19-1992; Rev 0; 4/01 +5V Multiprotocol, Software-Selectable Control Transceivers Features ♦ MXL1544/MAX3175, MXL1543, MXL1344A Chipset Is Pin Compatible with LTC1544, LTC1543, LTC1344A Chipset ♦ Chipset Operates from a Single +5V Supply ♦ Software-Selectable DCE/DTE ♦ Supports V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423) Protocols ♦ Flow-Through Pin Configuration ♦ True Fail-Safe Operation ♦ Low 0.5µA Shutdown Current (No-Cable Mode) ♦ 10µs Receiver Input Deglitching (MAX3175 Only) ♦ TUV-Certified NET1/NET2 and TBR1/TBR2 Compliant Applications Ordering Information Data Networking CSU and DSU PART MXL1544CAI MAX3175CAI Data Routers Switches PCI Cards TEMP. RANGE 0°C to +70°C 0°C to +70°C PIN-PACKAGE 28 SSOP 28 SSOP Pin Configuration appears at end of data sheet. Telecommunication Equipment Typical Operating Circuit D4 LL CTS DSR R4 R3 R2 R1 MXL1544 MAX3175 DCD DTR RTS D3 D2 D1 RXD RXC R3 R2 TXC R1 MXL1543 D3 SCTE TXD D2 D1 MXL1344A 18 13 5 10 8 22 6 23 20 19 4 1 7 16 3 9 17 12 15 11 24 14 2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (107) DCD B DSR A (109) DSR B CTS A (106) CTS B LL A (141) DB-25 CONNECTOR ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MXL1544/MAX3175 General Description The MXL1544/MAX3175 are four-driver/four-receiver multiprotocol transceivers that operate from a single +5V supply in conjunction with the MXL1543. The MXL1544/MAX3175, along with the MXL1543 and MXL1344A, form a complete software-selectable data terminal equipment (DTE) or data communication equipment (DCE) interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21, RS-423), and V.35 protocols. The MXL1544/ MAX3175 transceivers carry serial interface control signaling, while the MXL1543 carries the high-speed clock and data signals. Typically, the MXL1543 is terminated using the MXL1344A. The MAX3175 is identical to the MXL1544 except for the addition of a 10µs (typ) glitch rejection circuit at the receiver inputs. The MXL1544/ MAX3175 are available in 28-pin SSOP packages. MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers ABSOLUTE MAXIMUM RATINGS All Voltages to GND Unless Otherwise Noted Supply Voltages VCC .......................................................................-0.3V to +6V VDD ....................................................................-0.3V to +7.2V VEE........................................................................+0.3V to -7V VDD to VEE (Note 1)............................................................13V Logic Input Voltage M0, M1, M2, DCE/DTE, INVERT, T_IN..................-0.3V to +6V Logic Output Voltage R_OUT ....................................................-0.3V to (VCC + 0.3V) Transmitter Outputs T_OUT_, T_OUT_/R_IN........................................-15V to +15V Short-Circuit Duration.............................................Continuous Receiver Inputs R_IN_, T_OUT_/R_IN_ .........................................-15V to +15V Continuous Power Dissipation (TA = +70°C) 28-Pin SSOP (derate 11.1mW/°C above +70°C) .........889mW Operating Temperature Range...............................0°C to +70°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: VDD and VEE- can have maximum magnitude of 7.2V and 7V, respectively, but their difference cannot exceed 13V. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER SUPPLIES VCC Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitters Outputs Static) VEE Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitters Outputs Static) VDD Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitters Outputs Static) Internal Power Dissipation (DCE Mode) ICC RS-530, RS-530A, X.21, no load 2.7 RS-530, RS-530A, X.21, full load 95 120 V.28, no load 1 2 V.28, full load IEE IDD PD 1 2 No-cable mode, Invert = VCC 0.5 10 RS-530, RS-530A, X.21, no load 2.1 RS-530, X.21, full load 14 RS-530A, full load 25 V.28, no load 1 V.28, full