AD ADA4051-1AKSZ-RL

1.8 V, Micropower, Zero-Drift,
Rail-to-Rail Input/Output Op Amp
ADA4051-1/ADA4051-2
FEATURES
PIN CONFIGURATION
Very low supply current: 13 μA typical
Low offset voltage: 15 μV maximum
Offset voltage drift: 20 nV/°C
Single-supply operation: 1.8 V to 5.5 V
High PSRR: 110 dB minimum
High CMRR: 110 dB minimum
Rail-to-rail input/output
Unity-gain stable
Extended industrial temperature range
OUT 1
5
V+
4
–IN
V– 2
TOP VIEW
(Not to Scale)
+IN 3
08056-064
ADA4051-1
Figure 1. 5-Lead SOT-23 (RJ-5)
+IN 1
5
V+
4
OUT
V– 2
APPLICATIONS
TOP VIEW
(Not to Scale)
–IN 3
Pressure and position sensors
Temperature measurements
Electronic scales
Medical instrumentation
Battery-powered equipment
Handheld test equipment
08056-066
ADA4051-1
OUT A 1
8
V+
–IN A 2
ADA4051-2
7
OUT B
+IN A 3
TOP VIEW
(Not to Scale)
6
–IN B
5
+IN B
V– 4
08056-001
Figure 2. 5-Lead SC-70 (KS-5)
Figure 3. 8-Lead MSOP (RM-8)
8 V+
–IN A 2
ADA4051-2
7 OUT B
+IN A 3
TOP VIEW
(Not to Scale)
6 –IN B
V– 4
5 +IN B
NOTES
1. IT IS RECOMMENDED THAT THE
EXPOSED PAD BE CONNECTED TO V–.
08056-065
PIN 1
INDICATOR
OUT A 1
Figure 4. 8-Lead LFCSP (CP-8-2)
GENERAL DESCRIPTION
The ADA4051-1/ADA4051-2 are CMOS, micropower, zerodrift operational amplifiers utilizing an innovative chopping
technique. These amplifiers feature rail-to-rail input/output
swing and extremely low offset voltage while operating from a
1.8 V to 5.5 V power supply. In addition, these amplifiers offer
high power supply rejection ratio (PSRR) and common-mode
rejection ratio (CMRR) while operating with a typical supply
current of 13 μA per amplifier. This combination of features
makes the ADA4051-1/ADA4051-2 amplifiers ideal choices for
battery-powered applications where high precision and low
power consumption are important.
The ADA4051-1/ADA4051-2 are specified for the extended
industrial temperature range of −40°C to +125°C. The ADA4051-1
amplifier is available in 5-lead SOT-23 and 5-lead SC-70 packages.
The ADA4051-2 amplifier is available in 8-lead MSOP and 8-lead
LFCSP packages.
The ADA4051-1/ADA4051-2 are members of a growing series
of zero-drift op amps offered by Analog Devices, Inc. Refer to
Table 1 for a list of these devices.
Table 1. Op Amps
Supply
Single
Dual
Quad
Low Power, 5 V
AD8538
AD8539
5V
AD8628
AD8629
AD8630
16 V
AD8638
AD8639
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved.
ADA4051-1/ADA4051-2
TABLE OF CONTENTS
Features .............................................................................................. 1 Thermal Resistance .......................................................................5 Applications ....................................................................................... 1 Power Sequencing .........................................................................5 Pin Configuration ............................................................................. 1 ESD Caution...................................................................................5 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................6 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 15 Specifications..................................................................................... 3 Input Voltage Range ................................................................... 16 Electrical Characteristics—1.8 V Operation ............................ 3 Output Phase Reversal ............................................................... 16 Electrical Characteristics—5 V Operation................................ 4 Outline Dimensions ....................................................................... 17 Absolute Maximum Ratings............................................................ 5 Ordering Guide .......................................................................... 18 REVISION HISTORY
1/10—Rev. A to Rev. B
Added ADA4051-1, 5-Lead SC-70 Package .................... Universal
Added Figure 2; Renumbered Sequentially .................................. 1
Changes to Figure 4 and General Description Section ............... 1
Changes to Electrical Characteristics—1.8 V Operation Section
and Table 2 ......................................................................................... 3
Changes to Electrical Characteristics—5 V Operation Section
and Table 3 ......................................................................................... 4
Changes to Table 5 ............................................................................ 5
Updated Outline Dimensions ....................................................... 17
Changes to Ordering Guide .......................................................... 18
10/09—Rev. 0 to Rev. A
Added ADA4051-1, 5-Lead SOT-23 Package ................. Universal
Added ADA4051-2, 8-Lead LFCSP Package .................. Universal
Changes to the Features and General Description Section,
Added Figure 1 and Figure 3 ........................................................... 1
