AD ADL5561ACPZ-R7

2.9 GHz Ultralow Distortion
RF/IF Differential Amplifier
ADL5561
−3 dB bandwidth of 2.9 GHz (AV = 6 dB)
Low supply current: 40 mA
Pin-strappable gain adjust: 6 dB, 12 dB, 15.5 dB
Differential or single-ended input to differential output
Low noise input stage: 2.1 nV/√Hz RTI at AV = 12 dB
Low broadband distortion (Av = 6 dB)
10 MHz: −94 dBc HD2, −87 dBc HD3
70 MHz: −98 dBc HD2, −87 dBc HD3
140 MHz: −95 dBc HD2, −87 dBc HD3
250 MHz: −80 dBc HD2, −73 dBc HD3
IMD3s of −86 dBc @ 250 MHz center
Slew rate: 9.8 V/ns
Fast settling of 2 ns and overdrive recovery of 3 ns
Single-supply operation: 3 V to 3.6 V
Power-down control
Fabricated using the high speed XFCB3 SiGe process
FUNCTIONAL BLOCK DIAGRAM
VCC
RF
ENBL
VIP2
VIP1
VIN1
VIN2
RG2
VON
RG1
VCOM
RG1
RG2
VOP
RF
GND
GND
ADL5561
08004-001
FEATURES
Figure 1.
APPLICATIONS
Differential ADC drivers
Single-ended-to-differential conversion
RF/IF gain blocks
SAW filter interfacing
GENERAL DESCRIPTION
The ADL5561 is a high performance differential amplifier
optimized for RF and IF applications. The amplifier offers low
noise of 2.1 nV/√Hz and excellent distortion performance over
a wide frequency range, making it an ideal driver for high speed
8-bit to 16-bit analog-to-digital converters (ADCs).
The ADL5561 provides three gain levels of 6 dB, 12 dB, and 15.5 dB
through a pin-strappable configuration. For the single-ended
input configuration, the gains are reduced to 5.6 dB, 11.1 dB, and
14.1 dB. Using an external series input resistor expands the
amplifier gain flexibility and allows for any gain selection from
0 dB to 15.5 dB.
The quiescent current of the ADL5561 is typically 40 mA and,
when disabled, consumes less than 3 mA, offering excellent
input-to-output isolation.
The device is optimized for wideband, low distortion performance.
These attributes, together with its adjustable gain capability,
make this device the amplifier of choice for general-purpose IF
and broadband applications where low distortion, noise, and power
are critical. This device is optimized for the best combination of
slew speed, bandwidth, and broadband distortion. These attributes
allow it to drive a wide variety of ADCs and make it ideally suited
for driving mixers, pin diode attenuators, SAW filters, and multielement discrete devices.
Fabricated on the Analog Devices, Inc., high speed SiGe process,
the ADL5561 is supplied in a compact 3 mm × 3 mm, 16-lead
LFCSP package and operates over the temperature range of
−40°C to +85°C.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.
ADL5561
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications Information .............................................................. 14
Applications ....................................................................................... 1
Basic Connections ...................................................................... 14
Functional Block Diagram .............................................................. 1
Input and Output Interfacing ................................................... 15
General Description ......................................................................... 1
Gain Adjustment and Interfacing ............................................ 16
Revision History ............................................................................... 2
ADC Interfacing ......................................................................... 16
Specifications..................................................................................... 3
Layout Considerations ............................................................... 18
Absolute Maximum Ratings............................................................ 6
Soldering Information ............................................................... 19
ESD Caution .................................................................................. 6
Evaluation Board ........................................................................ 19
Pin Configuration and Function Descriptions ............................. 7
Outline Dimensions ....................................................................... 21
Typical Performance Characteristics ............................................. 8
Ordering Guide .......................................................................... 21
Circuit Description ......................................................................... 13
Basic Structure ............................................................................ 13
REVISION HISTORY
3/10—Rev A to Rev. B
Changes to Figure 43 ...................................................................... 21
Changes to Ordering Guide .......................................................... 21
9/09—Rev 0 to Rev. A
Changes to Features Section............................................................ 1
Changes to Table 1 ............................................................................ 3
Changes to Figure 5 .......................................................................... 8
Changes to Figure 9 and Figure 10 ................................................. 9
Changes to Equation 1, Figure 32, and Figure 34....................... 15
Changes to Equation 2 ................................................................... 16
Changes to Figure 38, Figure 39, Figure 40, and Table 9 ........... 17
Changes to Figure 43 ...................................................................... 19
Moved Table 14 to ......................................................................... 19
5/09—Revision 0: Initial Version
Rev. B | Page 2 of 24
ADL5561
SPECIFICATIONS
VCC = 3.3 V, VCOM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 140 MHz, TA = 25°C.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Gain Accuracy
Gain Supply Sensitivity
Gain Temperature Sensitivity
Slew Rate
Settling Time
Overdrive Recovery Time
Reverse Isolation (S12)
INPUT/OUTPUT CHARACTERISTICS
Output Common Mode
Voltage Adjustment Range
Maximum Output Voltage Swing