load 12 No-cable mode 0.5 RS-530, RS-530A, X.21, no load 0.6 RS-530, RS-530A, X.21, full load 1 V.28, no load 1 V.28, full load 12 No-cable mode 0.5 RS-530, RS-530A, X.21, full load 300 V.28, full load 54 LOGIC INPUTS (M0, M1, M2, DCE/DTE, INVERT, T1IN, T2IN, T3IN, T4IN) Input High Voltage VIH Input Low Voltage VIL T1IN, T2IN, T3IN, T4IN M0, M1, M2, DCE/DTE, INVERT = Logic Input Current IIN GND M0, M1, M2, DCE/DTE, INVERT = VCC 2 µA mA µA mW 0.8 ±10 -50 _______________________________________________________________________________________ µA mA 2.0 -100 mA -30 ±10 V V µA +5V Multiprotocol, Software-Selectable Control Transceivers (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP 3 4.5 MAX UNITS 0.8 V 50 mA LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT, R4OUT) Output High Voltage VOH ISOURCE = 4mA Output Low Voltage VOL ISINK = 4mA Output Short-Circuit Current ISC 0 ≤ VOUT ≤ VCC Output Pullup Current IL 0.3 -50 VOUT = 0, no-cable mode V µA 70 RECEIVER INPUTS Receiver Glitch Rejection MAX3175 only 5 10 15 µs ±5 V 0.67 ✕ VODO V V.11 TRANSMITTER Open-Circuit Differential Output Voltage VODO Loaded Differential Output Voltage VODL Open circuit, R = 1.95kΩ (Figure 1) R = 50Ω (Figure 1), TA = +25°C 0.5 ✕ VODO ±2 R = 50Ω (Figure 1) Change in Magnitude of Output Differential Voltage ∆VOD R = 50Ω (Figure 1) 0.2 V Common-Mode Output Voltage VOC R = 50Ω (Figure 1) 3 V Change in Magnitude of Output Common-Mode Voltage ∆VOC R = 50Ω (Figure 1) 0.2 V VOUT = GND 150 mA ±1 ±100 µA 15 25 ns Short-Circuit Current Output Leakage Current ISC IZ -0.25V < VOUT < +0.25V, power-off or nocable mode Rise or Fall Time tr, tf R = 50Ω (Figures 2, 5) Transmitter Input to Output tPHL, tPLH R = 50Ω (Figures 2, 5) 50 75 ns Data Skew |tPHL tPLH| (Figures 2, 5) 3 12 ns (Figures 2, 5) 3 Output-to-Output Skew 2 ns V.11 RECEIVER Differential Input Voltage Input Hysteresis VTH -7V ≤ VCM ≤ 7V ∆VTH -7V ≤ VCM ≤ 7V IIN -10V ≤VA,B ≤ 10V Receiver Input Resistance RIN -10V ≤ VA,B ≤ 10V Rise or Fall Time tr, tf (Figures 2, 6) Receiver Input Current Receiver Input to Output tPHL, tPLH (Figures 2, 6) Data Skew |tPHL tPLH| (Figures 2, 6) -200 15 15 200 mV 40 mV ±0.66 mA 30 kΩ 15 MXL1544 50 MAX3175 10 MXL1544 4 MAX3175 1 ns 80 ns µs 16 ns µs _______________________________________________________________________________________ 3 MXL1544/MAX3175 ELECTRICAL CHARACTERISTICS (continued) MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers ELECTRICAL CHARACTERISTICS (continued) (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS ±6 V V.10 TRANSMITTER Open-Circuit Output Voltage Swing VO Output Voltage Swing VT Short-Circuit Current ISC Output Leakage Current IZ RL = 3.9kΩ (Figure 3) ±4 RL = 450Ω (Figure 3) ±3.6 RL = 450Ω (Figure 3), TA = +25°C 0.9 x VO V VO = GND, TA = +25°C -0.25V < VOUT < +0.25V, power-off or no-cable mode ±1 ±150 mA ±100 µA Rise or Fall Time tr, tf RL = 450Ω, CL = 100pF (Figures 3, 7) 2 µs Transmitter Input to Output tPHL, tPLH RL = 450Ω, CL = 100pF (Figures 3, 7) 1 µs V.10 RECEIVER Differential Threshold Voltage Input Hysteresis VTH -250 ∆VTH 25 IIN -10V ≤ VA ≤ 10V Receiver Input Impedance RIN -10V ≤ VA ≤ 10V Rise or Fall Time tr, tf (Figures 4, 8) Receiver Input Current (Figures 4, 8) tPHL Data Skew |tPHL tPLH| (Figures 4, 8) mV 50 mV ±0.66 mA 30 kΩ 15 ns 55 ns MAX3175 10 µs MXL1544 109 ns MAX3175 10 µs MXL1544 60 ns MAX3175 1 µs MXL1544 tPLH Receiver Input to Output 15 250 V.28 TRANSMITTER Output Voltage Swing VO Short-Circuit Current ISC Output Leakage Current Output Slew Rate Transmitter Input to Output RL = 3kΩ (Figure 3) -0.25V ≤ VOUT ≤ +0.25V, power-off or no-cable mode SR RL = 3kΩ, CL = 2500pF (Figures 3, 7) tPLH V ±5 ±150 mA ±1 ±100 µA 30 V/µs 1.5 2.5 1.5 3 1.3 0.8 ±6 VO = GND IZ tPHL ±7 Open circuit (Figure 3) 4 RL = 3kΩ, CL = 2500pF (Figures 3, 7) V µs V.28 RECEIVER Input Low Voltage Input High Voltage 4 VIL VIH 2.0 Input