AD ADL5565ACPZ-R7

6 GHz Ultrahigh Dynamic Range
Differential Amplifier
ADL5565
FEATURES
FUNCTIONAL BLOCK DIAGRAM
VCC
RF
ENBL
VIP2
VIP1
VIN1
VIN2
RG2
VON
RG1
VCOM
RG1
RG2
VOP
RF
GND
ADL5565
09959-001
3 dB bandwidth of 6 GHz (AV = 6 dB)
Pin strappable gain adjust: 6 dB, 12 dB, and 15.5 dB
Gain range from 0 dB to 15.5 dB using two external resistors
Differential or single-ended input to differential output
Low noise input stage: NF = 8.7 dB at 15.5 dB gain
Low broadband distortion (AV = 6 dB)
10 MHz: −107 dBc (HD2), −110 dBc (HD3)
100 MHz: −108 dBc (HD2), −103 dBc (HD3)
200 MHz: −82 dBc (HD2), −87 dBc (HD3)
500 MHz: −68 dBc (HD2), −63 dBc (HD3)
IMD3 of −113 dBc at 100 MHz center
Slew rate: 11 V/ns
Fast settling and overdrive recovery of 2 ns
Single-supply operation: 2.8 V to 5.2 V
Power down
Fabricated using the high speed XFCB3 SiGe process
Figure 1.
APPLICATIONS
Differential ADC drivers
Single-ended-to-differential conversion
RF/IF gain blocks
SAW filter interfacing
GENERAL DESCRIPTION
The ADL5565 is a high performance differential amplifier
optimized for RF and IF applications. The amplifier offers low
noise of 1.5 nV/√Hz and excellent distortion performance over
a wide frequency range making it an ideal driver for high speed
8-bit to 16-bit analog-to-digital converters (ADCs).
The ADL5565 provides three gain levels of 6 dB, 12 dB, and 15.5 dB
through a pin strappable configuration. For the single-ended
input configuration, the gains are reduced to 5.3 dB, 10.3 dB,
and 13 dB. Using two external series resistors expands the gain
flexibility of the amplifier and allows for any gain selection from
0 dB to 15.5 dB for a differential input and 0 dB to 13 dB for a
single-ended input.
The quiescent current of the ADL5565 is typically 70 mA, and
when disabled, consumes less than 5 mA with −25 dB of inputto-output isolation at 100 MHz.
The device is optimized for wideband, low distortion, and noise
performance, giving it unprecedented performance for overall
spurious-free dynamic range. These attributes, together with its
adjustable gain capability, make this device the amplifier of
choice for driving a wide variety of ADCs, mixers, pin diode
attenuators, SAW filters, and multielement discrete devices.
Fabricated on an Analog Devices, Inc., high speed SiGe process, the
ADL5565 is supplied in a compact 3 mm × 3 mm, 16-lead LFCSP
package and operates over the −40°C to +85°C temperature range.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2011 Analog Devices, Inc. All rights reserved.
ADL5565
TABLE OF CONTENTS
Features .............................................................................................. 1 Circuit Description......................................................................... 16 Applications....................................................................................... 1 Basic Structure ............................................................................ 16 Functional Block Diagram .............................................................. 1 Applications Information .............................................................. 17 General Description ......................................................................... 1 Basic Connections...................................................................... 17 Revision History ............................................................................... 2 Input and Output Interfacing ................................................... 18 Specifications..................................................................................... 3 Gain Adjustment and Interfacing ............................................ 19 3.3 V Specifications ...................................................................... 3 ADC Interfacing ......................................................................... 20 5 V Specifications ......................................................................... 6 Layout Considerations............................................................... 22 Absolute Maximum Ratings............................................................ 9 Soldering Information ............................................................... 23 ESD Caution.................................................................................. 9 Evaluation Board ........................................................................ 23 Pin Configuration and Function Descriptions........................... 10 Outline Dimensions ....................................................................... 26 Typical Performance Characteristics ........................................... 11 Ordering Guide .......................................................................... 26 REVISION HISTORY
10/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 28
ADL5565
SPECIFICATIONS
3.3 V SPECIFICATIONS
VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified
ac-coupled differential input and differential output, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Gain Accuracy
Gain Supply Sensitivity
Gain Temperature Sensitivity
Slew Rate
Settling Time
Overdrive Recovery Time
Reverse Isolation (S12)
INPUT/OUTPUT CHARACTERISTICS
Input Common-Mode Range
Output Common-Mode Range
Maximum Output Voltage Swing
Output Common-Mode Offset
Output Common-Mode Drift
Output Differential Offset Voltage
CMRR
Output Differential Offset Drift
Input Bias Current
Input Resistance (Differential)
Input Resistance (Single-Ended)
Input Capacitance (Single-Ended)
Output Resistance (Differential)
POWER INTERFACE
Supply Voltage
ENBL Threshold
ENBL Input Bias Current
Quiescent Current
Test Conditions/Comments
Min
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 15.5 dB, VOUT ≤ 1.0 V p-p
VOUT ≤ 1.0 V p-p
VS ± 5%
−40°C to +85°C
Rise, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
Fall, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
2 V step to 1%
VIN = 4 V to 0 V step, VOUT ≤ ±10 mV
AV = 6 dB, 12 dB, and 15.5 dB
1 dB compressed
Referenced to VCC/2
−40°C to +85°C
Typ
MHz
MHz
MHz
MHz
dB
mdB/V
mdB/°C
V/ns
11
V/ns
2
<3
70
ns
ns
dB
1.2 to 2
1.4 to 1.8
4
V
V
V p-p
mV
mV/°C
mV
dB
mV/°C
μA
Ω
Ω
Ω
Ω
Ω
Ω
pF
Ω
−100
+20
0.34
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 5.6 dB
AV = 11.1 dB
AV = 14.1 dB
2.8
Rev. 0 | Page 3 of 28
+20
60
1.5
±5
200
100
67
158
96
74
0.3
10
−40°C to +85°C
Unit
6750
6500
6250
1000
±1
1.9
0.35
11
−20
ENBL high
ENBL low
ENBL high
ENBL low
Max
3.3
1.5
500
−165
70
5
5.2
V
V
nA
μA
mA
mA
ADL5565
Parameter
NOISE/HARMONIC PERFORMANCE
10 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
100 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. 0 | Page 4 of 28
Min
Typ
Max
Unit
−107/−110
−101/−107
−106/−112
+48/−100
dBc
dBc
dBc
dBm/dBc
+52/−108
dBm/dBc
+50/−105
dBm/dBc
−86
dBc
−86
dBc
−86
dBc
2.24
1.52
1.53
10.24
8.66
8.78
13.1
12.8
13.1
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
−108/−103
−91/−99
−89/−100
+54/−113
dBc
dBc
dBc
dBm/dBc
+53/−112
dBm/dBc
+52/−111
dBm/dBc
−85
dBc
−85
dBc
−86
dBc
2.25
1.53
1.52
10.27
8.69
8.7
13
12.8
12.8
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
ADL5565
Parameter
200 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
500 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. 0 | Page 5 of 28
Min
Typ
Max
Unit
−82/−87
−72/−86
−71/−86
+46/−97
dBc
dBc
dBc
dBm/dBc
+46/−99
dBm/dBc
+46/−98
dBm/dBc
−85
dBc
−73
dBc
−70
dBc
2.36
1.64
1.51
10.65
9.25
8.49
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
−68/−63
−56/−62
−57/−63
+34/−77
dBc
dBc
dBc
dBm/dBc
+36/−82
dBm/dBc
+39/−88
dBm/dBc
−75
dBc
−70
dBc
−70
dBc
2.62
1.57
1.47
11.47
8.93
8.07
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
ADL5565
5 V SPECIFICATIONS
VS = 5.0 V, VCM = 2.5 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified
ac-coupled differential input and differential output, unless otherwise noted.
