1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp ADA4051-1/ADA4051-2 FEATURES PIN CONFIGURATION Very low supply current: 13 μA typical Low offset voltage: 15 μV maximum Offset voltage drift: 20 nV/°C Single-supply operation: 1.8 V to 5.5 V High PSRR: 110 dB minimum High CMRR: 110 dB minimum Rail-to-rail input/output Unity-gain stable Extended industrial temperature range OUT 1 5 V+ 4 –IN V– 2 TOP VIEW (Not to Scale) +IN 3 08056-064 ADA4051-1 Figure 1. 5-Lead SOT-23 (RJ-5) +IN 1 5 V+ 4 OUT V– 2 APPLICATIONS TOP VIEW (Not to Scale) –IN 3 Pressure and position sensors Temperature measurements Electronic scales Medical instrumentation Battery-powered equipment Handheld test equipment 08056-066 ADA4051-1 OUT A 1 8 V+ –IN A 2 ADA4051-2 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B 5 +IN B V– 4 08056-001 Figure 2. 5-Lead SC-70 (KS-5) Figure 3. 8-Lead MSOP (RM-8) 8 V+ –IN A 2 ADA4051-2 7 OUT B +IN A 3 TOP VIEW (Not to Scale) 6 –IN B V– 4 5 +IN B NOTES 1. IT IS RECOMMENDED THAT THE EXPOSED PAD BE CONNECTED TO V–. 08056-065 PIN 1 INDICATOR OUT A 1 Figure 4. 8-Lead LFCSP (CP-8-2) GENERAL DESCRIPTION The ADA4051-1/ADA4051-2 are CMOS, micropower, zerodrift operational amplifiers utilizing an innovative chopping technique. These amplifiers feature rail-to-rail input/output swing and extremely low offset voltage while operating from a 1.8 V to 5.5 V power supply. In addition, these amplifiers offer high power supply rejection ratio (PSRR) and common-mode rejection ratio (CMRR) while operating with a typical supply current of 13 μA per amplifier. This combination of features makes the ADA4051-1/ADA4051-2 amplifiers ideal choices for battery-powered applications where high precision and low power consumption are important. The ADA4051-1/ADA4051-2 are specified for the extended industrial temperature range of −40°C to +125°C. The ADA4051-1 amplifier is available in 5-lead SOT-23 and 5-lead SC-70 packages. The ADA4051-2 amplifier is available in 8-lead MSOP and 8-lead LFCSP packages. The ADA4051-1/ADA4051-2 are members of a growing series of zero-drift op amps offered by Analog Devices, Inc. Refer to Table 1 for a list of these devices. Table 1. Op Amps Supply Single Dual Quad Low Power, 5 V AD8538 AD8539 5V AD8628 AD8629 AD8630 16 V AD8638 AD8639 Rev. B Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009–2010 Analog Devices, Inc. All rights reserved. ADA4051-1/ADA4051-2 TABLE OF CONTENTS Features .............................................................................................. 1 Thermal Resistance .......................................................................5 Applications ....................................................................................... 1 Power Sequencing .........................................................................5 Pin Configuration ............................................................................. 1 ESD Caution...................................................................................5 General Description ......................................................................... 1 Typical Performance Characteristics ..............................................6 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 15 Specifications..................................................................................... 3 Input Voltage Range ................................................................... 16 Electrical Characteristics—1.8 V Operation ............................ 3 Output Phase Reversal ............................................................... 16 Electrical Characteristics—5 V Operation................................ 4 Outline Dimensions ....................................................................... 17 Absolute Maximum Ratings............................................................ 5 Ordering Guide .......................................................................... 