION)
OVERSIZE BLANKING (VERTICAL AND
HORIZONTAL) WHICH PERMIT ZOOM AND
SUBTITLE FACILITIES FOR 4/3 AND 16/9
CRTs
DESCRIPTION
The STV2145 is an I2C bus processor containing
the vertical deflection East-West functions and
oversize blanking. This circuit is foreseen as ADDON for the Video Chroma Processor STV2118A
to permit 110° CRT applications covering standard
4/3 screen format and new 16/9 format with zoom
and subtitle facilities. STV2145 has been designed
to drive a standard TDA8172/8177 vertical booster
and an external transistor for East-West.
DIP16
(Plastic Package)
ORDER CODE : STV2145
PIN CONNECTIONS
I2C BUS SERIAL CLOCK
SCL
1
16
SENSM
I C BUS SERIAL DATA
VERTICAL RETRACE PULSE
(FROM STV2118A)
REGULATOR OUTPUT
FOR SERIES TRANSISTOR
REGULATED VOLTAGE SUPPLY
SDA
2
15
SENSP
VRET
3
14
FROUT
FRAME OUTPUT ERROR SIGNAL
REG
4
13
EWOUT
EAST-WEST ERROR AMPLIFIER OUTPUT
V CC
5
12
EWIN
EAST-WEST ERROR AMPLIFIER INPUT
LPF
6
11
OBLK
VERTICAL AGC CAPACITOR CVERT
7
10
HFLY
OPEN COLLECTOR BLANKING SIGNAL
HORIZONTAL FLYBACK INPUT
(CURRENT INPUT)
8
9
BREATH
VERTICAL SIZE MODULATION
2
LOOP FILTER FOR 2H-PLL
GND
2145-01.EPS
GROUND
RESISTOR BRIDGE
DIFFERENTIAL INPUT
April 1996
1/17
STV2145
PIN DESCRIPTION
1
Name
SCL
Function
2
Serial Clock for I C Bus
2
Data input (no pull down - capability)
Data input and output (pull down - capability for acknowledge
and data reply)
2
SDA
3
VRET
Vertical Reset Input
Vertical Synchronization Signal from STV2118A
4
REG
Control Pin for Regulator
Output for controlling the ext. series regulator transistor
5
VCC
Supply Voltage Scanning
Supply voltage of scanning part, connected with external series
regulator transistor
6
LPF
7
CVERT
Serial Data for I C Bus
Description
Loop Filter for PLL
Loop filter for horizontal 2 x FLINE VCO
Vertical AGC Capacitor
Regulation of vertical saw tooth amplitude
Ground
Ground
Breathing Input
Input voltage = 1 to 7.8V = vertical size compensation
8
GND
9
BREATH
10
HFLY
Horizontal Flyback Input
Voltage input for horizontal flyback, polarity positive
11
OBLK
Oversize Blanking Signal
Oversize blanking output :
- open collector output : high ohmic = blanking
- low (transistor saturated) = no blanking
12
EWIN
East-West Input
Input of the error amplifier for the East-West modulator
13
EWOUT
East-West Output
Output of the error amplifier for the East-West modulator
(current output, biasing directly the darlington output transistor)
14
FROUT
Output for Frame Amplifier
Output of transconductance amplifier, pin has to be connected
to the inverting input of the vertical power amplifier
15
SENSP
Sense Input, Positive
Input of internal resistor bridge for sensing the vertical
deflection YOKE current
16
SENSM
Sense Input, Negative
Input of internal resistor bridge for sensing the vertical
deflection YOKE current
2/17
