19-1929; Rev 1; 9/01 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers Features ♦ MXL1543, MXL1544/MAX3175, and MXL1344A Chipset Is Pin Compatible with LTC1543, LTC1544, and LTC1344A ♦ Supports RS-232, RS-449, EIA-530, EIA-530A, V.35, V.36, and X.21 ♦ Software-Selectable Cable Termination Using the MXL1344A ♦ Complete DTE or DCE Port with MXL1544/ MAX3175, and MXL1344A ♦ +5V Single-Supply Operation ♦ 0.5µA No-Cable Mode ♦ TUV-Certified NET1/NET2 and TBR1/TBR2Compliant Ordering Information Applications Data Networking PCI Cards CSU and DSU Telecommunications Equipment Data Routers PART TEMP. RANGE MXL1543CAI 0° to +70°C PIN-PACKAGE 28 SSOP Pin Configuration appears at end of data sheet. Typical Operating Circuit D4 LL CTS DSR R4 R3 R2 R1 MXL1544 MAX3175 DCD DTR RTS D3 D2 D1 RXD RXC R3 R2 TXC R1 MXL1543 D3 SCTE TXD D2 D1 MXL1344A 18 13 5 10 8 22 6 23 20 19 4 1 7 16 3 9 17 12 15 11 24 14 2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (107) DCD B DSR A (109) DSR B CTS A (106) CTS B LL A (141) DB-25 CONNECTOR ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MXL1543 General Description The MXL1543 is a three-driver/three-receiver multiprotocol transceiver that operates from a +5V single supply. The MXL1543, along with the MXL1544/MAX3175 and the MXL1344A, form a complete software-selectable data terminal equipment (DTE) or data communication equipment (DCE) interface port that supports the V.28 (RS-232), V.10/V.11 (RS-449/V.36, EIA-530, EIA530A, X.21), and V.35 protocols. The MXL1543 transceivers carry the high-speed clock and data signals while the MXL1544/MAX3175 carry the control signals. The MXL1543 can be terminated by the MXL1344A software-selectable resistor termination network or by discrete termination networks. An internal charge pump and a proprietary low-dropout transmitter output stage allow V.11- , V.28- , and V.35compliant operation from a +5V single supply. A nocable mode is entered when all mode pins (M0, M1, and M2) are pulled high or left unconnected. In nocable mode, supply current decreases to 0.5µA and all transmitter and receiver outputs are disabled (high impedance). Short-circuit current limiting and thermal shutdown circuitry protect the drivers against excessive power dissipation. MXL1543 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers ABSOLUTE MAXIMUM RATINGS All Voltages Referenced to GND Unless Otherwise Noted. Supply Voltages VCC .......................................................................-0.3V to +6V VDD ....................................................................-0.3V to +7.3V VEE.....................................................................+0.3V to -6.5V VDD to VEE (Note 1) ................................................................13V Logic Input Voltages M0, M1, M2, DCE/DTE, T_IN ................................-0.3V to +6V Logic Output Voltages R_OUT ....................................................-0.3V to (VCC + 0.3V) Transmitter Outputs T_OUT_, T3OUT_/R1IN_.....................................-15V to +15V Short-Circuit Duration............................................Continuous Note 1: VDD and VEE absolute difference cannot exceed 13V. Receiver Input R_IN_T3OUT_/R1IN_ ..........................................-15V to +15V Continuous Power Dissipation (TA = +70°C) 28-Pin SSOP (derate 11.1mW/°C above +70°C) .........889mW Operating Temperature Range MXL1543CAI .......................................................0°C to 70°C Junction Temperature .......................................................150°C Storage Temperature Range ...........................-65°C to +150°C Lead Temperature (soldering, 10s) ...............