18 REVISION HISTORY 1/10—Rev. A to Rev. B Added ADA4051-1, 5-Lead SC-70 Package .................... Universal Added Figure 2; Renumbered Sequentially .................................. 1 Changes to Figure 4 and General Description Section ............... 1 Changes to Electrical Characteristics—1.8 V Operation Section and Table 2 ......................................................................................... 3 Changes to Electrical Characteristics—5 V Operation Section and Table 3 ......................................................................................... 4 Changes to Table 5 ............................................................................ 5 Updated Outline Dimensions ....................................................... 17 Changes to Ordering Guide .......................................................... 18 10/09—Rev. 0 to Rev. A Added ADA4051-1, 5-Lead SOT-23 Package ................. Universal Added ADA4051-2, 8-Lead LFCSP Package .................. Universal Changes to the Features and General Description Section, Added Figure 1 and Figure 3 ........................................................... 1 Moved Electrical Characteristics—1.8 V Operation Section .... 3 Changes to Offset Voltage Parameter and Supply Current per Amplifier Parameter, Table 2 .......................................................... 3 Moved Electrical Characteristics—5 V Operation Section ........ 4 Changes to Offset Voltage Parameter and Supply Current per Amplifier Parameter, Table 2 .......................................................... 4 Changes to Thermal Resistance Section and Table 5................... 5 Changes to Figure 22 and Figure 25 ............................................... 9 Changes to Theory of Operation Section .................................... 15 Updated Outline Dimensions ....................................................... 17 Changes to Ordering Guide .......................................................... 18 7/09—Revision 0: Initial Version Rev. B | Page 2 of 20 ADA4051-1/ADA4051-2 SPECIFICATIONS ELECTRICAL CHARACTERISTICS—1.8 V OPERATION VSY = 1.8 V, VCM = VSY/2 V, TA = 25°C, RL = 100 kΩ to GND, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage ADA4051-2 ADA4051-1 Offset Voltage Drift Input Bias Current Symbol Test Conditions/Comments Min Typ Max Unit 2 2 0.02 5 15 17 0.1 50 200 100 150 1.8 130 μV μV μV/°C pA pA pA pA V dB dB dB 8 2 5 dB MΩ pF pF VOS ∆VOS/∆T IB 0 V ≤ VCM ≤ 1.8 V 0 V ≤ VCM ≤ 1.8 V −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio CMRR Large-Signal Voltage Gain AVO Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier ADA4051-2 ADA4051-1 DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin Channel Separation NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 10 −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 V ≤ VCM ≤ 1.8 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM, 0.1 V ≤ VOUT ≤ VSY − 0.1 V −40°C ≤ TA ≤ +125°C 0 105 100 106 100 RIN CINDM CINCM VOH VOL ISC ZOUT PSRR 125 RL = 100 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C VOUT = VSY or GND f = 1 kHz, G = 10 1.796 1.79 1.76 1.7 1.8 V ≤ VSY ≤ 5.5 V −40°C ≤ TA ≤ +125°C 110 106 1.799 1.796 1 3 3 9 20 40 13 1 135 V V V V mV mV mV mV mA Ω dB dB ISY VOUT = VSY/2 VOUT = VSY/2 −40°C ≤ TA ≤ +125°C 13 15 0.04 0.03 120 V/μs V/μs μs GBP ΦM CS RL = 10 kΩ, CL = 100 pF, G = 1 RL = 10 kΩ, CL = 100 pF, G = 1 To 0.1%, VIN = 1 V p-p, RL = 10 kΩ, CL = 100 pF CL = 100 pF, G = 1 CL = 100 pF, G = 1 VIN = 1.7 V, f = 100 Hz 115 40 140 kHz Degrees dB en p-p en in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 1.96 95 100 μV p-p nV/√Hz fA/√Hz SR+ SR− tS Rev. B | Page 3 of 20 17 18 20 μA μA μA ADA4051-1/ADA4051-2 ELECTRICAL CHARACTERISTICS—5 V OPERATION VSY = 5.0 V, VCM = VSY/2 V, TA = 25°C, RL = 100 kΩ to GND, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage ADA4051-2 ADA4051-1 Offset Voltage Drift Input Bias Current Symbol Test Conditions/Comments Min Typ Max Unit 2 2 0.02 20 15 17 0.1 70 200 100 150 5 135 μV μV μV/°C pA pA pA pA V dB dB dB 8 2 5 dB MΩ pF