2145-01.TBL
Pin N°
V_RETR
2145-02.EPS
4.7nF
LPF
3
6
10
HFLY_INR
22k Ω
VERTICAL PULSE
(FROM STV2112/16/18)
220nF
4.7k Ω
HEATER WINDING
(POS. FLYBACK)
26V
10k Ω
VOLTAGE
REGULATOR
VCC
SCL
TO I2C BUS
1
2
I2 C BUS
INTERFACE
PLL
FOR DOUBLE
LINE-FREQUENCY
4
REG
BC547
or SMD typ
SDA
5
VCC1
7
C_VERT
33nF
AGC
Capacitor
VERTICAL
SAWTOOTHGENERATOR
AGC
Pulse
SIMPLIFIED
VERTICALCOUNTDOW
50-60Hz
HORIZONTAL
OVERSIZEBVLANKING
220nF
VERTICAL
AMPLITUDE
ADJUSTMENT
8
11
GND
10nF
15
VERTICAL
RESISTOR
BRIDGE
16
R1
R3
R4
STV2145
EW
FUNCTION
V_DC
12
13
9
14
R2
EW_IN
BREATH
1kΩ
1nF
1.5nF
3.3k Ω
VERTICAL
YOKE
26V
FR_OUT
10nF
100kΩ
SENSP
RSENS (1Ω)
100kΩ
AMPLITUDE
MODULATOR
SENSM
1000 µF
1kΩ
VERTICAL
S-CORRECTION
AND V-OVERSIZE
Vertical
Oversize
O_BLK
TO CRT
BOARD
13V
3.3nF
270k Ω
680kΩ
9V
TO EW
MODULATOR
BCL
13V
10k Ω
STV2145
BLOCK DIAGRAM
3/17
STV2145
I2C BUS INFORMATION
Slave Address
hex 8C/8D
MSB
LSB
1
0
0
0
1
1
0
R/W
Address Mapping (write mode)
x = don’t care bits, not used for the decoding of the subaddress.
Subaddress
Binary
Hex
xxxxx000
x0 or x8
xxxxx001
xxxxx010
x1 or x9
x2 or xA
xxxxx011
x3 or xB
Data Bits
MSB
LSB
TEST_MODE
VERTICAL
OVERSIZE
BLANKING 2
VERTICAL
OVERSIZE
BLANKING 1
V_AMPLITUDE
TEST_MODE
SUB_TITLE
HORIZONTAL HORIZONTAL
OVERSIZE
OVERSIZE
BLANKING 2 BLANKING 1
xxxxx100 x4 or xC
xxxxx101 x5 or xD
xxxxx110 x6 or xE
S_CORRECTION
V_DC
EW_AMPLITUDE
EW_SHAPE
EW_TILT
H_WIDTH
EW_LOW
TEST_MODE
Subaddress 0 (hex 00) : Vertical Oversize Blanking & S_CORRECTION
MSB
TEST _MODE
TEST_MODE
LSB
OV_BLK_VERT2
: 0
1
OV_BLK_VERT1
S3
S2
S1
S0
: Normal operations
: Reserved for SGS-THOMSON test
OV_BLK_VERT1, : Vertical oversize blanking (register SUB_TITLE in subadress X2 or XA)
OV_BLK_VERT2
(see Table 1)
Table 1
Sent
OV_BLK_VERT OV_BLK_VERT
Frequency
SUB_TITLE
2
1
(via VRET)
50Hz
STANDARD 4 :3
0
0
0
60Hz
50Hz
SUBTITLE
Don’t Care
Don’t Care
1
60Hz
50Hz
ZOOM1
0
1
0
60Hz
50Hz
ZOOM2
1
1
0
60Hz
50Hz
BLANK
1
0
0
60Hz
TV Mode
Start
of Blanking
(middle of line)
No Blanking
302
259
285
239
278
234
67
59
49
43
59
49
Full Blanking
S1, S2, S3, S4 : S-CORRECTION
0000 (hex 00) : Maximal S-CORRECTION
1111 (hex 0F) : Minimal S-CORRECTION (vertical sawtooth flat)
4/17
End
of Blanking
(middle of line)
STV2145
I2C BUS INFORMATION (continued)
Subaddress 1 (hex 01) : Vertical Sawtooth Amplitude
MSB
LSB
V6
V5
V6, V5, V4, V3,
V2, V1, V0
V4
V3
V2
V1
V0
: V_AMPLITUDE
0000000 (hex 00) : Minimal V_AMPLITUDE (0.46VPP on SENSP/SENSM)
1111111 (hex 7F) : Maximal V_AMPLITUDE (1.16VPP on SENSP/SENSM)
Subaddress 2 (hex 02) : Vertical Shift & Vertical Position
MSB
TEST_MODE
LSB
SUB_TITLE
TEST_MODE
SUB_TITLE
V4
V3
V2
V1
V0
: 0 : Normal operations
1 : Reserved for SGS-THOMSON test
: DC shift of vertical sawtooth
0 : Normal operations
1 : Vertical Sawtooth shifted by 90mV upwards and unsymmetrical vertical