Hysteresis VHYS Input Resistance RIN -15V < VIN < +15V Rise or Fall Time tr, tf (Figures 4, 8) 3 1.3 V V 0.05 0.3 V 5 7 kΩ 15 _______________________________________________________________________________________ ns +5V Multiprotocol, Software-Selectable Control Transceivers (VCC = +5V, VDD = +6.8V, VEE = -5.6V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS tPLH Receiver Input to Output (Figures 4, 8) tPHL MIN TYP MAX MXL1544 60 100 MAX3175 10 MXL1544 70 MAX3175 10 UNITS ns µs 450 ns µs Note 2: MXL1544/MAX3175 are designed to operate with VDD and VEE supplied by the MXL1543 charge pump. Typical Operating Characteristics (TA = +25°C, unless otherwise noted.) V.11 MODE SUPPLY CURRENT (IDD) vs. DATA RATE V.11 MODE SUPPLY CURRENT (ICC) vs. DATA RATE 100 DCE MODE INVERT = 1 DCE MODE INVERT = 1 9 8 7 IDD (mA) 6 5 4 40 3 FULL, R = 50Ω NO LOAD, R = 1.95kΩ 2 20 1 NO LOAD, R = 1.95kΩ 0 0 0.1 1 10 100 1000 1000 10,000 V.28 MODE SUPPLY CURRENT (ICC) vs. DATA RATE 0.73 MXL1544/MAX3175 toc03 DCE MODE INVERT = 1 6 5 4 DCE MODE INVERT = 0 0.72 0.71 ICC (mA) IEE (mA) 100 V.11 MODE SUPPLY CURRENT (IEE) vs. DATA RATE 7 2 10 DATA RATE (kbps) 8 3 1 DATA RATE (kbps) 10 9 0.1 10,000 MXL1544/MAX3175 toc04 ICC (mA) 80 MXL1544/MAX3175 toc02 FULL LOAD, R = 50Ω 60 10 MXL1544/MAX3175 toc01 120 0.70 FULL LOAD (RL = 3kΩ, CL = 2500) AND NO LOAD 0.69 0.68 FULL, R = 50Ω NO LOAD, R = 1.95kΩ 0.67 0.66 1 0 0.65 0.1 1 10 100 DATA RATE (kbps) 1000 10,000 0 50 100 150 200 250 DATA RATE (kbps) _______________________________________________________________________________________ 5 MXL1544/MAX3175 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) DCE MODE INVERT = 0 FULL LOAD, RL = 3kΩ, CL = 2500pF DCE MODE INVERT = 0 30 25 IEE (mA) 20 15 10 FULL LOAD, RL = 3kΩ, CL = 2500pF 10 5 5 NO LOAD NO LOAD 0 0 0 50 100 150 DATA RATE (kbps) 200 0 250 2 DCE MODE INVERT = 1 RL = 50Ω 0 -1 -2 200 250 VOUT- 10 8 VOUT+ 6 OUTPUT VOLTAGE (V) MXL1544/MAX3175 toc07 VOUT+ 1 150 V.10 LOADED OUTPUT VOLTAGE vs. TEMPERATURE -3 4 2 DCE MODE RL = 450Ω 0 -2 -4 VOUT- -6 -4 -8 -5 -10 20 30 40 60 70 0 10 20 30 40 50 60 TEMPERATURE (°C) V.28 LOADED OUTPUT VOLTAGE vs. TEMPERATURE V.11 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE DCE MODE RL = 3kΩ 8 50 TEMPERATURE (°C) VOUT+ 6 4 2 0 -2 -4 VOUT- -6 300 70 MXL1544/MAX3175 toc10 10 10 200 INPUT CURRENT (µA) 0 MXL1544/MAX3175 toc09 DIFFERENTIAL OUTPUT VOLTAGE (V) 5 3 100 DATA RATE (kbps) V.11 LOADED DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE 4 50 MXL1544/MAX3175 toc08 IDD (mA) 20 15 35 MXL1544/MAX3175 toc05 25 MXL1544/MAX3175 toc06 V.28 MODE SUPPLY CURRENT (IEE) vs. DATA RATE V.28 MODE SUPPLY CURRENT (IDD) vs. DATA RATE OUTPUT VOLTAGE (V) MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers 100 0 -100 -200 -8 -10 -300 0 10 20 30 40 50 TEMPERATURE (°C) 6 60 70 -10 -5 0 5 INPUT VOLTAGE (V) _______________________________________________________________________________________ 10 +5V Multiprotocol, Software-Selectable Control Transceivers V.28 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE V.28 SLEW RATE vs. LOAD CAPACITANCE 2 16 14 1 0 -1 12 SLEW+ 10 8 -2 6 -3 4 -4 2 -5 SLEW- 0 -15 -10 -5 0 5 10 15 0 1000 2000 3000 4000 5000 INPUT VOLTAGE (V) CAPACITANCE (pF) V.10 TRANSMITTER RISE AND FALL TIME vs. LOAD CAPACITANCE MXL1544 LOOPBACK SCOPE PHOTO V.11 MODE (UNLOADED) MXL1544/MAX3175 toc14 MXL1544/MAX3175 toc13 3.5 RISE 3.0 RISE/FALL TIME (µs) MXL1544/MAX3175 toc12 3 SLEW RATE (V/µs) 4 INPUT CURRENT (mA) 18 MXL1544/MAX3175 toc11 5 2.5 FALL 2.0 1.5 TIN 5V/div TOUT/ RIN 5V/div ROUT 5V/div 1.0 0.5 0 0 500 1000 1500 2000 2500 3000 4µs/div CAPACITANCE (pF) MXL1544 LOOPBACK SCOPE PHOTO V.10 MODE (LOADED) MXL1544 LOOPBACK SCOPE PHOTO V.28 MODE (LOADED) MXL1544/MAX3175 toc15 MXL1544/MAX3175 toc16 TIN 5V/div TIN 5V/div TOUT/ RIN 5V/div TOUT/ RIN 5V/div ROUT 5V/div ROUT 5V/div 4µs/div 4µs/div _______________________________________________________________________________________ 7 MXL1544/MAX3175 Typical Operating Characteristics (continued) (TA = +25°C, unless otherwise noted.) +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 Pin Description 8 PIN NAME 1 VCC +5V Supply Voltage (±5%). Bypass with a 1µF capacitor to ground. FUNCTION 2 VDD Positive Supply Generated by MXL1543. Bypass with a 1µF capacitor to ground. 