Output Common-Mode Offset
Output Common-Mode Drift
Output Differential Offset Voltage
CMRR
Output Differential Offset Drift
Input Bias Current
Input Resistance (Differential)
Input Resistance (Single-Ended) 1
Input Capacitance (Single-Ended)
Output Resistance (Differential)
POWER INTERFACE
Supply Voltage
ENBL Threshold
ENBL Input Bias Current
Quiescent Current
Conditions
Min
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 15.5 dB, VOUT ≤ 1.0 V p-p
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 15.5 dB, VOUT ≤ 1.0 V p-p
AV = 6 dB, RL = open
AV = 12 dB, RL = open
AV = 15.5 dB, RL = open
VCC ± 10%
−40°C to +85°C, AV =15.5 dB
Rise, AV = 15.5 dB, RL= 200 Ω, VOUT = 2 V step
Fall, AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V step
2 V step to 1%
VIN = 4 V to 0 V step, VOUT ≤ ±10 mV
1 dB compressed
Referenced to VCC/2
−40°C to +85°C
−40°C to +85°C
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 5.6 dB, RS = 50 Ω
AV = 11.1 dB, RS = 50 Ω
AV = 14.1 dB, RS = 50 Ω
3
Device disabled, ENBL low
Device enabled, ENBL high
ENBL high
ENBL low
ENBL high
ENBL low
Rev. B | Page 3 of 24
37
Typ
Max
Unit
2900
2300
1800
200
200
600
0.15
0.05
0.05
−0.023
0.24
9.8
10.1
2
3
60
MHz
MHz
MHz
MHz
MHz
MHz
dB
dB
dB
dB/V
mdB/°C
V/ns
V/ns
ns
ns
dB
VCC/2
1.4 to 1.8
4.3
25
170
1
65
15
3
400
200
133
307
179
132
0.3
12
V
V
V p-p
mV
μV/°C
mV
dB
μV/°C
μA
Ω
Ω
Ω
Ω
Ω
Ω
pF
Ω
3.3
0.6
1.3
−27
−300
40
3
3.6
44.5
V
V
V
μA
μA
mA
mA
ADL5561
Parameter
10 MHz NOISE/HARMONIC PERFORMANCE
Second/Third Harmonic Distortion
Output Third-Order Intercept/Third-Order
Intermodulation Distortion
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
70 MHz NOISE/HARMONIC PERFORMANCE
Second/Third Harmonic Distortion
Output Third-Order Intercept/Third-Order
Intermodulation Distortion
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
140 MHz NOISE/HARMONIC PERFORMANCE
Second/Third Harmonic Distortion
Output Third-Order Intercept/Third-Order
Intermodulation Distortion
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
Conditions
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV= 6 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. B | Page 4 of 24
Min
Typ
Max
Unit
−94/−87
−92/−88
−95/−87
+42.7/−89
dBc
dBc
dBc
dBm/dBc
+41/−85
dBm/dBc
+40/−85
dBm/dBc
3
2.1
1.7
19
19
19
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
−98/−87
−93/−83
−93/−82
+45/−93
dBc
dBc
dBc
dBm/dBc
+43/−89
dBm/dBc
+41/−86
dBm/dBc
3
2.1
1.7
19
18.9
18.9
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
−95/−87
−83/−83
−83/−82
+49/−102
dBc
dBc
dBc
dBm/dBc
+48/−100
dBm/dBc
+39/−96
dBm/dBc
3
2.1
1.7
19.1
18.8
18.7
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
ADL5561
Parameter
250 MHz NOISE/HARMONIC PERFORMANCE
Second/Third Harmonic Distortion
Output Third-Order Intercept/Third-Order
Intermodulation Distortion
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
500 MHz NOISE/HARMONIC PERFORMANCE
Second/Third Harmonic Distortion
Output Third-Order Intercept/Third-Order
Intermodulation Distortion
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
1000 MHz NOISE/HARMONIC PERFORMANCE
Second/Third Harmonic Distortion
Output Third-Order Intercept/Third-Order
Intermodulation Distortion
Noise Spectral Density (RTI)
1 dB Compression Point (RTO)
1
Conditions
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 1V p-p
AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p
composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p
composite( 2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p
composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p
AV = 6 dB, RL = 200 Ω, VOUT = 1 V p-p
composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT = 1 V p-p
composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT = 1 V p-p
composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
See the Applications Information section for a discussion of single-ended input, dc-coupled operation.
Rev. B | Page 5 of 24
Min
Typ
Max
Unit
−80/−73
−76/−70
−78/−72
+41/−86
dBc
dBc
dBc
dBm/dBc
+40/−84
dBm/dBc
+39/−83
dBm/dBc
3.2
2.2
1.7
19.1
18.9
18.7
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
−69/−57
−72/−60
−66/−61
+40/−97
dBc
dBc
dBc
dBm/dBc
+36/−90
dBm/dBc
+34/−75
dBm/dBc
4.1
2.4
1.8
16.3
16.4
16.2
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
−58/−53
−55/−50
−57/−50
+18/−54
dBc
dBc
dBc
dBm/dBc
+18/−56
dBm/dBc
+18/−46
dBm/dBc
6
2.6
1.8
10.8
12.6
12.5
nV/√Hz
nV/√Hz
nV/√Hz
dBm
dBm
dBm
ADL5561
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage (VCC)
VIP1, VIP2, VIN1, VIN2
Internal Power Dissipation
θJA
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
3.6 V
VCC + 0.5 V
155 mW
98.3°C/W
125°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. B | Page 6 of 24
ADL5561
12 ENBL
11 VOP
10 VON
9 VCOM
14 GND
NOTES
1. EXPOSED PADDLE. CONNECT TO A LOW
IMPEDANCE THERMAL AND ELECTRICAL
GROUND PLANE.
08004-031
VCC 8
VCC 7
TOP VIEW
(Not to Scale)
VCC 5
VIN2 4
ADL5561
VCC 6
VIN1 3
13 GND
PIN 1
INDICATOR
VIP2 1
VIP1 2
15 GND
16 GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
1
Mnemonic
VIP2
2
VIP1
3
VIN1
4
VIN2
5, 6, 7, 8
9
VCC
VCOM
10
11
12
13, 14, 15, 16
VON
VOP
ENBL
GND
EP
Description
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to
VIP1 for Av = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to
VIP2 for Av = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to
VIN2 for Av = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to
VIN1 for Av = 15.5 dB.
Positive Supply.
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and
output. Typically decoupled to ground with a 0.1 μF capacitor. With no reference applied, input and
output common mode floats to midsupply (VCC/2).
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
Enable. Apply positive voltage (1.0 V < ENBL < VCC) to activate device.
Ground. Connect to low impedance ground.
Exposed Paddle. Connect to a low impedance thermal and electrical ground plane.
Rev. B | Page 7 of 24
ADL5561
TYPICAL PERFORMANCE CHARACTERISTICS
VCC = 3.3 V, VCOM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 140 MHz, and TA = 25°C.