Table 2.
Parameter
DYNAMIC PERFORMANCE
−3 dB Bandwidth
Bandwidth for 0.1 dB Flatness
Gain Accuracy
Gain Supply Sensitivity
Gain Temperature Sensitivity
Slew Rate
Settling Time
Overdrive Recovery Time
Reverse Isolation (S12)
INPUT/OUTPUT CHARACTERISTICS
Input Common-Mode Range
Output Common-Mode Range
Maximum Output Voltage Swing
Output Common-Mode Offset
Output Common-Mode Drift
Output Differential Offset Voltage
CMRR
Output Differential Offset Drift
Input Bias Current
Input Resistance (Differential)
Input Resistance (Single-Ended)
Input Capacitance (Single-Ended)
Output Resistance (Differential)
POWER INTERFACE
Supply Voltage
ENBL Threshold
ENBL Input Bias Current
Quiescent Current
Test Conditions/Comments
Min
AV = 6 dB, VOUT ≤ 1.0 V p-p
AV = 12 dB, VOUT ≤ 1.0 V p-p
AV = 15.5 dB, VOUT ≤ 1.0 V p-p
VOUT ≤ 1.0 V p-p
VS ± 5%
−40°C to +85°C
Rise, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
Fall, AV = 15.5 dB, RL = 200 Ω,
VOUT = 2 V step
2 V step to 1%
VIN = 4 V to 0 V step, VOUT ≤ ±10 mV
AV = 6 dB, 12 dB, and 15.5 dB
1 dB compressed
Referenced to VCC/2
−40°C to +85°C
Typ
MHz
MHz
MHz
MHz
dB
mdB/V
mdB/°C
V/ns
11
V/ns
2
<3
70
ns
ns
dB
1.2 to 3.8
1.4 to 3
8
V
V
V p-p
mV
mV/°C
mV
dB
mV/°C
μA
Ω
Ω
Ω
Ω
Ω
Ω
pF
Ω
−100
+20
0.4
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 5.6 dB
AV = 11.1 dB
AV = 14.1 dB
2.8
Rev. 0 | Page 6 of 28
+20
60
1.5
±5
200
100
67
158
96
74
0.3
10
−40°C to +85°C
Unit
7000
6750
6500
1000
±1
1.6
0.37
11
−20
ENBL high
ENBL low
ENBL high
ENBL low
Max
5
1.5
1
−250
80
6
5.2
V
V
μA
μA
mA
mA
ADL5565
Parameter
NOISE/HARMONIC PERFORMANCE
10 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
100 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
1 dB Compression Point, RTO (OP1dB)
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. 0 | Page 7 of 28
Min
Typ
Max
Unit
−111/−116
−100/−104
−105/−106
+47/−99
dBc
dBc
dBc
dBm/dBc
+50/−105
dBm/dBc
+50/−105
dBm/dBc
−78
dBc
−86
dBc
−91
dBc
2.25
1.54
1.55
10.29
8.77
9.04
16.8
16.7
16.6
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
−108/−109
−92/−103
−89.5/−105
+53/−112
dBc
dBc
dBc
dBm/dBc
+53/−112
dBm/dBc
+52/−110
dBm/dBc
−87
dBc
−91
dBc
−87
dBc
2.28
1.53
1.52
10.39
8.73
8.7
16.8
16.5
16.4
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
dBm
dBm
dBm
ADL5565
Parameter
200 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
500 MHz
Second/Third Harmonic Distortion (HD2/HD3)
Output IP3/Third-Order Intermodulation
Distortion (OIP3/IMD3)
Second-Order Intermodulation Distortion (IMD2)
Noise Spectral Density, RTI (NSD)
Noise Figure (NF)
Test Conditions/Comments
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 12 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 15.5 dB, RL = 200 Ω, VOUT = 2 V p-p
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite
AV = 6 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 12 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 15.5 dB, RL = 200 Ω, VOUT =
2 V p-p composite (2 MHz spacing)
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
AV = 6 dB
AV = 12 dB
AV = 15.5 dB
Rev. 0 | Page 8 of 28
Min
Typ
Max
Unit
−82/−87
−72/−86
−71/−86
+46/−97
dBc
dBc
dBc
dBm/dBc
+46/−99
dBm/dBc
+46/−98
dBm/dBc
−85
dBc
−74
dBc
−70
dBc
2.43
1.63
1.51
10.88
9.2
8.54
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
−69/−66
−56/−65
−58/−66
+35/−78
dBc
dBc
dBc
dBm/dBc
+35/−81
dBm/dBc
+37/−85
dBm/dBc
−73
dBc
−75
dBc
−72
dBc
2.64
1.6
1.48
11.56
9.06
8.17
nV/√Hz
nV/√Hz
nV/√Hz
dB
dB
dB
ADL5565
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
Output Voltage Swing × Bandwidth Product
Supply Voltage, VCC
VIPx, VINx
±IOUT Maximum
Internal Power Dissipation
θJA
θJC
Maximum Junction Temperature
Operating Temperature Range
Storage Temperature Range
Rating
2000 V p-p MHz
5.25 V
VCC + 0.5 V
30 mA
525 mW
52°C/W
34.6°C/W
125°C
−40°C to +100°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. 0 | Page 9 of 28
ADL5565
13 GND
14 GND
16 GND
15 GND
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VIP2 1
12 ENBL
ADL5565
TOP
VIEW
VIN1 3
11 VOP
10 VON
9
VCOM
VCC 8
VCC 7
VCC 5
VCC 6
VIN2 4
NOTES
1. EXPOSED PADDLE IS INTERNALLY
CONNECT TO GND AND MUST BE
SOLDERED TO A LOW IMPEDANCE
GROUND PLANE.