oversize blanking (if nominal amplitude = V_AMPLITUDE = hex40)
V4, V3, V2, V1, V0 : Vertical position (V_DC)
00000 (hex 00) : Minimal position (picture shifted down by -65mV on SENSP/SENSM)
11111 (hex 1F) : Maximal position (picture shifted up by +65mV on SENSP/SENSM)
Subaddress 3 (hex 03) : Horizontal Oversize Blanking & EW-Amplitude
MSB
LSB
OV_BLK_HOR2 OV_BLK_HOR1
OV_BLK_HOR1,
OV_BLK_HOR2
E4
E3
E2
E1
E0
: Horizontal oversize blanking (see Table 2)
Table 2
TV Mode
OV_BLK_HOR2
OV_BLK_HOR1
Reference is Rising Edge
of Positive HFLY-Back (µs)
Start of Blanking
End of Blanking
STANDARD 4 :3
0
Don’t Care
0
11.5
ZOOM1 (14:9)
1
0
-1.7
13.7
ZOOM2 (16:9)
1
1
-3.2
15.2
E4, E3, E2, E1, E0 : EW-AMPLITUDE
00000 (hex 00) : Maximal parabola amplitude = 0.74V for EW_LOW = 0 ; 0.48V for
EW_LOW = 1
11111 (hex 1F) : Minimal parabola amplitude = 0.26V for EW_LOW = 0 ; 0.0V for
EW_LOW = 1
Subaddress 4 (hex 04) : EW_SHAPE
EW_SHAPE
: 0000 (hex 00) : Maximal parabola flattening (flattened corners of parabola)
1111 (hex 0F) : Minimal parabola flattening (ideal parabola)
5/17
STV2145
I2C BUS INFORMATION (continued)
Subaddress 5 (hex 05) : EW_Parabola Range Switch & East-West - Tilt Adjustment
MSB
LSB
EW_LOW
EW_LOW
T4
T3
T2
T1
T0
: Switch for parabola amplitude range
0 : Parabola amplitude from 0.26 to 0.74V
1 : Parabola amplitude from 0 to 0.48V
T4, T3, T2, T1, T0 : East-west tilt (unsymmetry)
00000 (hex 00) : Minimal position : parabola unsymmetrical, (higher on the top of
the picture)
10000 (hex 10) : Parabola symmetrical
11111 (hex 1F) : Maximal position : parabola unsymmetrical, (lower on the top of
the picture)
Subaddress 6 (hex 06) : Picture Width (H_WIDTH)
MSB
TEST_MODE
LSB
W5
W4
W3
W2
W1
W0
TEST_MODE
: 0 : Normal operations
1 : Reserved for SGS-THOMSON test
W5, W4, W3, W2, : H_WIDTH (picture width)
W1, W0
000000 (hex 00) : Minimal position : DC_Value of parabola minimal
111111 (hex 3F) : Maximal position : DC_Value of parabola maximal
Output Signals (Read Mode)
MSB
PON_RESET
LSB
S60/50
VCO_LOCK
VERS_NBR
VERS_EXT
PON_RESET
: 1
: If Voltage drop has been detected (risk of data loss in latch memory)
S60/50
: 0
1
: If VRET frequency = 50Hz
: If VRET frequency = 60Hz
VCO_LOCK
: 0
1
: If PLL FH2 is out of frequency or phase
: If PLL FH2 has locked
VERS_NBR
VERS_EXT
: Number of actual cut (for SGS-THOMSON use)
: Number of metal version (for SGS-THOMSON use)
6/17
STV2145
Symbol
Parameter
VCC
VSCL, VSDA
VSENSP, VSENSM
Value
Unit
Supply Voltage (pin 5)
9
V
Separated Protection Structures to these Pins 1 and 2
6
V
No Protection Diodes to VCC in Order to Allow Half Bridge
Operation (Pins 15 and 16)
20
V
0, +70
°C
-55, +150
°C
Toper
Operating Ambient Temperature
Tstg
Storage Temperature
2145-02.TBL
ABSOLUTE MAXIMUM RATINGS
Symbol
Rth (j-a)
Parameter
Value
Junction-ambient Thermal Resistance
Max.
