3.1 nV/√Hz, 1 mA, 180 MHz, Rail-to-Rail Input/Output Amplifiers ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet VOUT 1 6 +VS –VS 2 5 DISABLE +IN 3 4 –IN VOUT1 1 8 +VS –IN1 2 7 VOUT2 +IN1 3 6 –IN2 –VS 4 5 +IN2 High resolution analog-to-digital converter (ADC) drivers Portable and battery-powered instruments and systems High component density data acquisition systems Audio signal conditioning Active filters 12611-058 Figure 1. 6-Lead SC70 and 6-Lead SOT-23 Pin Configuration (ADA4807-1) VOUT1 –IN1 +IN1 –VS DISABLE1 10 9 8 7 6 1 2 3 4 5 +VS VOUT2 –IN2 +IN2 DISABLE2 12611-059 Figure 2. 8-Lead MSOP Pin Configuration (ADA4807-2) Figure 3. 10-Lead LFCSP Pin Configuration (ADA4807-2) 14 VOUT4 VOUT1 1 APPLICATIONS 12611-001 PIN CONNECTION DIAGRAMS Low input noise 3.1 nV/√Hz at f = 100 kHz with 29 Hz 1/f corner 0.7 pA/√Hz at f = 100 kHz with 2 kHz 1/f corner High speed performance with dc precision 180 MHz, −3 dB bandwidth (G = +1, VOUT = 20 mV p-p) 225 V/μs slew rate for 5 V step (rise) 47 ns settling time to 0.1% for 4 V step ±125 μV and 3.7 μV/°C maximum input offset voltage and drift 100 nA and 250 pA/°C maximum input offset current and drift Low distortion (HD2/HD3), VS = ±5 V, VOUT = 2 V p-p −141 dBc/−144 dBc at 1 kHz −112 dBc/−115 dBc at 100 kHz −95 dBc/−79 dBc at 1 MHz Low power operation 1.0 mA quiescent supply current per amplifier at ±5 V Dynamic power scaling Fully specified at +3 V, +5 V, and ±5 V supplies Rail-to-rail inputs and outputs –IN1 2 13 –IN4 12 +IN4 +IN1 3 +VS 4 ADA4807-4 11 –VS +IN2 5 10 +IN3 –IN2 6 9 –IN3 VOUT2 7 8 VOUT3 12611-104 FEATURES Figure 4. 14-Lead TSSOP Pin Configuration (ADA4807-4) GENERAL DESCRIPTION The ADA4807-1 (single), ADA4807-2 (dual), and ADA4807-4 (quad) are low noise, rail-to-rail input and output, voltage feedback amplifiers. These amplifiers combine low power, low noise, high speed, and dc precision to provide an attractive solution for a wide range of applications from high resolution data acquisition instrumentation to high performance batterypowered and high component density systems where power consumption is of key importance. With only 1.0 mA of supply current per amplifier, the ADA4807-1/ ADA4807-2/ADA4807-4 feature the lowest input voltage noise among high speed, rail-to-rail input/output amplifiers in the industry and offer a wide bandwidth, high slew rate, fast settling time, and excellent distortion performance. Additionally, these amplifiers offer very low input offset voltage and drift performance, making them ideal for driving multiplexed and high throughput precision 16-/18-bit successive approximation registers (SARs) and 24-bit - ADCs. Rev. B These amplifiers are fully specified at +3 V, +5 V, and ±5 V supplies and can operate over the industrial −40°C to +125°C temperature range. The ADA4807-1 is available in 6-lead SOT-23 and space-saving 6-lead SC70 packages. The ADA4807-2 is available in an 8-lead MSOP and a compact, 3 mm × 3 mm, 10-lead LFCSP. The ADA4807-4 is available in a 14-lead TSSOP package. Table 1. Other Rail-to-Rail Amplifiers Device AD8031/AD8032 AD8027/AD8028 AD8029/AD8030/ AD8040 Bandwidth (MHz) 80 190 125 Slew Rate (V/μs) 35 90 62 Voltage Noise (nV/√Hz) 15 4.3 16.5 Max. VOS (mV) ±1.5 0.8 5 Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2014–2015 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1 Slew, Transient, Settling Time, and Crosstalk............................. 18 Applications ....................................................................................... 1 Distortion and Noise.................................................................. 20 Pin Connection Diagrams ............................................................... 1 Output Characteristics............................................................... 22 General Description ......................................................................... 1 Overdrive Recovery and Turn On/Turn Off Times .............. 23 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 24 Specifications..................................................................................... 3 Disable Circuitry ........................................................................ 25 ±5 V Supply ................................................................................... 3 Input Protection ......................................................................... 25 5 V Supply...................................................................................... 5 Noise Considerations ................................................................. 25 3 V Supply...................................................................................... 7 Applications Information .............................................................. 26 Absolute Maximum Ratings............................................................ 9 Capacitive Load Drive ............................................................... 26 Maximum Power Dissipation ..................................................... 9 Low Noise FET Operational Amplifier ................................... 26 Thermal Resistance ...................................................................... 9 Power Mode ADC Driver ......................................................... 27 ESD Caution .................................................................................. 9 ADC Driving............................................................................... 28 Pin Configurations and Function Descriptions ......................... 10 ADC Driving with Dynamic Power Scaling ........................... 29 Typical Performance Characteristics ........................................... 13 Layout, Grounding, and Bypassing .......................................... 30 Frequency Response................................................................... 13 Outline Dimensions ....................................................................... 31 Frequency and Supply Current ................................................. 15 Ordering Guide .......................................................................... 33 DC and Input Common-Mode Performance ......................... 16 REVISION HISTORY 9/15—Rev. A to Rev. B Added ADA4807-4 ............................................................. Universal Changes to Features Section, General Description Section, and Table 1 .......................................................................................................... 1 Added Figure 4, Renumbered Sequentially .................................. 1 Changes to Table 2 ............................................................................ 3 Changes to Table 3 ............................................................................ 5 Changes to Table 4 ............................................................................ 7 Deleted Figure 6, Renumbered Sequentially............................... 10 Changes to Figure 6 ........................................................................ 10 Added Figure 9 and Table 9, Renumbered Sequentially ........... 12 Changes to Figure 20 ...................................................................... 