pF VOS ∆VOS/∆T IB 0 V ≤ VCM ≤ 5 V 0 V ≤ VCM ≤ 5 V −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Input Offset Current IOS Input Voltage Range Common-Mode Rejection Ratio CMRR Large-Signal Voltage Gain AVO Input Resistance Input Capacitance, Differential Mode Input Capacitance, Common Mode OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Current Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier ADA4051-2 ADA4051-1 DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin Channel Separation NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density 40 −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C 0 V ≤ VCM ≤ 5 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM, 0.1 V ≤ VOUT ≤ VSY − 0.1 V −40°C ≤ TA ≤ +125°C 0 110 106 115 106 RIN CINDM CINCM VOH VOL ISC ZOUT PSRR 135 RL = 100 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 100 kΩ to VCM −40°C ≤ TA ≤ +125°C RL = 10 kΩ to VCM −40°C ≤ TA ≤ +125°C VOUT = VSY or GND f = 1 kHz, G = 10 4.996 4.985 4.96 4.9 1.8 V ≤ VSY ≤ 5.5 V −40°C ≤ TA ≤ +125°C 110 106 4.998 4.99 1 9 4 13 30 90 15 1 135 V V V V mV mV mV mV mA Ω dB dB ISY VOUT = VSY/2 VOUT = VSY/2 −40°C ≤ TA ≤ +125°C 13 15 0.06 0.04 110 V/μs V/μs μs GBP ΦM CS RL = 10 kΩ, CL = 100 pF, G = 1 RL = 10 kΩ, CL = 100 pF, G = 1 To 0.1%, VIN = 1 V p-p, RL = 10 kΩ, CL = 100 pF CL = 100 pF, G = 1 CL = 100 pF, G = 1 VIN = 4.99 V, f = 100 Hz 125 40 140 kHz Degrees dB en p-p en in f = 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 1.96 95 100 μV p-p nV/√Hz fA/√Hz SR+ SR− tS Rev. B | Page 4 of 20 17 18 20 μA μA μA ADA4051-1/ADA4051-2 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage Input Voltage Input Current1 Differential Input Voltage2 Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) θJA is specified for the worst-case conditions, that is, a device soldered on a circuit board for surface-mount packages with its exposed paddle soldered to a pad, if applicable. Table 5 shows simulated thermal values for a 4-layer (2S2P) JEDEC standard thermal test board, unless otherwise specified. Rating 6V ±VSY ± 0.3 V ±10 mA ±VSY Indefinite −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Table 5. Thermal Resistance 1 The input pins have clamp diodes to the power supply pins. Limit the input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V. 2 Inputs are protected against high differential voltages by internal series 1.33 kΩ resistors and back-to-back diode-connected N-MOSFETs (with a typical VT of 0.7 V for VCM of 0 V). Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Package Type 5-Lead SOT-23 (RJ-5) 5-Lead SC-70 (KS-5) 8-Lead MSOP (RM-8) 8-Lead LFCSP (CP-8-2) θJA 190 534 142 77 θJC 92 173 45 14 Unit °C/W °C/W °C/W °C/W POWER SEQUENCING The op amp supplies must be established simultaneously with or before any input signals are applied. If this is not possible, the input current must be limited to 10 mA. ESD CAUTION Rev. B | Page 5 of 20 ADA4051-1/ADA4051-2 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. 300 300 VSY = 1.8V VCM = VSY/2 250 NUMBER OF AMPLIFIERS 200 150 100 200 150 100 50 50 –10 –8 –6 –4 –2 0 2 4 6 8 0 08056-002 0 10 VOS (µV) –10 –6 –4 –2 0 2 4 6 8 10 VOS (µV) Figure 5. Input Offset Voltage Distribution 10 –8 08056-005 NUMBER OF AMPLIFIERS 250 VSY = 5V VCM = VSY/2 Figure 8. Input Offset Voltage Distribution 8 VSY = 1.8V –40°C ≤ TA ≤ +125°C VSY = 5V –40°C ≤ TA ≤ 125°C 6 NUMBER OF AMPLIFIERS NUMBER OF AMPLIFIERS 8 6 4 4 2 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 TCVOS (µV/°C) 0 08056-003 0 0 TCVOS (µV/°C) Figure 6. Input Offset Voltage Drift Distribution with Temperature Figure 9. Input Offset Voltage Drift Distribution with Temperature 15 15 VSY = 5V 10 5 5 0 DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4 DEVICE 5 DEVICE 6 DEVICE 7 DEVICE 8 DEVICE 9 DEVICE 10 –5 –10 0 0.3 0.6 0.9 1.2 1.5 0 DEVICE 1 DEVICE 2 DEVICE 3 DEVICE 4 DEVICE 5 DEVICE 6 DEVICE 7 DEVICE 8 DEVICE 9 DEVICE 10 –5 –10 1.8 VCM (V) –15 Figure 7. Input Offset Voltage vs. Input Common-Mode Voltage 0 1 2 3 4 5 VCM (V) Figure 10. Input Offset Voltage vs. Input Common-Mode Voltage Rev. B | Page 6 of 20 08056-007 VOS (µV) 10 08056-004 VOS (µV) VSY = 1.8V –15 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 08056-006 2 ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. 