Unit
o
70
C/W
2145-03.TBL
THERMAL DATA
ELECTRICAL CHARACTERISTICS (VCC = 7.8V, T amb = 25°C, unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
15
mA
SUPPLY (Pin 5) (see Note 1)
Pmax
Total Power Consumption
Typical power consumption
Imax
Current Capability (Pin 4)
Maximum current pulled down by Pin 4
Line Ripple Rejection
(see Note 2)
External transistor, Pin 4 connected with
3.3kΩ against Power Supply (e.g. 12V ;
recommended current into REG = 1mA),
∆VCC / ∆Vpower
Load Regulation
(see Note 2)
External transistor, Pin 4 connected with
3.3kΩ against Power Supply (12V),
∆VCC / ∆IE(regulation transistor)
Regulation Voltage
External regulation transistor, Pin 4
connected via 3.3kΩ resistor against 12V
VNOM
0.15
W
-35
dB
1
mV/mA
V
7.5
7.8
8.2
1.5
2.1
2
I C BUS (Pins 1 and 2)
VTH
Input Threshold Voltage
2.7
V
IBUS
Input Current
V1 and V2 = 5V
40
µA
Data
Saturation Voltage
Open collector of pull-down transistor at
5mA
0.5
V
Pull-down Current
No pull-down capability.
Pin 1 can’t be pulled down to slow down
clock SCL of microprocessor
Maximum Toggle Frequency
fMax.
200
kHz
TIME BASE GENERATION INTERFACES
HFLY INTERFACE (Pin 10)
Preferable heater-winding of EHTtransformer (flyback voltage positive
during horizontal flyback)
VTH
Threshold Voltage
VBE voltage comparator
VCLP
Positive Clamp Voltage
Clamping voltage = VTH + VBE
ICLPP
Maximum Positive Clamping
Current
Input voltage exceeds positive clamping
voltage
VCLP
Negative Clamping Voltage
Clamping voltage = VTH - VBE
ICLPP
Minimum Negative
Clamping Current
Input voltage smaller than negative
clamping voltage
Notes :
1.
2.
Positive
0.5
0.7
1.0
1.6
V
V
4
0
-2
mA
V
mA
Supply voltage is regulated via external series regulator transistor.
Parameter is not tested during production, but it is guaranteed by the design and qualified by means of corner lots.
7/17
2145-04.TBL
Polarity of Horizontal Flyback
STV2145
ELECTRICAL CHARACTERISTICS (continued) (VCC = 7.8V, Tamb = 25°C, unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
10
mA
TIME-BASE GENERATION INTERFACES (continued)
OVERSIZE BLANKING OUTPUT (Pin 11) (see Note 3)
IO
Output Current
VO
Output Voltage
IOBLK = 5mA
Rise Time / Fall Time
Output Load = 2.2kΩ against VCC
tR, tF
VOBLK (Saturation Voltage) < 0.5V
0
0.4
V
100
ns
-0.3
0.3
µs
µs
HORIZONTAL OVERSIZE BLANKING (Pin 11) (see Figure 1)
OBR
OBL
Horizontal Oversize
Bus register OV_BLK_HOR1,2 = (00)
OBR
OBL
Horizontal Oversize
Bus register OV_BLK_HOR1,2 = (01)
1.45
1.5
1.9
1.7
2.35
1.9
µs
µs
OBR
OBL
Horizontal Oversize
Bus register OV_BLK_HOR1,2 = (11)
2.95
2.9
3.4
3.2
3.85
3.6
µs
µs
OBR
OBL
Horizontal Oversize
Blanking Unsymmetry