14 Added Figure 21.............................................................................. 14 Added Figure 31 and Figure 32..................................................... 16 Added Figure 35.............................................................................. 17 Changes to Figure 39 ...................................................................... 18 Added Figure 42.............................................................................. 19 Deleted Figure 50, Figure 51, Figure 53, and Figure 54 ............. 19 Added Figure 46.............................................................................. 20 Added Figure 49 and Figure 51..................................................... 21 Added Figure 59 and Figure 61..................................................... 23 Changes to DISABLE Circuitry Section ...................................... 25 Added Low Noise FET Operational Amplifier Section............. 26 Added Figure 70, Figure 71, Figure 72, and Power Mode ADC Driver Section ................................................................................. 27 Added ADC Driving Section and Figure 73 through Figure 77..... 28 Added ADC Driving with Dynamic Power Scaling Section, Figure 78, Figure 79, and Figure 80 .............................................. 29 Added Figure 58 ............................................................................. 33 Changes to Ordering Guide .......................................................... 33 4/15—Rev. 0 to Rev. A Added ADA4807-2 ............................................................. Universal Changes to Features Section, General Description Section, and Pin Connection Diagrams Heading .........................1 Added Figure 2 and Figure 3; Renumbered Sequentially ............1 Changes to Table 1.............................................................................3 Changes to Table 2.............................................................................5 Changes to Table 3.............................................................................7 Changes to Table 6 and Figure 4 ......................................................9 Added Figure 7, Figure 8, and Table 8; Renumbered Sequentially ....11 Reorganized Layout, Typical Performance Characteristics Section.............................................................................................. 12 Added Figure 36 ............................................................................. 16 Changes to Figure 37 Caption, Figure 38 Caption, Figure 39 Caption, and Figure 40 Caption ................................................... 17 Changes to Figure 44 and Figure 47............................................. 18 Change to Theory of Operation Section ..................................... 20 Changes to DISABLE Circuitry Section, Table 9, and Noise Considerations Section .................................................................. 21 Added Figure 65 and Figure 66 .................................................... 23 Changes to Ordering Guide .......................................................... 25 12/14—Revision 0: Initial Version Rev. B | Page 2 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 SPECIFICATIONS ±5 V SUPPLY TA = 25°C, VS = ±5 V, RLOAD = 1 kΩ to midsupply, RF = 0 Ω, G = +1, −VS ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted. Table 2. Parameter DYNAMIC PERFORMANCE –3 dB Bandwidth Slew Rate Settling Time to 0.1% DISTORTION/NOISE PERFORMANCE Second Harmonic (HD2) Third Harmonic (HD3) Peak-to-Peak Noise Input Voltage Noise Input Voltage Noise 1/f Corner Input Current Noise Input Current Noise 1/f Corner DC PERFORMANCE Input Offset Voltage −VS ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Input Offset Current Drift Open-Loop Gain INPUT CHARACTERISTICS Common-Mode Input Resistance Differential Input Resistance Common-Mode Input Capacitance Differential Input Capacitance Input Common-Mode Voltage Range Common-Mode Rejection Ratio (CMRR) Test Conditions/Comments Min Typ Max Unit G = +1, VOUT = 20 mV p-p G = +1, VOUT = 2 V p-p G = +1, VOUT = 5 V step, 20% to 80%, rise/fall G = +1, VOUT = 4 V step 180 28 225/250 47 MHz MHz V/μs ns fC = 1 kHz, VOUT = 2 V p-p fC = 100 kHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p, ADA4807-1 fC = 1 MHz, VOUT = 2 V p-p, ADA4807-2, ADA4807-4 fC = 1 kHz, VOUT = 2 V p-p fC = 100 kHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p f = 0.1 Hz to 10 Hz f = 100 kHz f = 1 kHz f = 10 Hz −141 −112 −95 −84 dBc dBc dBc dBc −144 −115 −79 160 3.1 3.3 5.8 29 0.7 10 2 dBc dBc dBc nV p-p nV/√Hz nV/√Hz nV/√Hz Hz pA/√Hz pA/√Hz kHz f = 100 kHz f = 10 Hz ADA4807-1, ADA4807-2 ADA4807-4 ADA4807-1, ADA4807-2 ADA4807-4 −VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX −VS ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS −VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX −VS ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS −VS ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX −125 −175 −750 −850 120 ±20 ±20 ±140 ±140 0.7 −1.2 530 2.5 8 25 30 130 +125 +175 +750 +850 3.7 −1.6 1000 3.6 100 150 250 45 35 1 1 VICM = −3 V to +2 V Rev. B | Page 3 of 33 −VS − 0.2 96 +VS + 0.2 110 μV μV μV μV μV/°C μA nA nA/°C nA nA pA/°C dB MΩ kΩ pF pF V dB ADA4807-1/ADA4807-2/ADA4807-4 Parameter DISABLE CHARACTERISTICS1 DISABLE Input Voltage2 Low High DISABLE Input Current Low High DISABLE On Time DISABLE Off Time OUTPUT CHARACTERISTICS Saturated Output Voltage Swing High Low Linear Output Current3 Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current per Amplifier Power Supply Rejection Ratio (PSRR) Positive Negative Data Sheet Test Conditions/Comments Min Typ Max Unit Disabled Enabled <1.3 >1.7 V V Disabled Enabled DISABLE input midswing point to >90% of final VOUT, VPD = +VS DISABLE input midswing point to <10% of enabled quiescent current, VPD = −VS −470 −3 1.3 1.8 nA nA μs 270 340 ns RLOAD = 1 kΩ +VS − 0.08 −VS + 0.1 Sourcing, G = +1, VIN = +VS, RLOAD = varied Sinking, G = +1, VIN = −VS, RLOAD = varied Sourcing, G = +1, VIN =+VS, RLOAD= 0 Ω to 10 Ω Sinking, G= +1, VIN = −VS, RLOAD = 0 Ω to 10 Ω CLOAD = 15 pF, VOUT = 20 mV p-p +VS − 0.04 −VS + 0.07 50 60 80 V V mA mA mA 80 17 mA % overshoot 2.7 Enabled, no load, TA = 25°C Disabled, TA = 25°C +VS = 3 V to 5 V, −VS = −5 V +VS = 5 V, −VS = −3 V to −5 V 1.0 2.4 98 98 107 120 11 1.1 4.0 V mA μA dB dB The disable pin is DISABLE on the ADA4807-1 and DISABLE1 or DISABLE2 for the ADA4807-2 LFCSP package, hereafter referred to as DISABLE for the ADA4807-1/ADA4807-2. See the Disable Circuitry section. 3 See Figure 53 and Figure 56. 