09959-002
VIP1 2
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1
Mnemonic
VIP2
2
VIP1
3
VIN1
4
VIN2
5, 6, 7, 8
9
VCC
VCOM
10
11
12
13, 14, 15, 16,
Exposed Paddle
VON
VOP
ENBL
GND
Description
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to
VIP1 for AV = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to
VIP2 for AV = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 6 dB gain, strapped to
VIN2 for AV = 15.5 dB.
Balanced Differential Input. Biased to VCOM, typically ac-coupled. Input for AV = 12 dB gain, strapped to
VIN1 for AV = 15.5 dB.
Positive Supply.
Common-Mode Voltage. A voltage applied to this pin sets the common-mode voltage of the input and
output. Typically decoupled to ground with a 0.1 μF capacitor. With no reference applied, input and
output common mode floats to midsupply (VCC/2).
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
Balanced Differential Output. Biased to VCOM, typically ac-coupled.
Enable. Apply positive voltage (1.3 V < ENBL < VCC) to activate device.
Ground. Exposed paddle is internally connected to GND and must be soldered to a low impedance
ground plane.
Rev. 0 | Page 10 of 28
ADL5565
TYPICAL PERFORMANCE CHARACTERISTICS
VS = 3.3 V, VCM = 1.65 V, RL = 200 Ω differential, AV = 6 dB, CL = 1 pF differential, f = 100 MHz, TA = 25°C; parameters specified
ac-coupled differential input and differential output, unless otherwise noted.
25
25
AV = 15.5dB
AV = 12dB
AV = 6dB
20
20
10
OP1dB (dBm)
5
0
–5
15
10
–10
5
–15
–25
10
100
1000
10000
FREQUENCY (MHz)
0
09959-003
–20
AV = 15dB
AV = 12dB
AV = 6dB
0
15
100
150
200
250
FREQUENCY (MHz)
Figure 6. OP1dB vs. Frequency at Three Gains,
25°C, 200 Ω Differential Load, VPOS = 3.3 V
Figure 3. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, AV = 12 dB, and AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V, 25°C
20
50
09959-005
VOLTAGE GAIN (dB)
15
25
–40°C
+85°C
+25°C
+100°C
–40°C
+25°C
+85°C
+100°C
20
5
OP1dB (dBm)
VOLTAGE GAIN (dB)
10
0
–5
–10
15
10
5
100
1000
10000
FREQUENCY (MHz)
0
09959-004
15
18
–40°C
+25°C
+85°C
+100°C
16
150
200
250
AV = 6dB
AV = 12dB
AV = 15.5dB
14
NOISE FIGURE (dB)
5
0
–5
–10
12
10
8
6
–15
4
–20
2
100
1000
10000
FREQUENCY (MHz)
Figure 5. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, Four Temperatures, VPOS = 5 V, 25°C
0
10
09959-105
VOLTAGE GAIN (dB)
100
Figure 7. OP1dB vs. Frequency for 200 Ω Differential Load, AV = 6 dB,
Four Temperatures, VPOS = 3.3 V
10
–25
10
50
FREQUENCY (MHz)
Figure 4. Gain vs. Frequency Response for 200 Ω Differential Load,
AV = 6 dB, Four Temperatures, VPOS = 3.3 V, 25°C
20
0
100
FREQUENCY (MHz)
1000
09959-007
–20
10
09959-006
–15
Figure 8. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and AV = 15.5 dB,
VPOS = 3.3 V
Rev. 0 | Page 11 of 28
ADL5565
18
60
AV = 6dB
AV = 12dB
AV = 15.5dB
16
50
40
10
8
30
5V, –40°C
5V, +25°C
5V, +85°C
5V, +100°C
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
20
6
4
10
2
100M
1G
FREQUENCY (Hz)
Figure 9. Noise Figure vs. Frequency at AV = 6 dB, AV = 12 dB, and
AV = 15.5 dB, VPOS = 5 V
3.5
150
200
250
300
350
400
450
500
70
60
50
3.0
2.5
2.0
1.5
40
30
20
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
1.0
10
0.5
100
1000
FREQUENCY (MHz)
0
09959-009
0
10
60
0
2
3
4
5
6
7
8
9
10
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
–20
–40
IMD3 (dBc)
40
30
1
Figure 13. Output Third-Order Intercept (OIP3) vs. Power (POUT),
Frequency 100 MHz, AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
50
0
POUT/TONE (dBm)
Figure 10. Noise Spectral Density vs. Frequency at AV = 6 dB, AV = 12 dB, and
AV = 15.5 dB, VPOS = 3.3 V and VPOS = 5 V
OIP3 (dBm)
100
Figure 12. Output Third-Order Intercept (OIP3) vs. Frequency,
Over Temperature, Output Level at 2 V p-p Composite, RL = 200 Ω, Av = 6 dB,
VPOS = 3.3 V and VPOS = 5 V, Four Temperatures
OIP3 (dBm)
NOISE SPECTRAL DENSITY (nV/√Hz)
4.0
50
FREQUENCY (MHz)
AV = 6dB
AV = 12dB
AV = 15.5dB
AV = 6dB
AV = 12dB
AV = 15.5dB
4.5
0
09959-012
5.0
0
09959-008
0
10M
09959-011
12
OIP3 (dBm)
NOISE FIGURE (dB)
14
–60
–80
20
–100
10
50
100
150
200
250
300
FREQUENCY (MHz)
350
400
450
500
–140
Figure 11. Output Third-Order Intercept (OIP3) at Three Gains,
Output Level at 2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
0
50
100
150
200
250
300
FREQUENCY (MHz)
350
400
450
500
09959-013
0
09959-010
0
–120
Figure 14. Output IMD3 vs. Frequency, Output Level at 2 V p-p Composite,
RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
Rev. 0 | Page 12 of 28
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
5V, –40°C
5V, +25°C
5V, +85°C
5V, +100°C
–20
HD2 (dBc)
–60
–80
0
–60
–20
–80
–40
–100
–60
–120
–80
–100
–140
–120
–160
–140
0
50
100
150
200
250
300
350
400
450
500
FREQUENCY (MHz)
–180
09959-014
IMD3 (dBm)
–40
–40
50
100
150
200
250
300
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
