MAXIM MAX4119ESD

19-0440; Rev 2; 4/97
KIT
ATION
EVALU
E
L
B
A
AVAIL
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
____________________________Features
♦ 400MHz -3dB Bandwidth (MAX4112/MAX4117)
270MHz -3dB Bandwidth (MAX4113/MAX4119)
300MHz -3dB Bandwidth (MAX4118/MAX4120)
♦ 0.1dB Gain Flatness to 115MHz
♦ 1200V/µs Slew Rate
(MAX4112/MAX4117/MAX4119)
1800V/µs Slew Rate
(MAX4113/MAX4118/MAX4120)
♦ 280MHz Full-Power Bandwidth
(VO = 2Vp-p, MAX4112/MAX4117)
240MHz Full-Power Bandwidth
(VO = 2Vp-p, MAX4113/MAX4118/MAX4120)
♦ High Output Drive: 80mA
♦ Low Power: 5mA Supply Current per Channel
________________________Applications
______________Ordering Information
Broadcast and High-Definition TV Systems
RGB Video
Pulse/RF Amplifier
Ultrasound/Medical Imaging
Active Filters
High-Speed ADC Buffers
Professional Cameras
PART
TEMP. RANGE
PIN-PACKAGE
MAX4112ESA
-40°C to +85°C
8 SO
MAX4112EUA
-40°C to +85°C
8 µMAX*
MAX4113ESA
-40°C to +85°C
8 SO
MAX4117ESA
-40°C to +85°C
8 SO
MAX4118ESA
-40°C to +85°C
8 SO
Ordering Information continued at end of data sheet.
*Contact factory for µMAX package availability.
High-Definition Surveillance
__________________________________________________________Pin Configurations
TOP VIEW
N.C. 1
IN- 2
MAX4119
MAX4120
MAX4112
MAX4113
8
N.C. OUTA 1
7
VCC
INA- 2
IN+ 3
6
OUT INA+
VEE 4
5
N.C.
SO/µMAX
MAX4117
MAX4118
8
VCC
7
OUTB
3
6
INB-
VEE 4
5
INB+
SO
MAX4119
MAX4120
OUTA 1
14 OUTD
OUTA 1
16 OUTD
INA- 2
13 IND-
INA- 2
15 IND-
INA+ 3
12 IND+
INA+ 3
14 IND+
VCC 4
11 VEE
VCC 4
13 VEE
INB+ 5
10 INC+
INB+ 5
12 INC+
INB- 6
9
INC-
INB- 6
11 INC-
OUTB 7
8
OUTC
OUTB 7
10 OUTC
N.C. 8
9
N.C.
SO
QSOP
________________________________________________________________ Maxim Integrated Products
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800
MAX4112/MAX4113/MAX4117–MAX4120
_______________General Description
The single MAX4112/MAX4113, dual MAX4117/
MAX4118, and quad MAX4119/MAX4120 current feedback amplifiers combine high-speed performance with
low-power operation. The MAX4112/MAX4117/
MAX4119 are optimized for closed-loop gains of 2V/V
or greater, while the MAX4113/MAX4118/MAX4120 are
optimized for gains of 8V/V or greater.
The MAX4112/MAX4117/MAX4119 and the MAX4113/
MAX4118/MAX4120 require only 5mA of supply current
per channel, and deliver 0.1dB gain flatness up to 115MHz
and -3db bandwidths of 400MHz (AV ≥ 2V/V) and 300MHz
(AV ≥ 8V/V), respectively. Their high slew rates of up to
1800V/µs provide exceptional full-power bandwidths up
to 280MHz, making these amplifiers ideal for high-performance pulse and RGB video applications.
These high-speed op amps have a wide output voltage
swing of ±3.5V into 100Ω and a high current-drive
capability of 80mA.