16
14
19
18
17
10
8
6
16
15
14
MIN GAIN +85°C
MIN GAIN +25°C
MIN GAIN –40°C
MID GAIN +85°C
MID GAIN +25°C
MID GAIN –40°C
MAX GAIN +85°C
MAX GAIN +25°C
MAX GAIN –40°C
13
12
MINIMUM GAIN
11
100M
1G
10G
FREQUENCY (Hz)
Figure 3. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, AV = 12 dB, and AV = 15.5 dB over Temperature
16
10
08004-002
4
10M
14
100
200
300
400
500
600
700
800
900
1000
FREQUENCY (MHz)
Figure 6. Output P1dB (OP1dB) vs. Frequency at AV = 6 dB, AV = 12 dB, and
AV = 15.5 dB over Temperature, 200 Ω Differential Load
25
–40°C
+25°C
+85°C
MAXIMUM GAIN
0
08004-016
MID GAIN
OP1dB (dBm)
GAIN (dB)
12
20
–40°C
+25°C
+85°C
MAXIMUM GAIN
20
10
8
15
MIN GAIN +85°C
MIN GAIN +25°C
MIN GAIN –40°C
MID GAIN +85°C
MID GAIN +25°C
MID GAIN –40°C
MAX GAIN +85°C
MAX GAIN +25°C
MAX GAIN –40°C
10
MINIMUM GAIN
100M
1G
10G
FREQUENCY (Hz)
5
Figure 4. Gain vs. Frequency Response for 1 kΩ Differential Load
AV = 6 dB, AV = 12 dB, and AV = 15.5 dB over Temperature
8
NOISE SPECTRAL DENSITY (nV/√Hz)
10
8
6
4
2
100
FREQUENCY (MHz)
1000
08004-004
NOISE FIGURE (dB)
12
10
200
300
400
500
600
700
800
900
1000
Figure 7. Output P1dB (OP1dB) vs. Frequency at AV = 6 dB, AV = 12 dB, and
AV = 15.5 dB over Temperature, 1 kΩ Differential Load
AV MAXIMUM
AV MID
AV MINIMUM
14
100
FREQUENCY (MHz)
16
0
0
Figure 5. Noise Figure vs. Frequency at
AV = 6 dB, AV = 12 dB, and AV = 15.5 dB
7
AV MAXIMUM
AV MID
AV MINIMUM
6
5
4
3
2
1
0
10
100
FREQUENCY (MHz)
Figure 8. Noise Spectral Density vs. Frequency at
AV = 6 dB, AV = 12 dB, and AV = 15.5 dB
Rev. B | Page 8 of 24
1000
08004-015
4
10M
08004-003
6
08004-017
MID GAIN
OP1dB (dBm)
GAIN (dB)
12
ADL5561
–60
IMD3, RL = 200Ω (dBc)
50
OIP3 (dBm)
40
30
20
10
0
50
100
150
200
250
FREQUENCY (MHz)
–100
–60
–120
–80
–140
–100
50
100
150
–120
250
200
FREQUENCY (MHz)
50
45
40
35
OIP3 (dBm)
40
OIP3 (dBm)
0
Figure 12. Two-Tone Output IMD vs. Frequency,
Output Level at 2 V p-p Composite, RL = 200 Ω and RL = 1 kΩ
+85°C MAX GAIN
+25°C MAX GAIN
–40°C MAX GAIN
50
–20
–40
Figure 9. Output Third-Order Intercept at Three Gains, Output Level at 2 V p-p
Composite, RL = 200 Ω
60
0
–80
–160
08004-018
0
AV MAXIMUM
AV MID
AV MINIMUM
IMD3, RL= 1kΩ (dBc)
–40
AV MAXIMUM
AV MID
AV MINIMUM
08004-020
60
30
20
30
25
20
15
10
10
0
50
100
150
200
250
FREQUENCY (MHz)
0
–2
08004-019
0
0
1
2
3
4
5
POUT/TONE (dBm)
Figure 10. Output Third-Order Intercept vs. Frequency, Over Temperature,
Output Level at 2 V p-p Composite, RL = 200 Ω
Figure 13. Output Third-Order Intercept (OIP3) vs. Power (POUT),
Frequency 140 MHz, AV = 15.5 dB
60
–70
AV MAXIMUM
AV MID
AV MINIMUM
55
–1
08004-021
5
AV MAXIMUM
AV MID
AV MINIMUM
–75
–80
IMD (dBc)
–85
45
–90
–95
40
–100
35
0
50
100
150
200
FREQUENCY (MHz)
250
Figure 11. OIP3 vs. Frequency (Single-Ended Input)
–110
0
50
100
150
200
FREQUENCY (MHz)
Figure 14. IMD vs. Frequency (Single-Ended Input)
Rev. B | Page 9 of 24
250
08004-006
–105
30
08004-005
OIP3 (dBm)
50
ADL5561
–100
–60
–120
–80
–140
–100
100
150
FREQUENCY (MHz)
–120
–80
–100
–140
150
–120
250
200
FREQUENCY (MHz)
–60
–120
–80
–140
–100
0
50
100
150
FREQUENCY (MHz)
200
–60
–70
HD2
–80
HD3
–2
–1
0
1
2
3
4
5
POUT (dBm)
–60
–120
250
HARMONIC DISTORTION HD2 (dBc)
–100
–160
–120
250
200
–50
0
AV MAXIMUM
AV MID
AV MINIMUM
–65
–20
–40
–80
150
–40
–100
0
HARMONIC DISTORTION HD3 (dBc)
–60
100
Figure 19. Harmonic Distortion (HD2/HD3) vs. Power, Frequency 140 MHz,
AV = 15.5 dB
08004-025
HARMONIC DISTORTION HD2 (dBc)
+85°C
+25°C
–40°C
50
–90
Figure 16. Harmonic Distortion (HD2/HD3) vs. Frequency,
Three Temperatures, Output Level at 2 V p-p, RL = 200 Ω
–40
0
–20
HARMONIC DISTORTION (dBc)
–60
100
–100
FREQUENCY (MHz)
HARMONIC DISTORTION HD3 (dBc)
–100
50
–140
08004-024
HARMONIC DISTORTION HD2 (dBc)
–40
0
–80
–30
–20
–80
–160
–120
0
+85°C
+25°C
–40°C
–60
–60
Figure 18. Harmonic Distortion (HD2/HD3) vs. Frequency at AV = 6 dB,
AV = 12 dB, and AV = 15.5 dB, Output Level at 2 V p-p, RL = 1 k Ω
Figure 15. Harmonic Distortion (HD2/HD3) vs. Frequency at AV = 6 dB,
AV = 12 dB, and AV = 15.5 dB, Output Level at 2 V p-p, RL = 200 Ω
–40
–100
–160
–120
250
200
–40
08004-023
50
–80
Figure 17. Harmonic Distortion (HD2/HD3) vs. Frequency, Over Temperature,