Moved Electrical Characteristics—1.8 V Operation Section .... 3
Changes to Offset Voltage Parameter and Supply Current per
Amplifier Parameter, Table 2 .......................................................... 3
Moved Electrical Characteristics—5 V Operation Section ........ 4
Changes to Offset Voltage Parameter and Supply Current per
Amplifier Parameter, Table 2 .......................................................... 4
Changes to Thermal Resistance Section and Table 5................... 5
Changes to Figure 22 and Figure 25 ............................................... 9
Changes to Theory of Operation Section .................................... 15
Updated Outline Dimensions ....................................................... 17
Changes to Ordering Guide .......................................................... 18
7/09—Revision 0: Initial Version
Rev. B | Page 2 of 20
ADA4051-1/ADA4051-2
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION
VSY = 1.8 V, VCM = VSY/2 V, TA = 25°C, RL = 100 kΩ to GND, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
ADA4051-2
ADA4051-1
Offset Voltage Drift
Input Bias Current
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
2
2
0.02
5
15
17
0.1
50
200
100
150
1.8
130
μV
μV
μV/°C
pA
pA
pA
pA
V
dB
dB
dB
8
2
5
dB
MΩ
pF
pF
VOS
∆VOS/∆T
IB
0 V ≤ VCM ≤ 1.8 V
0 V ≤ VCM ≤ 1.8 V
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large-Signal Voltage Gain
AVO
Input Resistance
Input Capacitance, Differential Mode
Input Capacitance, Common Mode
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
ADA4051-2
ADA4051-1
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
Channel Separation
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
10
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
0 V ≤ VCM ≤ 1.8 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM,
0.1 V ≤ VOUT ≤ VSY − 0.1 V
−40°C ≤ TA ≤ +125°C
0
105
100
106
100
RIN
CINDM
CINCM
VOH
VOL
ISC
ZOUT
PSRR
125
RL = 100 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
VOUT = VSY or GND
f = 1 kHz, G = 10
1.796
1.79
1.76
1.7
1.8 V ≤ VSY ≤ 5.5 V
−40°C ≤ TA ≤ +125°C
110
106
1.799
1.796
1
3
3
9
20
40
13
1
135
V
V
V
V
mV
mV
mV
mV
mA
Ω
dB
dB
ISY
VOUT = VSY/2
VOUT = VSY/2
−40°C ≤ TA ≤ +125°C
13
15
0.04
0.03
120
V/μs
V/μs
μs
GBP
ΦM
CS
RL = 10 kΩ, CL = 100 pF, G = 1
RL = 10 kΩ, CL = 100 pF, G = 1
To 0.1%, VIN = 1 V p-p,
RL = 10 kΩ, CL = 100 pF
CL = 100 pF, G = 1
CL = 100 pF, G = 1
VIN = 1.7 V, f = 100 Hz
115
40
140
kHz
Degrees
dB
en p-p
en
in
f = 0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
1.96
95
100
μV p-p
nV/√Hz
fA/√Hz
SR+
SR−
tS
Rev. B | Page 3 of 20
17
18
20
μA
μA
μA
ADA4051-1/ADA4051-2
ELECTRICAL CHARACTERISTICS—5 V OPERATION
VSY = 5.0 V, VCM = VSY/2 V, TA = 25°C, RL = 100 kΩ to GND, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
ADA4051-2
ADA4051-1
Offset Voltage Drift
Input Bias Current
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
2
2
0.02
20
15
17
0.1
70
200
100
150
5
135
μV
μV
μV/°C
pA
pA
pA
pA
V
dB
dB
dB
8
2
5
dB
MΩ
pF
pF
VOS
∆VOS/∆T
IB
0 V ≤ VCM ≤ 5 V
0 V ≤ VCM ≤ 5 V
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large-Signal Voltage Gain
AVO
Input Resistance
Input Capacitance, Differential Mode
Input Capacitance, Common Mode
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Current
Closed-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
ADA4051-2
ADA4051-1
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Phase Margin
Channel Separation
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
40
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
0 V ≤ VCM ≤ 5 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM,
0.1 V ≤ VOUT ≤ VSY − 0.1 V
−40°C ≤ TA ≤ +125°C
0
110
106
115
106
RIN
CINDM
CINCM
VOH
VOL
ISC
ZOUT
PSRR
135
RL = 100 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 100 kΩ to VCM
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to VCM
−40°C ≤ TA ≤ +125°C
VOUT = VSY or GND
f = 1 kHz, G = 10
4.996
4.985
4.96
4.9
1.8 V ≤ VSY ≤ 5.5 V
−40°C ≤ TA ≤ +125°C
110
106
4.998
4.99
1
9
4
13
30
90
15
1
135
V
V
V
V
mV
mV
mV
mV
mA
Ω
dB
dB
ISY
VOUT = VSY/2
VOUT = VSY/2
−40°C ≤ TA ≤ +125°C
13
15
0.06
0.04
110
V/μs
V/μs
μs
GBP
ΦM
CS
RL = 10 kΩ, CL = 100 pF, G = 1
RL = 10 kΩ, CL = 100 pF, G = 1
To 0.1%, VIN = 1 V p-p,
RL = 10 kΩ, CL = 100 pF
CL = 100 pF, G = 1
CL = 100 pF, G = 1
VIN = 4.99 V, f = 100 Hz
125
40
140
kHz
Degrees
dB
en p-p
en
in
f = 0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
1.96
95
100
μV p-p
nV/√Hz
fA/√Hz
SR+
SR−
tS
Rev. B | Page 4 of 20
17
18
20
μA
μA
μA
ADA4051-1/ADA4051-2
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage
Input Voltage
Input Current1
Differential Input Voltage2
Output Short-Circuit Duration to GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
θJA is specified for the worst-case conditions, that is, a device
soldered on a circuit board for surface-mount packages with its
exposed paddle soldered to a pad, if applicable. Table 5 shows
simulated thermal values for a 4-layer (2S2P) JEDEC standard
thermal test board, unless otherwise specified.