3 T1IN Transmitter 1 TTL-Compatible Input 4 T2IN Transmitter 2 TTL-Compatible Input 5 T3IN Transmitter 3 TTL-Compatible Input 6 R1OUT Receiver 1 CMOS Output 7 R2OUT Receiver 2 CMOS Output 8 R3OUT 9 T4IN 10 R4OUT 11 M0 TTL-Compatible Mode Select Pin with Internal Pullup to VCC 12 M1 TTL-Compatible Mode Select Pin with Internal Pullup to VCC 13 M2 TTL-Compatible Mode Select Pin with Internal Pullup to VCC 14 DCE/DTE Receiver 3 CMOS Output Transmitter 4 TTL-Compatible Input Receiver 4 CMOS Output TTL-Compatible Input with Internal Pullup to VCC. Logic level high selects DCE interface. 15 INVERT 16 T4OUTA/R4INA TTL Input with Internal Pullup to VCC. INVERT = HIGH reverses action of DCE/DTE for Channel 4. 17 R3INB Noninverting Receiver Input 18 R3INA Inverting Receiver Input 19 R2INB Noninverting Receiver Input 20 R2INA Inverting Receiver Input 21 T3OUTB/R1INB 22 T3OUTA/R1INA 23 T2OUTB Noninverting Transmitter Output 24 T2OUTA Inverting Transmitter Output 25 T1OUTB Noninverting Transmitter Output 26 T1OUTA Inverting Transmitter Output 27 GND Ground 28 VEE Negative Supply Generated by MXL1543. Bypass with a 1µF capacitor to ground. Transmitter Output/Inverting Receiver Input Noninverting Transmitter Output/Noninverting Receiver Input Inverting Transmitter Output/Inverting Receiver Input _______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers D A R VOD VO CL RL VOC R Figure 1. V.11 DC Test Circuit Figure 3. V.10/V.28 Driver Test Circuit 100pF D B B D R A R 100Ω A A 15pF 15pF 100pF Figure 2. V.11 AC Test Circuit Detailed Description The MXL1544/MAX3175 are four-driver/four-receiver multiprotocol transceivers that operate from a single +5V supply and the charge pump from the MXL1543. The MXL1544/MAX3175, along with the MXL1543 and MXL1344A, form a complete software-selectable DTE or DCE interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449, V.36, EIA-530, EIA-530A, X.21, RS423), and V.35 protocols. The MXL1544 or MAX3175 usually carries the control signals. The MXL1543 carries the high-speed clock and data signals, and the MXL1344A provides termination for the clock and data signals. The MXL1544/MAX3175 feature a 0.5µA no-cable mode, true fail-safe operation, and thermal shutdown circuitry. Thermal shutdown protects the drivers against Figure 4. V.10/V.28 Receiver Test Circuit excessive power dissipation. When activated, the thermal shutdown circuitry places the driver outputs into a high-impedance state. The MAX3175 deglitching feature reduces errors in unterminated equipment. The state of the mode-select pins M0, M1, and M2 determines which serial-interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceivers will be configured as a DTE serial port or a DCE serial port. When the DCE/DTE input is logic HIGH, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic LOW, driver T3 is disabled and receiver R1 is activated. The INVERT pin state changes the DCE/DTE functionality regarding T4 and R4 only. M0, M1, M2, INVERT, and DCE/DTE are internally pulled up to VCC to ensure logic HIGH if left unconnected. _______________________________________________________________________________________ 9 MXL1544/MAX3175 Test Circuits MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers Switching Time Waveforms 5V D f = 1MHz: tr ≤ 10ns: tf ≤ 10ns 1.5V 0 1.5V tPLH tPHL V0 90% 10% 50% B-A -V0 tr 90% VDIFF = V(B) - V(A) 50% 1/2 V0 10% tf A V0 B tSKEW tSKEW Figure 5. V.11, V.35 Driver Propagation Delays V0D2 B-A -V0D2 f = 1MHz: tr ≤ 10ns: tf ≤ 10ns 0 INPUT 0 tPHL tPLH V0H OUTPUT 1.5V R 1.5V V0L Figure 6. V.11, V.35 Receiver Propagation Delays 3V 1.5V D 0 0 tPHL tPLH V0 3V 3V 0 0 A -3V -V0 -3V tr tf Figure 7. V.10, V.28 Driver Propagation Delays VIH A VIL 1.7V 1.3V tPLH tPHL V0H R V0L 2.4V 0.8V Figure 8. V.10, V.28 Receiver Propagation Delays 10 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers Fail-Safe The MXL1544/MAX3175 guarantee a logic HIGH receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all drivers disabled. The V.11 receiver threshold is set between -200mV and 0mV to guarantee fail-safe operation. If the differential receiver input voltage (B - A) is ≥ 0mV, ROUT is logic HIGH. In the case of a terminated bus with all transmitters disabled, the receiver’s differential input voltage is pulled to 0 by the termination. With the receiver thresholds of the MXL1544/MAX3175, this results in ROUT logic HIGH. The V.10 receiver threshold is set between -250mV and 0mV. If the V.10 receiver input voltage is less than or equal to -250mV, ROUT is logic HIGH. The V.28 receiver threshold is set between 0.8V and 2.0V. If the receiver input voltage is less than or equal to 0.8V, ROUT is logic HIGH. In the case of a terminated bus with transmitters disabled, the receiver’s input voltage is pulled to 0 by the termination. Applications Information Cable-Selectable Mode A cable-selectable, multiprotocol DTE/DCE interface is shown in Figure 9. The mode control lines M0, M1, and DCE/DTE are wired to the DB-25 connector. To select the serial interface mode, the appropriate combination of M0, M1, M2, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MXL1543. The serial interface protocol of the MXL1544/MAX3175 is now selected based on the cable that is connected to the DB-25 interface. V.10 (RS-423) Interface The V.10 interface (Figure 10) is an unbalanced singleended interface capable of driving a 450Ω load. The V.10 driver generates a minimum VO voltage of ±4V across A’ and C’ when unloaded and a minimum voltage of 0.9 ✕ V O when loaded with 450Ω. The V.10 receiver has a single-ended input and does not reject common-mode differences between C and C’. The V.10 receiver input trip threshold is defined between +250mV and -250mV with input impedance characteristic shown in Figure 11. The MXL1544/MAX3175 V.10 mode receiver has a differential threshold between -250mV and +250mV. To ensure that the receiver has proper fail-safe operation see the Fail-Safe section. To aid in rejecting system noise, the MXL1544/MAX3175 V.10 receiver has a typical hysteresis of 25mV. Switch S3 in Figure 12 is open in V.10 mode to disable the V.28 5kΩ termination at the receiver input. Switch S4 is closed and switch S5 is open to internally ground the receiver B input. V.11 (RS-422) Interface As shown in Figure 13, the V.11 protocol is a fully balanced differential interface. The V.11 driver generates a minimum of ±2V between nodes A and B when 100Ω minimum resistance is presented at the load. The V.11 receiver is sensitive to differential signals of ±200mV at receiver inputs A’ and B’. The V.11 receiver input must comply with the impedance curve of Figure 11 and reject common-mode signals developed across the cable (referenced from C to C’ in Figure 13) of up to ±7V. The MXL1544/MAX3175 V.11 mode receiver has a differential threshold between -200mV and +200mV. To ensure that the receiver has proper fail-safe operation; see the Fail-Safe section. To aid in rejecting system noise, the MXL1544/MAX3175 V.11 receiver has a typical hysteresis of 15mV. Switch S3 in Figure 14 is open in V.11 mode to disable the V.28 5kΩ termination at the inverting receiver input. Because the control signals are slow (60kbps), 100Ω termination resistance is generally not required for the MXL1544/MAX3175. The receiver inputs must also be compliant with the impedance curve shown in Figure 11. V.28 (RS-232) Interface