1 2 Rev. B | Page 4 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 5 V SUPPLY TA = 25°C, VS = 5 V, RLOAD = 1 kΩ to midsupply, RF = 0 Ω, G = +1, 0 V ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted. Table 3. Parameter DYNAMIC PERFORMANCE –3 dB Bandwidth Slew Rate Settling Time to 0.1% DISTORTION/NOISE PERFORMANCE Second Harmonic (HD2) Third Harmonic (HD3) Peak-to-Peak Noise Input Voltage Noise Input Voltage Noise 1/f Corner Input Current Noise Input Current Noise 1/f Corner DC PERFORMANCE Input Offset Voltage 0 V ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Input Offset Current Drift Open-Loop Gain INPUT CHARACTERISTICS Common-Mode Input Resistance Differential Input Resistance Common-Mode Input Capacitance Differential Input Capacitance Input Common-Mode Voltage Range CMRR Test Conditions/Comments Min Typ Max Unit G = +1, VOUT = 20 mV p-p G = +1, VOUT = 2 V p-p G = +1, VOUT = 2 V step, 20% to 80%, rise/fall G = +1, VOUT = 2 V step 170 28 145/160 40 MHz MHz V/μs ns fC = 1 kHz, VOUT = 2 V p-p fC = 100 kHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p, ADA4807-1 fC = 1 MHz, VOUT = 2 V p-p, ADA4807-2, ADA4807-4 fC = 1 kHz, VOUT = 2 V p-p fC = 100 kHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p f = 0.1 Hz to 10 Hz f = 100 kHz f = 1 kHz f = 10 Hz −141 −111 −93 −83 dBc dBc dBc dBc −153 −115 −78 160 3.1 3.3 5.8 29 0.7 10 2 dBc dBc dBc nV p-p nV/√Hz nV/√Hz nV/√Hz Hz pA/√Hz pA/√Hz kHz f = 100 kHz f = 10 Hz ADA4807-1, ADA4807-2 ADA4807-4 ADA4807-1, ADA4807-2 ADA4807-4 0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX 0 V ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS 0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX 0 V ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS 0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX −125 −175 −720 −850 113 ±20 ±20 ±110 ±110 0.7 −1.2 500 2.6 8 25 30 130 +125 +175 +720 +850 3.7 −2.0 1000 3.8 100 150 250 45 35 1 1 −VS − 0.2 96 VICM = 1 V to 3 V Rev. B | Page 5 of 33 +VS + 0.2 110 μV μV μV μV μV/°C μA nA nA/°C nA nA pA/°C dB MΩ kΩ pF pF V dB ADA4807-1/ADA4807-2/ADA4807-4 Parameter DISABLE CHARACTERISTICS1 DISABLE Input Voltage2 Low High DISABLE Input Current Low High DISABLE On Time DISABLE Off Time OUTPUT CHARACTERISTICS Saturated Output Voltage Swing High Low Linear Output Current3 Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current per Amplifier PSRR Positive Negative Data Sheet Test Conditions/Comments Min Typ Max Unit Disabled Enabled <1.3 >1.8 V V Disabled Enabled DISABLE input midswing point to >90% of final VOUT, VPD = +VS DISABLE input midswing point to <10% of enabled quiescent current, VPD = −VS −360 −1.3 450 700 nA nA ns 270 450 ns RLOAD = 1 kΩ +VS − 0.05 −VS + 0.05 Sourcing, G = +1, VIN = +VS, RLOAD = varied Sinking, G = +1, VIN = −VS, RLOAD = varied Sourcing, G = +1, VIN = +VS, RLOAD = 0 Ω to 10 Ω Sinking, G = +1, VIN = −VS, RLOAD = 0 Ω to 10 Ω CLOAD = 15 pF, VOUT = 20 mV p-p +VS − 0.03 −VS + 0.04 50 60 80 V V mA mA mA 80 mA 24 % overshoot 2.7 Enabled, no load, TA = 25°C Disabled, TA = 25°C +VS = 1.5 V to 3.5 V, −VS = −2.5 V +VS = 2.5 V, −VS = −1.5 V to −3.5 V 950 1.3 98 98 115 130 11 1000 2.0 V μA μA dB dB The disable pin is DISABLE on the ADA4807-1 and DISABLE1 or DISABLE2 for the ADA4807-2 LFCSP package, hereafter referred to as DISABLE for the ADA4807-1/ADA4807-2. See the Disable Circuitry section. 3 See Figure 53 and Figure 56. 1 2 Rev. B | Page 6 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 3 V SUPPLY TA = 25°C, VS = 3 V, RLOAD = 1 kΩ to midsupply, RF = 0 Ω, G = +1, 0 V ≤ VICM ≤ +VS − 1.5 V, unless otherwise noted. Table 4. Parameter DYNAMIC PERFORMANCE –3 dB Small Signal Bandwidth Slew Rate Settling Time to 0.1% DISTORTION/NOISE PERFORMANCE Second Harmonic (HD2) Third Harmonic (HD3) Peak-to-Peak Noise Input Voltage Noise Input Voltage Noise 1/f Corner Input Current Noise Input Current Noise 1/f Corner DC PERFORMANCE Input Offset Voltage 0 V ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS Input Offset Voltage Drift Input Bias Current Input Bias Current Drift Input Offset Current Input Offset Current Drift Open-Loop Gain INPUT CHARACTERISTICS Common-Mode Input Resistance Differential Input Resistance Common-Mode Input Capacitance Differential Input Capacitance Input Common-Mode Voltage Range CMRR Test Conditions/Comments Min Typ Max Unit G = +1, VOUT = 20 mV p-p G = +1, VOUT = 2 V p-p G = +1, VOUT = 2 V step, 20% to 80%, rise/fall G = +1, VOUT = 2 V step 165 28 118/237 40 MHz MHz V/μs ns fC = 1 kHz, VOUT = 2 V p-p fC = 100 kHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p fC = 1 kHz, VOUT = 2 V p-p fC = 100 kHz, VOUT = 2 V p-p fC = 1 MHz, VOUT = 2 V p-p f = 0.1 Hz to 10 Hz f = 100 kHz f = 10 kHz f = 10 Hz −98 −85 −65 −94 −91 −68 160 3.1 3.3 5.8 29 0.7 10 2 dBc dBc dBc dBc dBc dBc nV p-p nV/√Hz nV/√Hz nV/√Hz Hz pA/√Hz pA/√Hz kHz f = 100 kHz f = 10 Hz ADA4807-1, ADA4807-2 ADA4807-4 ADA4807-1, ADA4807-2 ADA4807-4 0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX 0 V ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS 0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX 0 V ≤ VICM ≤ +VS − 1.5 V +VS − 1.5 V ≤ VICM ≤ +VS 0 V ≤ VICM ≤ +VS − 1.2 V, TMIN to TMAX −125 −175 −720 −850 104 ±20 ±20 ±125 ±125 0.7 −1.2 500 2.7 8 25 40 113 +125 +175 +720 +850 3.8 −2.0 1000 3.8 130 150 230 45 35 1 1 −VS − 0.2 92 VICM = 0.3 V to 1.3 V Rev. B | Page 7 of 33 +VS + 0.2 110 μV μV μV μV μV/°C μA nA nA/°C nA nA pA/°C dB MΩ kΩ pF pF V dB ADA4807-1/ADA4807-2/ADA4807-4 Parameter DISABLE CHARACTERISTICS1 DISABLE Input Voltage2 Low High DISABLE Input Current Low High DISABLE On Time DISABLE Off Time OUTPUT CHARACTERISTICS Saturated Output Voltage Swing High Low Linear Output Current3 Short-Circuit Current Capacitive Load Drive POWER SUPPLY Operating Range Quiescent Current per Amplifier PSRR Positive Negative Data Sheet Test Conditions/Comments Min Typ Max Unit Disabled Enabled <1.1 >1.5 V V Disabled Enabled −325 −500 nA nA DISABLE input midswing point to >90% of final VOUT, VPD = +VS DISABLE input midswing point to <10% of enabled quiescent current, VPD = −VS 500 700 ns 270 460 ns RLOAD = 1 kΩ +VS − 0.04 −VS + 0.04 Sourcing, G = +1, VIN = +VS, RLOAD = varied Sinking, G = +1, VIN = −VS, RLOAD = varied Sourcing, G = +1, VIN = +VS, RLOAD = 0 Ω to 10 Ω Sinking, G = +1, VIN = −VS, RLOAD = 0 Ω to 10 Ω CLOAD = 15 pF, VOUT = 20 mV p-p +VS − 0.02 −VS + 0.03 50 60 65 V V mA mA mA 70 mA 30 % overshoot 2.7 Enabled, no load, TA = 25°C Disabled, TA = 25°C +VS = 1.5 V to 3.5 V, −VS = −1.5 V +VS = 1.5 V, −VS = −1.5 V to −3.5 V 915 1.0 97 97 113 130 11 1000 2.0 V μA μA dB dB The disable pin is DISABLE on the ADA4807-1 and DISABLE1 or DISABLE2 for the ADA4807-2 LFCSP package, hereafter referred to as DISABLE for the ADA4807-1/ADA4807-2. See the Disable Circuitry section. 3 See Figure 53 and Figure 56. 1 2 Rev. B | Page 8 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Parameter Supply Voltage Internal Power Dissipation Input Voltage (Common Mode) Differential Input Voltage Output Short-Circuit Duration Storage Temperature Range (All Packages) Lead Temperature (Soldering 10 sec) Rating 11 V See Figure 5 ±VS ± 0.2 V ±1.4 V See power derating curves in Figure 5 −65°C to +125°C 300°C θJA is specified for the worst case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 6. Thermal Resistance Package Type 6-Lead SC70, 4-Layer Board 6-Lead SOT-23, 4-Layer Board 8-Lead MSOP 10-Lead LFCSP 14-Lead TSSOP Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Unit °C/W °C/W °C/W °C/W °C/W MAXIMUM POWER DISSIPATION (W) 4.0 MAXIMUM POWER DISSIPATION The maximum power that can be safely dissipated by the ADA4807-1/ADA4807-2/ADA4807-4 is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Exceeding this limit temporarily can cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure. θJA 209 223 123 51 130 3.5 3.0 2.5 LFCSP 2.0 1.5 1.0 SOT-23 0.5 0 –40 MSOP TSSOP SC70 –25 –10 5 20 35 50 65 80 AMBIENT TEMPERATURE (°C) 95 110 125 12611-003 Table 5. Figure 5. Maximum Power Dissipation vs. Ambient Temperature for a 4-Layer Board ESD CAUTION Although the ADA4807-1/ADA4807-2/ADA4807-4 are internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the power derating curves shown in Figure 5. Rev. B | Page 9 of 33 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet VOUT 1 6 +VS –VS 2 5 DISABLE +IN 3 4 –IN 12611-004 PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS Figure 6. ADA4807-1 Pin Configuration Table 7. ADA4807-1 Pin Function Descriptions Pin No. 1 2 3 4 5 6 Mnemonic VOUT −VS +IN −IN DISABLE +VS Description Output Negative Supply Noninverting Input Inverting Input Active Low Power-Down Positive Supply Rev. B | Page 10 of 33 1 2 3 4 5 10 9 8 7 6 +VS VOUT2 –IN2 +IN2 DISABLE2 NOTES 1. THE EXPOSED PAD CAN BE CONNECTED TO GROUND OR POWER PLANES, OR IT CAN BE LEFT FLOATING. 