100 VSY = 5V IB– 80 60 60 40 20 0 0 25 50 75 100 125 TEMPERATURE (°C) IB– 40 20 –20 25 50 Figure 11. Input Bias Current vs. Temperature 400 VSY = 1.8V 150 300 100 200 50 100 0 –50 VSY = 5V 0 0.3 0.6 0.9 1.2 1.5 –300 1.8 VCM (V) Figure 12. Input Bias Current vs. Common-Mode Voltage and Temperature VSY = 1.8V 1000 100 10 1 0.1 0.01 0.1 1 10 LOAD CURRENT (mA) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Figure 15. Input Bias Current vs. Common-Mode Voltage and Temperature 08056-010 0.01 0.001 –40°C +25°C +85°C +125°C 0 VCM (V) OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (mV) 10,000 –400 08056-009 0 IB+, 25°C IB–, 25°C IB+, 85°C IB–, 85°C IB+, 125°C IB–, 125°C –200 08056-012 IB+, 25°C IB–, 25°C IB+, 85°C IB–, 85°C IB+, 125°C IB–, 125°C –150 OUTPUT VOLTAGE (VOH) TO SUPPLY RAIL (mV) 125 –100 –100 –200 100 Figure 14. Input Bias Current vs. Temperature IB (pA) IB (pA) 200 75 TEMPERATURE (°C) Figure 13. Output Voltage (VOH) to Supply Rail vs. Load Current and Temperature 10,000 VSY = 5V 1000 100 10 1 0.1 0.01 0.001 –40°C +25°C +85°C +125°C 0.01 0.1 1 10 100 LOAD CURRENT (mA) Figure 16. Output Voltage (VOH) to Supply Rail vs. Load Current and Temperature Rev. B | Page 7 of 20 08056-013 –20 IB+ 08056-011 IB (pA) 80 08056-008 IB (pA) 100 IB+ VSY = 1.8V ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. 10,000 1000 100 10 1 0.1 –40°C +25°C +85°C +125°C 0.01 0.001 0.01 0.1 1 10 100 LOAD CURRENT (mA) 1000 100 10 1 –40°C +25°C +85°C +125°C 0.1 0.01 0.001 0.01 0.1 1 10 100 LOAD CURRENT (mA) Figure 17. Output Voltage (VOL) to Supply Rail vs. Load Current and Temperature Figure 20. Output Voltage (VOL) to Supply Rail vs. Load Current and Temperature 5000 1800 OUTPUT VOLTAGE [VOH] (mV) 1798 1797 RL = 100kΩ 4998 RL = 100kΩ 1799 OUTPUT VOLTAGE [VOH] (mV) VSY = 5V 08056-017 OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (mV) VSY = 1.8V 08056-014 OUTPUT VOLTAGE (VOL) TO SUPPLY RAIL (mV) 10,000 RL = 10kΩ 1796 4996 4994 4992 RL = 10kΩ 4990 4988 4986 1795 –10 5 20 35 50 65 80 95 110 125 TEMPERATURE (°C) OUTPUT VOLTAGE [VOL] (mV) 12 10 8 6 4 RL = 10kΩ 2 80 95 110 125 125 10 RL = 10kΩ 8 6 4 2 5 20 35 50 65 80 95 110 TEMPERATURE (°C) 125 08056-016 –10 65 VSY = 5V VCM = VSY/2 RL = 100kΩ RL = 100kΩ –25 50 14 VSY = 1.8V VCM = VSY/2 0 –40 35 Figure 21. Output Voltage (VOH) vs. Temperature 12 OUTPUT VOLTAGE [VOL] (mV) 20 TEMPERATURE (°C) Figure 18. Output Voltage (VOH) vs. Temperature 14 5 08056-018 –25 VSY = 5V VCM = VSY/2 4982 –40 –25 –10 08056-015 1794 –40 08056-019 4984 VSY = 1.8V VCM = VSY/2 Figure 19. Output Voltage (VOL) vs. Temperature 0 –40 –25 –10 5 20 35 50 65 80 95 110 TEMPERATURE (°C) Figure 22. Output Voltage (VOL) vs. Temperature Rev. B | Page 8 of 20 ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. 30 30 VCM = VSY/2 ADA4051-2 ADA4051-1 25 TOTAL SUPPLY CURRENT (µA) 15 10 5 20 15 10 ADA4051-2, ADA4051-2, ADA4051-1, ADA4051-1, 5 VCM = VSY/2 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 0 –40 90 40 45 0 0 80 125 135 90 PHASE 45 GAIN 0 0 –90 –135 –60 100 08056-022 1M 180 20 1k 10k 100k –135 1M FREQUENCY (Hz) Figure 27. Open-Loop Gain and Phase vs. Frequency 50 VSY = 1.8V RL = 10kΩ CL = 50pF 40 110 VSY = 5V CL= 100pF Figure 24. Open-Loop Gain and Phase vs. Frequency 50 95 –40 FREQUENCY (Hz) VSY = 5V RL = 10kΩ CL = 50pF 40 30 CLOSED-LOOP GAIN (dB) 30 20 10 0 –10 –20 20 10 0 –10 –20 –30 –30 G=1 G = 10 G = 100 –40 1k 10k 100k FREQUENCY (Hz) 1M –50 100 08056-061 –50 100 65 –90 –40 –40 50 –45 –45 100k 35 –20 –20 10k OPEN-LOOP GAIN (dB) 60 PHASE (Degrees) PHASE 135 GAIN CLOSED-LOOP GAIN (dB) OPEN-LOOP GAIN (dB) 40 1k 20 80 180 VSY = 1.8V CL= 100pF –60 100 5 Figure 26. Total Supply Current vs. Temperature 80 20 –10 TEMPERATURE (°C) Figure 23. Total Supply Current vs. Supply Voltage 60 –25 PHASE (Degrees) 0.5 08056-025 0 08056-020 0 1.8V 5V 1.8V 5V 08056-023 20 G=1 G = 10 G = 100 1k 10k 100k FREQUENCY (Hz) Figure 28. Closed-Loop Gain vs. Frequency Figure 25. Closed-Loop Gain vs. Frequency Rev. B | Page 9 of 20 1M 08056-062 TOTAL SUPPLY CURRENT (µA) 25 ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. 