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +5.0V, C1 = C2 = C4 = 1µF, C3 = C5 = 4.7µF, (Figure 10), TA = TMIN to TMAX. Typical values are at TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 5.25 V DC CHARACTERISTICS VCC Operating Range Supply Current (DCE Mode) (Digital Inputs = GND or VCC) (Transmitter Outputs Static) Internal Power Dissipation (DCE Mode) Positive Charge-Pump Output Voltage Negative Charge-Pump Output Voltage Supply Rise Time VCC ICC PD VDD VEE tr 4.75 RS-530, RS-530A, X.21, no load 13 RS-530, RS-530A, X.21, full load 100 V.35 mode, no load 20 V.35 mode, full load 126 V.28 mode, no load 20 V.28 mode, full load 40 75 No-cable mode 0.5 10 RS-530, RS-530A, X.21, full load 230 V.35 mode, full load 600 V.28 mode, full load 140 Any mode (except no-cable mode), no load 6.4 6.8 V.28 mode, with load 6.4 6.8 V.28, V.35 modes, with load, IDD = 10mA 6.4 6.8 130 170 mA µA mW V V.28, V.35, no load -5.6 V.28 mode, full load -5.6 -5.4 V.35 mode, full load -5.6 -5.4 RS-530, RS-530A, X.21, full load -5.6 -5.4 No-cable mode or power-up to turn on 500 V µs LOGIC INPUTS (M0, M1, M2, DCE/DTE, T1IN, T2IN, T3IN) Input High Voltage VIH Input Low Voltage VIL 2.0 0.8 T1IN, T2IN, T3IN Logic Input Current IIN M0, M1, M2, DCE/DTE = GND ±10 -100 -50 M0, M1, M2, DCE/DTE = VCC 2 V _______________________________________________________________________________________ -30 ±10 µA +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers (VCC = +5.0V, C1 = C2 = C4 = 1µF, C3 = C5 = 4.7µF, (Figure 10), TA = TMIN to TMAX. Typical values are at TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP 3 4.5 MAX UNITS LOGIC OUTPUTS (R1OUT, R2OUT, R3OUT) Output High Voltage VOH ISOURCE = 4mA Output Low Voltage VOL ISINK = 4mA Output Short-Circuit Current ISC 0 ≤ VOUT ≤ VCC Output Pullup Current IL 0.3 0.8 ±50 VOUT = 0, no-cable mode V mA µA 70 V.11 TRANSMITTER Open-Circuit Differential Output Voltage VODO Loaded Differential Output Voltage VODL Open circuit, R = 1.95kΩ (Figure 1) R = 50Ω (Figure 1), TA = +25oC R = 50Ω (Figure 1) 0.5 ✕ VODO ±5 V 0.67 ✕ VODO V ±2 Change in Magnitude of Output Differential Voltage ∆VOD R = 50Ω (Figure 1) 0.2 V Common-Mode Output Voltage VOC R = 50Ω (Figure 1) 3.0 V Change in Magnitude of Output Common-Mode Voltage ∆VOC R = 50Ω (Figure 1) 0.2 V VOUT = GND 150 mA ±1 ±100 µA 10 25 ns Short-Circuit Current Output Leakage Current Rise or Fall Time ISC IZ -0.25V ≤ VOUT ≤ +0.25V, power-off or no-cable mode tr, tf (Figures 2, 6) Transmitter Input to Output Delay tPHL , tPLH (Figures 2, 6) 40 80 ns Data Skew ItPHL- tPLHI (Figures 2, 6) 3 12 ns tSKEW (Figures 2, 6) 3 Output to Output Skew 2 ns V.11 RECEIVER Differential Threshold Voltage Input Hysteresis VTH -7V ≤ VCM ≤ 7V ∆VTH -7V ≤ VCM ≤ 7V -200 15 200 mV 40 mV ±0.66 mA IIN -10V ≤ VA, B ≤10V Receiver Input Resistance RIN -10V ≤ VA, B ≤ 10V Rise or Fall Time tr, tf (Figures 2, 7) 15 tPHL,tPLH (Figures 2, 7) 50 80 ns |tPHL- tPLH| (Figures 2, 7) 4 16 ns ±0.44 ±0.55 ±0.66 Receiver Input Current Receiver Input to Output Delay Data Skew 15 30 kΩ ns V.35 TRANSMITTER ±7 Open circuit (Figure 3) V Differential Output Voltage VOD Output High Current IOH VA,B = 0 -13 -11 -9 mA Output Low Current IOL VA,B = 0 9 11 13 mA With load, -4V ≤ VCM ≤ 4V (Figure 3) _______________________________________________________________________________________ 3 MXL1543 ELECTRICAL CHARACTERISTICS (continued) MXL1543 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers ELECTRICAL CHARACTERISTICS (continued) (VCC = +5.0V, C1 = C2 = C4 = 1µF, C3 = C5 = 4.7µF, (Figure 10), TA = TMIN to TMAX. Typical values are at TA = +25°C, unless otherwise noted.) PARAMETER TYP MAX UNITS -0.25V ≤ VOUT ≤ +0.25V, power-off or nocable mode ±1 ±100 µA tr, tf (Figures 3, 6) 5 Transmitter Input to Output Delay tPHL, tPLH (Figures 3, 6) 35 80 ns Data Skew |tPHL–tPLH| (Figures 