12611-060 VOUT1 –IN1 +IN1 –VS DISABLE1 ADA4807-1/ADA4807-2/ADA4807-4 Figure 7. ADA4807-2 10-Lead LFCSP Pin Configuration VOUT1 1 8 +VS –IN1 2 7 VOUT2 +IN1 3 6 –IN2 –VS 4 5 +IN2 12611-061 Data Sheet Figure 8. ADA4807-2 8-Lead MSOP Pin Configuration Table 8. ADA4807-2 Pin Function Descriptions Pin No. 10-Lead LFCSP 8-Lead MSOP 1 1 2 2 3 3 4 4 5 Not applicable 6 Not applicable 7 5 8 6 9 7 10 8 Not applicable Mnemonic VOUT1 −IN1 +IN1 −VS DISABLE1 DISABLE2 +IN2 −IN2 VOUT2 +VS EPAD Description Output 1. Inverting Input 1. Noninverting Input 1. Negative Supply. Active Low Power-Down 1. Active Low Power-Down 2. Noninverting Input 2. Inverting Input 2. Output 2. Positive Supply. Exposed Pad. For the 10-Lead LFCSP, the exposed pad can be connected to ground or power planes, or it can be left floating. Rev. B | Page 11 of 33 Data Sheet VOUT1 1 14 VOUT4 –IN1 2 13 –IN4 12 +IN4 11 –VS +IN1 3 +VS 4 ADA4807-4 +IN2 5 10 +IN3 –IN2 6 9 –IN3 VOUT2 7 8 VOUT3 12611-110 ADA4807-1/ADA4807-2/ADA4807-4 Figure 9. ADA4807-4 Pin Configuration Table 9. ADA4807-4 Pin Function Descriptions Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Mnemonic VOUT1 −IN1 +IN1 +VS +IN2 −IN2 VOUT2 VOUT3 −IN3 +IN3 −VS +IN4 −IN4 VOUT4 Description Output 1 Inverting Input 1 Noninverting Input 1 Positive Supply Noninverting Input 2 Inverting Input 2 Output 2 Output 3 Inverting Input 3 Noninverting Input 3 Negative Supply Noninverting Input 4 Inverting Input 4 Output 4 Rev. B | Page 12 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 TYPICAL PERFORMANCE CHARACTERISTICS 27 24 21 18 15 12 9 6 3 0 –3 –6 –9 –12 –15 –18 –21 –24 0.1 6 VS RANGE = ±2.5V TO ±5V G = +1 3 R LOAD = 1kΩ VS = ±2.5V RLOAD = 1kΩ VOUT = 20mV p-p G = +10 CLOSED-LOOP GAIN (dB) G = +2 G = +1 G = –1 –9 2V p-p –12 –15 100 1000 –24 0.1 1 6 3 0 0 ±5.0V –3 –6 –9 –12 ±1.5V –15 VOUT = 2V p-p G = +1 RLOAD = 1kΩ ±1.5V –3 –6 –9 –12 –15 –18 ±5.0V –21 –24 –18 1000 FREQUENCY (MHz) –30 0.1 12611-007 100 Figure 14. Large Signal Frequency Response for Various Supplies 6 –40°C +25°C +85°C +125°C 3 0 CLOSED-LOOP GAIN (dB) –3 –6 –9 –12 –15 –21 –24 0.1 1 –3 –6 –9 –12 –40°C –15 FREQUENCY (MHz) 100 1000 Figure 12. Small Signal Frequency Response for Various Temperatures +25°C –21 –27 10 +125°C –18 –24 VS RANGE = ±1.5V TO ±5V G = +1 VOUT = 20mV p-p RLOAD = 1kΩ VS RANGE = ±2.5V TO ±5V G = +1 VOUT = 2V p-p RLOAD = 1kΩ –30 0.1 12611-008 CLOSED-LOOP GAIN (dB) 0 –18 1000 1 10 FREQUENCY (MHz) 100 1000 12611-011 3 100 10 1 FREQUENCY (MHz) Figure 11. Small Signal Frequency Response for Various Supplies 6 ±2.5V –27 ±2.5V 10 1 1000 Figure 13. Frequency Response for Various Output Amplitudes, G = +1 VOUT = 20mV p-p G = +1 RLOAD = 1kΩ –21 0.1 100 10 FREQUENCY (MHz) 12611-009 10 12611-010 1 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) –6 –21 Figure 10. Small Signal Frequency Response for Various Gains, RF = 499 Ω 3 20mV p-p –3 –18 FREQUENCY (MHz) 6 200mV p-p 0 G = +5 12611-006 CLOSED-LOOP GAIN (dB) FREQUENCY RESPONSE Figure 15. Large Signal Frequency Response for Various Temperatures Rev. B | Page 13 of 33 ADA4807-1/ADA4807-2/ADA4807-4 1kΩ CLOSED-LOOP GAIN (dB) 0 –3 –6 –9 100Ω –12 –15 –18 –3 –6 –12 –18 –21 –27 1 10 100 1000 FREQUENCY (MHz) –30 0.1 12611-012 –24 0.1 1000 Figure 19. Large Signal Frequency Response for Various Resistive Loads 0.6 12 G = +1 0.5 RLOAD = 1kΩ VS = ±2.5V G = +1 VOUT = 20mV p-p RLOAD = 1kΩ 9 6 0.4 3 CLOSED-LOOP GAIN (dB) CLOSED-LOOP GAIN (dB) 100 10 1 FREQUENCY (MHz) Figure 16. Small Signal Frequency Response for Various Resistive Loads 0 –3 0pF –6 –9 5pF –12 –15 10pF –18 15pF 1 100 10 0.2 0.1 0 –0.1 –0.2 –0.3 1000 FREQUENCY (MHz) Figure 17. Small Signal Frequency Response for Various Capacitive Loads –0.6 0.1 1 3 VCM = 0V Vs = ±2.5V, ±5V VOUT = 200mV p-p G=2 RF = 499Ω RLOAD = 1kΩ Vs = ±2.5V, ±5V VOUT = 20mV p-p 0 NORMALIZED GAIN (dB) 0 –3 –6 VCM = +VS – 0.5V –9 –12 –15 –3 –6 –9 –12 –15 Vs = ±2.5V, ±5V VOUT = 2V p-p –18 –18 –21 100 FREQUENCY (MHz) Figure 18. Small Signal Frequency Response for Various Input Common-Mode Voltages (VCM) 1000 –24 12611-013 10 100 Figure 20. 0.1 dB Flatness Frequency Response for Various Output Amplitudes 6 VS = ±2.5V G = +1 VOUT = 20mV p-p RLOAD = 1kΩ 1 10 FREQUENCY (MHz) 6 –21 0.1 VS RANGE = ±2.5V TO ±5V VOUT = 2V p-p –0.5 12611-050 –24 0.1 VS RANGE = ±1.5V TO ±5V VOUT = 20mV p-p 0.3 –0.4 –21 CLOSED-LOOP GAIN (dB) 100Ω –15 –24 –21 3 1kΩ –9 12611-015 CLOSED-LOOP GAIN (dB) VS RANGE = ±2.5V TO ±5V 3 VOUT = 2V p-p G = +1 0 12611-221 3 6 VS = ±2.5V VOUT = 20mV p-p G = +1 Vs = ±5V VOUT = 4V p-p 0.1 1 10 FREQUENCY (MHz) 100 1000 12611-121 6 Data Sheet Figure 21. Frequency Response for Various Output Amplitudes, G = +2 Rev. B | Page 14 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 FREQUENCY AND SUPPLY CURRENT 20 –40 VS = ±2.5V G = +1 ON DISABLE = +VS 0 –60 –20 –70 –40 CMRR (dB) –60 OFF DISABLE = –VS –80 –80 –90 –100 –100 –110 –120 0.1 1 10 100 1000 FREQUENCY (MHz) –130 0.001 12611-017 –140 0.01 0.01 Figure 22. Off Isolation vs. Frequency 100 140 –40 80 120 –50 10 100 60 100 40 80 20 60 0 40 –20 20 10 100 VS = ±5V ΔVS = –16dBm –PSRR –60 PSRR (dB) VS = ±2.5V PHASE (Degrees) –30 –70 +PSRR –80 –90 –100 0.01 0.1 1 10 100 –110 0 1000 –120 0.001 12611-018 –40 0.001 FREQUENCY (MHz) 0.1 0.01 1 FREQUENCY (MHz) Figure 23. Open-Loop Gain and Phase vs. Frequency Figure 26. PSRR vs. Frequency 1.6 2.5 1.4 2.0 DISABLE SUPPLY CURRENT (μA) DISABLE = –VS VS = ±5.0V 1.2 1.0 0.8 VS = ±1.5V VS = ±2.5V 0.6 0.4 0.2 +IS 1.5 1.0 0.5 0 –0.5 –1.0 –IS 0 –40 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) 125 –2.0 0 1 2 3 4 5 POWER SUPPLY, ±VS (V) Figure 24. Quiescent Supply Current vs. Temperature Figure 27. DISABLE Supply Current vs. Power Supply, ±VS Rev. B | Page 15 of 33 6 12611-022 –1.5 12611-019 QUIESCENT SUPPLY CURRENT (mA) OPEN-LOOP GAIN (dB) 1 Figure 25. CMRR vs. Frequency 160 120 0.1 FREQUENCY (MHz) 12611-020 –120 12611-226 OFF ISOLATION (dB) VS = ±2.5V ΔVCM = 0dBm –50 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet DC AND INPUT COMMON-MODE PERFORMANCE 350 NUMBERING UNITS 300 NPN VS = ±5V VCM = +VS – 0.5V 450 UNITS x = –32.7µV σ = 109.4µV 60 PNP VS = ±5V VCM = 0V 450 UNITS x = –1.5µV σ = 17.9µV 50 NUMBER OF AMPLIFIERS 400 250 200 150 100 VS = ±2.5V –40°C TO +125°C COUNT = 361 AMPLIFIERS x = 0.7µV/°C σ = 0.5µV/°C 40 30 20 10 –400 –200 0 200 400 INPUT REFERRED OFFSET VOLTAGE (µV) 600 0 12611-122 