Bus register OV_BLK_HOR1,2 = (11)
-0.4
0.2
0.8
µs
FH2 PHASE COMPARATOR (Pin 6)
IOUT
Output Current
∆I
Current Ratio
µA
100
Ratio of charging / discharging current
(unsymmetry)
1
VRET INTERFACE (Pin 3)
Polarity of VRET
Negative pulse, starts the vertical retrace
VTH
Threshold Voltage
VCC = 7.8V (threshold value derived from VCC)
2.7
Negative
IIN
Input Current
Input Voltage : 0V < VVRET < 7.8V
-5
3.0
3.3
V
+5
µA
VERTICAL DEFLECTION
VERTICAL LOGIC (countdown circuit for vertical deflection, 50/60Hz recognition and vertical oversize blanking)
Free Running Period
No V_Sync pulses (VRET) present
Search Window 60Hz
377
240
lines
277
lines
VERTICAL OVERSIZE BLANKING (countdown circuit used also for vertical oversize blanking) (Pin 11)
OV_BLK_VERT1,2 = (0,0)
SUB_TITLE = 0 ; there is no influence of 50 or
60Hz Mode (OBLK always low-level)
Vertical Oversize Blanking
Subtitle Mode
SUB_TITLE = 1; values are the blanked lines
Input Frequency fVRET = 50Hz
Input Frequency fVRET = 60Hz
Vertical Oversize Blanking
Zoom 1 Mode
Vertical Oversize Blanking
Zoom 2 Mode
Vertical Oversize Blanking
Blank Mode
Notes :
8/17
3.
OV_BLK_VERT1,2 = (1,0)
SUB_TITLE = 0 ; values are the blanked lines
Input Frequency fVRET = 50Hz
Input Frequency fVRET = 60Hz
OV_BLK_VERT1,2 = (1,1)
SUB_TITLE = 0 ; values are the blanked lines
Input Frequency fVRET = 50Hz
Input Frequency fVRET = 60Hz
OV_BLK_VERT1,2 = (0,1)
SUB_TITLE = 0 ; there is no influence of 50 or
60Hz Mode (OBLK always high-level)
Open collector output, polarity positive :
High (high impedance) : oversize blanking
Low (transistor pulled to Ground) : no blanking
No Blanking
middle
of line
302
259
67
59
middle
of line
285
239
49
43
middle
of line
278
234
59
49
Full Blanking
2145-05.TBL
Oversize Blanking Disable
STV2145
ELECTRICAL CHARACTERISTICS (continued) (VCC = 7.8V, Tamb = 25°C, unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ. Max.
Unit
0.38
0.46
0.55
V
1.11
1.16
1.21
V
55
-75
0
65
-65
75
-55
mV
mV
70
90
110
mV
157
167
177
line
VERTICAL DEFLECTION (continued)
Notes :
2.
4.
5.
6.
7.
0
20
40
60
mV
-60
-40
-20
mV
0
5.3
%
%
10
15
V
V
kΩ
±100
µA
1
5
0.5
V
V
mA/V
20
Parameter is not tested during production, but it is guaranteed by the design and qualified by means of corner lots.
Parameter is measured in EWS, with limits enlarged due to tester accuracy
Vertical output signals like vertical sawtooth, breathing and S-correction can only be measured via external test circuit (see
Figure 10).
Voltage VSAW only indirectly measurable via application circuit in closed loop condition (voltage-drop across RSENS) for all vertical
functions : see Note 5.