MAX4112/MAX4113/MAX4117–MAX4120
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
ABSOLUTE MAXIMUM RATINGS
Power-Supply Voltage (VCC to VEE).......................................12V
Input Voltage (IN_+, IN_-) ...................(VCC + 0.3V) to (VEE - 0.3V)
IN_ _ Current (Note 1) ......................................................±10mA
Short-Circuit Duration (VOUT to GND)
VIN < 1.5V ...............................................................Continuous
VIN > 1.5V ..........................................................................0sec
Continuous Power Dissipation (TA = +70°C)
8-Pin SO (derate 5.88mW/°C above +70°C).................471mW
8-Pin µMAX (derate 4.10mW/°C above +70°C) ............330mW
14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW
16-Pin QSOP (derate 9.52mW/°C above +70°C)..........762mW
Operating Temperature Range
MAX41_ _E_ _ ...................................................-40°C to +85°C
Storage Temperature Range .............................-65°C to +160°C
Lead Temperature (soldering, 10sec) .............................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VCC = +5V, VEE = -5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
8
UNITS
DC SPECIFICATIONS (RL = ∞, unless otherwise noted)
Input Offset Voltage
Input Offset Voltage Drift
VOS
VOUT = 0V
1
TCVOS
VOUT = 0V
10
Positive Input Bias Current
IB+
VOUT = 0V, VIN = -VOS
3.5
20
Negative Input Bias Current
IB-
VOUT = 0V, VIN = -VOS
3.5
20
IN+
500
Input Resistance
Input Voltage Noise
Integrated Voltage Noise
Positive Input Current Noise
en
EnRMS
in+
mV
µV/°C
µA
µA
kΩ
IN-
30
Ω
f = 10kHz
2.2
nV/√Hz
f = 1MHz to 100MHz
27
µVRMS
MAX4112/MAX4117/
MAX4119
13
MAX4113/MAX4118/
MAX4120
9
f = 10kHz
pA/√Hz
Negative Input Current Noise
in-
Common-Mode Input Voltage
VCM
Common-Mode Rejection
CMR
VCM = ±2.5V
45
50
dB
Power-Supply Rejection
PSR
VS = ±4.5V to ±5.5V
60
80
dB
Open-Loop Transimpedance
ZOL
VOUT = ±2.0V, VCM = 0V, RL = 100Ω
250
500
kΩ
Quiescent Supply Current
per Amplifier
ISY
VIN = 0V
Output Voltage Swing
VOUT
Output Current Drive
IOUT
f = 10kHz
14
-2.5
5
RL = ∞
±3.5
±3.8
RL = 100Ω
±3.1
±3.5
65
80
RL = 30Ω, TA = 0°C to +85°C
pA/√Hz
2.5
6.5
V
mA
V
mA
AC SPECIFICATIONS (RL = 100Ω, unless otherwise noted)
Small Signal -3dB Bandwidth
2
BWSS
VOUT ≤ 0.1VRMS
MAX4112/MAX4117
400
MAX4113/MAX4119
270
MAX4118/MAX4120
300
_______________________________________________________________________________________
MHz
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
(VCC = +5V, VEE = -5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
AC SPECIFICATIONS (RL = 100Ω, unless otherwise noted) (continued)
0.1dB Gain Flatness
Large-Signal -3dB Bandwidth
Slew Rate
BW0.1dB
BWLS
SR
MAX4112/MAX4117/MAX4119, AVCL = +2
100
MAX4113/MAX4118/MAX4120, AVCL = +8
115
VOUT = 2Vp-p
-2V ≤ VOUT ≤ 2V
to 0.1%,
-1V ≤ VOUT ≤ 1V
Settling Time
tS
tR, tF
Differential Gain
DG
Differential Phase
DP
Input Capacitance
CIN
Output Impedance
ZOUT
Spurious-Free Dynamic Range
Two-Tone Third-Order Intercept
Crosstalk
SFDR
IP3
280
MAX4119
145
MAX4113/MAX4118/
MAX4120
240
MAX4112/MAX4117/
MAX4119
1200
MHz
V/µs
MAX4113/MAX4118/
MAX4120
1800
MAX4112/MAX4117/
MAX4119
15
MAX4113/MAX4118/
MAX4120
10
MAX4112/MAX4117/
MAX4119
35
MAX4113/MAX4118/
MAX4120
25
ns
to 0.01%,
-1V ≤ VOUT ≤ 1V
Rise/Fall Times
MAX4112/MAX4117
MHz
10% to 90%, -2V ≤ VOUT ≤ 2V
10% to 90%, -50mV ≤ VOUT ≤ 50mV
f = 3.58MHz,
RL = 150Ω
f = 3.58MHz,
RL = 150Ω
MAX4112/MAX4117/
MAX4119, AVCL = +2
0.02
MAX4113/MAX4118/
MAX4120, AVCL = +8
0.02
MAX4112/MAX4117/
MAX4119, AVCL = +2
0.03
MAX4113/MAX4118/
MAX4120, AVCL = +8
0.04
f = 10MHz, AVCL = +2
fC = 5MHz,
VOUT = 2Vp-p
3
0.8
ns
%
degrees
2
pF
0.9
Ω
MAX4112/MAX4117/
MAX4119, AVCL = +2
-68
MAX4113/MAX4118/
MAX4120, AVCL = +8
-62
dBc
MAX4112/MAX4117/MAX4119, fC = 10MHz,
fC1 = 10.1MHz, AVCL = +2
36
dB
All hostile, VIN = 1Vp-p, f = 10MHz
-75
dB
Note 1: The MAX4112/MAX4113/MAX4117–MAX4120 are designed to operate in a closed-loop configuration in which the IN- pin is
driven by the OUT pin through an external feedback network. If an external voltage source is connected to IN-, current into
or out of IN- must be limited to ±10mA, to prevent damage to the part.