10k VSY = 1.8V 1k 1k 100 100 ZOUT (Ω) 10 1 VSY = 5V 10 1 10k 100k 1M FREQUENCY (Hz) 0.1 1k 08056-026 0.1 1k G = −1 G = −10 G = −100 10k 100k 1M FREQUENCY (Hz) Figure 29. Output Impedance vs. Frequency Figure 32. Output Impedance vs. Frequency 110 110 VSY = 5V 100 90 90 80 70 80 70 60 60 50 50 100 1k 10k 100k 1M FREQUENCY (Hz) 40 10 100 1k 10k 100k Figure 30. CMRR vs. Frequency Figure 33. CMRR vs. Frequency 120 120 VSY = 5V 100 80 80 PSRR (dB) 100 60 PSRR+ 40 60 PSRR+ 40 20 20 PSRR– 1k 10k PSRR– 100k FREQUENCY (Hz) 1M 08056-028 PSRR (dB) VSY = 1.8V 0 100 1M FREQUENCY (Hz) 08056-030 CMRR (dB) 100 08056-027 CMRR (dB) VSY = 1.8V 40 10 08056-029 G = −1 G = −10 G = −100 Figure 31. PSRR vs. Frequency 0 100 1k 10k 100k FREQUENCY (Hz) Figure 34. PSRR vs. Frequency Rev. B | Page 10 of 20 1M 08056-031 ZOUT (Ω) 10k ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. VSY = ±2.5V VIN = 50mV p-p RL = 10kΩ CL= 50pF 50 40 OVERSHOOT (%) 30 20 40 −OVERSHOOT 30 20 −OVERSHOOT +OVERSHOOT +OVERSHOOT 10 0 10 08056-032 0 10 100 LOAD CAPACITANCE (pF) 08056-035 10 100 LOAD CAPACITANCE (pF) Figure 35. Small-Signal Overshoot vs. Load Capacitance Figure 38. Small-Signal Overshoot vs. Load Capacitance VSY = 1.8V RL = 10kΩ CL = 100pF G=1 VIN = 1.5V p-p 08056-033 VOLTAGE (1V/DIV) VOLTAGE (500mV/DIV) VSY = 5V RL = 10kΩ CL = 100pF G=1 VIN = 4V p-p TIME (100µs/DIV) 08056-036 OVERSHOOT (%) 50 60 VSY = ±0.9V VIN = 50mV p-p RL = 10kΩ CL= 50pF TIME (100µs/DIV) Figure 39. Large-Signal Transient Response Figure 36. Large-Signal Transient Response VSY = 5V RL = 10kΩ CL = 100pF G=1 VIN = 50mV p-p TIME (100µs/DIV) 08056-034 VOLTAGE (10mV/DIV) VOLTAGE (10mV/DIV) VSY = 1.8V RL = 10kΩ CL = 100pF G=1 VIN = 50mV p-p TIME (100µs/DIV) Figure 37. Small-Signal Transient Response Figure 40. Small-Signal Transient Response Rev. B | Page 11 of 20 08056-037 60 ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. VSY = 5V INPUT VOLTAGE NOISE (0.5µV/DIV) TIME (4s/DIV) TIME (4s/DIV) Figure 41. Input Voltage Noise, 0.1 Hz to 10 Hz Figure 44. Input Voltage Noise, 0.1 Hz to 10 Hz 1k VSY = 1.8V 100 10 100 1k 10k FREQUENCY (Hz) 10 1 10 INPUT VOLTAGE 0 0.5 0 –0.5 INPUT VOLTAGE (100mV/DIV) 0.05 VSY = ±2.5V G = –10 0.3 OUTPUT VOLTAGE (500mV/DIV) 0.2 0.1 INPUT VOLTAGE 0 OUTPUT VOLTAGE –0.1 TIME (40µs/DIV) –1.5 1 0 –1 –1.0 –2 08056-040 INPUT VOLTAGE (50mV/DIV) 0.4 VSY = ±0.9V G = –10 OUTPUT VOLTAGE 10k Figure 45. Voltage Noise Density vs. Frequency 0.15 –0.05 1k FREQUENCY (Hz) Figure 42. Voltage Noise Density vs. Frequency 0.10 100 OUTPUT VOLTAGE (1V/DIV) 1 10 100 08056-042 VOLTAGE NOISE DENSITY (nV/√Hz) VSY = 5V 08056-039 VOLTAGE NOISE DENSITY (nV/√Hz) 1k 08056-041 1.96µV p-p 08056-038 1.94µV p-p Figure 43. Positive Overload Recovery TIME (40µs/DIV) Figure 46. Positive Overload Recovery Rev. B | Page 12 of 20 –3 08056-043 INPUT VOLTAGE NOISE (0.5µV/DIV) VSY = 1.8V ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. 0.05 0.1 1.5 –0.15 1.0 0.5 OUTPUT VOLTAGE –0.1 –0.2 4 –0.3 3 –0.4 2 1 OUTPUT VOLTAGE 0 –0.5 TIME (40µs/DIV) Figure 50. Negative Overload Recovery ERROR BAND VSY = ±2.5V VIN = 1V p-p RL = 10kΩ CL = 100pF TIME (40µs/DIV) TIME (40µs/DIV) Figure 49. Negative Settling Time to 0.1% 5 OUTPUT VOLTAGE ERROR BAND 0 –5 VSY = ±2.5V VIN = 1V p-p RL = 10kΩ CL = 100pF TIME (40µs/DIV) Figure 52. Negative Settling Time to 0.1% Rev. B | Page 13 of 20 OUTPUT VOLTAGE (5mV/DIV) INPUT VOLTAGE 08056-049 –5 INPUT VOLTAGE (500mV/DIV) 0 08056-046 5 OUTPUT VOLTAGE (5mV/DIV) Figure 51. Positive Settling Time to 0.1% INPUT VOLTAGE VSY = ±0.9V VIN = 1V p-p RL = 10kΩ CL = 100pF –5 TIME (40µs/DIV) Figure 48. Positive Settling Time to 0.1% OUTPUT VOLTAGE 0 OUTPUT VOLTAGE (5mV/DIV) –5 VSY = ±0.9V VIN = 1V p-p