Rating
6V
±VSY ± 0.3 V
±10 mA
±VSY
Indefinite
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
Table 5. Thermal Resistance
1
The input pins have clamp diodes to the power supply pins. Limit the input
current to 10 mA or less whenever input signals exceed the power supply
rail by 0.3 V.
2
Inputs are protected against high differential voltages by internal series
1.33 kΩ resistors and back-to-back diode-connected N-MOSFETs (with a
typical VT of 0.7 V for VCM of 0 V).
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Package Type
5-Lead SOT-23 (RJ-5)
5-Lead SC-70 (KS-5)
8-Lead MSOP (RM-8)
8-Lead LFCSP (CP-8-2)
θJA
190
534
142
77
θJC
92
173
45
14
Unit
°C/W
°C/W
°C/W
°C/W
POWER SEQUENCING
The op amp supplies must be established simultaneously with
or before any input signals are applied. If this is not possible, the
input current must be limited to 10 mA.
ESD CAUTION
Rev. B | Page 5 of 20
ADA4051-1/ADA4051-2
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
300
300
VSY = 1.8V
VCM = VSY/2
250
NUMBER OF AMPLIFIERS
200
150
100
200
150
100
50
50
–10
–8
–6
–4
–2
0
2
4
6
8
0
08056-002
0
10
VOS (µV)
–10
–6
–4
–2
0
2
4
6
8
10
VOS (µV)
Figure 5. Input Offset Voltage Distribution
10
–8
08056-005
NUMBER OF AMPLIFIERS
250
VSY = 5V
VCM = VSY/2
Figure 8. Input Offset Voltage Distribution
8
VSY = 1.8V
–40°C ≤ TA ≤ +125°C
VSY = 5V
–40°C ≤ TA ≤ 125°C
6
NUMBER OF AMPLIFIERS
NUMBER OF AMPLIFIERS
8
6
4
4
2
0
0.01 0.02 0.03 0.04 0.05
0.06 0.07 0.08 0.09 0.10
TCVOS (µV/°C)
0
08056-003
0
0
TCVOS (µV/°C)
Figure 6. Input Offset Voltage Drift Distribution with Temperature
Figure 9. Input Offset Voltage Drift Distribution with Temperature
15
15
VSY = 5V
10
5
5
0
DEVICE 1
DEVICE 2
DEVICE 3
DEVICE 4
DEVICE 5
DEVICE 6
DEVICE 7
DEVICE 8
DEVICE 9
DEVICE 10
–5
–10
0
0.3
0.6
0.9
1.2
1.5
0
DEVICE 1
DEVICE 2
DEVICE 3
DEVICE 4
DEVICE 5
DEVICE 6
DEVICE 7
DEVICE 8
DEVICE 9
DEVICE 10
–5
–10
1.8
VCM (V)
–15
Figure 7. Input Offset Voltage vs. Input Common-Mode Voltage
0
1
2
3
4
5
VCM (V)
Figure 10. Input Offset Voltage vs. Input Common-Mode Voltage
Rev. B | Page 6 of 20
08056-007
VOS (µV)
10
08056-004
VOS (µV)
VSY = 1.8V
–15
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
08056-006
2
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
100
VSY = 5V
IB–
80
60
60
40
20
0
0
25
50
75
100
125
TEMPERATURE (°C)
IB–
40
20
–20
25
50
Figure 11. Input Bias Current vs. Temperature
400
VSY = 1.8V
150
300
100
200
50
100
0
–50
VSY = 5V
0
0.3
0.6
0.9
1.2
1.5
–300
1.8
VCM (V)
Figure 12. Input Bias Current vs. Common-Mode Voltage and Temperature
VSY = 1.8V
1000
100
10
1
0.1
0.01
0.1
1
10
LOAD CURRENT (mA)
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Figure 15. Input Bias Current vs. Common-Mode Voltage and Temperature
08056-010
0.01
0.001
–40°C
+25°C
+85°C
+125°C
0
VCM (V)
OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (mV)
10,000
–400
08056-009
0
IB+, 25°C
IB–, 25°C
IB+, 85°C
IB–, 85°C
IB+, 125°C
IB–, 125°C
–200
08056-012
IB+, 25°C
IB–, 25°C
IB+, 85°C
IB–, 85°C
IB+, 125°C
IB–, 125°C
–150
OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (mV)
125
–100
–100
–200
100
Figure 14. Input Bias Current vs. Temperature
IB (pA)
IB (pA)
200
75
TEMPERATURE (°C)
Figure 13. Output Voltage (VOH) to Supply Rail vs. Load Current
and Temperature
10,000
VSY = 5V
1000
100
10
1
0.1
0.01
0.001
–40°C
+25°C
+85°C
+125°C
0.01
0.1
1
10
100
LOAD CURRENT (mA)
Figure 16. Output Voltage (VOH) to Supply Rail vs. Load Current
and Temperature