_______________________________________________________________________________________
3
MAX4112/MAX4113/MAX4117–MAX4120
ELECTRICAL CHARACTERISTICS (continued)
__________________________________________Typical Operating Characteristics
(VCC = +5V, VEE = -5V, RF = 499Ω, RL = 100Ω, TA = +25°C, unless otherwise noted.)
MAX4112/MAX4117/MAX4119
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = +2)
MAX4112/MAX4117/MAX4119
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = +5, +10)
1
0
-1
-2
-3
1
AV = +5V/V
RF = 499Ω
RG = 124Ω
0
-1
-2
AV = +10V/V
RF = 499Ω
RG = 54.9Ω
-3
RF = RG = 600Ω
VOUT ≤ 100mVp-p
-5
0.1
1
10
100
10
100
1000
0.1
3
0
-1
-2
-3
RF = 500Ω
RG = 68Ω
VOUT ≤ 100mVp-p
2
1
0
-1
-2
-3
-5
-6
0
-1
-2
-3
1
10
100
1000
0.1
100
1000
MAX4112/MAX4117/MAX4119
LARGE-SIGNAL PULSE RESPONSE
(AVCL = +2)
IN
GND
OUT
GND
MAX4112-08
IN
GND
OUT
GND
VOLTAGE (1V/div)
GND
VOLTAGE (20mV/div)
OUT
10
MAX4112-07
MAX4112-05
GND
1
FREQUENCY (MHz)
MAX4112/MAX4117/MAX4119
SMALL-SIGNAL PULSE RESPONSE
(AVCL = +10)
IN
RF = 330Ω
RG = 6.8Ω
VOUT ≤ 100mVp-p
-5
FREQUENCY (MHz)
MAX4112/MAX4117/MAX4119
SMALL-SIGNAL PULSE RESPONSE
(AVCL = +2)
TIME (10ns/div)
1
-6
0.1
FREQUENCY (MHz)
1000
2
-4
-6
1000
100
3
RF = 330Ω
RG = 18Ω
VOUT ≤ 100mVp-p
-4
10
4
NORMALIZED GAIN (dB)
1
100
1
MAX4113/MAX4118/MAX4120
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = +50)
MAX4112/4113-4a
MAX4112/4113-03
2
10
RF = RG = 600Ω
VOUT = 2Vp-p
FREQUENCY (MHz)
4
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
3
1
-3
MAX4113/MAX4118/MAX4120
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = +20)
4
0.1
-2
FREQUENCY (MHz)
MAX4113/MAX4118/MAX4120
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = +8)
-5
0
-1
-6
1
FREQUENCY (MHz)
-4
1
-5
VOUT ≤ 100mVp-p
0.1
1000
2
-4
-6
-6
4
3
MAX4112/4113-4b
-5
MAX4112/4113-02
2
-4
-4
4
NORMALIZED GAIN (dB)
3
NORMALIZED GAIN (dB)
2
MAX4112/MAX4117/MAX4119
LARGE-SIGNAL GAIN vs. FREQUENCY
(AVCL = +2)
MAX4112-insert A
3
NORMALIZED GAIN (dB)
4
MAX4112/4113-01
4
VOLTAGE (25mV/div)
MAX4112/MAX4113/MAX4117–MAX4120
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
TIME (10ns/div)
TIME (10ns/div)
_______________________________________________________________________________________
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
MAX4112/MAX4117/MAX4119
LARGE-SIGNAL PULSE RESPONSE
(AVCL = +10)
GND
GND
OUT
GND
VOLTAGE (20mV/div)
OUT
IN
VOLTAGE (1V/div)
VOLTAGE (50mV/div)
GND
GND
OUT
GND
TIME (10ns/div)
MAX4113/MAX4118/MAX4120
SMALL-SIGNAL PULSE RESPONSE
(AVCL = +20)
MAX4113/MAX4118/MAX4120
LARGE-SIGNAL PULSE RESPONSE
(AVCL = +8)
MAX4113/MAX4118/MAX4120
LARGE-SIGNAL PULSE RESPONSE
(AVCL = +20)
GND
IN
GND
OUT
GND
OUT
GND
TIME (10ns/div)