350
5V, –40°C
5V, +25°C
5V, +85C
5V, +100°C
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
400
450
–100
–120
–140
500
Figure 18. Harmonic Distortion (HD2/HD3) vs. Frequency, Over Temperature,
Output Level at 2 V p-p Composite, RL = 200 Ω, AV = 6 dB, VPOS = 3.3 V and
VPOS = 5 V, Four Temperatures
–60
AV = 5.3dB
AV = 10.3dB
AV = 13dB
50
0
5V, –40°C
5V, +25°C
5V, +85°C
5V, +100°C
3.3V, –40°C
3.3V, +25°C
3.3V, +85°C
3.3V, +100°C
FREQUENCY (MHz)
Figure 15. IMD3 vs. Frequency, Over Temperature, Output Level at
2 V p-p Composite, RL = 200 Ω, AV = 6 dB, VPOS = 3.3 V and VPOS = 5 V,
Four Temperatures
55
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
09959-017
0
HD3 (dBc)
ADL5565
0
3.3V, HD2
5V, HD2
3.3V, HD3
5V, HD3
–80
–20
–100
–40
–120
–60
–140
–80
–160
–100
–180
–120
35
30
50
100
150
200
250
FREQUENCY (MHz)
–200
–6
–80
–40
–100
–60
–120
–80
–140
–100
–180
0
50
100
150
200
250
300
FREQUENCY (MHz)
HD3,
HD3,
HD3,
HD3,
HD3,
HD3,
350
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
400
450
2
4
6
8
–140
10
5V
5V
3.3V
3.3V
–40
–60
–80
–100
–120
–140
500
HD2,
HD3,
HD2,
HD3,
–20
HD2 AND HD3 (dBc)
–20
HD3 (dBc)
–60
0
09959-016
HD2 (dBc)
0
3.3V, AV = 6dB
3.3V, AV = 12dB
3.3V, AV = 15.5dB
5V, AV = 6dB
5V, AV = 12dB
5V, AV = 15.5dB
0
Figure 19. Harmonic Distortion vs. Output Power per Tone,
Frequency = 100 MHz, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
–40
HD2,
HD2,
HD2,
HD2,
HD2,
HD2,
–2
POUT/TONE (dBm)
Figure 16. Single-Ended OIP3 vs. Frequency
–160
–4
Figure 17. Harmonic Distortion (HD2/HD3) vs. Frequency,
Output Level at 2 V p-p Composite, RL = 200 Ω, VPOS = 3.3 V and VPOS = 5 V
Rev. 0 | Page 13 of 28
–120
1.0
1.5
2.0
2.5
VCOM
Figure 20. Harmonic Distortion (HD2/HD3) vs. VCOM,
AV = 6 dB, VPOS = 3.3 V and VPOS = 5 V
3.0
09959-019
0
09959-015
25
HD3 (dBc)
40
09959-018
HD2 (dBc)
OIP3 (dBm)
45
ADL5565
90
HD2 AV = 5.3dB
HD2 AV = 10.3dB
HD2 AV = 13dB
HD3 AV = 5.3dB
HD3 AV = 10.3dB
HD3 AV = 13dB
–65
–70
80
70
–75
–80
–85
50
40
–90
30
–95
20
–100
10
–105
0
50
100
150
200
250
300
0
10
FREQUENCY (MHz)
100
09959-021
CMRR (dB)
60
09959-020
1000
FREQUENCY (MHz)
Figure 21. Single-Ended Harmonic Distortion (HD2/HD3) vs. Frequency,
Figure 24. Common-Mode Rejection Ratio (CMRR) vs. Frequency
3.5
GROUP DELAY (ns)
3.0
3
1
2.5
2.0
1.5
1.0
50Ω
B
W
8:0G
25GS/s
2ns/DIV
A CH3
832mV
0
0
500
100
1500
2000
2500
3000
FREQUENCY (MHz)
Figure 22. ENBL Time Domain Response
09959-024
CH3 400mV/DIV
CH1 70.4mV
09959-022
0.5
Figure 25. Group Delay vs. Frequency
0
REVERSE ISOLATION (dB)
–10
1
–20
–30
–40
–50
–60
CH1 340mV
CH2 1.025V
25GS/s
2ns/DIV
A CH2
10mV
09959-023
–70
–80
10
100
1000
FREQUENCY (GHz)
Figure 23. Large Signal Pulse Response, AV = 15.5 dB
Figure 26. Reverse Isolation (S12) vs. Frequency AV = 6 dB
Rev. 0 | Page 14 of 28
09959-025
HARMONIC DISTORTION HD2, HD3 (dBc)
–60
45
600
40
500
35
400
30
300
25
200
20
100
15
0
10
100
1000
10
FREQUENCY (MHz)
80
5V
7
90
6
75
5
60
4
45
3
30
2
15
0
10
1
RS
100
1000
FREQUENCY (MHz)
0
09959-128
8
105
EQUIVALENT SERIES OUTPUT INDUCTANCE (nH)
EQUIVALENT SERIES OUTPUT RESISTANCE (Ω)
120
9
LS
60
–40
–20
0
20
40
60
80
TEMPERATURE (°C)
Figure 29. ISUPPLY vs. Temperature, RL = 200 Ω, AV = 6 dB,
VPOS = 3.3 V and VPOS = 5 V
10
135
3.3V
70
65
Figure 27. S11 Equivalent RLC Parallel Network, AV = 6 dB
150
75
Figure 28. S22 Equivalent RLC Parallel Network, AV = 6 dB
Rev. 0 | Page 15 of 28
100
09959-027
700
85
ISUPPLY (mA)
50
EQUIVALENT PARALLEL INPUT CAPACITANCE (pF)
800
09959-026
EQUIVALENT PARALLEL INPUT RESISTANCE (Ω)
ADL5565
ADL5565
CIRCUIT DESCRIPTION
BASIC STRUCTURE
The ADL5565 is a low noise, fully differential amplifier/ADC
driver that can operate from 2.8 V to 5.2 V. It provides three
gain options, 6 dB, 12 dB, and 15.5 dB, without the need for
external resistors and has wide bandwidths of greater than 6
GHz for all gains. Differential input impedance is 200 Ω for 6
dB, 100 Ω for 12 dB, and 67 Ω for 15.5 dB. It has a differential
output impedance of 10 Ω.
0.1µF
200Ω
+
1/
2
VIP2
RS
5Ω
50Ω
VIP1 100Ω
1/
2
RL
VIN1 100Ω
VIN2
RS
50Ω
5Ω
200Ω
+
0.1µF
09959-032
AC
Figure 30. Basic Structure
The ADL5565 is composed of a fully differential amplifier with
on-chip feedback and feed forward resistors. The two feedforward
resistors on each input set this pin-strappable amplifier in three
different gain configurations of 6 dB, 12 dB, and 15.5 dB, and by
using two external resistors, any gain from 0 dB to 15.5 dB can be
realized. The amplifier is designed to provide high differential
open-loop gain and an output common-mode circuit that enables
the user to change the common-mode voltage from the VCOM
pin. The amplifier is designed to provide superior low distortion at
frequencies up to and beyond 300 MHz with low noise and low
power consumption from a 3.3 V power supply at 70 mA.