0 –600 –2.8 90 PNP VS = ±5V VCM = 0V 450 UNITS x = –1.58nA σ = 6.62nA 80 200 150 100 50 0.2 0.8 1.4 2.0 2.6 3.2 3.8 70 VS = ±2.5V –40°C TO +125°C COUNT = 283 AMPLIFIERS x = 30pA/°C σ = 35pA/°C 60 50 40 30 20 100 150 0 –200 –80 –20 40 100 160 220 280 INPUT OFFSET CURRENT DRIFT (pA/°C) Figure 32. Input Offset Current Drift Distribution, VCM = 0 V 40 VS = ±5.0V 10 UNITS 30 INPUT OFFSET CURRENT (nA) 0.5 0 –0.5 –1.0 –1.5 VS = ±5.0V 10 UNITS 20 10 0 –10 –20 –3.9 –2.6 –1.3 0 1.3 2.6 3.9 5.2 INPUT COMMON-MODE VOLTAGE (V) Figure 30. Input Bias Current vs. Input Common-Mode Voltage –40 –5.2 –3.9 –2.6 –1.3 0 1.3 2.6 3.9 5.2 INPUT COMMON-MODE VOLTAGE (V) Figure 33. Input Offset Current vs. Input Common-Mode Voltage Rev. B | Page 16 of 33 12611-126 –30 12611-124 –2.0 –5.2 –140 12611-032 –50 0 50 INPUT OFFSET CURRENT (nA) 12611-123 –100 Figure 29. Input Offset Current Distribution INPUT BIAS CURRENT (µA) –0.4 10 0 –150 1.0 –1.0 Figure 31. Input Referred Offset Voltage Drift Distribution, VCM = 0 V NUMBER OF AMPLIFIERS NUMBERING UNITS 250 NPN VS = ±5V VCM = +VS – 0.5V 450 UNITS x = –1.18nA σ = 22.59nA –1.6 INPUT OFFSET VOLTAGE DRIFT (µV/°C) Figure 28. Input Referred Offset Voltage Distribution for the ADA4807-1 and ADA4807-2 300 –2.2 12611-031 50 100 0 –100 –200 –3.9 –2.6 –1.3 0 1.3 2.6 INPUT COMMON-MODE VOLTAGE (V) 3.9 5.2 Figure 34. Input Referred Offset Voltage vs. Input Common-Mode Voltage Rev. B | Page 17 of 33 9 OIL BATH TEMPERATURE 24 8 23 7 22 6 21 5 20 4 19 3 18 2 17 1 16 0 15 –1 14 –2 13 –3 VS = ±2.5V 8 UNITS, SOLDERED TO PCB –4 0 100 200 300 12 11 400 500 600 TIME (Hours) Figure 35. Long-Term Input Offset Voltage (VOS) Drift TEMPERATURE (°C) CHANGING IN INPUT OFFSET VOLTAGE (µV) 200 –300 –5.2 25 10 VS = ±5V 10 UNITS 12611-125 INPUT REFERRED OFFSET VOLTAGE (µV) 300 ADA4807-1/ADA4807-2/ADA4807-4 12611-234 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet SLEW, TRANSIENT, SETTLING TIME, AND CROSSTALK 280 G = +1 RLOAD = 1kΩ 260 1.5 VS = ±5V VOUT = 5V p-p G = +1 RLOAD = 1kΩ FALLING EDGE 1.0 OUTPUT VOLTAGE (V) SLEW RATE (V/µs) 240 RISING EDGE 220 200 180 FALLING EDGE VS = ±2.5V VOUT = 2V p-p 160 RISING EDGE ±2.5V 0.5 0 ±1.5V –0.5 ±5V 140 –1.0 –25 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) –1.5 12611-023 100 –40 0 100 200 300 400 500 600 700 800 900 TIME (ns) Figure 36. Slew Rate vs. Temperature 12611-025 120 Figure 38. Large Signal Transient Response for Various Supplies 0.5 15 OUTPUT VOLTAGE (% of Final Value) 0.4 5 0 –5 –15 G = +1 RLOAD = 1kΩ VS RANGE = ±1.5V TO ±5V 0 0.1 0.2 0.3 0.4 0.5 0.3 VS = ±2.5V OUTPUT STEP = 2V p-p 0.2 0.1 0 –0.1 VS = ±5V OUTPUT STEP = 5V p-p –0.2 –0.3 –0.4 0.6 0.7 TIME (µs) –0.5 0 20 40 60 TIME (ns) Figure 39. Settling Time to 0.1% Figure 37. Small Signal Transient Response for Various Supplies Rev. B | Page 18 of 33 80 90 12611-238 –10 12611-024 OUTPUT VOLTAGE (mV) 10 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 15 0 VS = ±2.5V G = +1 –20 –40 5 CROSSTALK (dB) 0pF 5pF 10pF 15pF 0 –5 VOUT1 –80 –100 –10 –120 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 TIME (µs) 0.8 –140 100 12611-027 –15 0 –20 VS = ±2.5V VOUT = 2V p-p DISABLE = 2.5V –40 –60 –80 –100 DRIVING AMP 1 –120 DRIVING AMP 2 –160 0.0001 0.001 0.01 0.1 1 10 100 FREQUENCY (MHz) 1000 12611-036 –140 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) Figure 40. Small Signal Transient Response for Various Capacitive Loads CROSSTALK (dB) –60 Figure 41. ADA4807-2 Crosstalk vs. Frequency Rev. B | Page 19 of 33 Figure 42. ADA4807-4 All Hostile Crosstalk 1G 12611-241 OUTPUT VOLTAGE (mV) 10 VS = ±2.5V VOUT2, VOUT3, VOUT4 = 1V p-p G = +1 RLOAD = 1kΩ ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet DISTORTION AND NOISE HARMONIC DISTORTION (dBc) VS = ±1.5V, HD2 VS = ±1.5V, HD3 –80 –100 VS = ±5V, HD2 –120 VS = ±5V, HD3 –140 –160 –180 VS = ±2.5V, HD2 1 VS = ±2.5V, HD3 10 100 1000 10000 FREQUENCY (kHz) Figure 43. ADA4807-1 Harmonic Distortion vs. Frequency for Various Supplies 0 HARMONIC DISTORTION (dBc) –80 G = +2, HD2 –100 G = +1, HD2 –120 G = +5, HD3 –140 G = +2, HD3 –160 –180 G = +1, HD3 1 10 –60 RLOAD = 100Ω HD2 –80 RLOAD = 1kΩ HD2 –100 RLOAD = 1kΩ HD3 –120 RLOAD = 100Ω HD3 –140 –160 100 1000 10000 FREQUENCY (kHz) 12611-028 HARMONIC DISTORTION (dBc) G = +5, HD2 10 G = +1 VOUT = 2V p-p VS = ±2.5V –40 –60 1 Figure 46. ADA4807-2/ADA4807-4 Harmonic Distortion vs. Frequency for Various Supplies –20 –40 0.1 FREQUENCY (MHz) VS = ±2.5V VOUT = 2V p-p RLOAD = 1kΩ –20 G = +1 RLOAD = 1kΩ VOUT = 2V p-p –180 1 10 100 1000 10000 FREQUENCY (kHz) Figure 44. ADA4807-1 Harmonic Distortion vs. Frequency for Various Gains –60 0 VS = ±2.5V G = +1 RLOAD = 1kΩ –70 –20 f = 1MHz –80 –90 –100 f = 100kHz –110 –120 f = 1kHz –130 –30 VS = 10V VS = 5V VS = 3V –40 –50 –60 HD2 –70 HD2 HD2 HD3 –80 HD3 –90 –100 –110 HD3 –120 –140 –150 0.5 G=+1 VOUT = 2V p-p RLOAD = 1kΩ f = 100kHz –10 –130 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VOUT (V p-p) Figure 45. Total Harmonic Distortion vs. Output Voltage (VOUT) 12611-245 TOTAL HARMONIC DISTORTION (dB) –50 Figure 47. ADA4807-1 Harmonic Distortion vs. Frequency for Various Resistive Loads HARMONIC DISTORTION (dBc) –40 12611-030 –60 12611-127 HARMONIC DISTORTION (dBc) –40 0 VS = ±1.5V –10 VS = ±2.5V –20 VS = ±5V HD2 –30 HD3 –40 –50 –60 –70 –80 –90 –100 –110 –120 –130 –140 –150 –160 –170 0.001 0.01 12611-145 G = +1 RLOAD = 1kΩ VOUT = 2V p-p –140 0 1 2 3 4 5 6 7 8 9 10 INPUT COMMON-MODE VOLTAGE (V) Figure 48. Harmonic Distortion vs. Input Common-Mode Voltage Rev. B | Page 20 of 33 12611-037 –20 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 4 3 2 THD = –80dB THD = –90dB THD = –100dB ADA4807-1, ADA4807-2 ADA4807-4 0 10 1 1000 100 FREQUENCY (kHz) TOTAL HARMONIC DISTORTION (%) 4 THD = –80dB THD = –90dB THD = –100dB ADA4807-1, ADA4807-2 ADA4807-4 1 0.01 16Ω 0.0001 32Ω 0.1 1 OUTPUT VOLTAGE (V rms) 12611-132 600Ω 0.01 100 Figure 51. Output Voltage vs. Frequency for VS = ±5 V 0.1 0.001 10 FREQUENCY (kHz) VS = ±2.5V G = +1 f = 1kHz 0.00001 0.001 6 0 Figure 49. Output Voltage vs. Frequency for VS = ±2.5 V 1 8 2 12611-248 1 VS = ±5V G = +2 RF = 499Ω RLOAD = 1kΩ 10 OUTPUT VOLTAGE (V p-p) 5 OUTPUT VOLTAGE (V p-p) 12 VS = ±2.5V G = +2 RF = 499Ω RLOAD = 1kΩ Figure 50. Total Harmonic Distortion vs. Output Voltage for Various Resistive Loads Rev. B | Page 21 of 33 1000 12611-250 6 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet OUTPUT CHARACTERISTICS 1 10 100 1k 10k 100k 1M 0.1 100M 10M FREQUENCY (Hz) 1 +125°C 1.0 0.8 0.6 0.4 –40°C 0.2 0 0 10 20 30 40 50 60 70 80 90 100 LOAD CURRENT (mA) DISABLED OUTPUT IMPEDANCE (kΩ) 10 1 0.1 10 100 FREQUENCY (MHz) 1000 12611-141 ENABLED OUTPUT IMPEDANCE (Ω) 1.8 10k 100k 1M CURRENT NOISE (pA/√Hz) 0.1 100M 10M VS = ±2.5V G = +1 1.6 +125°C 1.4 +25°C 1.2 +85°C 1.0 0.8 –40°C 0.6 0.4 0.2 0 1000 100 1 1k 0 10 20 30 40 50 60 70 80 90 100 Figure 56. Negative Rail Output Saturation Voltage (−VS + VOUT) vs. Load Current for Various Temperatures VS = ±2.5V DISABLE = +VS 0.01 0.1 100 LOAD CURRENT (mA) Figure 53. Positive Rail Output Saturation Voltage (+VS – VOUT) vs. Load Current for Various Temperatures 1000 10 FREQUENCY (Hz) NEGATIVE RAIL OUTPUT SATURATION VOLTAGE (V) (–VS + VOUT) +25°C 1.2 12611-040 POSITIVE RAIL OUTPUT SATURATION VOLTAGE (V) (+VS – VOUT) 1.4 +85°C CURRENT NOISE