MAX4117–MAX4120
CROSSTALK vs. FREQUENCY
30
25
20
10
-40
-50
-60
-70
-80
-90
-110
-120
10
8
-30
-100
15
0
MAX4112/4113-18a
35
AMPLITUDE (dB)
10
-20
MAX4112/4113 -17b
40
SETTLING TIME (ns)
20
GAIN (V/V)
GND
MAX4113/MAX4118/MAX4120
SETTLING TIME vs. GAIN
MAX4112/4113 -17a
30
6
IN
TIME (10ns/div)
MAX4112/MAX4117/MAX4119
SETTLING TIME vs. GAIN
4
VOLTAGE (1V/div)
OUT
VOLTAGE (1V/div)
GND
MAX4112-16
MAX4112-15
TIME (10ns/div)
IN
2
IN
TIME (10ns/div)
MAX4112-14
VOLTAGE (20mV/div)
MAX4112-13
MAX4112-12
MAX4112-10
IN
TIME (10ns/div)
SETTLING TIME (ns)
MAX4113/MAX4118/MAX4120
SMALL-SIGNAL PULSE RESPONSE
(AVCL = +8)
MAX4112/MAX4117/MAX4119
SMALL-SIGNAL PULSE RESPONSE
(AVCL = +2, CL = 10pF)
8
16
24
32
GAIN (V/V)
40
48
56
0.1
1
10
100
FREQUENCY (MHz)
_______________________________________________________________________________________
5
MAX4112/MAX4113/MAX4117–MAX4120
____________________________Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, RF = 499Ω, RL = 100Ω, TA = +25°C, unless otherwise noted.)
____________________________Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, RF = 499Ω, RL = 100Ω, TA = +25°C, unless otherwise noted.)
INPUT VOLTAGE NOISE
vs. FREQUENCY
NOISE (nV/√Hz)
75
55
10
MAX4112/MAX4117/MAX4119
35
100
15
-5
1
0.1
1
10
100
1000
10
1
10
100
1k
10k
100k 1M
10M
1
10
100
1k
100k 1M
10M
FREQUENCY (Hz)
MAX4113/MAX4118/MAX4120
INPUT CURRENT NOISE vs. FREQUENCY
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4112/MAX4117/MAX4119
HARMONIC DISTORTION vs. FREQUENCY
OUTPUT IMPEDANCE (Ω)
100
IN+
10
MAX4112/4113-22
100
10
1
0
VOUT = 2Vp-p
-10
HARMONIC DISTORTION (dBc)
MAX4112/4113-21
1000
-20
2nd
(AVCL = +5)
-30
-40
2nd
(AVCL = +2)
-50
-60
-70
3rd
(AVCL = +2,
AVCL = +5)
-80
-90
1
0.1
1
10
100
1k
10k
100k 1M
10M
-100
0.1
1
10
100
0.1
500
1
10
100
FREQUENCY (MHz)
FREQUENCY (MHz)
MAX4113/MAX4118/MAX4120
HARMONIC DISTORTION vs. FREQUENCY
MAX4112/MAX4117/MAX4119
5MHz HARMONIC DISTORTION
vs. OUTPUT SWING
MAX4112/MAX4117/MAX4119
5MHz HARMONIC DISTORTION
vs. LOAD RESISTANCE
-40
3rd
(AVCL = +20)
-50
-60
-70
-80
3rd
(AVCL = +8)
-90
-20
-30
-40
-50
-60
2nd
-70
-80
3rd
0.1
1
10
FREQUENCY (MHz)
100
AVCL = +2
VOUT = 2Vp-p
-10
-20
-30
-40
-50
-60
-70
2nd
-80
3rd
-90
-90
-100
0
MAX4112/4113-27
2nd
(AVCL = +8)
-30
AVCL = +2
-10
HARMONIC DISTORTION (dBc)
-20
2nd
(AVCL = +20)
0
MAX4112/4113 -26
VOUT = 2Vp-p
HARMONIC DISTORTION (dBc)
0
MAX4112/4113-24
FREQUENCY (Hz)
-10
MAX4112/4113-23
FREQUENCY (Hz)
IN-
6
10k
FREQUENCY (MHz)
1000
NOISE (pA/√Hz)
IN+, IN-
MAX4113/MAX4118/MAX4120
NOISE (pA/√Hz)
95
1000
MAX4112/4113-19
100
MAX4112/4113-18b
POWER-SUPPLY REJECTION (dB)
105
MAX4112/MAX4117/MAX4119
INPUT CURRENT NOISE vs. FREQUENCY