Rev. B | Page 7 of 20
08056-013
–20
IB+
08056-011
IB (pA)
80
08056-008
IB (pA)
100
IB+
VSY = 1.8V
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
10,000
1000
100
10
1
0.1
–40°C
+25°C
+85°C
+125°C
0.01
0.001
0.01
0.1
1
10
100
LOAD CURRENT (mA)
1000
100
10
1
–40°C
+25°C
+85°C
+125°C
0.1
0.01
0.001
0.01
0.1
1
10
100
LOAD CURRENT (mA)
Figure 17. Output Voltage (VOL) to Supply Rail vs. Load Current
and Temperature
Figure 20. Output Voltage (VOL) to Supply Rail vs. Load Current
and Temperature
5000
1800
OUTPUT VOLTAGE [VOH] (mV)
1798
1797
RL = 100kΩ
4998
RL = 100kΩ
1799
OUTPUT VOLTAGE [VOH] (mV)
VSY = 5V
08056-017
OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (mV)
VSY = 1.8V
08056-014
OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (mV)
10,000
RL = 10kΩ
1796
4996
4994
4992
RL = 10kΩ
4990
4988
4986
1795
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
OUTPUT VOLTAGE [VOL] (mV)
12
10
8
6
4
RL = 10kΩ
2
80
95
110
125
125
10
RL = 10kΩ
8
6
4
2
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
125
08056-016
–10
65
VSY = 5V
VCM = VSY/2
RL = 100kΩ
RL = 100kΩ
–25
50
14
VSY = 1.8V
VCM = VSY/2
0
–40
35
Figure 21. Output Voltage (VOH) vs. Temperature
12
OUTPUT VOLTAGE [VOL] (mV)
20
TEMPERATURE (°C)
Figure 18. Output Voltage (VOH) vs. Temperature
14
5
08056-018
–25
VSY = 5V
VCM = VSY/2
4982
–40 –25 –10
08056-015
1794
–40
08056-019
4984
VSY = 1.8V
VCM = VSY/2
Figure 19. Output Voltage (VOL) vs. Temperature
0
–40
–25
–10
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
Figure 22. Output Voltage (VOL) vs. Temperature
Rev. B | Page 8 of 20
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
30
30
VCM = VSY/2
ADA4051-2
ADA4051-1
25
TOTAL SUPPLY CURRENT (µA)
15
10
5
20
15
10
ADA4051-2,
ADA4051-2,
ADA4051-1,
ADA4051-1,
5
VCM = VSY/2
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
0
–40
90
40
45
0
0
80
125
135
90
PHASE
45
GAIN
0
0
–90
–135
–60
100
08056-022
1M
180
20
1k
10k
100k
–135
1M
FREQUENCY (Hz)
Figure 27. Open-Loop Gain and Phase vs. Frequency
50
VSY = 1.8V
RL = 10kΩ
CL = 50pF
40
110
VSY = 5V
CL= 100pF
Figure 24. Open-Loop Gain and Phase vs. Frequency
50
95
–40
FREQUENCY (Hz)
VSY = 5V
RL = 10kΩ
CL = 50pF
40
30
CLOSED-LOOP GAIN (dB)
30
20
10
0
–10
–20
20
10
0
–10
–20
–30
–30
G=1
G = 10
G = 100
–40
1k
10k
100k
FREQUENCY (Hz)
1M
–50
100
08056-061
–50
100
65
–90
–40
–40
50
–45
–45
100k
35
–20
–20
10k
OPEN-LOOP GAIN (dB)
60
PHASE (Degrees)
PHASE
135
GAIN
CLOSED-LOOP GAIN (dB)
OPEN-LOOP GAIN (dB)
40
1k
20
80
180
VSY = 1.8V
CL= 100pF
–60
100
5
Figure 26. Total Supply Current vs. Temperature
80
20
–10
TEMPERATURE (°C)
Figure 23. Total Supply Current vs. Supply Voltage
60
–25
PHASE (Degrees)
0.5
08056-025
0
08056-020
0
1.8V
5V
1.8V
5V
08056-023
20
G=1
G = 10
G = 100
1k
10k
100k
FREQUENCY (Hz)
Figure 28. Closed-Loop Gain vs. Frequency
Figure 25. Closed-Loop Gain vs. Frequency
Rev. B | Page 9 of 20
1M
08056-062
TOTAL SUPPLY CURRENT (µA)
25
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
10k
VSY = 1.8V
1k
1k
100
100
ZOUT (Ω)
10
1
VSY = 5V
10
1
10k
100k
1M
FREQUENCY (Hz)
0.1
1k
08056-026
0.1
1k
G = −1
G = −10
G = −100
10k
100k
1M
FREQUENCY (Hz)
Figure 29. Output Impedance vs. Frequency
Figure 32. Output Impedance vs. Frequency
110
110
VSY = 5V
100
90
90
80
70
80
70
60
60
50
50
100
1k
10k
100k
1M
FREQUENCY (Hz)
40
10
100
1k
10k
100k
Figure 30. CMRR vs. Frequency
Figure 33. CMRR vs. Frequency
120
120
VSY = 5V
100
80
80
PSRR (dB)
100
60
PSRR+
40
60
PSRR+
40
20
20
PSRR–
1k