Figure 55. Input Voltage Noise and Current Noise vs. Frequency, VCM = +VS − 0.5 V VS = ±2.5V G = +1 1.6 1 1 0.1 Figure 52. Input Voltage Noise and Current Noise vs. Frequency, VCM = 0 V 1.8 10 VOLTAGE NOISE 12611-134 1 CURRENT NOISE 10 100 12611-043 1 VS RANGE = ±1.5V TO ±5V NPN ACTIVE VS = ±2.5V DISABLE = –VS 100 10 1 0.1 0.01 0.001 0.1 1 10 100 FREQUENCY (MHz) Figure 57. Disabled Output Impedance vs. Frequency Figure 54. Enabled Output Impedance vs. Frequency Rev. B | Page 22 of 33 1000 12611-144 VOLTAGE NOISE INPUT VOLTAGE NOISE (nV/√Hz) 10 CURRENT NOISE (pA/√Hz) 10 0.1 100 100 VS RANGE = ±1.5V TO ±5V PNP ACTIVE 12611-136 INPUT VOLTAGE NOISE (nV/√Hz) 100 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 OVERDRIVE RECOVERY AND TURN ON/TURN OFF TIMES 1.5 VS = ±2.5V G = +1 RLOAD = 1kΩ VOUT 0 –1 –2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 TIME (µs) 0.5 1 0 0 –0.5 –1 –1.0 –2 –1.5 12611-041 –3 0 0.2 400 350 TURN OFF TIME (ns) VS = ±5.0V 1000 800 600 VS = ±2.5V 0.8 1.0 1.2 1.4 1.6 1.8 –3 2.0 G = +1 RLOAD = 1kΩ DISABLE = +VS TO –VS VS = ±1.5V 300 VS = ±5.0V VS = ±2.5V 250 200 400 150 VS = ±1.5V 200 0 –40 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) 125 100 –40 12611-033 TURN ON TIME (ns) 1400 1200 0.6 Figure 60. Output Overdrive Recovery G = +1 RLOAD = 1kΩ DISABLE = –VS TO +VS 1600 0.4 TIME (µs) Figure 58. Input Overdrive Recovery 1800 2 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) Figure 59. Turn On Time vs. Temperature and Supply Figure 61. Turn Off Time vs. Temperature and Supply Rev. B | Page 23 of 33 125 12611-034 VOLTAGE (V) 1 3 VS = ±2.5V G = +2 RLOAD = 1kΩ VOUT 1.0 INPUT VOLTAGE (V) 2 VIN OUTPUT VOLTAGE (V) VIN 12611-044 3 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet THEORY OF OPERATION The rail-to-rail input stage is useful in many different applications. Although the precision is reduced from input to input, many applications can tolerate this loss when the alternative is no functionality at all. The positive rail input range is indispensable for servo loops with a high-side input range The ADA4807-1/ADA4807-2/ADA4807-4 have a rail-to-rail input stage with an input range that goes 200 mV beyond either rail. A PNP transistor input pair is active for a majority of the input range, while an NPN transistor input pair is active for the common-mode voltages within 1.3 V of the positive rail. The ADA4807-1/ADA4807-2/ADA4807-4 are fabricated using the Analog Devices, Inc., third generation, extra fast complementary bipolar (XFCB) process resulting in exceptionally good distortion, noise, slew rate, and settling characteristics for 1 mA devices. Given traditional rail-to-rail input architecture performance, the input 1/f noise is surprisingly low, and the current noise is only 0.7 pA/√Hz for a 3 nV/√Hz voltage noise. Typical high slew rate devices suffer from increased current noise because of input pair degeneration and higher input stage current. The ADA4807-1/ ADA4807-2/ADA4807-4 exceed current benchmark parameters given the performance of the XFCB process. The ADA4807-1/ADA4807-2/ADA4807-4 input operates 200 mV beyond either rail. Internal protection circuitry prevents the output from phase inverting when the input range is exceeded. When the input exceeds a diode beyond either rail, internal electrostatic discharge (ESD) protection diodes source or sink current through the input. I1 I2 Q51 Q42 Q47 DIFFERENTIAL DRIVE FROM INPUT STAGE Q38 Q68 Q20 C9 + The multistage design of the ADA4807-1/ADA4807-2/ ADA4807-4 has excellent precision specifications, such as input drift, offset, open-loop gain, CMRR, and PSRR. Typical harmonic distortion numbers fall in the range of −130 dBc for a 10 kHz fundamental (see the Distortion and Noise section). This level of performance makes the ADA4807-1/ADA4807-2/ADA4807-4 the best choices when driving 18-bit precision converters. Q37 R29 Q27 Q21 Q48 VOUT C5 + Q43 Q49 I4 Q50 The ADA4807-1/ADA4807-2 are optimized for a low shutdown current (4 μA maximum), in the order of a few microamperes. In power sensitive applications, this can eliminate the use of a power FET and enable time interleaved power saving operation schemes. 12611-052 I5 Q44 Figure 62. Differential Drive from Input Stage +VS R1 I2 Q9 R2 1.3V Q3 Q2 Q8 Q5 VIP Q13 OUTPUT STAGE, COMMON-MODE FEEDBACK R3 –VS VBIAS1 Q17 Q14 I1 5µA Q7 Q18 Q4 Figure 63. Simplified Schematic Rev. B | Page 24 of 33 Q11 VBIAS2 R4 12611-051 VIN R5 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 DISABLE CIRCUITRY When the DISABLE pin is an option, a pull-up resistor is required if the logic leakage currents exceed 300 nA. For a 10 V supply, pulling the DISABLE pin to below 6.3 V turns the ADA4807-1/ ADA4807-2 off, which reduces the supply current to 2.4 µA. Conversely, pulling the DISABLE pin voltage to above 6.6 V enables the ADA4807-1/ADA4807-2 with a quiescent current of 1 mA. When the ADA4807-1/ADA4807-2 device is disabled, its output enters a high impedance state. Figure 64 and Table 10 show the DISABLE functionality over the complete supply range. heating. If large differential voltages must be sustained across the input terminals, it is recommended that the current through the input clamps be limited to less than 10 mA. Series input resistors sized appropriately for the expected differential overvoltage provide the needed protection. +VS BIAS ESD ESD +INx –INx ESD ESD 4.0 –VS 3.6 3.4 NOTES 1. THE ±INx PINS ARE ±IN ON THE ADA4807-1, ±IN1 AND ±IN2 ON THE ADA4807-2, AND ±IN1 TO ±IN4 ON THE ADA4807-4. 3.0 2.8 Figure 65. Input Stage and Protection Diodes 2.6 2.4 NOISE CONSIDERATIONS 2.2 Figure 66 illustrates the primary noise contributors for the typical gain configurations. The total output noise (VN_OUT) is the root sum square of all the noise contributions. 2.0 VTH VON = VTH +150mV VOFF = VTH –150mV 1.6 3 4 6 5 7 8 POWER SUPPLY, VS (V) 9 10 VN _ RG = 4kT × RG Figure 64. DISABLE Trigger Voltage +3 V 1.35 V 1.05 V +5 V 1.6 V 1.3 V +10 V 6.6 V 6.3 V ±5 V 1.6 V 1.3 V VN _ R F = 4kT × RF ven RG + vout_en – ien Table 10. Threshold Voltages for Disabled and Enabled Modes Mode Enabled Disabled RF +7 V/−2 V 3.6 V 3.3 V The output impedance decreases as the frequency increases. When disabled, a forward isolation of 120 dB is achieved at 100 kHz (see Figure 22). ESD clamps protect the DISABLE pin, as shown in Figure 65. Voltages beyond the power supplies cause these diodes to conduct. To avoid excessive current in the ESD diodes, ensure that the voltage to the DISABLE pin is not 0.7 V greater than the positive supply or that it is not 0.7 V less than the negative supply. If an overvoltage condition is expected, limit the input current to less than 10 mA with a series resistor. INPUT PROTECTION The ADA4807-1/ADA4807-2/ADA4807-4 are fully protected from ESD events, withstanding human body model ESD events of ±3 kV and charged device model events of ±1.25 kV with no measured performance degradation. The precision input is protected with an ESD network between the power supplies and diode clamps across the input device pair, as shown in Figure 65. For differential voltages above approximately 1.2 V at room temperature and 0.8 V at 125°C, the diode clamps begin to conduct. Too much current can cause damage due to excessive VN _ RS = 4kT × RS RS 12611-055 1.8 1.4 12611-054 TO THE REST OF THE AMPLIFIER 3.2 12611-152 TRIGGER VOLTAGE BELOW +VS (V) 3.8 iep Figure 66. Noise Sources in Typical Gain Configurations Source resistance noise, amplifier input voltage noise, and the voltage noise from the amplifier input current noise (IN+ × RS) are all subject to the noise gain term (1 + RF/RG). Calculate the output noise spectral density using the following equation: R VN _ OUT = 4kTRF + 1 + F RG 2 2 R 4kTRs + I N + 2 RS 2 + VN 2 + F 4kTRG + I N − 2 RF 2 R G [ ] where: k is Boltzmann’s constant. T is the absolute temperature in degrees Kelvin. RF and RG are the feedback network resistances, as shown in Figure 66. RS is the source resistance, as shown in Figure 66. IN+ and IN− represent the amplifier input current noise spectral density in pA/√Hz. VN is the amplifier input voltage noise spectral density in nV/√Hz. Rev. B | Page 25 of 33 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet APPLICATIONS INFORMATION CAPACITIVE LOAD DRIVE LOW NOISE FET OPERATIONAL AMPLIFIER Figure 67 shows the schematic for driving large capacitive loads, and Figure 68 shows the frequency response for a gain of +2. Note that the bandwidth decreases with larger capacitive loads (see Figure 68). Low noise amplifiers for photodiode, piezoelectric, and other instrumentation applications typically call for circuit parameters such as extremely high input impedance, low 1/f noise, or subpicoamp bias currents that can be met only with a discrete amplifier design. Figure 69 shows the required series resistor (RSERIES) when limiting the peaking to 3 dB for a range of load capacitors (CLOAD) at a gain of +2. From Figure 69, no series resistors are necessary to maintain stability for larger capacitors. RF VIN VOUT RSERIES VLOAD CLOAD RLOAD RT 49.9Ω 12611-056 RG Figure 67. Schematic for Driving Large Capacitive Loads The unbalanced output impedance of the FETs is negated by the use of an inverting amplifier cascode. The ADA4807-1/ ADA4807-2/ADA4807-4 are ideally suited for the cascode due to their rail-to-rail input structure, which results in excellent overload behavior of the overall discrete amplifier. Using this cascode structure, the CMRR is greater than 100 dB. 3 15pF, 100Ω –3 470pF, 20Ω 47pF, 82.5Ω 1nF, 10.5Ω 10nF, 1.69Ω –6 100nF, 0.5Ω –9 –12 –15 VS = ±5V RLOAD = 1kΩ G = +2 VOUT = 70mV p-p –18 0.1 1 10 100 1000 FREQUENCY (MHz) 12611-155 NORMALIZED CLOSED-LOOP GAIN (dB) 6 0 The discrete amplifier shown in Figure 70 uses a high-speed op amp preceded by a differential amplifier stage. This discrete configuration is implemented with dual matched JFETs, which provide high input impedance and some initial gain, reducing the noise and precision specifications of the second stage. The low current consumption of the ADA4807-1/ADA4807-2/ADA4807-4, in addition to their precision and low noise characteristics, results in a composite design with 7 mA of total supply current, 1.5 nV/√Hz noise at 1 kHz, and 4 nV/√Hz noise at 10 Hz. Figure 68. Frequency Response for Driving Large Capacitive Loads, RF = RG = 249 Ω A high output impedance current source is also needed to maintain the CMRR of the discrete amplifier. An ADR510 maintains a precise current over the supply voltage, and the low collector capacitance of the PMP4201 results in a balanced and predictable slew rate behavior. This is shown in Figure 71 with a 0.4 V p-p input and a 4 V p-p output with a gain of 10. Figure 72 shows output referred total harmonic distortion plus noise (THD + N) for a gain of 10. 100 90 80 RSERIES (Ω) 70 60 50 40 30 20 0 0.001 0.01 0.1 1 10 100 CLOAD (nF) 12611-057 10 Figure 69. Required Series Resistor (RSERIES) vs. Capacitive Load (CLOAD) at 3 dB Peaking Rev. B | Page 26 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 R0 100Ω Rb 100Ω VOS TRIM C0 20pF R12 100Ω R1 10Ω R13 100Ω VOS TRIM C7 27pF – +5V VOUT + –5V +5V ADA4807-1/ ADA4807-2/ ADA4807-4 V– + R4 5kΩ – 1/2 LSK489 C9 2pF ADA4807-1/ ADA4807-2/ ADA4807-4 –5V V+ 1/2 LSK489 +5V R2 100Ω R3 1kΩ R6 5kΩ 1/2 PMP4201 qn1 qn0 1/2 PMP4201 R7 200Ω 12611-068 ADR510 –5V Figure 70. Low Noise FET Operational Amplifier Schematic POWER MODE ADC DRIVER One of the merits of a SAR ADC, such as the AD7980, is that its power scales with the sampling rate. This power scaling makes SAR ADCs very power efficient, especially when running at a low sampling frequency. However, the ADC driver used with the SAR ADC traditionally consumes constant power regardless of the sampling frequency. 1 2 CH2 1V Ω M100ns A CH1 0V 12611-069 CH1 200mV Figure 73 illustrates a method by which the quiescent power of the ADC driver can be reduced by 95% while still maintaining the input signal to the ADC. Both the ADA4807-1/ADA4807-2/ ADA4807-4 and the AD8603 are rail-to-rail input and output (RRIO) amplifiers and can operate on a single 5 V analog supply. Connecting the AD8603 in parallel with a sharing resistor allows the ADA4807-1/ADA4807-2/ADA4807-4 to be powered down, reducing the total supply current for the driver from 1 mA to 50 μA. The sampling frequency of the AD7980 can then be reduced to match the power consumption of the AD8603. With the ADA4807-1/ADA4807-2/ADA4807-4 powered on, the SNR and THD are 84.1 dB and −100.3 dB for a 3 V p-p, 1 kHz input and a 4.096 V reference. The SNR and THD degrade to 81.4 dB and −77.3 dB for the same input signal in the low power mode when only the AD8603 is on. Figure 71. Pulse Response, G = 10, 4 V p-p Output –60 –65 –70 DISTORTION (%) –75 –80 –85 –90 –95 –100 –110 100 1k 10k 20k FREQUENCY (Hz) Figure 72. 8 V p-p Output, THD + N for G = 10, RLOAD = 600 Ω 12611-071 –105 One issue with this method is that the reference and reference buffer power do not scale with the ADC or the driver. This makes this configuration most useful in multichannel systems where the reference can be reused across many inputs. Alternately, the reference buffer can be scaled in the same fashion as the input driver; however, the reference itself must remain on in any of the modes. Rev. B | Page 27 of 33 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet 5V 5V ADA4807-1/ ADA4807-2/ ADA4807-4 ADR4540 – + C2 0.1µF C3 10µF C4 0.1µF LP MODE 5V ADA4807-1/ ADA4807-2/ ADA4807-4 VIN – R10 22Ω + R11 49.9Ω REF IN+ AD7980 C1 2.7µF IN– GND 5V – 12611-070 AD8603 + Figure 73. Dual Power Mode ADC Driver ADC DRIVING The ADA4807-1/ADA4807-2/ADA4807-4 can be used in ADC driving applications. Figure 74 is a simplified schematic of the ADA4807-1/ADA4807-2/ADA4807-4 driving an 18-bit differential ADC, the AD7982, in a fully differential signal chain. This configuration results in an effective number of bits (ENOB) of 15.7; results are shown in Figure 75. Figure 76 shows the ADA4807-1/ADA4807-2/ADA4807-4 configured to convert a single-ended to differential signal and drive an 18-bit ADC. This configuration results in an ENOB of 15.3. The FFT is shown in Figure 77. 