MAX4112/4113-20
POWER-SUPPLY REJECTION
vs. FREQUENCY
HARMONIC DISTORTION (dBc)
MAX4112/MAX4113/MAX4117–MAX4120
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
-100
0.5
1.0
1.5
2.0
2.5
3.0
OUTPUT SWING (Vp-p)
3.5
4.0
0
200
400
600
LOAD RESISTANCE (Ω)
_______________________________________________________________________________________
800
1000
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
MAX4113/MAX4118/MAX4120
5MHz HARMONIC DISTORTION
vs. LOAD RESISTANCE
-40
-50
2nd
-60
-70
3rd
-80
-30
-40
-50
-60
-70
-80
-90
-90
2.0
2.5
3.0
3.5
MAX4113/MAX4118/MAX4120
DIFFERENTIAL GAIN and PHASE
0.01
0.00
-0.01
15
10
0.1
0.000
-0.005
0
100
IRE
0.02
700
600
500
400
100
RL = 150Ω
200
-75
0
POSITIVE OUTPUT VOLTAGE SWING
vs. TEMPERATURE
3.80
3.60
3.40
3.20
-50
-25
0
-3.40
-3.60
-3.80
-4.00
RL = ∞
-4.20
RL = 100Ω
25
50
TEMPERATURE (°C)
75
100 125
-4.40
-75
0
25
50
75
100 125
TEMPERATURE (°C)
-2.00
-2.50
INPUT BIAS CURRENT (µA)
4.00
RL = 100Ω
-3.20
-25
POSITIVE INPUT BIAS CURRENT
vs. TEMPERATURE
MAX4112/4113-34b
RL = ∞
-3.00
OUTPUT VOLTAGE SWING (V)
4.20
-50
100
IRE
NEGATIVE OUTPUT VOLTAGE SWING
vs. TEMPERATURE
MAX4112/4113-34a
4.40
MAX4113/MAX4118/MAX4120
300
-0.04
100
MAX4112/MAX4117/MAX4119
800
0.00
-0.02
10
900
-0.06
IRE
1
OPEN-LOOP TRANSIMPEDANCE
vs. TEMPERATURE
0.015
0.010
0.005
PHASE (degrees)
0.02
20
FREQUENCY (MHz)
RL = 150Ω
0.04
RL = 150Ω
MAX4113/MAX4118/MAX4120
25
1000
MAX4112/4113-32
0.025
0.020
100
IRE
0
OUTPUT VOLTAGE SWING (V)
800
MAX4112/MAX4117/MAX4119
DIFFERENTIAL GAIN and PHASE
0.04
3.00
-75
600
400
LOAD RESISTANCE (Ω)
0
0.03
200
OUTPUT VOLTAGE SWING (Vp-p)
RL = 150Ω
30
0
0
4.0
TRANSIMPEDANCE (kΩ)
1.5
MAX4112/4113-31
0.005
0.000
-0.005
-0.010
-0.015
-0.020
-0.025
1.0
GAIN (%)
GAIN (%)
0.5
MAX4112/MAX4117/MAX4119
35
5
3rd
-100
-100
PHASE (degrees)
2nd
MAX4112/4113-30
-20
40
MAX4112/4113-33
-30
AVCL = +8
VOUT = 2Vp-p
-10
MAX4112/4113-35a
-20
0
MAX4112/4113-29
AVCL = +8
HARMONIC DISTORTION (dBc)
HARMONIC DISTORTION (dBc)
MAX4112/4113-28
0
-10
TWO-TONE THIRD-ORDER INTERCEPT
vs. FREQUENCY
THIRD-ORDER INTERCEPT (dBm)
MAX4113/MAX4118/MAX4120
5MHz HARMONIC DISTORTION
vs. OUTPUT SWING
-3.00
-3.50
-4.00
-4.50
-5.00
-50
-25
0
25
50
TEMPERATURE (°C)
75
100 125
-75
-50
-25
0
25
50
75
100 125
TEMPERATURE (°C)
_______________________________________________________________________________________
7
MAX4112/MAX4113/MAX4117–MAX4120
____________________________Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, RF = 499Ω, RL = 100Ω, TA = +25°C, unless otherwise noted.)
____________________________Typical Operating Characteristics (continued)
(VCC = +5V, VEE = -5V, RF = 499Ω, RL = 100Ω, TA = +25°C, unless otherwise noted.)