Output Level at 2 V p-p, RL = 1 kΩ
–10
–70
–20
–75
–30
–80
–40
–85
–50
–90
–60
–95
–70
–100
–80
–105
–90
–110
0
50
100
150
FREQUENCY (MHz)
200
HARMONIC DISTORTION HD3 (dBc)
0
–20
–100
250
08004-007
–160
–60
HARMONIC DISTORTION HD3 (dBc)
–40
0
AV MAXIMUM
AV MID
AV MINIMUM
08004-026
–80
HARMONIC DISTORTION HD2 (dBc)
–20
HARMONIC DISTORTION HD3 (dBc)
–60
–40
0
AV MAXIMUM
AV MID
AV MINIMUM
08004-022
HARMONIC DISTORTION HD2 (dBc)
–40
Figure 20. Harmonic Distortion (HD2/HD3) vs. Frequency (Single-Ended Input)
Rev. B | Page 10 of 24
ADL5561
–70
–90
–80
–100
–90
–110
200
300
400
500
600
700
800
900
–120
1k
–65
–75
–70
–80
–75
–85
–80
–90
–85
–95
–90
–100
–95
1.1
1.2
1.3
1.4
RLOAD (Ω)
1.5
1.6
1.7
1.8
–105
1.9
VCOM (V)
Figure 21. Harmonic Distortion (HD2/HD3) vs. RLOAD
Figure 24. Harmonic Distortion (HD2/HD3) vs. VCOM
1.0
0
AV MAXIMUM
AV MID
AV MINIMUM
GROUP DELAY (ns)
VOLTAGE (V)
0.9
ENABLE
TIME (2.5ns/DIV)
08004-045
2V p-p OUTPUT
–20
0.8
–40
0.7
–60
0.6
–80
0.5
–100
0.4
–120
0.3
–140
0.2
–160
0.1
0
100
200
300
400
500
600
700
800
PHASE (Degrees)
100
–70
–180
1k
900
FREQUENCY (MHz)
Figure 25. Group Delay and Phase vs. Frequency
110
AV MAXIMUM
AV MID
AV MINIMUM
100
2V p-p OUTPUT
90
CMRR (dB)
08004-046
RL = 1kΩ
80
70
80
70
60
50
40
RL = 200Ω
60
30
50
20
40
10
30
10M
100M
CMRR (dB)
Figure 22. ENBL Time Domain Response
TIME (2.5ns/DIV)
08004-010
0
–60
0
1G
FREQUENCY (Hz)
Figure 23. Large Signal Pulse Response, AV = 15.5 dB
Figure 26. Common-Mode Rejection Ratio (CMRR) vs. Frequency
Rev. B | Page 11 of 24
08004-011
–100
HARMONIC DISTORTION HD3 (dBc)
–80
–65
08004-009
–60
HARMONIC DISTORTION HD2 (dBc)
–70
–60
AV MAXIMUM
AV MID
AV MINIMUM
–55
HARMONIC DISTORTION HD3 (dBc)
–50
–50
08004-008
–40
–50
AV MAXIMUM
AV MID
AV MINIMUM –60
VOLTAGE (V)
HARMONIC DISTORTION HD2 (dBc)
–30
ADL5561
IMPEDANCE MAGNITUDE (Ω)
S12 (dB)
–20
DISABLED
–30
–40
ENABLED
–50
–60
0.5
1.0
1.5
2.0
2.5
3.0
FREQUENCY (GHz)
0
700
–10
600
–20
500
–30
400
–40
300
–50
200
–60
100
–70
0
10M
100M
FREQUENCY (Hz)
–80
1G
IMPEDANCE PHASE (Degrees)
10
800
08004-013
IMPEDANCE MAGNITUDE (Ω)
900
12
25
10
20
8
15
6
10
4
5
100M
Figure 29. Output Impedance vs. Frequency
20
AV MAXIMUM
AV MID
AV MINIMUM
30
FREQUENCY (Hz)
Figure 27. Reverse Isolation (S12) vs. Frequency
1k
35
14
2
10M
08004-012
0
AV MAXIMUM
AV MID
AV MINIMUM
Figure 28. Input Impedance vs. Frequency
Rev. B | Page 12 of 24
0
1G
IMPEDANCE PHASE (Degrees)
16
–10
–70
40
18
08004-014
0
ADL5561
CIRCUIT DESCRIPTION
BASIC STRUCTURE
The ADL5561 is a low noise, low power, fully differential amplifier/
ADC driver that uses a 3.3 V supply. It provides three gain options
(6 dB, 12 dB, and 15.5 dB) without the need for external resistors
and has wide bandwidths of 2.6 GHz for 6 dB, 2.3 GHz for 12
dB, and 2.1 GHz for 15.5 dB. Differential input impedance is
400 Ω for 6 dB, 200 Ω for 12 dB, and 133 Ω for 15.5 dB. It has a
differential output impedance of 10 Ω and an output commonmode adjust voltage of 1.25 V to 1.85 V.
0.1µF
400Ω
+
5Ω
VIP2 100Ω
1/ R
2 S
VIP1 200Ω
RL
VIN1 200Ω
VIN2 100Ω
1/ R
2 S
5Ω
400Ω
+
0.1µF
08004-032
AC
Figure 30. Basic Structure
The ADL5561 is composed of a fully differential amplifier with
on-chip feedback and feed-forward resistors. The two feedforward resistors on each input set this pin-strappable amplifier
in three different gain configurations of 6 dB, 12 dB, and 15.5 dB.
The amplifier is designed to provide high differential open-loop
gain and an output common-mode circuit that enables the user
to change the common-mode voltage from a VCOM pin. The
amplifier is designed to provide superior low distortion at
frequencies up to and beyond 300 MHz with low noise and
low power consumption. The low distortion and noise are
realized with a 3.3 V power supply at 40 mA.
The ADL5561 is very flexible in terms of I/O coupling. It can be
ac-coupled or dc-coupled at the inputs and/or the outputs within
the specified input and output common-mode levels. The input
of the device can be configured as single-ended or differential with
similar distortion performance. Due to the internal connections
between the inputs and outputs, keep the output common-mode
voltage between 1.25 V and 1.85 V for the best distortion.