3, 6) 4 16 ns tSKEW (Figures 3, 6) 4 Output Leakage Current Rise or Fall Time Output-to-Output Skew SYMBOL IZ CONDITIONS MIN ns ns V.35 RECEIVER Differential Input Voltage Input Hysteresis VTH -2V ≤ VCM ≤ 2V (Figure 3) ∆VTH -2V ≤ VCM ≤ 2V (Figure 3) -200 15 200 mV 40 mV ±0.66 mA Receiver Input Current IIN -10V ≤ VA,B ≤ 10V Receiver Input Resistance RIN -10V ≤ VA,B ≤ 10V Rise or Fall Time tr, tf (Figures 3, 7) 15 Receiver Input to Output Delay tPHL, tPLH (Figures 3, 7) 50 80 ns Data Skew |tPHL–tPLH| (Figures 3, 7) 4 16 ns 15 30 kΩ ns V.28 TRANSMITTER Output Voltage Swing (Figure 4) VO Short-Circuit Current ISC ±7 Open circuit RL = 3kΩ ±5 ±6 V ±150 mA ±100 µA 30 V/µs Output Leakage Current IZ -0.25V ≤ VOUT ≤ +0.25V, power-off or nocable mode Output Slew Rate SR RL = 3kΩ, CL = 2500pF (Figures 4, 8) Transmitter Input to Output Delay tPHL RL = 3kΩ, CL = 2500pF (Figures 4, 8) 1.5 2.5 µs Transmitter Input to Output Delay tPLH RL = 3kΩ, CL = 2500pF (Figures 4, 8) 1.5 3 µs ±1 4 V.28 RECEIVER Input Threshold Low VIL Input Threshold High VIH 0.8 1.2 V 1.2 2.0 V 0.05 0.3 V 5 7 kΩ Input Hysteresis VHYST Input Resistance RIN -15V ≤ VIN ≤ +15V Rise or Fall Time tr, tf (Figures 5, 9) Receiver Input to Output Delay tPHL (Figures 5, 9) 60 100 ns Receiver Input to Output Delay tPLH (Figures 5, 9) 160 250 ns 4 3 15 _______________________________________________________________________________________ ns +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers V.28 SUPPLY CURRENT vs. DATA RATE 80 60 40 100 1000 50 DATA RATE (kbps) V.11 DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs. TEMPERATURE VOUT+ 250 2 1 0 -1 VOUT- 2 0 -2 -4 -6 -4 -8 -5 VOUT+ 4 20 30 40 50 60 70 100 1000 10,000 0.66 VOH DCE MODE, VCM = 0 FULL LOAD 0.44 0.22 0 -0.22 -0.44 VOUT- VOL -0.66 -10 10 10 V.35 OUTPUT VOLTAGE vs. TEMPERATURE 6 -3 0 0.1 0.1 DATA RATE (kbps) DCE MODE, RL = 3kΩ 8 OUTPUT VOLTAGE (V) 3 -2 200 10 MXL1543 toc04 DCE MODE, R = 50Ω 100 150 DATA RATE (kbps) V.28 OUTPUT VOLTAGE vs. TEMPERATURE 5 4 DCE MODE, FULL LOAD, ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 0 0 10,000 OUTPUT VOLTAGE (V) 100 10 MXL1543 toc05 1 60 20 0 0.1 80 40 DCE MODE, R = 50Ω, ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE 0 0 10 20 30 40 50 60 70 TEMPERATURE (°C) TEMPERATURE (°C) 20 30 40 50 TEMPERATURE (°C) V.35 DIFFERENTIAL OUTPUT VOLTAGE vs. COMMON-MODE VOLTAGE V.11/V.35 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE V.28 RECEIVER INPUT CURRENT vs. INPUT VOLTAGE 580 |VOD| 570 560 550 540 530 520 DCE MODE 200 100 0 -100 -200 -3 -2 -1 0 1 2 COMMON-MODE VOLTAGE (V) 3 4 60 70 2.5 2.0 DCE MODE 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 -2.5 -300 -4 10 MXL1543 toc09 300 0 RECEIVER INPUT CURRENT (mA) 590 RECEIVER INPUT CURRENT (µA) MXL1543 toc07 600 MXL1543 toc08 DRIVER DIFFERENTIAL OUTPUT VOLTAGE (V) 120 20 20 DIFFERENTIAL OUTPUT VOLTAGE (mV) MXL1543 toc02 60 40 160 140 MXL1543 toc06 100 200 180 SUPPLY CURRENT (mA) 120 DCE MODE ALL TRANSMITTERS OPERATING AT THE SPECIFIED DATA RATE RL = 3kΩ, CL = 2500pF 80 SUPPLY CURRENT (mA) 140 SUPPLY CURRENT (mA) 100 MXL1543 toc01 160 V.35 SUPPLY CURRENT vs. DATA RATE MXL1543 toc03 V.11 SUPPLY CURRENT vs. DATA RATE -10 -8 -6 -4 -2 0 2 4 INPUT VOLTAGE (V) 6 8 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 INPUT VOLTAGE (V) _______________________________________________________________________________________ 5 MXL1543 Typical Operating Characteristics (VCC = +5.0V, C1 = C2 = C4 =1µF, C3 = C5 = 4.7µF, (Figure 10), TA = TMIN to TMAX, TA = +25°C, unless otherwise noted.) +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers MXL1543 Typical Operating Characteristics (continued) (VCC = +5.0V, C1= C2 = C4 =1µF, C3 = C5 = 4.7µF (Figure 10), TA = +25°C, unless otherwise noted.) V.11 