10k
PSRR–
100k
FREQUENCY (Hz)
1M
08056-028
PSRR (dB)
VSY = 1.8V
0
100
1M
FREQUENCY (Hz)
08056-030
CMRR (dB)
100
08056-027
CMRR (dB)
VSY = 1.8V
40
10
08056-029
G = −1
G = −10
G = −100
Figure 31. PSRR vs. Frequency
0
100
1k
10k
100k
FREQUENCY (Hz)
Figure 34. PSRR vs. Frequency
Rev. B | Page 10 of 20
1M
08056-031
ZOUT (Ω)
10k
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
VSY = ±2.5V
VIN = 50mV p-p
RL = 10kΩ
CL= 50pF
50
40
OVERSHOOT (%)
30
20
40
−OVERSHOOT
30
20
−OVERSHOOT
+OVERSHOOT
+OVERSHOOT
10
0
10
08056-032
0
10
100
LOAD CAPACITANCE (pF)
08056-035
10
100
LOAD CAPACITANCE (pF)
Figure 35. Small-Signal Overshoot vs. Load Capacitance
Figure 38. Small-Signal Overshoot vs. Load Capacitance
VSY = 1.8V
RL = 10kΩ
CL = 100pF
G=1
VIN = 1.5V p-p
08056-033
VOLTAGE (1V/DIV)
VOLTAGE (500mV/DIV)
VSY = 5V
RL = 10kΩ
CL = 100pF
G=1
VIN = 4V p-p
TIME (100µs/DIV)
08056-036
OVERSHOOT (%)
50
60
VSY = ±0.9V
VIN = 50mV p-p
RL = 10kΩ
CL= 50pF
TIME (100µs/DIV)
Figure 39. Large-Signal Transient Response
Figure 36. Large-Signal Transient Response
VSY = 5V
RL = 10kΩ
CL = 100pF
G=1
VIN = 50mV p-p
TIME (100µs/DIV)
08056-034
VOLTAGE (10mV/DIV)
VOLTAGE (10mV/DIV)
VSY = 1.8V
RL = 10kΩ
CL = 100pF
G=1
VIN = 50mV p-p
TIME (100µs/DIV)
Figure 37. Small-Signal Transient Response
Figure 40. Small-Signal Transient Response
Rev. B | Page 11 of 20
08056-037
60
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
VSY = 5V
INPUT VOLTAGE NOISE (0.5µV/DIV)
TIME (4s/DIV)
TIME (4s/DIV)
Figure 41. Input Voltage Noise, 0.1 Hz to 10 Hz
Figure 44. Input Voltage Noise, 0.1 Hz to 10 Hz
1k
VSY = 1.8V
100
10
100
1k
10k
FREQUENCY (Hz)
10
1
10
INPUT VOLTAGE
0
0.5
0
–0.5
INPUT VOLTAGE (100mV/DIV)
0.05
VSY = ±2.5V
G = –10
0.3
OUTPUT VOLTAGE (500mV/DIV)
0.2
0.1
INPUT VOLTAGE
0
OUTPUT VOLTAGE
–0.1
TIME (40µs/DIV)
–1.5
1
0
–1
–1.0
–2
08056-040
INPUT VOLTAGE (50mV/DIV)
0.4
VSY = ±0.9V
G = –10
OUTPUT VOLTAGE
10k
Figure 45. Voltage Noise Density vs. Frequency
0.15
–0.05
1k
FREQUENCY (Hz)
Figure 42. Voltage Noise Density vs. Frequency
0.10
100
OUTPUT VOLTAGE (1V/DIV)
1
10
100
08056-042
VOLTAGE NOISE DENSITY (nV/√Hz)
VSY = 5V
08056-039
VOLTAGE NOISE DENSITY (nV/√Hz)
1k
08056-041
1.96µV p-p
08056-038
1.94µV p-p
Figure 43. Positive Overload Recovery
TIME (40µs/DIV)
Figure 46. Positive Overload Recovery
Rev. B | Page 12 of 20
–3
08056-043
INPUT VOLTAGE NOISE (0.5µV/DIV)
VSY = 1.8V
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
0.05
0.1
1.5
–0.15
1.0
0.5
OUTPUT VOLTAGE
–0.1
–0.2
4
–0.3
3
–0.4
2
1
OUTPUT VOLTAGE
0
–0.5
TIME (40µs/DIV)
Figure 50. Negative Overload Recovery
ERROR
BAND
VSY = ±2.5V
VIN = 1V p-p
RL = 10kΩ
CL = 100pF
TIME (40µs/DIV)
TIME (40µs/DIV)
Figure 49. Negative Settling Time to 0.1%
5
OUTPUT VOLTAGE
ERROR
BAND
0
–5
VSY = ±2.5V
VIN = 1V p-p
RL = 10kΩ
CL = 100pF
TIME (40µs/DIV)
Figure 52. Negative Settling Time to 0.1%
Rev. B | Page 13 of 20
OUTPUT VOLTAGE (5mV/DIV)
INPUT VOLTAGE
08056-049
–5
INPUT VOLTAGE (500mV/DIV)
0
08056-046
5
OUTPUT VOLTAGE (5mV/DIV)
Figure 51. Positive Settling Time to 0.1%
INPUT VOLTAGE
VSY = ±0.9V
VIN = 1V p-p
RL = 10kΩ
CL = 100pF
–5
TIME (40µs/DIV)
Figure 48. Positive Settling Time to 0.1%
OUTPUT VOLTAGE
0
OUTPUT VOLTAGE (5mV/DIV)
–5
VSY = ±0.9V
VIN = 1V p-p
RL = 10kΩ
CL = 100pF
5
OUTPUT VOLTAGE
08056-048
0
INPUT VOLTAGE (500mV/DIV)
5
OUTPUT VOLTAGE
OUTPUT VOLTAGE (5mV/DIV)
INPUT VOLTAGE
08056-045
INPUT VOLTAGE (500mV/DIV)
INPUT VOLTAGE
ERROR
BAND
–1
TIME (40µs/DIV)
Figure 47. Negative Overload Recovery