The ADL5565 is very flexible in terms of I/O coupling. It can be
ac-coupled or dc-coupled at the inputs and/or the outputs within
the specified input and output common-mode levels. The input
of the device can be configured as single-ended or differential
with similar third-order distortion performance. Due to the
internal connections between the inputs and outputs, an output
common-mode voltage between 1.4 V and 1.8 V at 3.3 V and
1.4 V to 3 V at 5 V must be maintained for the best distortion.
For a dc-coupled input, the input common mode should be
between 1.2 V and 2 V at the 3.3 V supply, and 1.2 V to 3.8 V at
the 5 V supply. The device has been characterized using 2 V p-p
into a 200 Ω ac-coupled output. If the inputs are ac-coupled, the
input and output common-mode voltages are set by VCC/2 when
no external circuitry is used. The ADL5565 provides an output
common-mode voltage set by VCOM, which allows driving an
ADC directly without external components. Although distortion is
similar over the specified frequency range at both 3.3 V and 5 V,
lower distortion results on the 5 V supply for signal swings larger
than 2 V p-p.
Rev. 0 | Page 16 of 28
ADL5565
APPLICATIONS INFORMATION
is applied to VIN2, the gain is 12 dB (middle gain). When Input A
is applied to both VIP1 and VIP2 and Input B is applied to both
VIN1 and VIN2, the gain is 15.5 dB (maximum gain).
BASIC CONNECTIONS
Figure 31 shows the basic connections for operating the
ADL5565. Apply a voltage between 3 V and 5 V to the VCC pins,
and decouple each supply pin with at least one low inductance,
0.1 μF surface-mount ceramic capacitor, placed as close as
possible to the device. Also, decouple the VCOM pin (Pin 9)
using a 0.1 μF capacitor.
Pin 1 to Pin 4, Pin 10, and Pin 11 are biased at 1/2 VCC above
ground and can be dc-coupled (if within the specified input or
output common-mode voltage levels) or ac-coupled as shown in
Figure 31.
To enable the ADL5565, the ENBL pin must be pulled high.
Pulling the ENBL pin low puts the ADL5565 in sleep mode,
reducing the current consumption to 5 mA at ambient.
The gain of the part is determined by the pin-strappable input
configuration. When Input A is applied to VIP1 and Input B is
applied to VIN1, the gain is 6 dB (minimum gain, see Equation 1
and Equation 2). When Input A is applied to VIP2 and Input B
VCC
RS/2
0.1µF
15
GND
14
GND
2 VIP1
AC
13
GND
ENBL 12
VOP 11
ADL5565
3 VIN1
0.1µF B
VCOM 9
4 VIN2
VCC
5
VCC
10µF
0.1µF
RL
BALANCED
LOAD
VON 10
VCC
6
0.1µF
VCC
7
0.1µF
Figure 31. Basic Connections
Rev. 0 | Page 17 of 28
VCC
8
0.1µF
0.1µF
09959-033
A
RS/2
BALANCED
SOURCE
16
GND
1 VIP2
ADL5565
INPUT AND OUTPUT INTERFACING
Single-Ended Input to Differential Output
The ADL5565 can be configured as a differential input to
differential output driver, as shown in Figure 32. The resistors,
R1 and R2, combined with the ETC1-1-13 balun transformer,
provide a 50 Ω input match for the three input impedances that
change with the variable gain strapping. The input and output
0.1 μF capacitors isolate the VCC/2 bias from the source and
balanced load. The load should equal 200 Ω to provide the
expected ac performance (see the Specifications section and the
Typical Performance Characteristics section).
The ADL5565 can also be configured in a single-ended input
to differential output driver, as shown in Figure 34. In this
configuration, the gain of the part is reduced due to the application
of the signal to only one side of the amplifier. The strappable
gain values are listed in Table 7 with the required terminations
to match to a 50 Ω source using R1 and R2. The input and output
0.1 μF capacitors isolate the VCC/2 bias from the source and the
balanced load. The performance for this configuration is shown
in Figure 16 and Figure 21.
3V TO 5V
3V TO 5V
0.1µF
0.1µF
VIN2
+
RL
2
R2
VIN1
B
AC
+
R1
VIP1
+
0.1µF
VIN2
RL
2
RL
2
+
AC
50Ω
VIN1
B
RL
2
0.1µF
VIP2
A
+
0.1µF
0.1µF
+
+
VIP1
R2
50Ω
0.1µF
VIP2
A
+
ETC1-1-13
0.1µF
R1
Figure 32. Differential Input to Differential Output Configuration
Table 5. Differential Termination Values for Figure 32
R1 (Ω)
29
33
40.2
Figure 34. Single-Ended Input to Differential Output Configuration
R2 (Ω)
29
33
40.2
Table 7. Single-Ended Termination Values for Figure 34
The differential gain of the ADL5565 is dependent on the source
impedance and load, as shown in Figure 33.
0.1µF
R1 (Ω)
30
30
30
+
5Ω
50Ω
200Ω
VIP1 100Ω
VIN1 100Ω
0.1µF
50Ω
5Ω
200Ω
RS
R2
+
VIN2
+
(1)
In Equation 1, RG is the gain setting resistor (see Figure 1).
Table 6. Values of RG for Differential Gain
Gain (dB)
6
12
15.5
RG (Ω)
100
50
33.5
Rev. 0 | Page 18 of 28
50Ω
5Ω
0.1µF
RL
2
RL
2
+
RL
200
×
RG 10 + R L
0.1µF
VIN1 100Ω
Figure 33. Differential Input Loading Circuit
AV =
VIP1 100Ω
AC
The differential gain can be determined using the following
formula. The values of RG for each gain configuration are shown
in Table 6.
5Ω
50Ω
+
VIN2
VIP2
0.1µF
+
1/ R
2 S
RL
09959-035
AC
R2 (Ω)
73
104
154
The single-ended gain configuration of the ADL5565 is dependent
on the source impedance and load, as shown in Figure 35.
200Ω
VIP2
1/ R
2 S
Gain (dB)
5.3
10.3
13
0.1µF
200Ω
R1
Figure 35. Single-Ended Input Loading Circuit
09959-037
Gain (dB)
6
12
15.5
09959-036
NOTES
1. FOR 5.3dB GAIN (AV = 1.84), CONNECT INPUT A TO VIP1
AND INPUT B TO VIN1.
2. FOR 10.3dB GAIN (AV = 3.3), CONNECT INPUT A TO VIP2
AND INPUT B TO VIN2.
3. FOR 13dB GAIN (AV = 4.5), CONNECT INPUT A TO BOTH
VIP1 AND VIP2 AND INPUT B TO BOTH VIN1 AND VIN2.