LOOPBACK OPERATION V.28 LOOPBACK OPERATION MXL1543 toc10 R = 50Ω 5V/div TIN TOUT/RIN 5V/div ROUT 5V/div 5V/div TIN TOUT/RIN 5V/div TOUT/RIN ROUT 5V/div 5V/div ROUT V.28 SLEW RATE vs. CLOAD V.11 TRANSMITTER PROPAGATION DELAY vs. TEMPERATURE V.11 RECEIVER PROPAGATION DELAY vs. TEMPERATURE RL = 3kΩ 1 TRANSMITTER SWITCHING AT 250kbps. OTHER TRANSMITTERS SWITCHING AT 15kbps 1000 2000 3000 4000 PROPAGATION DELAY (ns) tPLH 40 30 tPHL 20 10 10 20 30 50 40 TEMPERATURE (°C) 60 60 tPLH 40 30 tPHL 20 tPLH 30 20 70 0 10 20 30 50 40 TEMPERATURE (°C) MXL1543 toc17 100 90 80 PROPAGATION DELAY (ns) 70 40 V.35 RECEIVER PROPAGATION DELAY vs. TEMPERATURE MXL1543 toc16 80 50 0 0 5000 tPHL 60 10 0 V.35 TRANSMITTER PROPAGATION DELAY vs. TEMPERATURE 50 70 60 50 MXL1543 toc15 70 PROPAGATION DELAY (ns) -SLEW 80 MXL1543 toc14 80 CLOAD (pF) 70 tPHL 60 50 40 tPLH 30 20 10 10 0 0 0 6 1V/div 200ns/div +SLEW 0 5V/div 1µs/div MXL1543 toc13 24 22 20 18 16 14 12 10 8 6 4 2 0 MXL1543 toc12 FULL LOAD CL = 2500pF RL = 3kΩ 200ns/div PROPAGATION DELAY (ns) SLEW RATE (V/µs) TIN V.35 LOOPBACK OPERATION MXL1543 toc11 10 20 30 50 40 TEMPERATURE (°C) 60 70 0 10 20 30 50 40 TEMPERATURE (°C) 60 _______________________________________________________________________________________ 70 60 70 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers 100pF D R B B R 100Ω A A VOD 15pF VOC R 100pF Figure 1. V.11 DC Test Circuit Figure 2. V.11 AC Test Circuit 50Ω D B 125Ω 50Ω VCM 125Ω B VOD R A 50Ω A 50Ω 15pF Figure 3. V.35 Transmitter/Receiver Test Circuit D A D VO C L Figure 4. V.28 Driver Test Circuit A R RL 15pF Figure 5. V.28 Receiver Test Circuit _______________________________________________________________________________________ 7 MXL1543 Test Circuits +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers MXL1543 Timing Diagrams 5V D f = 1MHz: tr ≤10ns: tf ≤ 10ns 1.5V 0 1.5V tPLH tPHL V0 90% 10% 50% B—A -V0 tr 90% VDIFF = V(A) - V(B) 50% 1/2 V0 10% tf A V0 B tSKEW tSKEW Figure 6. V.11, V.35 Driver Propagation Delays V0 B—A -V0 f = 1MHz: tr ≤10ns: tf ≤ 10ns 0 INPUT 0 tPHL tPLH V0H 1.5V R OUTPUT 1.5V V0L Figure 7. V.11, V.35 Receiver Propagation Delays 3V 1.5V D 0 1.5V tPHL tPLH V0 3V 3V 0 0 A -3V -V0 -3V tr tr Figure 8. V.28 Driver Propagation Delays VIH A VIL 1.7V 1.3V tPLH tPHL V0H R V0L 2.4V 0.8V Figure 9. V.28 Receiver Propagation Delays 8 _______________________________________________________________________________________ +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers PIN NAME 1 C1- Capacitor C1 Negative Terminal. Connect a 1µF ceramic capacitor between C1+ and C1-. FUNCTION 2 C1+ Capacitor C1 Positive Terminal. Connect a 1µF ceramic capacitor between C1+ and C1-. 3 VDD Generated Positive Supply. Connect a 4.7µF ceramic capacitor to ground. 4 VCC +5V Supply Voltage (±5%). Decouple with a 1µF capacitor to ground. 5 T1IN Transmitter 1 TTL-Compatible Input 6 T2IN Transmitter 2 TTL-Compatible Input 7 T3IN Transmitter 3 TTL-Compatible Input 8 R1OUT Receiver 1 CMOS Output 9 R2OUT Receiver 2 CMOS Output 10 R3OUT Receiver 3 CMOS Output 11 M0 Mode-Select Pin with Internal Pullup to VCC 12 M1 Mode-Select Pin with Internal Pullup to VCC 13 M2 Mode-Select Pin with Internal Pullup to VCC 14 DCE/DTE 15 R3INB Noninverting Receiver Input 16 R3INA Inverting Receiver Input 17 R2INB Noninverting Receiver Input 18 R2INA Inverting Receiver Input 19 T3OUTB/R1INB Noninverting Transmitter Output/Noninverting Receiver Input 20 T3OUTA/R1INA Inverting Transmitter Output/Inverting Receiver Input 21 T2OUTB Noninverting Transmitter Output 22 T2OUTA Inverting Transmitter Output 23 T1OUTB Noninverting Transmitter Output 24 T1OUTA Inverting Transmitter Output 25 GND Ground 26 VEE Generated Negative Supply. Connect a 4.7µF ceramic capacitor to ground. 