ERROR
BAND
0
VSY = ±2.5V
G = –10
08056-044
VSY = ±0.9V
G = –10
INPUT VOLTAGE
OUTPUT VOLTAGE (1V/DIV)
–0.10
INPUT VOLTAGE (100mV/DIV)
OUTPUT VOLTAGE (500mV/DIV)
–0.05
INPUT VOLTAGE (500mV/DIV)
INPUT VOLTAGE (50mV/DIV)
0
08056-047
INPUT VOLTAGE
0
ADA4051-1/ADA4051-2
TA = 25°C, unless otherwise noted.
–100
VIN = 0.5V
VIN = 1V
VIN = 1.7V
1kΩ
CHANNEL SEPARATION (dB)
–110
–120
–130
–140
VSY = 1.8V
G = –100
RL= 10kΩ
CL= 50pF
200
2k
20k
FREQUENCY (Hz)
–110
–120
–130
–140
VSY = 5V
G = –100
RL= 10kΩ
CL = 50pF
–150
20
200
1.5
5
OUTPUT SWING (V)
6
1.2
0.9
0.6
4
3
2
VSY = 1.8V
VIN = 1.7V
G=1
RL= 10kΩ
CL = 50pF
1
1k
10k
100k
FREQUENCY (Hz)
VSY = 5V
VIN = 4.9V
G=1
RL= 10kΩ
CL = 50pF
0
100
08056-051
0
100
20k
Figure 56. Channel Separation vs. Frequency
1.8
1k
10k
100k
FREQUENCY (Hz)
Figure 54. Output Swing vs. Frequency
Figure 57. Output Swing vs. Frequency
VSY = ±2.5V
G=1
RL= NO LOAD
CL = NO LOAD
VOLTAGE (1V/DIV)
VSY = ±0.9V
G=1
RL= NO LOAD
CL = NO LOAD
VOUT
VOUT
VIN
VIN
TIME (200µs/DIV)
08056-052
VOLTAGE (500mV/DIV)
OUTPUT SWING (V)
Figure 53. Channel Separation vs. Frequency
0.3
2k
FREQUENCY (Hz)
TIME (200µs/DIV)
Figure 55. No Phase Reversal
Figure 58. No Phase Reversal
Rev. B | Page 14 of 20
08056-055
–150
20
VIN = 1V
VIN = 3V
VIN = 4.99V
100kΩ
08056-050
CHANNEL SEPARATION (dB)
1kΩ
08056-053
100kΩ
08056-054
–100
ADA4051-1/ADA4051-2
THEORY OF OPERATION
To accomplish the best noise vs. power trade-off, the chopping
technique is the better approach when designing a low offset
amplifier because there is no increased in-band noise. It is
preferable to suppress the offset-related ripple inside a chopper
amplifier because the offset-related ripple would otherwise need
to be eliminated by an extra off-chip postfilter.
Figure 59 shows the block diagram design of the ADA4051-1/
ADA4051-2 chopper amplifiers employing a local feedback loop
called autocorrection feedback (ACFB). The main signal path
contains an input chopping switch network (CHOP1), a first
transconductance amplifier (Gm1), an output chopping switch
network (CHOP2), a second transconductance amplifier (Gm2),
and a third transconductance amplifier (Gm3). CHOP1 and
CHOP2 operate at 40 kHz of chopping frequency to modulate
the initial offset and 1/f noise from Gm1 up to the chopping
frequency. A fourth transconductance amplifier (Gm4) in the
ACFB senses the modulated ripple at the output of CHOP2,
caused by the initial offset voltage of Gm1. Then, the ripple is
demodulated down to a dc domain through a third chopping
switch network (CHOP3), operating with the same chopping
clock as CHOP1 and CHOP2. Finally, a null transconductance
amplifier (Gm5) tries to null any dc component at the output of
Gm1 that would otherwise appear in the overall output as ripple.
A switched-capacitor notch filter (NF) functions to selectively
suppress the undesired offset-related ripple without disturbing
the desired input signal from the overall input. The desired input
dc signal appears as a dc signal at the output of CHOP2. Then,
the initial offset is modulated up to the chopping frequency by
CHOP3 and filtered out by the NF. Therefore, initial offset does
not create any feedback and does not disturb the desired input
signal. The NF is synchronized with the chopping clock to filter
out the modulated component. In the same manner, the offset
of Gm5 is filtered out by the combination of CHOP3 and the
NF, enabling accurate ripple sensing at the output of CHOP2.