RL = 10kΩ CL = 100pF 5 OUTPUT VOLTAGE 08056-048 0 INPUT VOLTAGE (500mV/DIV) 5 OUTPUT VOLTAGE OUTPUT VOLTAGE (5mV/DIV) INPUT VOLTAGE 08056-045 INPUT VOLTAGE (500mV/DIV) INPUT VOLTAGE ERROR BAND –1 TIME (40µs/DIV) Figure 47. Negative Overload Recovery ERROR BAND 0 VSY = ±2.5V G = –10 08056-044 VSY = ±0.9V G = –10 INPUT VOLTAGE OUTPUT VOLTAGE (1V/DIV) –0.10 INPUT VOLTAGE (100mV/DIV) OUTPUT VOLTAGE (500mV/DIV) –0.05 INPUT VOLTAGE (500mV/DIV) INPUT VOLTAGE (50mV/DIV) 0 08056-047 INPUT VOLTAGE 0 ADA4051-1/ADA4051-2 TA = 25°C, unless otherwise noted. –100 VIN = 0.5V VIN = 1V VIN = 1.7V 1kΩ CHANNEL SEPARATION (dB) –110 –120 –130 –140 VSY = 1.8V G = –100 RL= 10kΩ CL= 50pF 200 2k 20k FREQUENCY (Hz) –110 –120 –130 –140 VSY = 5V G = –100 RL= 10kΩ CL = 50pF –150 20 200 1.5 5 OUTPUT SWING (V) 6 1.2 0.9 0.6 4 3 2 VSY = 1.8V VIN = 1.7V G=1 RL= 10kΩ CL = 50pF 1 1k 10k 100k FREQUENCY (Hz) VSY = 5V VIN = 4.9V G=1 RL= 10kΩ CL = 50pF 0 100 08056-051 0 100 20k Figure 56. Channel Separation vs. Frequency 1.8 1k 10k 100k FREQUENCY (Hz) Figure 54. Output Swing vs. Frequency Figure 57. Output Swing vs. Frequency VSY = ±2.5V G=1 RL= NO LOAD CL = NO LOAD VOLTAGE (1V/DIV) VSY = ±0.9V G=1 RL= NO LOAD CL = NO LOAD VOUT VOUT VIN VIN TIME (200µs/DIV) 08056-052 VOLTAGE (500mV/DIV) OUTPUT SWING (V) Figure 53. Channel Separation vs. Frequency 0.3 2k FREQUENCY (Hz) TIME (200µs/DIV) Figure 55. No Phase Reversal Figure 58. No Phase Reversal Rev. B | Page 14 of 20 08056-055 –150 20 VIN = 1V VIN = 3V VIN = 4.99V 100kΩ 08056-050 CHANNEL SEPARATION (dB) 1kΩ 08056-053 100kΩ 08056-054 –100 ADA4051-1/ADA4051-2 THEORY OF OPERATION To accomplish the best noise vs. power trade-off, the chopping technique is the better approach when designing a low offset amplifier because there is no increased in-band noise. It is preferable to suppress the offset-related ripple inside a chopper amplifier because the offset-related ripple would otherwise need to be eliminated by an extra off-chip postfilter. Figure 59 shows the block diagram design of the ADA4051-1/ ADA4051-2 chopper amplifiers employing a local feedback loop called autocorrection feedback (ACFB). The main signal path contains an input chopping switch network (CHOP1), a first transconductance amplifier (Gm1), an output chopping switch network (CHOP2), a second transconductance amplifier (Gm2), and a third transconductance amplifier (Gm3). CHOP1 and CHOP2 operate at 40 kHz of chopping frequency to modulate the initial offset and 1/f noise from Gm1 up to the chopping frequency. A fourth transconductance amplifier (Gm4) in the ACFB senses the modulated ripple at the output of CHOP2, caused by the initial offset voltage of Gm1. Then, the ripple is demodulated down to a dc domain through a third chopping switch network (CHOP3), operating with the same chopping clock as CHOP1 and CHOP2. Finally, a null transconductance amplifier (Gm5) tries to null any dc component at the output of Gm1 that would otherwise appear in the overall output as ripple. A switched-capacitor notch filter (NF) functions to selectively suppress the undesired offset-related ripple without disturbing the desired input signal from the overall input. The desired input dc signal appears as a dc signal at the output of CHOP2. Then, the initial offset is modulated up to the chopping frequency by CHOP3 and filtered out by the NF. Therefore, initial offset does not create any feedback and does not disturb the desired input signal. The NF is synchronized with the chopping clock to filter out the modulated component. In the same manner, the offset of Gm5 is filtered out by the combination of CHOP3 and the NF, enabling accurate ripple sensing at the output of CHOP2. In parallel with the high dc gain path, a feedforward transconductance amplifier (Gm6) is added to bypass the phase shift introduced by the ACFB at the chopping frequency. Gm6 is designed to have the same transconductance as Gm1 to avoid CHOP2 Gm1 CHOP1 Gm2 +IN C2 Gm3 OUT –IN C1 C3 Gm5 NF CHOP3 Gm4 08056-060 Gm6 (= Gm1) Figure 