27 C2- Capacitor C2 Negative Terminal. Connect a 1µF ceramic capacitor between C2+ and C2-. 28 C2+ Capacitor C2 Positive Terminal. Connect a 1µF ceramic capacitor between C2+ and C2-. DCE/DTE Mode-Select Pin with Internal Pullup to VCC Detailed Description The MXL1543 is a three-driver/three-receiver, multiprotocol transceiver that operates from a single +5V supply. The MXL1543, along with the MXL1544/MAX3175 and MXL1344A, form a complete software-selectable DTE or DCE interface port that supports the V.28 (RS232), V.10/V.11 (RS-449/V.36, EIA-530, EIA-530A, X.21), and V.35 protocols. The MXL1543 transceivers carry the high-speed clock and data signals, while the MXL1544/MAX3175 transceivers carry serial interface control signaling. The MXL1543 can be terminated by the MXL1344A software-selectable resistor termination network or by a discrete termination network. The MXL1543 features a 0.5µA no-cable mode, true fail- safe operation, and thermal shutdown circuitry. Thermal shutdown protects the drivers against excessive power dissipation. When activated, the thermal shutdown circuitry places the driver outputs into a high-impedance state. Mode Selection The state of the mode-select pins M0, M1, and M2 determines which serial interface protocol is selected (Table 1). The state of the DCE/DTE input determines whether the transceiver will be configured as a DTE or DCE serial port. When the DCE/DTE input is logic HIGH, driver T3 is activated and receiver R1 is disabled. When the DCE/DTE input is logic LOW, driver T3 _______________________________________________________________________________________ 9 MXL1543 Pin Description MXL1543 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers Table 1. Mode Selection MXL1543 MODE NAME M2 M1 M0 DCE/ DTE T1 T2 T3 R1 R2 R3 Not Used (Default V.11) 0 0 0 0 V.11 V.11 Z V.11 V.11 V.11 RS-530A 0 0 1 0 V.11 V.11 Z V.11 V.11 V.11 RS-530 0 1 0 0 V.11 V.11 Z V.11 V.11 V.11 X.21 0 1 1 0 V.11 V.11 Z V.11 V.11 V.11 V.35 1 0 0 0 V.35 V.35 Z V.35 V.35 V.35 RS-449/V.36 1 0 1 0 V.11 V.11 Z V.11 V.11 V.11 V.28 V.28/RS-232 1 1 0 0 V.28 V.28 Z V.28 V.28 No Cable 1 1 1 0 Z Z Z Z Z Z Not Used (Default V.11) 0 0 0 1 V.11 V.11 V.11 Z V.11 V.11 RS-530A 0 0 1 1 V.11 V.11 V.11 Z V.11 V.11 RS-530 0 1 0 1 V.11 V.11 V.11 Z V.11 V.11 X.21 0 1 1 1 V.11 V.11 V.11 Z V.11 V.11 V.35 1 0 0 1 V.35 V.35 V.35 Z V.35 V.35 RS-449/V.36 1 0 1 1 V.11 V.11 V.11 Z V.11 V.11 V.28/RS-232 1 1 0 1 V.28 V.28 V.28 Z V.28 V.28 No Cable 1 1 1 1 Z Z Z Z Z Z is disabled and receiver R1 is activated. M0, M1, M2, and DCE/DTE are internally pulled up to VCC to ensure a logic HIGH if left unconnected. No-Cable Mode The MXL1543 will enter no-cable mode when the mode-select pins are left unconnected or connected high (M0 = M1 = M2 = 1). In this mode, the multiprotocol drivers and receivers are disabled and the supply current drops to 0.5µA. The receivers’ outputs enter a high-impedance state in no-cable mode, which allow these output lines to be shared with other receivers’ outputs (the receivers’ outputs have internal pullup resistors to pull the outputs HIGH if not driven). Also, in no-cable mode, the transmitter outputs enter a highimpedance state so that these output lines can be shared with other devices. Dual Charge-Pump Voltage Converter The MXL1543’s internal power supply consists of a regulated dual charge pump that provides positive and negative output voltages from a +5V supply. The charge pump operates in discontinuous mode. If the output voltage is less than the regulated voltage, the charge pump is enabled. If the output voltage exceeds the regulated voltage, the charge pump is disabled. 