The V.28 interface is an unbalanced single-ended interface (Figure 10). The V.28 generator provides a minimum of ±5V across the 3kΩ load impedance between A’ and C’. The V.28 receiver has single-ended input. The MXL1544/MAX3175 V.28 mode receiver has a threshold between +0.8V and +2.0V. To aid in rejecting system noise, the MXL1544/MAX3175 V.28 receiver has a typical hysteresis of 50mV. Switch S3 in Figure 15 is closed in V.28 mode to enable the 5kΩ V.28 termination at the receiver inputs. No-Cable Mode The MXL1544/MAX3175 will enter no-cable mode when the mode-select pins are left unconnected or connected HIGH (M0 = M1 = M2 = 1). In this mode, the multiprotocol drivers and receivers are disabled and the ______________________________________________________________________________________ 11 MXL1544/MAX3175 The MXL1544/MAX3175s’ mode can be selected through software control of the M0, M1, M2, INVERT, and DCE/DTE inputs. Alternatively, the mode can be selected by shorting the appropriate combination of mode control inputs to GND (the inputs left floating will be internally pulled up to VCC - logic HIGH). If the M0, M1, and M2 mode inputs are all unconnected, the MXL1544/MAX3175 will enter no-cable mode. MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers C6 C7 C8 100pF 100pF 100pF 3 8 11 12 13 VCC 5V MXL1344A 14 25 C4 1µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 D2 7 R1 9 DTE_RXC/DCE_SCTE R2 10 DTE_RXD/DCE_TXD VEE C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B DCE RXD A RXD B RXC A RXC B 20 19 15 12 TXC A TXC B 18 17 16 15 17 9 D3 8 DTE_TXC/DCE_TXC 2 C5 4.7µF 24 23 22 21 D1 21 M0 27 26 CHARGE PUMP 2 4 M1 1 C1 1µF LATCH C2 1µF DCE/DTE M2 C3 4.7µF C13 1µF 28 3 VCC R3 3 16 7 TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 NC M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 CONNECTOR C9 1µF VCC 1 C10 1µF 2 3 DTE_RTS/DCE_CTS 4 DTE_DTR/DCE_DSR 5 6 DTE_DCD/DCE_DCD 7 DTE_DSR/DCE_DTR 8 DTE_CTS/DCE_RTS 10 9 11 NC 28 VCC VEE VDD GND D1 D2 27 C11 1µF 25 DCE/DTE 21 M1 18 M0 4 RTS A CTS A 19 RTS B CTS B 20 DTR A DSR A 23 DTR B DSR B 26 25 24 23 D3 R1 R2 R3 R4 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 22 21 20 19 18 17 16 D4 M0 MXL1544 MAX3175 12 M1 13 M2 14 15 DCE/DTE INVERT CABLE WIRING FOR MODE SELECTION PIN 18 PIN 7 RS-449. V.36 N.C. PIN 7 RS-232 MODE V.35 PIN 21 PIN 7 PIN 7 N.C. CABLE WIRING FOR DTE/DCE SELECTION MODE PIN 25 PIN 7 DTE N.C. DCE Figure 9. Cable-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector 12 ______________________________________________________________________________________ DCD A DCD B DTR A DTR B RTS A RTS B +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 UNBALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION A A′ C C′ RECEIVER Figure 10. Typical V.10/V.28 Interface IZ 3.25mA -3V -10V VZ +10V +3V -3.25mA Figure 11. Receiver Input Impedance Curve A′ A MXL1544 MAX3175 R5 30kΩ R8 5kΩ R6 10kΩ RECEIVER BALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE RECEIVER TERMINATION A′ A 100Ω MIN B B′ C C′ Figure 13. Typical V.11 Interface supply current is less than 10µA. The receiver outputs enter a high-impedance state in no-cable mode, which allows these output lines to be shared with other receiver outputs (the receiver outputs have an internal pullup resistor to pull the outputs HIGH if not driven). Also, in no-cable mode, the transmitter outputs enter a highimpedance state, so these output lines can be shared with other devices. S3 Receiver Glitch Rejection R7 10kΩ B′ R4 30kΩ B S5 C′ GND S4 To improve operation in an unterminated or otherwise noisy system, the MAX3175 features 10µs of receiver input glitch rejection. The glitch-rejection circuitry blocks the reception of high-frequency noise (tB < 5µs) while receiving a low-frequency signal (tB >15µs) allowing glitch-free operation in unterminated systems at up to 60kbps. The MXL1544 does not