NEGATIVE INPUT BIAS (IB-)
CURRENT vs. TEMPERATURE
3
6
MAX4112/4113 -37
7
2
VOLTAGE (mV)
INPUT BIAS CURRENT (µA)
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
MAX4112/4113-36
8
5
4
3
2
1
0
1
0
-1
-75
-50
-25
0
25
50
75
100 125
-75
-50
-25
TEMPERATURE (°C)
POWER-SUPPLY CURRENT
vs. TEMPERATURE
(PER AMPLIFIER)
ICC
2.00
0
-2.00
IEE
7.0
6.5
6.0
5.5
5.0
4.5
4.0
-6.00
3.5
3.0
-8.00
-75
-50
-25
0
25
50
TEMPERATURE (°C)
8
7.5
OUTPUT SWING (Vp-p)
4.00
-4.00
100 125
MAX4112/4113-39
6.00
0
25 50 75
TEMPERATURE (°C)
OUTPUT SWING
vs. LOAD RESISTANCE
MAX4112/4113-38
8.00
CURRENT (mA)
MAX4112/MAX4113/MAX4117–MAX4120
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
75
100 125
25
50
75
100
LOAD RESISTANCE (Ω)
_______________________________________________________________________________________
125
150
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
PIN
PIN
MAX4112 MAX4117 NAME
MAX4113 MAX4118
SO/µMAX
SO
MAX4119/MAX4120
FUNCTION
FUNCTION
NAME
FUNCTION
SO
QSOP
No Connection. Not internally
connected.
1
1
OUTA
Amplifier A Output
2
2
INA-
Amplifier A Inverting Input
Amplifier A Output
3
3
INA+
Amplifier A Noninverting Input
4
4
VCC
Positive Power Supply.
Connect to +5V.
1, 5, 8
—
N.C.
—
1
OUTA
2
—
IN-
—
2
INA-
Amplifier A Inverting Input
3
—
IN+
Noninverting Input
5
5
INB+
Amplifier B Noninverting Input
Amplifier A Noninverting Input
6
6
INB-
Amplifier B Inverting Input
Negative Power Supply.
Connect to -5V.
7
7
OUTB
—
8, 9
N.C.
—
3
INA+
Inverting Input
Amplifier B Output
4
4
VEE
—
5
INB+
Amplifier B Noninverting Input
6
—
OUT
Amplifier Output
8
10
Amplifier B Inverting Input
9
11
INC-
Amplifier C Inverting Input
Amplifier B Output
10
12
INC+
Amplifier C Noninverting Input
Positive Power Supply.
Connect to +5V.
11
13
VEE
12
14
IND+
Amplifier D Noninverting Input
13
15
IND-
Amplifier D Inverting Input
14
16
—
6
INB-
—
7
OUTB
7
8
VCC
_______________Detailed Description
The MAX4112/MAX4117/MAX4119 are optimized for
closed-loop gains (AVCL) of 2V/V or greater, while the
MAX4113/MAX4118/MAX4120 are optimized for
closed-loop gains of 8V/V or greater. These low-power,
high-speed, current feedback amplifiers operate from
±5V supplies. They are designed to drive video loads
with low distortion characteristics. The MAX4112/
MAX4117/MAX4119’s differential gain and phase are
0.02% and 0.03°, respectively; the MAX4113/
MAX4118/MAX4120 exhibit gain/phase error specifications of 0.02% and 0.04°, respectively. These characteristics, plus a wide 0.1dB gain flatness, make the
MAX4112/MAX4113/MAX4117–MAX4120 ideal for use
RG
RF
RIN
+1
+1
ZOL
VIN
VOUT
MAX4112
MAX4113
MAX4117
MAX4118
MAX4119
MAX4120
No Connection. Not internally
connected.
OUTC Amplifier C Output
Negative Power Supply.
Connect to -5V.
OUTD Amplifier D Output
in broadcast and graphics video systems. The combination of ultra-high speed and low power makes these
parts suitable for use in general-purpose, high-speed
applications, such as medical imaging, industrial instrumentation, and communications systems.
__________Applications Information
Theory of Operation
Since these devices are current-feedback amplifiers,
their open-loop transfer function is expressed as a
transimpedance, ∆VOUT/∆IIN, or ZOL. The frequency
behavior of the open-loop transimpedance is similar to
the open-loop gain of a voltage feedback amplifier.
That is, it has a large DC value and decreases at
approximately 6dB per octave.
Analyzing the follower with gain, as shown in Figure 1,
yields the following transfer function:
ZOL(S)
VOUT
= Gx
VIN
ZOL(S) + G x (RIN + RF )
where G = AVCL = 1 + (RF / RG), and RIN = 1 /gM ≅ 30Ω.
Figure 1. Current Feedback Amplifier
_______________________________________________________________________________________
9
MAX4112/MAX4113/MAX4117–MAX4120
_____________________________________________________________Pin Descriptions
MAX4112/MAX4113/MAX4117–MAX4120
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
At low gains, G x RIN << RF. Therefore, the closed-loop
bandwidth is essentially independent of closed-loop
gain. Similarly, ZOL >> RF at low frequencies, so that:
VIN
RF
RG
RT
RO
VOUT
= G = 1 + (RF / RG )
VIN
VOUT
Layout and Power-Supply Bypassing
The MAX4112/MAX4113/MAX4117–MAX4120 have an
RF bandwidth and consequently require careful board
layout, including the possible use of constant-impedance
microstrip or stripline techniques.