In parallel with the high dc gain path, a feedforward transconductance amplifier (Gm6) is added to bypass the phase shift
introduced by the ACFB at the chopping frequency. Gm6 is
designed to have the same transconductance as Gm1 to avoid
CHOP2
Gm1
CHOP1
Gm2
+IN
C2
Gm3
OUT
–IN
C1
C3
Gm5
NF CHOP3 Gm4
08056-060
Gm6 (= Gm1)
Figure 59. ADA4051-1/ADA4051-2 Chopper Amplifiers Block Diagram
The voltage noise density, which is equal to the thermal noise
floor dominated by the Gm1, is essentially flat from dc to the
chopping frequency because CHOP1 and CHOP2 eliminate the
1/f noise generated in Gm1 and the ACFB does not contribute
any additional noise. Although the ACFB suppresses the ripple
related to the chopping, there is a remaining voltage ripple. To
further suppress the remaining ripple down to a desired level, it
is recommended to have a postfilter at the output of the amplifier.
The remaining voltage ripple originates from two sources. The
first type of ripple is due to the residual ripple associated with
the initial offset of the Gm1. It is proportional to the magnitude
of the initial offset and creates a spectrum at the chopping
frequency (fCHOP). When the amplifier is configured as a unitygain buffer, this ripple has a typical value of 4.9 μV rms and a
maximum of 34.7 μV rms. The second type of ripple is due to
the intermodulation between the high frequency input signal
and the chopping frequency. This ripple depends on the input
frequency (fIN) and creates a spectrum at frequencies equal to
the difference between the chopping frequency and the input
frequency (fCHOP − fIN), as well as at frequencies equal to the
summation of the chopping frequency and the input frequency
(fCHOP + fIN). The magnitude of the ripple for different input
frequencies is shown in Figure 60.
500
400
300
200
100
0
0
1
2
3
4
5
6
7
INPUT FREQUENCY (kHz)
8
9
10
08056-063
Auto-zeroing and chopping are two techniques widely used in
high precision CMOS amplifiers to achieve low offset, low offset
drift, and no 1/f noise. Each of these techniques has pros and
cons. Auto-zeroing results in more in-band noise due to aliasing
introduced by sampling. On the other hand, chopping produces
offset-related ripple because it modulates the initial offset
associated with the amplifier up to its chopping frequency.
pole-zero doublets. This design prevents any instability introduced
by the ACFB in the overall feedback loop.
MODULATED OUTPUT RIPPLE (µV rms)
The ADA4051-1/ADA4051-2 micropower chopper operational
amplifiers feature a novel, patent-pending technique that suppresses offset-related ripple in a chopper amplifier. Instead of
filtering the ripple in the ac domain, this technique nulls the
amplifier’s initial offset in the dc domain, thus preventing ripple
at the overall output.
Figure 60. ADA4051-1/ADA4051-2 Modulated Output Ripple vs. Input Frequency
Rev. B | Page 15 of 20
ADA4051-1/ADA4051-2
The design architecture of the ADA4051-1/ADA4051-2
specifically targets precision signal conditioning applications
requiring accurate and stable performance from dc to 10 Hz
bandwidth. In summary, the main features of the ADA4051-1/
ADA4051-2 chopper amplifiers are
•
•
•
•
Considerable suppression of the offset-related ripple
No affect on the desired input signal as long as its
frequency is much lower than the chopping frequency
shown in Figure 60
Achievement of low offset similar to a conventional
chopper amplifier
No introduction of excess noise
The ADA4051-1/ADA4051-2 chopper amplifiers provide a railto-rail input range with a 1.8 V to 5.5 V supply voltage range and
20 μA supply current consumption over the −40°C to +125°C
extended industrial temperature range. The gain bandwidth is
125 kHz as a unity-gain stable amplifier up to 100 pF load
capacitance.
INPUT VOLTAGE RANGE
The ADA4051-1/ADA4051-2 have internal ESD protection diodes.
These diodes are connected between the inputs and each supply
rail to protect the input MOSFETs from an electrical discharge
event and are reversed-biased during normal operation. This
protection scheme allows voltages as high as approximately 0.3 V
beyond the supplies (±VSY ± 0.3 V) to be applied at the input of
either terminal without causing permanent damage.
If either input exceeds one of the supply rails by more than 0.3 V,
these ESD diodes become forward-biased and large amounts of
current begin to flow through them. Without current limiting, this
excessive current would cause permanent damage to the device.
If the inputs are expected to be subject to overvoltage conditions,
install a resistor in series with each input to limit the input current
to 10 mA maximum.
The ADA4051-1/ADA4051-2 also have internal circuitry that
protects the input stage from high differential voltages. This
circuitry is composed of internal 1.33 kΩ resistors in series with
each input and back-to-back diode-connected N-MOSFET (with a
typical VT of 0.7 V for a VCM of 0 V) after these series resistors. With
normal negative feedback operating conditions, the ADA4051-1/
ADA4051-2 amplifiers correct their output to ensure that the two
inputs are at the same voltage. However, if the device is configured
as a comparator or there are unusual operating conditions, the
input voltages can be forced to different potentials, which may
cause excessive current to flow through the internal diodeconnected N-MOSFETs.