DC-shift of internal sawtooth-voltage; thus maintenance of fix-points for EW-Parabola and S-CORRECTION
9/17
2145-06.TBL
VERTICAL RAMP GENERATOR (see Figure 2) (see Note 6)
Sawtooth Amplitude
S_CORRECTION = 1111
VSAW
Register V_AMPLITUDE
Min. Value
= minimum (0000000) value VPP for 190 lines
difference
Max. Value
= maximum (1111111) value VPP for 190 lines
difference
Sawtooth DC-Level
VMID
SUB_TITLE = 0
Nom. Value
Register V_DC = (10000) ; (no V-shift)
Min. Value
Register V_DC = (00000) ; (UP-shift)
Max. Value
Register V_DC = (11111) ; (DOWN-shift)
V_SUBTITLE (see Note 7)
SUB_TITLE Vertical DC-Shift
Register SUB_TITLE = 1 (this value affects a
for Subtitle Mode
vertical UP-shift of about 20 lines)
VERTICAL S-CORRECTION (see Figure 3) (See Notes 4 and 5)
Middle Fix Point
50Hz Mode ; measurement method : difference
TF MID
SCOMAX - SCOMIN is measured at line 160 and
174 ; the middle line TF MID is calculated by linear
interpolation (for 60Hz , the middle line shifts to
line 140 ; not measured)
Fix-Point
50Hz Mode
Upper at line 72
Difference ∆VFUP = SCOMAX - SCOMIN measured
∆VFUP
at line 72 if V_AMPLITUDE = (1111111)
∆VFLOW
Lower at line 262
Difference ∆VFLOW = SCOMAX - SCOMIN measured
at line 262 if V_AMPLITUDE = (1111111)
∆VSAWMAX Maximum Correction 50Hz Mode
Voltage
at line 127
Difference ∆VFUP = SCOMAX - SCOMIN measured
at line 127 if V_AMPLITUDE = (1111111)
at line 207
Difference ∆VFLOW = SCOMAX - SCOMIN measured
at line 207 if V_AMPLITUDE = (1111111)
VERTICAL BREATHING (Pin 9) (Breathing effect BR = 100% * (VSAW - VSAWB) / VSAW )
(see Notes 4 and 5) (see Figure 4)
Breathing Effect
Min. Value
V9 = 7.8V
BR Min
BRMax
V9 = 1.5V measurement at line 72 and 262
Max. Value
VERTICAL BRIDGE AND OUTPUT STAGE (see Figure 5)
Sense Input Voltage Input Pins 16 and 15 - Differential input
(see Note 2)
Min. Value
V14 ≤ 3V
Max. Value
V14 ≤ 5V
Input Impedance
Resistor value of the internal resistor-bridge
(Pins 15-16)
Output Current
V14 = 3V, V16 and V15 > 10V
IOUT
(Pin 14)
Output Voltage
VOUT
V16 > 10V
(Pin 14)
Min. Value
Max. Value
∆IOUT /∆VIN Transconductance
Input voltage ∆VIN = difference voltage between
(Pin 14)
Pin 16 and Pin 15
STV2145
ELECTRICAL CHARACTERISTICS (continued) (VCC = 7.8V, Tamb = 25°C, unless otherwise specified)
Symbol
Parameter
Test Conditions
Min.
Typ.
Max.
Unit
VERTICAL DEFLECTION (continued)
EAST-WEST CORRECTION (Pins 13-12) (See Figure 6)
Output-Current
VDC-MIN
VDC-MAX
TILT
Parabola Amplitude
See Figure 7
H_WIDTH = (000000), EW_TILT = (10000),
EW_SHAPE = (1111)
EW_AMPLITUDE = (00000)
EW_AMPLITUDE = (11111), (Parabola = 1/3)
0.63
0.21