20Ω VIN 2.7nF ADA4807-1/ ADA4807-2/ ADA4807-4 ADA4807-1/ ADA4807-2/ ADA4807-4 20Ω 20Ω REF 2 2.7nF ADA4807-1/ ADA4807-2/ ADA4807-4 IN+ ADC IN– 20Ω VIN– Figure 76. Schematic for Driving the AD7982 Differential Converter from a Single-Ended Input Signal, +VS = +7 V, −VS = −1 V 2.7nF 0 12611-275 ADA4807-1/ ADA4807-2/ ADA4807-4 fs = 200kSPS fIN = 1kHz SNR = 96.6dB THD = –111.5dB SFDR = –112.3dB SINAD = 96.5dB –40 SNR = 94.5dB THD = –110.3dB SFDR = –111.1dB SINAD = 94.4dB –40 AMPLITUDE (dB) 0 –20 fs = 200kSPS fIN = 1kHz –20 Figure 74. Schematic for Driving the AD7982, +VS = +7 V, −VS = −1 V –60 –60 –80 –100 –120 –80 –140 –100 –160 –120 –180 –140 0 2 4 6 8 10 12 FREQUENCY (kHz) 14 16 18 20 Figure 77. FFT for Driving a Single-Ended Input Signal into a Differential Converter –160 0 2 4 6 8 10 12 14 16 18 20 FREQUENCY (kHz) 12611-075 AMPLITUDE (dB) 12611-276 2.7nF –180 ADC IN– 1kΩ 12611-077 VIN+ IN+ 1kΩ Figure 75. FFT for Driving a Differential Converter, −0.5 dBFS Rev. B | Page 28 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 ADC DRIVING WITH DYNAMIC POWER SCALING CONV 1 DISABLE 2 CH1 2V CH2 2V M1µs A CH1 0 fs = 200kSPS fIN = 1kHz SNR = 94.7dB THD = –107.11dB SFDR = –108.8dB SINAD = 94.4dB CONV AMPLITUDE (dB) –40 DISABLE 2.56V Figure 80. Dynamic Power Scaling Timing Diagram for Driving a SingleEnded Input Signal Chain into a Differential ADC (AD7982) –20 1 12611-078 In power sensitive applications, the ADA4807-1/ADA4807-2 can be switched on prior to the ADC turning on. Figure 78 shows the timing diagram for dynamically power scaling the ADA4807-1/ADA4807-2 with the AD7982 configuration shown in Figure 79. The falling edge of the DISABLE signal must align with the rising edge of the CONV signal of the ADC to obtain a clean data acquisition. Figure 79 gives the FFT for driving a fully differential signal chain with a 1.2 µs on time as shown in Figure 78. With this method, the ADA4807-1/ADA4807-2 quiescent current (per amplifier) is reduced from 2 mA to 0.25 mA. Figure 81 gives the FFT for dynamically power scaling a single-ended input signal chain into a differential ADC with a 4 µs on time as shown in Figure 80. This configuration results in a quiescent current reduction of 20%. –60 –80 –100 –120 –140 2 CH2 2V M1µs A CH1 2.56V –180 Figure 78. Dynamic Power Scaling Timing Diagram for Driving a Fully Differential Signal Chain into a Differential ADC (AD7982) 0 fs = 200kSPS fIN = 1kHz –20 AMPLITUDE (dB) –80 –100 –120 –140 2 4 6 8 10 12 FREQUENCY (kHz) 14 16 18 20 12611-079 –160 0 4 6 8 10 12 14 16 18 20 Figure 81. FFT for Driving a Single-Ended to Differential Converter Using Dynamic Power Scaling, −0.5 dBFS, On Time of 4 µs, for the Schematic Shown in Figure 76 –60 –180 2 FREQUENCY (kHz) SNR = 96.7dB THD = –110.9dB SFDR = –111.8dB SINAD = 96.6dB –40 0 12611-080 CH1 2V 12611-278 –160 Figure 79. FFT for Driving a Differential Converter using Dynamic Power Scaling, −0.5 dBFS, On Time of 1.2 µs, for the Schematic Shown in Figure 74 Rev. B | Page 29 of 33 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet LAYOUT, GROUNDING, AND BYPASSING The ADA4807-1/ADA4807-2/ADA4807-4 are high speed devices. Realizing their superior performance requires attention to the details of high speed printed circuit board (PCB) design. The first requirement is to use a multilayer PCB with solid ground and power planes that cover as much of the board area as possible. Bypass each power supply pin directly to a nearby ground plane, as close to the device as possible. Use 0.1 µF high frequency ceramic chip capacitors. Provide low frequency bulk bypassing using 10 µF tantalum capacitors from each supply to ground. Stray transmission line capacitance in combination with package parasitics can potentially form a resonant circuit at high frequencies, resulting in excessive gain peaking or possible oscillation. Signal routing must be short and direct to avoid such parasitic effects. Provide symmetrical layout for complementary signals to maximize balanced performance. Use radio frequency transmission lines to connect the driver and receiver to the amplifier. Minimize stray capacitance at the input and output pins by clearing the underlying ground and low impedance planes near these pins. If the driver and receiver are more than one-eighth of the wavelength from the amplifier, minimize the signal trace widths. This nontransmission line configuration requires clearing of the underlying and adjacent ground and low impedance planes near the signal lines. Rev. B | Page 30 of 33 Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 OUTLINE DIMENSIONS 2.20 2.00 1.80 6 5 4 1 2 3 2.40 2.10 1.80 0.65 BSC 1.30 BSC 1.00 0.90 0.70 0.40 0.10 1.10 0.80 0.10 MAX COPLANARITY 0.10 SEATING PLANE 0.30 0.15 0.46 0.36 0.26 0.22 0.08 072809-A 1.35 1.25 1.15 COMPLIANT TO JEDEC STANDARDS MO-203-AB Figure 82. 6-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-6) Dimensions shown in millimeters 3.00 2.90 2.80 1.70 1.60 1.50 6 5 4 1 2 3 PIN 1 INDICATOR 3.00 2.80 2.60 0.95 BSC 1.90 BSC 0.15 MAX 0.05 MIN 1.45 MAX 0.95 MIN 0.50 MAX 0.30 MIN 0.20 MAX 0.08 MIN SEATING PLANE 10° 4° 0° 0.60 BSC COMPLIANT TO JEDEC STANDARDS MO-178-AB Figure 83. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters Rev. B | Page 31 of 33 0.55 0.45 0.35 12-16-2008-A 1.30 1.15 0.90 ADA4807-1/ADA4807-2/ADA4807-4 Data Sheet 3.20 3.00 2.80 3.20 3.00 2.80 8 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 0.80 0.55 0.40 0.23 0.09 6° 0° 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 84. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 2.48 2.38 2.23 3.10 3.00 SQ 2.90 0.50 BSC 10 6 1.74 1.64 1.49 EXPOSED PAD 0.50 0.40 0.30 1 5 BOTTOM VIEW TOP VIEW 0.80 0.75 0.70 SEATING PLANE 0.30 0.25 0.20 0.05 MAX 0.02 NOM COPLANARITY 0.08 0.20 MIN PIN 1 INDICATOR (R 0.15) FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.20 REF Figure 85. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] 3 mm × 3 mm Body, Very Very Thin, Dual Lead (CP-10-9) Dimensions shown in millimeters Rev. B | Page 32 of 33 02-05-2013-C PIN 1 INDEX AREA Data Sheet ADA4807-1/ADA4807-2/ADA4807-4 5.10 5.00 4.90 14 8 4.50 4.40 4.30 6.40 BSC 1 7 PIN 1 0.65 BSC 1.20 MAX 0.15 0.05 COPLANARITY 0.10 0.20 0.09 SEATING PLANE 0.30 0.19 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 0.75 0.60 0.45 061908-A 1.05 1.00 0.80 Figure 86. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters ORDERING GUIDE Model1 ADA4807-1AKSZ-R2 ADA4807-1AKSZ-R7 ADA4807-1ARJZ-R2 ADA4807-1ARJZ-R7 ADA4807-2ACPZ-R2 ADA4807-2ACPZ-R7 ADA4807-2ARMZ ADA4807-2ARMZ-R7 ADA4807-4ARUZ ADA4807-4ARUZ-R7 ADA4807-1AKSZ-EBZ ADA4807-1ARJZ-EBZ ADA4807-2ACPZ-EBZ ADA4807-2ARMZ-EBZ ADA4807-4AURZ-EBZ 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 6-Lead Thin Shrink Small Outline Transistor Package [SC70] 6-Lead Thin Shrink Small Outline Transistor Package [SC70] 6-Lead Small Outline Transistor Package [SOT-23] 6-Lead Small Outline Transistor Package [SOT-23] 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] 10-Lead Lead Frame Chip Scale Package [LFCSP_WD] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 14-Lead Thin Shrink Small Outline Package [TSSOP] 14-Lead Thin Shrink Small Outline Package [TSSOP] Evaluation Board for 6-Lead SC70 Evaluation Board for 6-Lead SOT-23 Evaluation Board for 10-Lead LFCSP_WD Evaluation Board for 8-Lead MSOP Evaluation Board for 14-Lead TSSOP Z = RoHS Compliant Part. ©2014–2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D12611-0-9/15(B) Rev. B | Page 33 of 33 Package Option KS-6 KS-6 RJ-6 RJ-6 CP-10-9 CP-10-9 RM-8 RM-8 RU-14 RU-14 Branding H3J H3J H3J H3J H3S H3S H3S H3S