For a dc-coupled input, the input common mode should be
between 1 V and 2.3 V for the best distortion. The device has
been characterized using 2 V p-p into 200 Ω. If the inputs are
ac-coupled, the input and output common-mode voltages are
set by VCC/2 when no external circuitry is used. The ADL5561
provides an output common-mode voltage set by VCOM, which
allows driving an ADC directly without external components,
such as a transformer or ac-coupling capacitors, provided that
the VCOM of the amplifier is within the VCOM of the ADC.
For dc-coupled requirements, the input VCM must be set by the
VCOM pin in all three gain settings.
Rev. B | Page 13 of 24
ADL5561
APPLICATIONS INFORMATION
Pin 1 to Pin 4, Pin 10, and Pin 11 are biased at 1/2 VCC above
ground and can be dc-coupled (if within the specified input and
output common-mode voltages levels) or ac-coupled, as shown
in Figure 31.
BASIC CONNECTIONS
Figure 31 shows the basic connections for operating the ADL5561.
VCC should be 3.3 V with each supply pin decoupled with at least
one low inductance surface-mount ceramic capacitor of 0.1 μF
placed as close as possible to the device. The VCOM pin (Pin 9)
should also be decoupled using a 0.1 μF capacitor.
To enable the ADL5561, the ENBL pin must be pulled high.
Pulling the ENBL pin low puts the ADL5561 in sleep mode,
reducing the current consumption to 3 mA at ambient.
The gain of the part is determined by the pin-strappable input
configuration. When Input A is applied to VIP1 and Input B is
applied to VIN1, the gain is 6 dB (minimum gain; see Equation 1
and Equation 2). When Input A is applied to VIP2 and Input B is
applied to VIN2, the gain is 12 dB (middle gain). When Input A is
applied to VIP1 and VIP2 and Input B is applied to VIN1 and
VIN2, the gain is 15.5 dB (maximum gain).
VCC
RS/2
0.1µF
15
GND
14
GND
2 VIP1
AC
13
GND
ENBL 12
VOP 11
ADL5561
3 VIN1
0.1µF B
VCC
BALANCED
LOAD
VON 10
VCOM 9
4 VIN2
VCC
5
RL
VCC
6
10µF
VCC
7
0.1µF
Figure 31. Basic Connections
Rev. B | Page 14 of 24
VCC
8
0.1µF
08004-033
A
RS/2
BALANCED
SOURCE
16
GND
1 VIP2
ADL5561
INPUT AND OUTPUT INTERFACING
Single-Ended Input to Differential Output
The ADL5561 can be configured as a differential input to
differential output driver, as shown in Figure 32. The differential
broadband input is provided by the ETC1-1-13 balun transformer,
and the two 34.8 Ω resistors provide a 50 Ω input match for
the three input impedances that change with the variable gain
strapping. The input and output 0.1 μF capacitors isolate the
VCC/2 bias from the source and balanced load. The load must be
200 Ω to provide the expected ac performance (see the Specifications
section and the Typical Performance Characteristics section).
The ADL5561 can also be configured in a single-ended input
to differential output driver, as shown in Figure 34. In this
configuration, the gain of the part is reduced due to the
application of the signal to only one side of the amplifier. The
strappable gain values are listed in Table 6 with the required
terminations to match to a 50 Ω source using R1 and R2. Note
that R1 must equal the parallel value of the source and R2. The
input and output 0.1 μF capacitors isolate the VCC/2 bias from
the source and the balanced load. The performance for this
configuration is shown in Figure 11, Figure 14, and Figure 20.
3.3V
VIP1
+
VIN1
B
RL
2
0.1µF
VIN2
+
AC
0.1µF
VIN1
B
Table 4. Differential Termination Values for Figure 32
R2 (Ω)
28.7
33.2
40.2
Figure 34. Single-Ended Input to Differential-Output Configuration
Table 6. Single-Ended Termination Values for Figure 34
The differential gain of the AD5561 is dependent on the source
impedance and load, as shown in Figure 33.
0.1µF
0.1µF
NOTES
1. FOR 5.6dB GAIN (AV = 1.9), CONNECT INPUT A TO VIP1
AND INPUT B TO VIN1.
2. FOR 11.1dB GAIN (AV = 3.6), CONNECT INPUT A TO VIP2
AND INPUT B TO VIN2.
3. FOR 14.1dB GAIN (AV = 5.1), CONNECT INPUT A TO BOTH
VIP1 AND VIP2 AND INPUT B TO BOTH VIN1 AND VIN2.
Figure 32. Differential-Input-to-Differential-Output Configuration
R1 (Ω)
28.7
33.2
40.2
RL
2
R1
08004-036
NOTES
1. FOR 6dB GAIN (AV = 2), CONNECT INPUT A TO VIP1 AND INPUT B TO VIN1.
2. FOR 12dB GAIN (AV = 4), CONNECT INPUT A TO VIP2 AND INPUT B TO VIN2.
3. FOR 15.5dB GAIN (AV = 6), CONNECT INPUT A TO BOTH VIP1 AND VIP2
AND INPUT B TO BOTH VIN1 AND VIN2.
+
0.1µF
VIN2
RL
2
+
AC
Gain (dB)
6
12
15.5
VIP1
R2
+
R1
50Ω
0.1µF
VIP2
A
+
0.1µF
RL
2
+
50Ω
+
A
R2
3.3V
0.1µF
VIP2
08004-037
0.1µF
ETC1-1-13
Gain (dB)
5.6
11.1
14.1
R1 (Ω)
27
29
30
R2 (Ω)
60
69
77
400Ω
+
5Ω
VIP2 100Ω
RS
0.1µF
+
2
VIP1 200Ω
AC
0.1µF
400Ω
RL
2
+
Figure 33. Differential Input Loading Circuit
RS
VIP2 100Ω
VIP1 200Ω
5Ω
VIN1 200Ω
VIN2 100Ω
+
5Ω
0.1µF
Figure 35. Single-Ended Input Loading Circuit
Table 5. Values of RIN for Differential Gain
RIN (Ω)
200
100
66.7
Rev. B | Page 15 of 24
0.1µF
RL
2
RL
2
400Ω
R1
(1)
0.1µF
+
400
RL
AV =
×
RIN 10 + RL
R2
AC
The differential gain can be determined using the following
formula. The values of RIN for each gain configuration are
shown in Table 5.