10 Each charge pump requires a flying capacitor (C1, C2) and a reservoir capacitor (C3, C5) to generate the VDD and VEE supplies. Figure 10 shows charge-pump connections. Fail-Safe Receivers The MXL1543 guarantees a logic-high receiver output when the receiver inputs are shorted or open, or when they are connected to a terminated transmission line with all the drivers disabled. This is done by setting the receivers’ threshold between -25mV and -200mV in the MXL1543 C3 4.7µF C1 1µF 5V C4 1µF VDD C2+ C1+ C2- C1- VEE VCC GND Figure 10. Charge Pump ______________________________________________________________________________________ C2 1µF C5 4.7µF +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers MXL1543 C6 C7 C8 100pF 100pF 100pF 3 8 VCC 5V 11 12 13 MXL1344A 14 25 C4 1µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 D2 7 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 VCC DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 18 17 16 15 R2 10 DTE_RXD/DCE_TXD C12 1µF 20 19 R1 9 DTE_RXC/DCE_SCTE VEE DCE RXD A RXD B RXC A RXC B D3 8 DTE_TXC/DCE_TXC 2 C5 4.7µF 24 23 22 21 D1 21 M0 27 26 CHARGE PUMP 2 4 LATCH C2 1µF M1 1 C1 1µF VCC DCE/DTE M2 C3 4.7µF C13 1µF 28 3 R3 3 16 7 TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 NC M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 CONNECTOR C9 1µF VCC 1 C10 1µF 2 3 DTE_RTS/DCE_CTS 4 DTE_DTR/DCE_DSR 5 6 DTE_DCD/DCE_DCD 7 DTE_DSR/DCE_DTR 8 DTE_CTS/DCE_RTS 10 9 28 VCC VEE VDD GND D1 D2 27 26 25 24 23 C11 1µF 25 DCE/DTE 21 M1 18 M0 4 RTS A CTS A 19 RTS B CTS B 20 DTR A DSR A 23 DTR B DSR B D3 R1 R2 R3 R4 22 21 20 19 18 17 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B DCD A DCD B DTR A DTR B RTS A RTS B 16 D4 11 NC M0 MXL1544 MAX3175 12 M1 13 M2 14 15 DCE/DTE INVERT Figure 11. Cable-Selectable Multiprotocol DTE/DCE Port ______________________________________________________________________________________ 11 MXL1543 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers BALANCED INTERCONNECTING CABLE GENERATOR IZ CABLE TERMINATION A 3.25mA LOAD RECEIVER -10V -3V VZ +10V A′ +3V 100Ω MIN B B′ C C′ GND GND Figure 13. Receiver Input Impedance Cable-Selectable Mode Figure 12. Typical V.11 Interface V.11 and V.35 modes. If the differential receiver input voltage (B - A) is ≥ -25mV, R_OUT is logic HIGH. If (B A) is ≤ -200mV, R_OUT is logic LOW. In the case of a terminated bus with all transmitters disabled, the receiver’s differential input voltage is pulled to zero by the termination. With the receiver thresholds of the MXL1543, this results in a logic HIGH with a 25mV minimum noise margin. Applications Information Capacitor Selection The capacitors used for the charge pumps, as well as for supply bypassing, should have a low equivalent series resistance (ESR) and low temperature coefficient. Multilayer ceramic capacitors with an X7R dielectric offer the best combination of performance, size, and cost. The flying capacitors (C1, C2) and the bypass capacitor (C4) should have a value of 1µF, while the reservoir capacitors (C3, C5) should have a minimum value of 4.7µF (Figure 10). To reduce the ripple present on the transmitter outputs, capacitors C3, C4, and C5 can be increased. The values of C1 and C2 should not be increased. Cable Termination The MXL1344A software-selectable resistor network is designed to be used with the MXL1543. The MXL1344A multiprotocol termination network provides V.11- and V.35-compliant termination, while V.28 receiver termination is internal to the MXL1543. These cable termination networks provide compatibility with V.11, V.28, and V.35 protocols. Using the MXL1344A termination networks provide the advantage of not having to build expensive termination networks out of resistors and relays, manually changing termination modules, or building custom termination networks 12 -3.25mA A cable-selectable multiprotocol interface is shown in