0.75
0.27
0.87
0.33
VPP
VPP
EW_LOW = 1
Max. Value
Min. Value
EW_AMPLITUDE = (00000)
EW_AMPLITUDE = (11111)
0.41
0.48
0
0.56
VPP
VPP
2.4
3
3.5
2.4
3.65
2.65
3.8
2.9
3.95
Parabola Amplitude
Ratio (EW_LOW = 0)
∆VPAR = VPAR (EW_AMPLITUDE)= (00000) / VPAR
(EW_AMPLITUDE)= (11111)
Parabola DC
EW_TILT = (10000), EW_SHAPE = (1111),
EW_LOW = 0, EW_AMPLITUDE = (10000)
Register H_WIDTH = (000000) (min. picture width)
Register H_WIDTH = (111111) (max. picture width)
Min. Value
Max. Value
Parabola Unsymmetry
(see Figure 8)
Parabola Shape
Deformation
(see Figure 9)
Value is ratio between upper and lower parabola
value. TILT= VPARUP / VPARLOW
H_WIDTH = (000000), EW_SHAPE =
(1111),EW_LOW = 0, EW_AMPLITUDE = (10000)
Register EW_TILT = (11111)
Register EW_TILT = (00000)
R = VDEF / VPAR
H_WIDTH = (000000), EW_TILT = (10000),
EW_LOW = 0, EW_AMPLITUDE = (00000)
Register EW_SHAPE = (0000)
Register EW_SHAPE = (1111)
(no parabola deformation),
V_AMPLITUDE = (1111111)
Max. Value
Min. Value
Figure 1
V
V
1.83
0.55
0.07
0
Figure 2
190 lines
Slicing level
for H-flyback
(~0.75V)
Horizontal
flyback pulse
OBR
Test condition : THFLY = 12µs
VSAW
Vertical
Sawtooth
OBL
THFLY
TF
2145-03.EPS
Horizontal
oversize
blanking
10/17
V
EW_LOW = 0
Max. Value
Min. Value
Max. Value
Min. Value
RMAX
R MIN
-0.5
to +2
2145-07.TBL
∆VPAR
Application : Output Darlington-Transistor
mA
TR
All values valid without breathing function
(Pin BREATH connected to VCC)
2145-04.EPS
VPAR
Output Voltage Range
-2.5
to +3
STV2145
Figure 3
S-Correction
Sawtooth
S_CORRECTION = 1111
Original Sawtooth
(SCOMIN)
∆VSAW
VFUP
VDC
VFLOW
∆VSAW
S_CORRECTION = 0000
Max. Corrected
Sawtooth (SCOMAX)
TFMID
Fix Points
Points of
Max. Deviation
2145-05.EPS
Approximative
Line Number 72
127 167 207 262
Figure 4
Figure 5
VMID
SENSM
2145-06.EPS
VSAW
Vertical
Sawtooth
VSAWB
Vertival YOKE
RSENS
VBRIDGE
(~13V)
R0
16
15
R0
SENSP
Transconductance
Amplifier
VREF (2 - 3V)
14
FROUT
Figure 6
CSTAB
VCC
V MID
VSAW
1kΩ
EWIN
5kΩ
100nF
Figure 7
Parabola Outside
of Fix Points
EWOUT
V SENS = VFUP
Error Amplifier
STV2145
Test circuit : all measurement values
are related to this test circuit, measured at Pin EWIN.
All East-West values below are depending
on the following settings :
V_AMPLITUDE = (1111111) and no breathing
(Pin BREATH at VCC).
VSENS = 0
(see Note 5)
VPAR
VSENS = VFLOW
VDC
(Line 167 for 50Hz)
Amplitude defined for the Fix points VF UP and VFLOW
(definition see : vertical ramp generator).
Note : valid for all following definitions of parabola amplitude :
between EW_AMPLITUDE = mon. and max. there is a
linear progression in the amplitude VPAR.