59. ADA4051-1/ADA4051-2 Chopper Amplifiers Block Diagram The voltage noise density, which is equal to the thermal noise floor dominated by the Gm1, is essentially flat from dc to the chopping frequency because CHOP1 and CHOP2 eliminate the 1/f noise generated in Gm1 and the ACFB does not contribute any additional noise. Although the ACFB suppresses the ripple related to the chopping, there is a remaining voltage ripple. To further suppress the remaining ripple down to a desired level, it is recommended to have a postfilter at the output of the amplifier. The remaining voltage ripple originates from two sources. The first type of ripple is due to the residual ripple associated with the initial offset of the Gm1. It is proportional to the magnitude of the initial offset and creates a spectrum at the chopping frequency (fCHOP). When the amplifier is configured as a unitygain buffer, this ripple has a typical value of 4.9 μV rms and a maximum of 34.7 μV rms. The second type of ripple is due to the intermodulation between the high frequency input signal and the chopping frequency. This ripple depends on the input frequency (fIN) and creates a spectrum at frequencies equal to the difference between the chopping frequency and the input frequency (fCHOP − fIN), as well as at frequencies equal to the summation of the chopping frequency and the input frequency (fCHOP + fIN). The magnitude of the ripple for different input frequencies is shown in Figure 60. 500 400 300 200 100 0 0 1 2 3 4 5 6 7 INPUT FREQUENCY (kHz) 8 9 10 08056-063 Auto-zeroing and chopping are two techniques widely used in high precision CMOS amplifiers to achieve low offset, low offset drift, and no 1/f noise. Each of these techniques has pros and cons. Auto-zeroing results in more in-band noise due to aliasing introduced by sampling. On the other hand, chopping produces offset-related ripple because it modulates the initial offset associated with the amplifier up to its chopping frequency. pole-zero doublets. This design prevents any instability introduced by the ACFB in the overall feedback loop. MODULATED OUTPUT RIPPLE (µV rms) The ADA4051-1/ADA4051-2 micropower chopper operational amplifiers feature a novel, patent-pending technique that suppresses offset-related ripple in a chopper amplifier. Instead of filtering the ripple in the ac domain, this technique nulls the amplifier’s initial offset in the dc domain, thus preventing ripple at the overall output. Figure 60. ADA4051-1/ADA4051-2 Modulated Output Ripple vs. Input Frequency Rev. B | Page 15 of 20 ADA4051-1/ADA4051-2 The design architecture of the ADA4051-1/ADA4051-2 specifically targets precision signal conditioning applications requiring accurate and stable performance from dc to 10 Hz bandwidth. In summary, the main features of the ADA4051-1/ ADA4051-2 chopper amplifiers are • • • • Considerable suppression of the offset-related ripple No affect on the desired input signal as long as its frequency is much lower than the chopping frequency shown in Figure 60 Achievement of low offset similar to a conventional chopper amplifier No introduction of excess noise The ADA4051-1/ADA4051-2 chopper amplifiers provide a railto-rail input range with a 1.8 V to 5.5 V supply voltage range and 20 μA supply current consumption over the −40°C to +125°C extended industrial temperature range. The gain bandwidth is 125 kHz as a unity-gain stable amplifier up to 100 pF load capacitance. INPUT VOLTAGE RANGE The ADA4051-1/ADA4051-2 have internal ESD protection diodes. These diodes are connected between the inputs and each supply rail to protect the input MOSFETs from an electrical discharge event and are reversed-biased during normal operation. This protection scheme allows voltages as high as approximately 0.3 V beyond the supplies (±VSY ± 0.3 V) to be applied at the input of either terminal without causing permanent damage. If either input exceeds one of the supply rails by more than 0.3 V, these ESD diodes become forward-biased and large amounts of current