Although the ADA4051-1/ADA4051-2 are rail-to-rail input
amplifiers, take care to ensure that the potential difference
between the inputs does not exceed ±VSY to avert permanent
damage to the device.
OUTPUT PHASE REVERSAL
Although output phase reversal can occur with other amplifiers
when the input common-mode voltage range is exceeded, the
ADA4051-1/ADA4051-2 amplifiers are designed to prevent
any output phase reversal, provided both inputs are maintained
approximately within 0.3 V above and below the supply voltages
(±VSY ± 0.3 V).
With other amplifiers, the outputs may jump in the opposite
direction to the supply rail when a common-mode voltage
moves outside the common-mode range. This usually occurs
when one of the internal stages of the amplifier no longer has
sufficient bias voltage across it and subsequently turns off.
However, with the ADA4051-1/ADA4051-2 amplifiers, if one
or both inputs exceed the input voltage range but remain within
the ±VSY ± 0.3 V range, an internal loop opens and the output
remains in saturation mode, without phase reversal, until the
input voltage is brought back to within the input voltage range
limits as shown in Figure 55 and Figure 58.
Rev. B | Page 16 of 20
ADA4051-1/ADA4051-2
OUTLINE DIMENSIONS
3.00
2.90
2.80
5
1.70
1.60
1.50
4
1
2
3.00
2.80
2.60
3
0.95 BSC
1.90
BSC
1.45 MAX
0.95 MIN
0.15 MAX
0.05 MIN
0.20 MAX
0.08 MIN
10°
5°
0°
SEATING
PLANE
0.50 MAX
0.35 MIN
0.55
0.45
0.35
0.20
BSC
121608-A
1.30
1.15
0.90
COMPLIANT TO JEDEC STANDARDS MO-178-AA
Figure 61. 5-Lead Small Outline Transistor Package [SOT-23]
(RJ-5)
Dimensions shown in millimeters
2.20
2.00
1.80
1.35
1.25
1.15
5
1
4
2
3
2.40
2.10
1.80
0.65 BSC
0.10 MAX
COPLANARITY
0.10
1.10
0.80
0.30
0.15
SEATING
PLANE
0.40
0.10
0.22
0.08
0.46
0.36
0.26
COMPLIANT TO JEDEC STANDARDS MO-203-AA
Figure 62. 5-Lead Thin Shrink Small Outline Transistor Package [SC-70]
(KS-5)
Dimensions shown in millimeters
Rev. B | Page 17 of 20
072809-A
1.00
0.90
0.70
ADA4051-1/ADA4051-2
3.20
3.00
2.80
3.20
3.00
2.80
8
1
5.15
4.90
4.65
5
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.80
0.55
0.40
0.23
0.09
6°
0°
0.40
0.25
100709-B
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 63. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
0.60 MAX
5
TOP
VIEW
PIN 1
INDICATOR
2.95
2.75 SQ
2.55
8
SEATING
PLANE
12° MAX
(BOTTOM VIEW)
0.50
0.40
0.30
0.70 MAX
0.65 TYP
0.05 MAX
0.01 NOM
0.30
0.23
0.18
0.20 REF
1.60
1.45
1.30
EXPOSED
PAD
4
0.90 MAX
0.85 NOM
0.50
BSC
0.60 MAX
1
1.89
1.74
1.59
PIN 1
INDICATOR
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
090308-B
3.25
3.00 SQ
2.75
Figure 64. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]
3 mm × 3 mm Body, Very Thin, Dual Lead
(CP-8-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADA4051-1ARJZ-R2
ADA4051-1ARJZ-R7
ADA4051-1ARJZ-RL
ADA4051-1AKSZ-R2
ADA4051-1AKSZ-R7
ADA4051-1AKSZ-RL
ADA4051-2ACPZ-R2
ADA4051-2ACPZ-R7
ADA4051-2ACPZ-RL
ADA4051-2ARMZ
ADA4051-2ARMZ-R7
ADA4051-2ARMZ-RL
1
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
5-Lead SOT-23
5-Lead SOT-23
5-Lead SOT-23
5-Lead SC-70
5-Lead SC-70
5-Lead SC-70
8-Lead LFCSP_VD
8-Lead LFCSP_VD
8-Lead LFCSP_VD
8-Lead MSOP
8-Lead MSOP
8-Lead MSOP
Z = RoHS Compliant Part.
Rev. B | Page 18 of 20
Package Option
RJ-5
RJ-5
RJ-5
KS-5
KS-5
KS-5
CP-8-2
CP-8-2
CP-8-2
RM-8
RM-8
RM-8
Branding
A0U
A0U
A0U
A0U
A0U
A0U
A2M
A2M
A2M
A2M
A2M
A2M
ADA4051-1/ADA4051-2
NOTES
Rev. B | Page 19 of 20
ADA4051-1/ADA4051-2
NOTES
©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08056-0-1/10(B)
Rev. B | Page 20 of 20