have this feature and can be operated at frequencies greater than 60kbps if properly terminated. Figure 12. V.10 Internal Resistance Network ______________________________________________________________________________________ 13 MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers A′ A A′ R8 5kΩ A MXL1544 MAX3175 R5 30kΩ R8 5kΩ R6 10kΩ R6 10kΩ RECEIVER R7 10kΩ R7 10kΩ R4 30kΩ B B′ C′ R4 30kΩ B C′ GND GND Figure 14. V.11 Internal Resistance Networks DTE vs. DCE Operation Figure 16 shows a port with one DB-25 connector that can be configured for either DTE or DCE operation. The configuration requires separate cables for proper signal routing in DTE or DCE operation. Figure 16 illustrates a DCE or DTE controller-selectable interface. The DCE/DTE and INVERT inputs switch the port’s mode of operation (Table 1). The MXL1543 and MXL1544/MAX3175 can be connected for either DTE or DCE operation in one of two ways: a dedicated DTE or DCE port with an appropriate gender connector or a port with a connector that can be configured for DTE or DCE operation by rerouting the signals to the MXL1543 and MXL1544/MAX3175 using 14 RECEIVER S3 S3 B′ MXL1544 MAX3175 R5 30kΩ Figure 15. V.28 Termination and Internal Resistance Network a dedicated DTE cable or dedicated DCE cable. The interface mode is selected by logic outputs from the controller or from jumpers to either VCC or GND on the mode select pins. A dedicated DCE port using a DB-25 female connector is shown in Figure 17. Figure 18 illustrates a dedicated DTE port using a DB-25 male connector. ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers M2 M1 M0 DCE/ DTE INVERT T1 T2 T3 R1 R2 R3 T4 R4 Not Used (Default V.11) 0 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 RS-530A 0 0 1 0 0 V.11 V.10 Z V.11 V.10 V.11 Z V.10 RS-530 0 1 0 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 X.21 0 1 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.35 1 0 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 RS-449/V.36 1 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 Z V.10 V.28/RS-232 1 1 0 0 0 V.28 V.28 Z V.28 V.28 V.28 Z V.28 No Cable 1 1 1 0 0 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z RS-530A 0 0 1 0 1 V.11 V.10 Z V.11 V.10 V.11 V.10 Z RS-530 0 1 0 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z X.21 0 1 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.35 1 0 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z RS-449/V.36 1 0 1 0 1 V.11 V.11 Z V.11 V.11 V.11 V.10 Z V.28/RS-232 1 1 0 0 1 V.28 V.28 Z V.28 V.28 V.28 V.28 Z No Cable 1 1 1 0 1 Z Z Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 1 0 V.11 V.11 V.11 Z V.11 V.11 V.10 Z RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Not Used (Default V.11) RS-530A 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 V.11 V.11 V.11 V.28 V.11 V.28 Z V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.28 V.11 V.28 Z Z Z Z Z Z Z Z V.10 V.11 V.11 V.28 V.11 V.28 Z V.11 V.11 V.11 V.28 V.11 V.28 Z V.10 V.10 V.10 V.28 V.10 V.28 Z Z Z Z Z Z Z Z 0 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 0 0 1 1 1 V.11 V.10 V.11 Z V.10 V.11 Z V.10 RS-530 0 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 X.21 0 1 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.35 1 0 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 PROTOCOL RS-449/V.36 1 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 Z V.10 V.28/RS-232 1 1 0 1 1 V.28 V.28 V.28 Z V.28 V.28 Z V.28 No Cable 1 1 1 1 1 Z Z Z Z Z Z Z Z ______________________________________________________________________________________ 15 MXL1544/MAX3175 Table 1. Mode Select Table MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers C6 C7 C8 100pF 100pF 100pF 3 8 11 VCC 5V 12 13 MXL1344A 14 27 26 CHARGE PUMP 2 4 25 C4 1µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 D2 7 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 18 17 16 15 