11/17
2145-09.EPS
13
STV2145
CSTAB = 1 to 10nF to guarantee stability (oscillation)
2145-08.EPS
12
2 x R0
2145-07.EPS
2 x R0
Vertical
Power
Amplifier
STV2145
Figure 8
Figure 9
Parabola Outside
of Fix Points
Ideal parabola (EW_SHAPE = min)
Deformed parabola (EW_SHAPE = max)
VDEF
VPARLOW
70
167
264
VDC
Approximative
Line Number :
2145-10.EPS
Approximative
Line Number :
VPAR
70
167
264
2145-11.EPS
VPARUP
Figure 10
VSENS
RSENS = 100Ω
VBRIDGE
(~10V)
SENSM
R0
16
15
R0
RLOAD = 1kΩ
SENSP
Transconductance
Amplifier
VREF (2 - 3V)
14
FROUT
Standard
Operational
Amplifier
CSTAB = 5nF
VMID
VSAW
12/17
2 x R0
STV2145
2145-12.EPS
2 x R0
STV2145
INPUTS/OUTPUTS PIN CONFIGURATION
Figure 11
10kΩ
SCL/SDA
Pins 1/2
VZ ≈ 6V
Pull-down
and Protection
Transistor
VZ ≈ 6V
Figure 12
2145-13.EPS
Acknowledge
and/or Data
(only for SDA)
Figure 13
VCC
VCC
20pF
VREF = 3V
300Ω
2145-14.EPS
VRET 3
REG 4
Figure 14
2145-15.EPS
20pF
VZ ≈ 11V
VCC
Figure 15
VCC 5
VCC
Figure 16
2145-17.EPS
2145-16.EPS
LPF 6
Figure 17
VCC
VCC
DAC_TEST :
0V = Normal
VCC = Test
13/17
2145-19.EPS
BREATH 9
2145-18.EPS
CVERT 7
STV2145
INPUTS/OUTPUTS PIN CONFIGURATION (continued)
Figure 18
VCC
VCC
50kΩ
VCC
Internal
H_FLYBACK
10kΩ
2145-20.EPS
HFLY 10
Figure 19
Figure 20
VCC
VCC
2kΩ
OBLK 11
Figure 21
2145-22.EPS
2145-21.EPS
EWIN 12
Figure 22
VCC
VCC
200Ω
1.6kΩ
FROUT 14
14/17
2145-24.EPS
2145-23.EPS
EWOUT 13
STV2145
INPUTS/OUTPUTS PIN CONFIGURATION (continued)
Figure 23
20pF
VZ ≈ 11V
VCC
VCC
5kΩ
Resistor
Bridge
2145-25.EPS
SENSP 15
Figure 24
Differential Stage for
the Transconductance
Amplifier
VCC
Resistor
Bridge
2145-26.EPS
5kΩ
SENSM 16
15/17
16/17
C20
47µF
2145-27.EPS
+9V
+24V
C56
220nF
R52
4.7kΩ
T5
+ BC547
C34
100pF
R40 10kΩ
VOUT
SDA
SCL
C51
33nF
C48
4.7nF
C44
220nF
VCC
R30 470Ω
R17 330Ω
R18 330Ω
8
GROUND
BREATH
C54
1nF
9
HFLY 10
OBLK 11
EWIN 12
EWOUT 13
FROUT 14
SENSP 15
SENSM 16
STV2145
CVERT
LPF
6
7
VCC
REG
VRET
SDA
SCL
5
4
3
2
1
R1
330Ω
R2
10Ω
3W
R54
680kΩ
R55
???Ω
VCC
R57 22kΩ
C39
10nF
R31
100Ω
R56
270kΩ
LFB
C37
1nF
C36
10nF
R28
100Ω
C5
R20 2.2Ω
1000µF
R19 1Ω
V.YOKE
+12V
+
R43 1kΩ
R46
???Ω
D8
1N4148
R50 1.5kΩ
R45
8.2kΩ
VCC
C10
220nF
R12
1.5Ω
BCL
OBLK
VCC
T6
TIP122
C46 3.3nF
+ C4
1000µF
25V
+24V
R36
3.3kΩ
R41
3.3kΩ
R47
39kΩ
E/W MODULATOR
C31 1.5nF
C23
100µF +
+
+12V
D1 1N4004
D4 1N4148 R26 10kΩ
D2 1N4148
C57
22pF
C9
1000µF
35V
+24V
7
TDA8172
IN+
OUT.VCC
OUT
5
6
GND
FLYBACK
VCC
IN-
4
3
2
1
STV2145
TYPICAL APPLICATION
STV2145
PM-DIP16.EPS
PACKAGE MECHANICAL DATA
16 PINS - PLASTIC PACKAGE
a1
B
b
b1
D
E
e
e3
F
I
L
Z
Min.
0.51
0.77
Millimeters
Typ.
Max.
1.65
Min.
0.020
0.030
0.5
0.25
Inches
Typ.
Max.
0.065
0.020
0.010
20
8.5
2.54
17.78
0.787
0.335
0.100
0.700
7.1
5.1
3.3
0.280
0.201
DIP16.TBL
Dimensions
0.130
1.27
0.050
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without noti ce. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
 1996 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system confo rms to
the I2C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
17/17