09959-034
NOTES
1. FOR 6dB GAIN (AV = 2), CONNECT INPUT A TO VIP1 AND INPUT B TO VIN1.
2. FOR 12dB GAIN (AV = 4), CONNECT INPUT A TO VIP2 AND INPUT B TO VIN2.
3. FOR 15.5dB GAIN (AV = 6), CONNECT INPUT A TO BOTH VIP1 AND VIP2
AND INPUT B TO BOTH VIN1 AND VIN2.
ADL5565
The necessary shunt component, RSHUNT, to match to the source
impedance, RS, can be expressed as
The single-ended gain can be determined using the following
formula. The values of RG and RX for each gain configuration
are shown in Table 8.
R + RS
RL
R2
200
AV 1 =
×
× X
×
RX
10 + R L
⎛ R S × R2 ⎞ R S + R 2
⎟
RG + ⎜⎜
⎟
⎝ R S + R2 ⎠
RSHUNT =
(2)
The insertion loss and the resultant power gain for multiple
shunt resistor values are summarized in Table 9. The source
resistance and input impedance need careful attention when
using Equation 3, Equation 4, and Equation 5. The reactance
of the input impedance of the ADL5565 and the ac coupling
capacitors must be considered before assuming that they make
a negligible contribution.
Table 8. Values of RG and RX for Single-Ended Gain
RG (Ω)1
100
50
33.5
1
2
RX (Ω)
R2 || 1582
R2 || 962
R2 || 742
RG is the gain setting resistor (see Figure 1).
These values are based on a 50 Ω input match.
Table 9. Differential Gain Adjustment Using Series Resistor
GAIN ADJUSTMENT AND INTERFACING
The effective gain of the ADL5565 can be reduced using a number
of techniques. A matched attenuator network can reduce the
effective gain; however, this requires the addition of a separate
component that can be prohibitive in size and cost. Instead, a
simple voltage divider can be implemented using the combination
of additional series resistors at the amplifier input and the input
impedance of the ADL5565, as shown in Figure 36. A pair of
resistors is used to match to the impedance of the previous stage.
AC
1/ R
2 S
0.1µF 1/2 RSERIES
1/
2
VIN1
VIN2
RSHUNT
0.1µF 1/2 RSERIES
VIP1
ADL5565
VIP2
1/ R
2 SHUNT
09959-038
1/ R
2 S
Figure 36. Gain Adjustment Using a Series Resistor
Figure 36 shows a typical implementation of the divider concept
that effectively reduces the gain by adding attenuation at the
input. For frequencies less than 100 MHz, the input impedance
of the ADL5565 can be modeled as a real 66 Ω, 100 Ω, or 200 Ω
resistance (differential) for maximum, middle, and minimum
gains, respectively. Assuming that the frequency is low enough
to ignore the shunt reactance of the input and high enough so
that the reactance of moderately sized ac coupling capacitors
can be considered negligible, the insertion loss, Il, due to the
shunt divider can be expressed as
⎛
RG
Il(dB) = 20 log ⎜⎜
R
⎝ SERIES + RG
(5)
In Equation 5, RG is the gain setting resistor (see Figure 1).
In Equation 2, RG is the gain setting resistor (see Figure 1).
Gain (dB)
5.3
10.3
13
1
1
1
−
RS RSERIES + RG
⎞
⎟
⎟
⎠
Gain
(dB)
01
11
21
31
41
51
61
72
82
92
102
112
122
133
143
15.53
1
RS (Ω)
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
Differential
RSERIES (Ω)
200
154
118
84.5
52.3
24.9
0
78.7
59
42.2
26.7
12.7
0
23.7
13.7
0
Differential
RSHUNT (Ω)5
57.6
57.6
59
60.4
61.9
64.9
66.5
69.8
73.2
76.8
82.5
88.7
100
113
133
200
Amplifier is configured for 6 dB gain setting.
Amplifier is configured for 12 dB gain setting.
Amplifier is configured for 15.5 dB gain setting.
4
RG is the gain setting resistor (see Figure 1).
5
The resistor values are rounded to the nearest real resistor value.
2
3
(3)
In Equation 3, RG is the gain setting resistor (see Figure 1).
Adjusted Gain (dB) =
6 dB, 12 dB, or 15.5 dB Gain – Il (dB)
Differential
RG (Ω)4
200
200
200
200
200
200
200
100
100
100
100
100
100
66.7
66.7
66.7
(4)
Rev. 0 | Page 19 of 28
ADL5565
ADC INTERFACING
Applying a full-scale, single-tone signal from the ADL5565, an
SFDR of 89.2 dBc is realized (see Figure 37). Applying two halfscale signals from the ADL5565 in a gain of 6 dB, an SFDR of
87.5 dBc is achieved at 100 MHz (see Figure 38). The bandwidth
of the circuit in Figure 40 is shown in Figure 39.
0
–30
FUNDAMENTAL1 = –7.078dBFS
FUNDAMENTAL2 = –7.169dBFS
IMD (2f1 – f2) = –88.237dBc
IMD (2f2 + f1) = –91.37dBc
NOISE FLOOR = –115.96dB
AMPLITUDE (dBFS)
–30
–45
–60
–75
–90
F1 – F2
–105
2F1 – F2
2F2 – F1
2F2 – 2F1
2F1 – 2F2
F2 – F1
–120
–150
0
15
30
45
60
75
90
105
120
FREQUENCY (MHz)
09959-041
–135
Figure 38. Measured Two-Tone Performance of the Circuit in Figure 40 for a
100 MHz Input Signal
0
–1
GAIN = 6dB
SNR = 69.44dBc
SFDR = 89.2dBc
SECOND = –85.1dBc
THIRD = –89.3dBc
NOISE FLOOR = –115.7dB
–15
–45
–60
–2
–3
–4
–90
2
+
5
4
–105
–5
3
6
200
100
300
400
500
FREQUENCY (MHz)
–120
Figure 39. Measured Frequency Response of the Wideband
ADC Interface Depicted in Figure 40
–135
0
15
30
45
60
75
90
105
120
FREQUENCY (MHz)
The wideband frequency response is an advantage in broadband applications, such as predistortion receiver designs and
instrumentation applications. However, by designing for a wide
analog input frequency range, the cascaded SNR performance is
somewhat degraded due to high frequency noise aliasing into
the wanted Nyquist zone.
Figure 37. Measured Single-Tone Performance of the
Circuit in Figure 40 for a 100 MHz Input Signal
0.1µF B
VIN1
VIN2
VOP
0.1µF
ADL5565
VON
0.1µF
+
40Ω
VIP1
33Ω
+
40Ω
VIP2
+
AC
0.1µF A
ETC1-1-13
+
50Ω
VIN+
AD9467
33Ω
VIN–
Figure 40. Wideband ADC Interfacing Example Featuring the AD9467
Rev. 0 | Page 20 of 28
16
16-BIT ADC
09959-039
–150
0
09959-042
–75
09959-049
AMPLITUDE (dBFS)
0
–15
NORMALIZED (dBFS)
The ADL5565 is a high output linearity amplifier that is optimized
for ADC interfacing. There are several options available to the
designer when using the ADL5565. Figure 40 uses a wideband
1:1 transmission line balun followed by two 40 Ω resistors in
parallel with the three input impedances (which change with
the gain selection of the ADL5565) to provide a 50 Ω differential
impedance and provides a wideband match to a 50 Ω source.