Gain (dB)
6
12
15.5
0.1µF
400Ω
+
0.1µF
08004-027
RS
5Ω
+
2
VIN2 100Ω
+
1/
VIN1 200Ω
The single-ended gain configuration of the ADL5561 is dependent
on the source impedance and load, as shown in Figure 35.
RL
2
08004-038
1/
ADL5561
The single-ended gain can be determined using the following
formula. The values of RIN and RX for each gain configuration
are shown in Table 7.
R + RS
R2
RL
400
AV 1 =
×
× X
×
RX
⎛ RS × R2 ⎞ RS + R2
10 + RL
⎟
RIN + ⎜⎜
⎟
⎝ RS + R2 ⎠
The necessary shunt component, RSHUNT, to match to the source
impedance, RS, can be expressed as
R SHUNT =
(2)
RX (Ω)
R2 || 3071
R2 || 1791
R2 || 1321
Table 8. Gain Adjustment Using Series Resistors
These values are based on a 50 Ω output match.
Il (dB)
2
4
2
4
2
2
4
2
4
2
4
2
GAIN ADJUSTMENT AND INTERFACING
The effective gain of the ADL5561 can be reduced using a number
of techniques. A matched attenuator network can reduce the
effective gain, but this requires the addition of a separate
component that can be prohibitive in size and cost. Instead, a
simple voltage divider can be implemented using the combination
of an addition series resistor at the amplifier input and the input
impedance of the ADL5561, as shown in Figure 36. A shunt
resistor is used to match to the impedance of the previous stage.
AC
1/ R
2 S
0.1µF 1/2 RSERIES
VIN1
VIN2
1/ R
2 SHUNT
0.1µF 1/2 RSERIES
VIP1
ADL5561
VIP2
1/ R
2 SHUNT
08004-039
1/ R
2 S
RS (Ω)
50
50
50
50
50
200
200
200
200
50
50
50
RSERIES (Ω)
105
232
51.1
115
34.8
102
232
51.1
115
105
232
51.1
The ADL5561 is a high output linearity amplifier that is optimized
for ADC interfacing. There are several options available to the
designer when using the ADL5561. Figure 37 shows a simplified
wideband interface with the ADL5561 driving the AD9445. The
AD9445 is a 14-bit, 125 MSPS ADC with a buffered wideband input.
Figure 36 shows a typical implementation of the divider concept
that effectively reduces the gain by adding attenuation at the
input. For frequencies less than 100 MHz, the input impedance
of the ADL5561 can be modeled as a real 133 Ω, 200 Ω, or 400 Ω
resistance (differential) for maximum, middle, and minimum
gains, respectively. Assuming that the frequency is low enough
to ignore the shunt reactance of the input and high enough so
that the reactance of moderately sized ac-coupling capacitors
can be considered negligible, the insertion loss, Il, due to the
shunt divider can be expressed as
⎞
⎟
⎟
⎠
For optimum performance, the ADL5561 should be driven
differentially using an input balun. Figure 37 uses a wideband
1:1 transmission line balun followed by two 34.8 Ω resistors in
parallel with the three input impedances (which change with the
gain selection of the ADL5561) to provide a 50 Ω differential input
impedance. This provides a wideband match to a 50 Ω source.
The ADL5561 is ac-coupled from the AD9445 to avoid commonmode dc loading. The 33 Ω series resistors help to improve the
isolation between the ADL5561 and any switching currents present at
the analog-to-digital sample-and-hold input circuitry. The AD9445
input presents a 2 kΩ differential load impedance and requires a
2 V p-p differential input swing to reach full scale (VREF = 1 V).
(3)
3.3V
VIP1
0.1µF B
VIN1
VIN2
VOP
0.1µF
ADL5561
VON
33Ω
VIN+
AD9445
0.1µF
+
34.8Ω
VIP2
+
34.8Ω
0.1µF A
+
AC
ETC1-1-13
+
50Ω
RSHUNT (Ω)
54.9
54.9
61.9
59
71.5
332
294
976
549
54.9
54.9
61.9
ADC INTERFACING
Figure 36. Gain Adjustment Using Series Resistor
⎛
RIN
Il(dB) = 20 log ⎜⎜
R
⎝ SERIES + RIN
RIN (Ω)
400
400
200
200
133
400
400
200
200
400
400
200
Figure 37. Wideband ADC Interfacing Example Featuring the AD9445
Rev. B | Page 16 of 24
14
33Ω 14-BIT ADC
VIN–
08004-040
1
RIN (Ω)
200
100
66.7
(4)
The insertion loss and the resultant power gain for multiple shunt
resistor values are summarized in Table 8. The source resistance
and input impedance need careful attention when using Equation 3
and Equation 4. The reactance of the input impedance of the
ADL5561 and the ac-coupling capacitors must be considered
before assuming they make a negligible contribution.
Table 7. Values of RIN and RX for Single-Ended Gain
Gain (dB)
5.6
11.1
14.1
1
1
1
−
R S R SERIES + R IN
ADL5561
This circuit provides variable gain, isolation, and source matching
for the AD9445. Using this circuit with the ADL5561 in a gain
of 6 dB, an SFDR performance of 87 dBc is achieved at 140 MHz
and a −3 dB bandwidth of 760 MHz, as shown in Figure 38
and Figure 39.
The wideband frequency response is an advantage in broadband applications, such as predistortion receiver designs and
instrumentation applications. However, by designing for a wide
analog input frequency range, the cascaded SNR performance
is somewhat degraded due to high frequency noise aliasing into
the wanted Nyquist zone.
0
ADL5561 DRIVING THE AD9445 14-BIT ADC
GAIN = 6dB
INPUT = 140MHz
SNR = 64.69dBc
SFDR = 87.44dBc
NOISE FLOOR = –107.9dB
FUND = –1.096dBFS
SECOND = –89.64dBc
THIRD = –87.52dBc
–10
–20
–30
–40
–50
(dBFS)
–60
An alternative narrow-band approach is presented in Figure 40.