To realize the full AC performance of these high-speed
amplifiers, pay careful attention to power-supply
bypassing and board layout. The PC board should
have at least two layers: a signal and power layer on
one side, and a large, low-impedance ground plane on
the other side. The ground plane should be as free of
voids as possible. With multilayer boards, locate the
ground plane on a layer that incorporates no signal or
power traces.
Regardless of whether a constant-impedance board is
used, observe the following guidelines when designing
the board. Wire-wrapped boards are much too inductive, and breadboards are much too capacitive; neither
should be used. IC sockets increase parasitic capacitance and inductance, and should not be used. In general, surface-mount components give better highfrequency performance than through-hole components.
They have shorter leads and lower parasitic reactances. Keep lines as short and as straight as possible.
Do not make 90° turns; round all corners.
Observe high-frequency bypassing techniques to
maintain the amplifier’s accuracy. The bypass capacitors should include a 1000pF ceramic capacitor
between each supply pin and the ground plane, located as close to the package as possible. Next, place a
MAX4112
MAX4113
MAX4117
MAX4118
MAX4119
MAX4120
RS
VOUT = -(RF/RG) x VIN
Figure 2a. Inverting Gain Configuration
RF
RG
RO
VOUT
VIN
MAX4112
MAX4113
MAX4117
MAX4118
MAX4119
MAX4120
RT
VOUT = [1+ (RF/RG)] x VIN
Figure 2b. Noninverting Gain Configuration
0.01µF to 0.1µF ceramic capacitor in parallel with each
1000pF capacitor, and as close to them as possible.
Then place a 10µF to 15µF low-ESR tantalum at the
point of entry (to the PC board) of the power-supply
pins. The power-supply trace should lead directly from
the tantalum capacitor to the V CC and VEE pins. To
minimize parasitic inductance, keep PC traces short
and use surface-mount components.
Table 1. Recommended Component Values
COMPONENT
RF (Ω)
AVCL = +2
AVCL = +8
MAX4112
MAX4117
MAX4119
MAX4113
MAX4118
MAX4120
600
600
500
500
330
330
RG (Ω)
600
600
500
69
47
47
RO (Ω)
49.9
49.9
49.9
49.9
49.9
49.9
RT (Ω)
49.9
49.9
49.9
49.9
49.9
49.9
-3dB Small-Signal Bandwidth (MHz)
400
400
270
270
300
300
0.1dB Gain Flatness (MHz)
100
100
100
115
115
115
Large-Signal Bandwidth (MHz)
280
280
145
240
240
240
10
______________________________________________________________________________________
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
IBVOUT
IB+
RS
Calculating total output noise in a similar manner yields:
(
Choosing Feedback and Gain Resistors
The MAX4112/MAX4113/MAX4117–MAX4120 are current feedback amplifiers. Increasing feedback resistor
values will decrease peaking. Use the input resistor
(RG) to change the magnitude of the gain. Figure 2
shows the standard inverting and noninverting configurations. Notice that the gain of the noninverting circuit
(Figure 2b) is 1 plus the magnitude of the inverting
closed-loop gain (Table 1).
DC and Noise Errors
There are several major error sources to consider in
any operational amplifier. These apply equally to the
MAX4112/MAX4113/MAX4117–MAX4120. Offset-error
terms are given by the equation below. Voltage and
current-noise errors are root-square summed and
therefore computed separately. In Figure 3, the total
output offset voltage is determined by:
a) The input offset voltage (VOS) times the closed-loop
gain (1 + (RF / RG)).
b) The positive input bias current (IB+) times the source
resistor (RS) (usually 50Ω or 75Ω), plus the negative
input bias current (IB-) times the parallel combination
of RG and RF. In current-mode feedback amplifiers,
the input bias currents may flow into or out of the
device. For this reason, there is no benefit to matching the resistance at both inputs.
The equation for total DC error is:
 R 
VOUT = (IB+ )RS + (IB− ) RF || RG + VOS 1+ F 
 RG 
[
(
)
]
c) The total output-referred noise voltage is:

R 
en(OUT) = 1 + F 
R

G
) + (14x10
en(OUT) = (1 + 1) 13x10−12 x50
Figure 3. Output Offset Voltage
2
2
[(in + )RS ] + [(in − )RF || RG ] + (en )2
The MAX4112/MAX4117/MAX4119 have a very low,
2nV/√Hz noise voltage. The current noise at the positive
input (in+) is 13pA/√Hz, and the current noise at the
inverting input (in-) is 14pA/√Hz.