The ADL5565 is ac-coupled from the AD9467 to avoid commonmode dc loading. The 33 Ω resistors improve the isolation between
the ADL5565 and any switching currents present at the analogto-digital, sample-and-hold circuitry. The AD9467 input presents a
530 Ω differential load impedance and requires a 2 V to 2.5 V
differential input swing to reach full scale (VREF = 1 V to 1.25 V).
This circuit provides variable gain, isolation, and source
matching for the AD9467.
ADL5565
capacitance and a portion of the capacitance presented by C4 to
form a resonant tank circuit. The resonant tank helps to ensure
that the ADC input looks like a real resistance at the target center
frequency. The inductor, L5, shorts the ADC inputs at dc, which
introduces a zero into the transfer function. In addition, the ac
coupling capacitors introduce additional zeros into the transfer
function. The final overall frequency response takes on a bandpass characteristic, helping to reject noise outside of the intended
Nyquist zone. Table 10 provides initial suggestions for prototyping purposes. Some empirical optimization may be needed
to help compensate for actual PCB parasitics.
By designing a narrow band-pass antialiasing filter between the
ADL5565 and the target ADC, the output noise of the ADL5565
outside of the intended Nyquist zone can be attenuated, helping
to preserve the available SNR of the ADC. In general, the SNR
improves several decibels when including a reasonable order antialiasing filter. In this example, a low loss 1:1 input transformer is
used to match the ADL5565 balanced input to a 50 Ω unbalanced
source, resulting in minimum insertion loss at the input.
Figure 41 is optimized for driving some of Analog Devices popular
ADCs, such as the AD9467. Table 10 includes antialiasing filter
component recommendations for popular IF sampling frequencies.
Inductor L5 works in parallel with the on-chip ADC input
1nF 4Ω
L1
L3
105Ω
C2
1nF 4Ω
L1
C4
L3
CML
L5
AD9467
09959-043
ADL5565
105Ω
Figure 41. Narrow-Band IF Sampling Solution for an ADC Application
Table 10. Interface Filter Recommendations for Various IF Sampling Frequencies
Center Frequency (MHz)
96
140
170
211
1 dB Bandwidth (MHz)
30
40
32
33
L1 (nH)
3.3
3.3
3.3
3.3
Rev. 0 | Page 21 of 28
C2 (pF)
47
47
56
47
L3 (nH)
27
27
27
27
C4 (pF)
75
27
18
15
L5 (nH)
82
150
120
51
ADL5565
LAYOUT CONSIDERATIONS
many board designs, the signal trace widths should be minimal
where the driver/receiver is no more than one-eighth of the
wave-length from the amplifier. This nontransmission line
configuration requires that underlying and adjacent ground and
low impedance planes be dropped from the signal lines.
High-Q inductive drives and loads, as well as stray transmission
line capacitance in combination with package parasitics, can
potentially form a resonant circuit at high frequencies, resulting
in excessive gain peaking or possible oscillation. If RF transmission
lines connecting the input or output are used, design them such
that stray capacitance at the input/output pins is minimized. In
R3
R1
0.1µF
R4
ETC1-1-13
VIP2
0.1µF
VIP1
VOP
R9
R7
ETC1-1-13
ADL5565
R5
VIN1
0.1µF
R6
VON
0.1µF
R10
VIN2
09959-044
R2
SPECTRUM
ANALYZER
R8
Figure 42. General-Purpose Characterization Circuit
Table 11. Gain Setting and Input Termination Components for Figure 42
AV (dB)
6
12
15.5
R1 (Ω)
29
33
40.2
R2 (Ω)
29
33
40.2
R3 (Ω)
Open
0
0
R4 (Ω)
0
Open
0
R9 (Ω)
34.8
R10 (Ω)
34.8
R5 (Ω)
0
Open
0
R6 (Ω)
Open
0
0
Table 12. Output Matching Network for Figure 42
RL (Ω)
200
R7 (Ω)
84.5
R8 (Ω)
84.5
R3
R1
R4
PORT 1
VIP2
VIP1
R9
VOP
R7
PORT 2
ADL5565
R8
R5
VIN1
R2
R6
VON
PORT 4
R10
VIN2
09959-045
PORT 3
Figure 43. Differential Characterization Circuit Using Agilent E8357A Four-Port PNA
Table 13. Gain Setting and Input Termination Components for Figure 43
AV (dB)
6
12
15.5
R1 (Ω)
100
Open
Open
R2 (Ω)
100
Open
Open
R3 (Ω)
Open
0
0
R4 (Ω)
0
Open
0
R9 (Ω)
Open
R10 (Ω)
Open
Table 14. Output Matching Network for Figure 43
RL (Ω)
200
R7 (Ω)
50
R8 (Ω)
50
Rev. 0 | Page 22 of 28
R5 (Ω)
0
Open
0
R6 (Ω)
Open
0
0
ADL5565
Likewise, driving Input 2 (VIN2 and VIP2) realizes the middle
gain (12 dB into a 200 Ω load) by installing 0 Ω at R5 and R6
and leaving R3 and R4 open. R1 and R2 must be 50 Ω for a
50 Ω input impedance.
SOLDERING INFORMATION
On the underside of the chip-scale package, there is an exposed
compressed paddle. This paddle is internally connected to the
ground of the chip. Solder the paddle to the low impedance
ground plane on the PCB to ensure the specified electrical
performance and to provide thermal relief. To further reduce
thermal impedance, it is recommended that the ground planes
on all layers under the paddle be stitched together with vias.
For the maximum gain (15.5 dB into a 200 Ω load), both inputs
are driven by installing 0 Ω resistors at R3, R4, R5, and R6. R1
and R2 are open for a 50 Ω input impedance.
The balanced input and output interfaces are converted to
single ended with a pair of baluns (M/A-COM ETC1-1-13).
The balun at the input, T1, provides a 50 Ω single-ended-todifferential transformation. The output balun, T2, and the
matching components are configured to provide a 200 Ω to 50 Ω
impedance transformation with an insertion loss of about 11 dB.
EVALUATION BOARD
Figure 44 shows the schematic of the ADL5565 evaluation board.
The board is powered by a single supply in the 3 V to 5 V range.
The power supply is decoupled by 10 μF and 0.1 μF capacitors.
Table 15 details the various configuration options of the evaluation
board. Figure 45 and Figure 46 show the component and circuit
side layouts of the evaluation board.