By designing a narrow band-pass antialiasing filter between the
ADL5561 and the target ADC, the output noise of the ADL5561
outside of the intended Nyquist zone can be attenuated, helping
to preserve the available SNR of the ADC. In general, the SNR
improves several decibels when including a reasonable order antialiasing filter. In this example, a low loss 1:1 input transformer is
used to match the ADL5561 balanced input to a 50 Ω unbalanced
source, resulting in minimum insertion loss at the input.
–70
–80
–90
–100
–110
–120
–130
Figure 40 is optimized for driving some of the Analog Devices
popular unbuffered ADCs, such as the AD9246, AD9640,
and AD6655. Table 9 includes antialiasing filter component
recommendations for popular IF sampling center frequencies.
Inductor L5 works in parallel with the on-chip ADC input
capacitance and a portion of the capacitance presented by C4 to
form a resonant tank circuit. The resonant tank helps to ensure
that the ADC input looks like a real resistance at the target center
frequency. The L5 inductor shorts the ADC inputs at dc, which
introduces a zero into the transfer function. In addition, the ac
coupling capacitors introduce additional zeros into the transfer
function. The final overall frequency response takes on a bandpass characteristic, helping to reject noise outside of the intended
Nyquist zone. Table 9 provides initial suggestions for prototyping
purposes. Some empirical optimization may be needed to help
compensate for actual PCB parasitic.
–150
0
6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 56.25 62.50
FREQUENCY (MHz)
08004-044
–140
Figure 38. Measured Single-Tone Performance of the
Circuit in Figure 37 for a 140 MHz Input Signal
0
–1
–2
–3
(dBFS)
–4
–5
–6
–7
–9
–10
2.00
FIRST POINT = –1.12dBFS
END POINT = –4.38dBFS
MID POINT = –0.81dBFS
MIN = –4.38dBFS
MAX = –0.70dBFS
81.90
161.80
321.60
481.40
641.20
801.00
241.70
401.50
561.30
721.10
FREQUENCY (MHz)
08004-043
–8
Figure 39. Measured Frequency Response of the Wideband
L1
L3
105Ω
ADL5561
C4
C2
1nF 4Ω
L1
L3
CML
L5
105Ω
AD9246
AD9640
AD6655
08004-041
1nF 4Ω
Figure 40. Narrow-Band IF Sampling Solution for an Unbuffered ADC Application
Table 9. Interface Filter Recommendations for Various IF Sampling Frequencies
Center Frequency (MHz)
96
140
170
211
1 dB Bandwidth (MHz)
30
33
32
33
L1 (nH)
3.3
3.3
3.3
3.3
Rev. B | Page 17 of 24
C2 (pF)
47
47
56
47
L3 (nH)
27
27
27
27
C4 (pF)
75
33
22
18
L5 (nH)
100
120
110
56
ADL5561
LAYOUT CONSIDERATIONS
In many board designs, the signal trace widths should be
minimal where the driver/receiver is more than one-eighth of
the wavelength from the amplifier. This nontransmission line
configuration requires that underlying and adjacent ground and
low impedance planes be dropped from the signal lines
High-Q inductive drives and loads, as well as stray transmission
line capacitance in combination with package parasitics, can
potentially form a resonant circuit at high frequencies, resulting in
excessive gain peaking or possible oscillation. If RF transmission
lines connecting the input or output are used, designed them
such that stray capacitance at the input/output pins is minimized.
R3
R1
0.1µF
VIP2
0.1µF
R4
VIP1
ETC1-1-13
VOP
R9
R7
ETC1-1-13
ADL5561
R5
0.1µF
VON
0.1µF
R6
R10
VIN2
08004-034
R2
SPECTRUM
ANALYZER
R8
VIN1
Figure 41. General-Purpose Characterization Circuit
Table 10. Gain Setting and Input Termination Components for Figure 41
AV (dB)
6 dB
12 dB
15.5 dB
R1 (Ω)
29
33
40.2
R2 (Ω)
29
33
40.2
R3 (Ω)
Open
0
0
R4 (Ω)
0
Open
0
R5 (Ω)
0
Open
0
R6 (Ω)
Open
0
0
Table 11. Output Matching Network for Figure 41
RL (Ω)
200
1k
R7 (Ω)
84.5
487
R8 (Ω)
84.5
487
R3
R1
R4
PORT 1
R9 (Ω)
34.8
25
VIP2
VIP1
R10 (Ω)
34.8
25
R9
VOP
R7
PORT 2
ADL5561
R5
R8
VIN1
R2
R6
VON
PORT 4
R10
VIN2
08004-035
PORT 3
Figure 42. Differential Characterization Circuit Using Agilent E8357A 4-Port PNA
Table 12. Gain Setting and Input Termination Components for Figure 42
AV (dB)
6
12
15.5
R1 (Ω)
67
100
200
R2 (Ω)
67
100
200
R3 (Ω)
Open
0
0
R4 (Ω)
0
Open
0
R5 (Ω)
0
Open
0
R6 (Ω)
Open
0
0
Table 13. Output Matching Network for Figure 42
RL (Ω)
200
1k
R7 (Ω)
50
475
R8 (Ω)
50
475
Rev. B | Page 18 of 24
R9 (Ω)
Open
61.9
R10 (Ω)
Open
61.9
ADL5561
To realize the minimum gain (6 dB into a 200 Ω load), Input 1
(VIN1 and VIP1) must be used by installing 0 Ω resistors at R3
and R4, leaving R5 and R6 open. R1 and R2 must be 33 Ω for a
50 Ω input impedance.
SOLDERING INFORMATION
On the underside of the chip scale package, there is an exposed
compressed paddle. This paddle is internally connected to the
ground of the chip. Solder the paddle to the low impedance
ground plane on the PCB to ensure the specified electrical
performance and to provide thermal relief. To further reduce
thermal impedance, the ground planes on all layers under the
paddle should be stitched together with vias.
Likewise, driving Input 2 (VIN2 and VIP2) realizes the middle
gain (12 dB into a 200 Ω load) by installing 0 Ω at R5 and R6
and leaving R3 and R4 open. R1 and R2 must be 29 Ω for a
50 Ω input impedance.
For the maximum gain (15.5 dB into a 200 Ω load), both inputs
are driven by installing 0 Ω resistors at R3, R4, R5, and R6. R1
and R2 must be 40.2 Ω for a 50 Ω input impedance.