R2 10 DTE_RXD/DCE_TXD C12 1µF 20 19 R1 9 DTE_RXC/DCE_SCTE VEE DCE RXD A RXD B RXC A RXC B D3 8 DTE_TXC/DCE_TXC 2 C5 4.7µF 24 23 22 21 D1 21 M0 1 C1 1µF LATCH C2 1µF DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 VCC R3 3 16 7 TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 CONNECTOR C9 1µF C10 1µF DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR VCC 1 2 3 4 5 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS DTE_LL/DCE_LL 6 7 8 10 9 28 VCC VEE VDD GND D1 D2 27 C11 1µF 26 25 24 23 4 RTS A 19 RTS B 20 DTR A 23 DTR B 22 21 20 19 18 17 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 16 18 DSR A DSR B D3 R1 R2 R3 R4 LL A D4 MXL1544 M0 MAX3175 12 M1 15 13 INVERT M2 14 DCE/DTE 11 INVERT DCE/DTE M2 M1 M0 Figure 16. Controller-Selectable Multiprotocol DCE/DTE Port with DB-25 Connector 16 CTS A CTS B ______________________________________________________________________________________ DCD A DCD B DTR A DTR B RTS A RTS B LL A +5V Multiprotocol, Software-Selectable Control Transceivers MXL1544/MAX3175 C6 C7 C8 100pF 100pF 100pF 3 8 VCC 5V 11 12 13 MXL1344A 14 27 26 CHARGE PUMP 2 4 25 C4 1µF RXD 5 RXC 6 D2 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC 3 RXD A (104) 16 RXD B 17 RXC A (115) 9 RXC B 15 TXC A (114) 12 TXC B 24 SCTE A (113) 11 SCTE B 2 TXD A (103) 14 TXD B 7 SGND (102) 18 17 16 15 R2 10 TXD VEE C12 1µF 20 19 R1 9 SCTE 21 D3 8 TXC 2 C5 4.7µF 24 23 22 21 D1 7 LATCH C2 1µF M0 1 C1 1µF VCC DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 R3 11 M0 MXL1543 12 M1 13 M2 14 NC DCE/DTE C9 1µF C10 1µF DSR 1 3 4 5 DCD DTR RTS LL SHIELD (101) DB-25 FEMALE CONNECTOR VCC 2 CTS 1 6 7 8 10 9 28 VCC VEE VDD GND D1 D2 27 C11 1µF 26 25 24 23 5 CTS A (106) 13 CTS B 6 DSR A (107) 22 DSR B 22 21 8 DCD A (109) 10 DCD B 20 DTR A (108) 23 DTR B 4 RTS A (105) 19 RTS B 18 LL A (141) D3 R1 R2 R3 R4 20 19 18 17 16 D4 MXL1544 M0 MAX3175 12 M1 15 INVERT 13 M2 14 NC DCE/DTE 11 INVERT M2 M1 M0 Figure 17. Controller-Selectable DCE Port with DB-25 Connector ______________________________________________________________________________________ 17 MXL1544/MAX3175 +5V Multiprotocol, Software-Selectable Control Transceivers C6 C7 C8 100pF 100pF 100pF 3 8 VCC 5V 11 12 13 MXL1344A 14 27 26 CHARGE PUMP 2 4 25 C4 1µF TXD 5 SCTE 6 D1 D2 7 R1 9 RXC R2 10 RXD 2 C5 4.7µF VEE C12 1µF 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 24 23 22 21 2 TXD A (103) 14 TXD B 24 SCTE A (113) 11 SCTE B 20 19 15 12 18 17 16 15 17 9 D3 8 TXC 21 M0 1 C1 1µF LATCH C2 1µF DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 VCC R3 3 16 7 TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG 11 M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 MALE CONNECTOR C9 1µF C10 1µF VCC 1 2 RTS DTR 3 4 5 DCD DSR CTS LL 6 7 8 10 9 28 VCC VEE VDD GND D1 D2 27 C11 1µF 26 25 24 23 4 RTS A (105) 19 RTS B 20 DTR A (108) 23 DTR B 22 21 20 19 18 17 8 DCD A (109) 10 DCD B 6 DSR A (107) 22 DSR B 5 CTS A (106) 13 CTS B 16 18 D3 R1 R2 R3 R4 LL A (141) D4 MXL1544 M0 MAX3175 12 15 M1 INVERT 13 M2 14 DCE/DTE 11 INVERT M2 M1 M0 Figure 18. Controller-Selectable Multiprotocol DTE Port with DB-25 Connector 18 ______________________________________________________________________________________ +5V Multiprotocol, Software-Selectable Control Transceivers TOP VIEW VCC 1 28 VEE VDD 2 27 GND T1IN 3 26 T1OUTA T2IN 4 25 T1OUTB T3IN 5 R1OUT 6 24 T2OUTA MXL1544 MAX3175 23 T2OUTB R2OUT 7 22 T3OUTA/R1INA R3OUT 8 21 T3OUTB/R1INB T4IN 9 20 R2INA R4OUT 10 19 R2INB M0 11 18 R3INA M1 12 17 R3INB M2 13 16 T4OUTA/R4INA DCE/DTE 14 15 INVERT SSOP ______________________________________________________________________________________ 19 MXL1544/MAX3175 Pin Configuration Chip Information TRANSISTOR COUNT: 2348 PROCESS: BiCMOS +5V Multiprotocol, Software-Selectable Control Transceivers SSOP.EPS MXL1544/MAX3175 Package Information Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.