As an alternative, the input transformer, T1, can be replaced with
one of the following transformers to provide a low loss balanced
input to the ADL5565.
To realize the minimum gain (6 dB into a 200 Ω load), Input 1
(VIN1 and VIP1) must be used by installing 0 Ω resistors at R3
and R4, leaving R5 and R6 open. R1 and R2 must be 33.2 Ω for
a 50 Ω input impedance.
•
6 dB gain configuration, Mini-Circuits TC4-1W+
•
12 dB gain configuration, Mini-Circuits, TC2-1T+
•
15.5 dB gain configuration, Mini-Circuits TC1.5-52T
When using these alternative transformers, R1 and R2 are left
open. Replace C1 and C2 with 0 Ω jumpers and add a 0.1 μF
capacitor to C12.
GND
J1
R1
OPEN
C12
OPEN
R12
OPEN
C2
0.01µF
R2
OPEN
R3
0Ω
R4
0Ω
R6
0Ω
J2
OPEN
VPOS
R13
0Ω
R5
0Ω
C3
10µF
15
14
13
GND
GND
GND
GND
1
VIP2
ENBL 12
2
VIP1
VOP 11
3
VIN1
ADL5565
4
VIN2
VCC
5
VON 10
VCC
6
VCOM 9
VCC VCC
7
ENBL
VPOS
P1
AGND
C9
0.01µF
C10
0.01µF
8
C5
0.1µF
C6
0.1µF
R9
34.8Ω
R8
84.5Ω
R10
34.8Ω
C11
0.1µF
C7
0.1µF
Figure 44. Evaluation Board Schematic
Rev. 0 | Page 23 of 28
T2
R7
84.5Ω
VCOM
C4
0.1µF
C8
0.1µF
R11
OPEN
C13
OPEN
R15
OPEN
J3
J4
OPEN
R14
0Ω
09959-046
C1
0.01µF
T1
16
ADL5565
Table 15. Evaluation Board Configuration Options
Component
VPOS, GND
C3, C4, C5,
C6, C7, C11
J1, J2, R1, R2,
R3, R4, R5, R6,
R12, R13, C1,
C2, C12, T1
J3, J4, R7, R8,
R9, R10, R11,
R14, R15 C9,
C10, C13, T2
ENBL, P1, C8
Description
Ground and supply vector pins.
Power supply decoupling. The supply decoupling consists of a 10 μF capacitor (C3) to
ground. C4 to C7 are bypass capacitors. C11 ac couples VREF to ground.
Input interface. The SMA labeled J1 is the input. T1 is a 1-to-1 impedance ratio balun
to transform a single-ended input into a balanced differential signal. Removing R13,
installing R12 (0 Ω), and installing an SMA connector (J2) allows driving from a
differential source. C1 and C2 provide ac coupling. C12 is a bypass capacitor. R1 and
R2 provide a differential 50 Ω input termination. R3 to R6 are used to select the input
for the pin-strappable gain. The maximum gain is R3, R4, R5, R6 = 0 Ω and R1 and R2 =
open. The middle gain is R5 and R6 = 0 Ω, R3 and R4 = open, and R1 and R2 = 50 Ω. The
minimum gain is R3 and R4 = 0 Ω, R5 and R6 = open, and R1 and R2 = 33.2 Ω.
Output interface. The SMA labeled J3 is the output. T2 is a 1-to-1 impedance ratio balun
to transform a balanced differential signal to a single-ended signal. Removing R14,
installing R15 (0 Ω), and installing an SMA connector (J4) allows differential loading. C13 is
a bypass capacitor. R7, R8, R9, and R10 are provided for generic placement of matching
components. The evaluation board is configured to provide a 200 Ω to 50 Ω impedance
transformation with an insertion loss of 17 dB. C9 and C10 provide ac coupling.
Device enabled. C8 is a bypass capacitor. When the P1 jumper is set toward the VPOS label,
the ENBL pin is connected to the supply, enabling the device. In the opposite direction,
toward the GND label, the ENBL pin is grounded, putting the device in power-down mode.
Default Condition
VPOS, GND = installed
C3 = 10 μF (Size D),
C4, C5, C6, C7, C11 = 0.1 μF (Size 0402)
J1 = installed, J2 = not installed,
R1, R2 = open,
R3, R4, R5, R6, R13 = 0 Ω (Size 0402),
R12, = open,
C1, C2 = 0.01 μF (Size 0402),
C12 = open,
T1 = ETC1-1-13 (M/A-COM)
J3 = installed, J4 = not installed,
R7, R8 = 84.5 Ω (Size 0402),
R9, R10 = 34.8 Ω (Size 0402),
R11, R15 = open (Size 0402),
R14 = 0 Ω (Size 0402)
C9, C10 = 0.01 μF (Size 0402),
C13 = open
T2 = ETC1-1-13 (M/A-COM)
ENBL, P1 = installed,
C8 = 0.1 μF (Size 0402)
Table 16. Differential Values for Figure 44
Gain (dB)
6
12
15.5
R1 (Ω)
29
33
Open
R2 (Ω)
29
33
Open
Table 17. Alternative Differential Input Configuration for Figure 44
Gain (dB)
6
12
15.5
R1 and R2 (Ω)
Open
Open
Open
C12 (μF)
0.1
0.1
0.1
C1 and C2 (Ω)
0
0
0
Rev. 0 | Page 24 of 28
T1
Mini Circuits TC4-1W+
Mini Circuits TC2-1T+
Mini Circuits TC1.5-52T+
Figure 45. Layout of Evaluation Board, Component Side
09959-048
09959-047
ADL5565
Figure 46. Layout of Evaluation Board, Circuit Side
Rev. 0 | Page 25 of 28
ADL5565
OUTLINE DIMENSIONS
PIN 1
INDICATOR
0.30
0.25
0.20
0.50
BSC
PIN 1
INDICATOR
16
13
1
12
1.65
1.50 SQ
1.45
EXPOSED
PAD
9
TOP VIEW
0.80
0.75
0.70
0.50
0.40
0.30
4
8
BOTTOM VIEW
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
SEATING
PLANE
5
0.20 MIN
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-229.
091609-A
3.10
3.00 SQ
2.90
Figure 47. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
3 mm × 3 mm Body, Very Very Thin Quad
(CP-16-27)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5565ACPZ-R7
ADL5565-EVALZ
1
Temperature Range
−40°C to + 85°C
Package Description
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ], 7” Tape and Reel
Evaluation Board
Z = RoHS Compliant Part
Rev. 0 | Page 26 of 28
Package Option
CP-16-27
ADL5565
NOTES
Rev. 0 | Page 27 of 28
ADL5565
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09959-0-10/11(0)
Rev. 0 | Page 28 of 28