EVALUATION BOARD
Figure 43 shows the schematic of the ADL5561 evaluation board.
The board is powered by a single supply in the 3 V to 3.6 V range.
The power supply is decoupled by 10 μF and 0.1 μF capacitors
The balanced input and output interfaces are converted to
single ended with a pair of baluns (M/A-COM ETC1-1-13).
The balun at the input, T1, provides a 50 Ω single-ended-todifferential transformation. The output balun, T2, and the
matching components are configured to provide a 200 Ω to 50 Ω
impedance transformation with an insertion loss of about 17 dB.
Table 14 details the various configuration options of the evaluation
board. Figure 44 and Figure 45 show the component and circuit
layouts of the evaluation board.
GND
J1
R1
40.2Ω
C12
0.1µF
C2
0.01µF
R2
40.2Ω
R5
0Ω
R3
0Ω
R4
0Ω
R6
0Ω
VPOS
C3
10µF
15
14
13
GND
GND
GND
GND
1
VIP2
ENBL 12
2
VIP1
VOP 11
3
VIN1
ADL5561
4
VON 10
VIN2
VCC
5
C4
0.1µF
VCC
VCC
6
7
C5
0.1µF
VOCM 9
VCC
C6
0.1µF
ENBL
VPOS
P1
AGND
C9
0.01µF
C10
0.01µF
8
C8
0.1µF
T2
R7
84.5Ω
R9
34.8Ω
R8
84.5Ω
R10
34.8Ω
R11
OPEN
J3
C13
0.1µF
C11
0.1µF
J2
C7
0.1µF
08004-042
C1
0.01µF
T1
16
Figure 43. Evaluation Board Schematic
Table 14. Evaluation Board Configuration Options
Component
VPOS, GND
C3, C4, C5,
C6, C7, C11
J1, R1, R2, R3,
R4, R5, R6, C1,
C2, C12, T1
J3, R7, R8, R9,
R10, R11, C9,
C10, C13, T2
ENBL, P1, C8
Description
Ground and Supply Vector Pins.
Power Supply Decoupling. The supply decoupling consists of a 10 μF capacitor (C3)
to ground. C4 to C7 are bypass capacitors. C11 ac couples VREF to ground.
Input Interface. The SMA labeled J1 is the input. T1 is a 1-to-1 impedance ratio
balun to transform a single-ended input into a balanced differential signal. C1 and
C2 provide ac-coupling. C12 is a bypass capacitor. R1 and R2 provide a differential
50 Ω input termination. R3 to R6 are used to select the input for the pin-strappable
gain. Maximum gain: R3, R4, R5, R6 = 0 Ω; R1, R2 = 40.2 Ω. Middle gain: R5, R6 = 0 Ω;
R3, R4 = open; R1, R2 = 33 Ω. Minimum gain: R3, R4 = 0 Ω; R5, R6 = open; R1, R2 = 29 Ω.
Output Interface. The SMA labeled J3 is the output. T2 is a 1-to-1 impedance
ratio balun to transform a balanced differential signal to a single-ended signal.
C13 is a bypass capacitor. R7, R8, R9, and R10 are provided for generic placement
of matching components. The evaluation board is configured to provide a 200 Ω
to 50 Ω impedance transformation with an insertion loss of 17 dB. C9 and C10
provide ac-coupling.
Device Enable. C8 is a bypass capacitor. When the P1 jumper is set toward the VPOS
label, the ENBL pin is connected to the supply, enabling the device. In the opposite
direction, toward the GND label, the ENBL pin is grounded, putting the device in
power-down mode.
Rev. B | Page 19 of 24
Default Condition
VPOS, GND = installed
C3 = 10 μF (Size D),
C4, C5, C6, C7, C11 = 0.1 μF (Size 0402)
J1 = installed,
R1, R2 = 40.2 Ω (Size 0402),
R3, R4, R5, R6 = 0 Ω (Size 0402),
C1, C2 = 0.01 μF (Size 0402),
C12 = 0.1 μF (Size 0402)
T1 = ETC1-1-13 (M/A-COM)
J3 = installed,
R7, R8 = 84.5 Ω (Size 0402),
R9, R10 = 34.8 Ω (Size 0402),
R11 = open (Size 0402),
C9, C10 = 0.01 μF (Size 0402),
C13 = 0.1 μF (Size 0402)
T2 = ETC1-1-13 (M/A-COM)
ENBL, P1 = installed,
C8 = 0.1 μF (Size 0402)
08004-048
08004-047
ADL5561
Figure 44. Layout of Evaluation Board, Component Side
Figure 45. Layout of Evaluation Board, Circuit Side
Rev. B | Page 20 of 24
ADL5561
OUTLINE DIMENSIONS
3.00
BSC SQ
0.60 MAX
0.45
TOP
VIEW
13
16
12 (BOTTOM VIEW) 1
2.75
BSC SQ
12° MAX
1.00
0.85
0.80
SEATING
PLANE
9
8
5
4
0.25 MIN
1.50 REF
0.05 MAX
0.02 NOM
0.30
0.23
0.18
1.30 SQ
1.15
EXPOSED
PAD
0.50
BSC
0.80 MAX
0.65 TYP
PIN 1
INDICATOR
*1.45
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 REF
*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2
EXCEPT FOR EXPOSED PAD DIMENSION.
072208-A
PIN 1
INDICATOR
0.50
0.40
0.30
Figure 46. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
3 mm × 3 mm Body, Very Thin Quad
(CP-16-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5561ACPZ-R7
ADL5561ACPZ-WP
ADL5561-EVALZ
1
Temperature
Range
−40°C to +85°C
−40°C to +85°C
Package Description
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ], 7” Reel
16-Lead Lead Frame Chip Scale Package [LFCSP_VQ], Waffle Pack
Evaluation Board
Z = RoHS Compliant Part.
Rev. B | Page 21 of 24
Package
Option
CP-16-2
CP-16-2
Branding
Q1P
Q1P
Ordering
Quantity
1,500
50
ADL5561
NOTES
Rev. B | Page 22 of 24
ADL5561
NOTES
Rev. B | Page 23 of 24
ADL5561
NOTES
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08004-0-3/10(B)
Rev. B | Page 24 of 24