Figure 11. The mode control lines M0, M1, and DCE/DTE are wired to the DB-25 connector. To select the serial interface mode, the appropriate combination of M0, M1, and DCE/DTE are grounded within the cable wiring. The control lines that are not grounded are pulled high by the internal pullups on the MXL1543. The serial interface protocol of the MXL1543, MXL1544/MAX3175, and MXL1344A is selected based on the cable that is connected to the DB-25 interface. V.11 Interface As shown in Figure 12, the V.11 protocol is a fully balanced differential interface. The V.11 driver generates a minimum of ±2V between nodes A and B when a 100Ω (min) resistance is presented at the load. The V.11 receiver is sensitive to ±200mV differential signals at receiver inputs A’ and B’. The V.11 receiver rejects common-mode signals developed across the cable (referenced from C to C’) of up to ±7V, allowing for error-free reception in noisy environments. The receiver inputs must comply with the impedance curve shown in Figure 13. For high-speed data transmission, the V.11 specification recommends terminating the cable at the receiver with a 100Ω resistor. This resistor, although not required, prevents reflections from corrupting transmitted data. In Figure 14, the MXL1344A is used to terminate the V.11 receiver. Internal to the MXL1344A, S1 is closed and S2 is open to present a 100Ω minimum differential resistance. The MXL1543’s internal V.28 termination is disabled by opening S3. V.35 Interface Figure 15 shows a fully-balanced, differential standard V.35 interface. The generator and the load must both present a 100Ω ±10Ω differential impedance and a 150Ω ±15Ω common-mode impedance as shown by the resistive T networks in Figure 15. The V.35 driver generates a current output (±11mA, typ) that develops an output voltage of ±550mV across the generator and ______________________________________________________________________________________ +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers MXL1543 A′ A MXL1543 R5 30kΩ R1 52Ω R8 5kΩ MXL1344A RECEIVER S3 S1 S2 R6 10kΩ R3 124Ω R7 10kΩ R2 52Ω B′ R4 30kΩ B C′ GND Figure 14. V.11 Termination and Internal Resistance Networks BALANCED INTERCONNECTING CABLE GENERATOR LOAD 50Ω CABLE TERMINATION A′ A 125Ω 125Ω 50Ω RECEIVER 50Ω 50Ω B B′ C C′ GND GND Figure 15. Typical V.35 Interface A′ A MXL1543 R5 30kΩ R1 52Ω R8 5kΩ MXL1344A S1 S2 R6 10kΩ S3 R3 124Ω R7 10kΩ R2 52Ω B′ RECEIVER R4 30kΩ B C′ GND Figure 16. V.35 Termination and Internal Resistance Networks ______________________________________________________________________________________ 13 MXL1543 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers UNBALANCED INTERCONNECTING CABLE GENERATOR LOAD CABLE TERMINATION A A′ C C′ GND RECEIVER GND Figure 17. Typical V.28 Interface A′ A MXL1543 R5 30kΩ R1 52Ω R8 5kΩ MXL1344A S1 S2 R6 10kΩ S3 R3 124Ω R7 10kΩ R2 52Ω B′ RECEIVER R4 30kΩ B C′ GND Figure 18. V.28 Termination and Internal Resistance Networks load termination networks. The V.35 receiver is sensitive to ±200mV differential signals at receiver inputs A’ and B’. The V.35 receiver rejects common-mode signals developed across the cable (referenced from C to C’) of up to ±4V, allowing for error-free reception in noisy environments. In Figure 16, the MXL1344A is used to implement the resistive T network that is needed to properly terminate the V.35 driver and receiver. Internal to the MXL1344A, S1 and S2 are closed to connect the T-network resistors to the circuit. The V.28 termination resistor (internal to the MXL1543) is disabled by opening S3 to avoid interference with the T-network impedance. in rejecting system noise, the MXL1543’s V.28 receiver has a typical hysteresis of 0.05V. Figure 18 shows the MXL1344A’s termination network