2
−12
) + (2x10 )
2
x300
−9
2
en(OUT) = 9.4nV/ Hz
With a 200MHz system bandwidth, this calculates to
133µVRMS (approximately 797µVp-p, choosing the sixsigma value).
Resistor Types
Surface-mount resistors are the best choice for highfrequency circuits. They are of similar material to metalfilm resistors, but are deposited using a thick-film
process in a flat, linear manner that minimizes inductance. Their small size and lack of leads also minimizes
parasitic inductance and capacitance, yielding more
predictable performance.
Metal-film resistors with leads are manufactured using
a thin-film process where resistive material is deposited
in a spiral layer around a ceramic rod. Although the
materials used are noninductive, the spiral winding presents a small inductance (about 5nH) that may have an
adverse effect on high-frequency circuits.
Carbon-composition resistors with leads are manufactured by pouring the resistor material into a mold. This
process yields relatively low-inductance resistors that
are very useful in high-frequency applications, although
they tend to cost more and have more thermal noise
than other types. The ability of carbon-composition
resistors to self-heal after a large current overload
makes them useful in high-power RF applications.
For general-purpose use, surface-mount metal-film
resistors seem to have the best overall performance for
low cost, low inductance, and low noise.
Video Line Driver
The MAX4112/MAX4113/MAX4117–MAX4120 are optimized (gain flatness) to drive coaxial transmission lines
when the cable is terminated at both ends, as shown in
Figure 4. Cable frequency response can cause variations in the flatness of the signal.
______________________________________________________________________________________
11
MAX4112/MAX4113/MAX4117–MAX4120
RF
RG
MAX4112
MAX4113
MAX4117
MAX4118
MAX4119
MAX4120
An example of the DC error calculations, using the
MAX4112 typical data and the typical operating circuit
where RF = RG = 600Ω (RF || RG = 300Ω) and RS = 50Ω,
gives the following:
VOUT = (3.5 x 10-6 x 50 + 3.5 x 10-6 x 300 + 10-3) (1 + 1)
VOUT = 4.45mV
Driving Capacitive Loads
12
CL = 15pF
10
GAIN (dB)
The MAX4112/MAX4113/MAX4117–MAX4120 are optimized for AC performance. They are not designed to
drive highly capacitive loads. Reactive loads decrease
phase margin and can produce excessive ringing and
oscillation. Figure 5a shows a circuit that eliminates this
problem. The small (usually 5Ω to 22Ω) isolation resistor, RS, placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC
performance is controlled by the interaction of the load
capacitance and isolation resistor.
CL = 10pF
8
6
CL = 5pF
4
2
RG
0
RF
0.1
75Ω
75Ω
MAX4112
MAX4113
MAX4117
MAX4118
MAX4119
MAX4120
75Ω
1000
12
RS = 0Ω
CL = 10pF
10
RS = 4.7Ω
8
RF
RS
VIN
100
Figure 5b. Frequency Response vs. Capacitive Load—
No Isolation Resistor
Figure 4. Video Line Driver
RG
10
FREQUENCY (MHz)
VIDEO
OUT
75Ω CABLE
VIDEO
IN
1
75Ω CABLE
GAIN (dB)
MAX4112/MAX4113/MAX4117–MAX4120
Single/Dual/Quad, 400MHz, Low-Power,
Current Feedback Amplifiers
RS = 10Ω
6
4
RS = 22Ω
2
0
MAX4112
MAX4113
MAX4117
MAX4118
MAX4119
MAX4120
CL
RL
-2
0.1
1
10
100
1000
FREQUENCY (MHz)
Figure 5c. Frequency Response vs. Isolation Resistance
(see Figure 5a for circuit)
Figure 5a. Using an Isolation Resistor (RS) for High Capacitive
Loads
_Ordering Information (continued)
PART
TEMP. RANGE
PIN-PACKAGE
MAX4119ESD
-40°C to +85°C
14 SO
MAX4119EEE
-40°C to +85°C
16 QSOP*
MAX4120ESD
-40°C to +85°C
14 SO
MAX4120EEE
-40°C to +85°C
16 QSOP*
___________________Chip Information
TRANSISTOR COUNT: 53 (MAX4112/MAX4113)
112 (MAX4117/MAX4118)
220 (MAX4119/MAX4120)
SUBSTRATE CONNECTED TO VEE
*Contact factory for QSOP package availability.
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
12 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600
© 1997 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.