disabled by opening S1 and S2. The MXL1543’s internal 5kΩ V.28 termination is enabled by closing S3. DTE vs. DCE Operation V.28 Interface Figure 19 shows a DCE or DTE controller-selectable interface. DCE/DTE (pin 14) switches the port’s mode of operation. See Table 1. This application requires only one DB-25 connector, but separate cables for DCE or DTE signal routing. See Figure 19 for complete signal routing in DCE and DTE modes. The V.28 interface is an unbalanced single-ended interface (Figure 17). The V.28 driver generates a minimum of ±5V across a 3kΩ load impedance between A’ and C’. The V.28 receiver has a single-ended input. To aid A complete DTE-to-DCE interface operating in X.21 mode is shown in Figure 20. The MXL1543 is used to generate the clock and data signals, and the 14 Complete Multiprotocol X.21 Interface ______________________________________________________________________________________ +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers MXL1543 C6 C7 C8 100pF 100pF 100pF 3 8 VCC 5V 11 12 13 MXL1344A 14 27 26 CHARGE PUMP 2 4 25 C4 1µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 D2 7 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 15 12 17 9 18 17 16 15 R2 10 DTE_RXD/DCE_TXD VEE C12 1µF 20 19 R1 9 DTE_RXC/DCE_SCTE 21 DCE RXD A RXD B RXC A RXC B D3 8 DTE_TXC/DCE_TXC 2 C5 4.7µF 24 23 22 21 D1 LATCH C2 1µF M0 1 C1 1µF VCC DCE/DTE M2 M1 C3 4.7µF C13 1µF 28 3 R3 3 16 7 TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 M0 MXL1543 12 M1 13 M2 14 DCE/DTE 1 SHIELD DB-25 CONNECTOR C9 1µF VCC C10 1µF DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR 1 2 3 4 5 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS DTE_LL/DCE_LL 6 7 8 10 9 28 VCC VEE VDD GND D1 D2 27 C11 1µF 26 25 24 23 4 RTS A 19 RTS B 20 DTR A 23 DTR B 22 21 20 19 18 17 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 16 18 CTS A CTS B DSR A DSR B D3 R1 R2 R3 R4 LLA DCD A DCD B DTR A DTR B RTS A RTS B LLA D4 MXL1544 M0 MAX3175 12 15 M1 INVERT 13 M2 14 DCE/DTE 11 DCE/DTE M2 M1 M0 Figure 19. Multiprotocol DCE/DTE Port ______________________________________________________________________________________ 15 MXL1543 +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers DTE SERIAL CONTROLLER MXL1543 DCE MXL1344A MXL1344A TXD D1 TXD SCTE D2 SCTE D3 TXC R3 RXC R2 RXD R1 104Ω 104Ω MXL1543 SERIAL CONTROLLER R3 TXD R2 SCTE R1 104Ω 104Ω 104Ω TXC D1 TXC RXC D2 RXC RXD D3 RXD MXL1544 MAX3175 MXL1544 MAX3175 RTS D1 RTS R3 RTS DTR D2 DTR R2 DTR D3 R1 DCD R1 DCD D3 DCD DSR R2 DSR D2 DSR CTS R3 CTS D1 CTS LL D4 R4 LL R4 LL D4 Figure 20. DCE-to-DTE X.21 Interface MXL1544/MAX3175 generate the control signals and local loopback (LL). The MXL1344A is used to terminate the clock and data signals to support the V.11 protocol for cable termination. The control signals do not need external termination. 16 Compliance Testing A European Standard EN 45001 test report is pending for the MXL1543/MXL1544/MXL1344A chipset. A copy of the test report will be available from Maxim upon completion. ______________________________________________________________________________________ +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers Pin Configuration TOP VIEW C1- 1 28 C2+ C1+ 2 27 C2- VDD 3 26 VEE VCC 4 25 GND T1IN 5 T2IN 6 24 T1OUTA MXL1543 23 T1OUTB T3IN 7 22 T2OUTA R1OUT 8 21 T2OUTB R2OUT 9 20 T3OUTA/R1INA R3OUT 10 19 T3OUTB/R1INB M0 11 18 R2INA M1 12 17 R2INB M2 13 16 R3INA DCE/DTE 14 15 R3INB SSOP ______________________________________________________________________________________ 17 MXL1543 Chip Information TRANSISTOR COUNT: 2619 PROCESS: BiCMOS +5V Multiprotocol, 3Tx/3Rx, SoftwareSelectable Clock/Data Transceivers SSOP.EPS MXL1543 Package Information Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.