begin to flow through them. Without current limiting, this excessive current would cause permanent damage to the device. If the inputs are expected to be subject to overvoltage conditions, install a resistor in series with each input to limit the input current to 10 mA maximum. The ADA4051-1/ADA4051-2 also have internal circuitry that protects the input stage from high differential voltages. This circuitry is composed of internal 1.33 kΩ resistors in series with each input and back-to-back diode-connected N-MOSFET (with a typical VT of 0.7 V for a VCM of 0 V) after these series resistors. With normal negative feedback operating conditions, the ADA4051-1/ ADA4051-2 amplifiers correct their output to ensure that the two inputs are at the same voltage. However, if the device is configured as a comparator or there are unusual operating conditions, the input voltages can be forced to different potentials, which may cause excessive current to flow through the internal diodeconnected N-MOSFETs. Although the ADA4051-1/ADA4051-2 are rail-to-rail input amplifiers, take care to ensure that the potential difference between the inputs does not exceed ±VSY to avert permanent damage to the device. OUTPUT PHASE REVERSAL Although output phase reversal can occur with other amplifiers when the input common-mode voltage range is exceeded, the ADA4051-1/ADA4051-2 amplifiers are designed to prevent any output phase reversal, provided both inputs are maintained approximately within 0.3 V above and below the supply voltages (±VSY ± 0.3 V). With other amplifiers, the outputs may jump in the opposite direction to the supply rail when a common-mode voltage moves outside the common-mode range. This usually occurs when one of the internal stages of the amplifier no longer has sufficient bias voltage across it and subsequently turns off. However, with the ADA4051-1/ADA4051-2 amplifiers, if one or both inputs exceed the input voltage range but remain within the ±VSY ± 0.3 V range, an internal loop opens and the output remains in saturation mode, without phase reversal, until the input voltage is brought back to within the input voltage range limits as shown in Figure 55 and Figure 58. Rev. B | Page 16 of 20 ADA4051-1/ADA4051-2 OUTLINE DIMENSIONS 3.00 2.90 2.80 5 1.70 1.60 1.50 4 1 2 3.00 2.80 2.60 3 0.95 BSC 1.90 BSC 1.45 MAX 0.95 MIN 0.15 MAX 0.05 MIN 0.20 MAX 0.08 MIN 10° 5° 0° SEATING PLANE 0.50 MAX 0.35 MIN 0.55 0.45 0.35 0.20 BSC 121608-A 1.30 1.15 0.90 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 61. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters 2.20 2.00 1.80 1.35 1.25 1.15 5 1 4 2 3 2.40 2.10 1.80 0.65 BSC 0.10 MAX COPLANARITY 0.10 1.10 0.80 0.30 0.15 SEATING PLANE 0.40 0.10 0.22 0.08 0.46 0.36 0.26 COMPLIANT TO JEDEC STANDARDS MO-203-AA Figure 62. 5-Lead Thin Shrink Small Outline Transistor Package [SC-70] (KS-5) Dimensions shown in millimeters Rev. B | Page 17 of 20 072809-A 1.00 0.90 0.70 ADA4051-1/ADA4051-2 3.20 3.00 2.80 3.20 3.00 2.80 8 1 5.15 4.90 4.65 5 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.80 0.55 0.40 0.23 0.09 6° 0° 0.40 0.25 100709-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 63. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 0.60 MAX 5 TOP VIEW PIN 1 INDICATOR 2.95 2.75 SQ 2.55 8 SEATING PLANE 12° MAX (BOTTOM VIEW) 0.50 0.40 0.30 0.70 MAX 0.65 TYP 0.05 MAX 0.01 NOM 0.30 0.23 0.18 0.20 REF 1.60 1.45 1.30 EXPOSED PAD 4 0.90 MAX 0.85 NOM 0.50 BSC 0.60 MAX 1 1.89 1.74 1.59 PIN 1 INDICATOR FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 090308-B 3.25 3.00 SQ 2.75 Figure 64. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD] 3 mm × 3 mm Body, Very Thin, Dual Lead (CP-8-2) Dimensions shown in millimeters ORDERING GUIDE Model 1 ADA4051-1ARJZ-R2 ADA4051-1ARJZ-R7 ADA4051-1ARJZ-RL ADA4051-1AKSZ-R2 ADA4051-1AKSZ-R7 ADA4051-1AKSZ-RL ADA4051-2ACPZ-R2 ADA4051-2ACPZ-R7 ADA4051-2ACPZ-RL ADA4051-2ARMZ ADA4051-2ARMZ-R7 ADA4051-2ARMZ-RL 1 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SC-70 5-Lead SC-70 5-Lead SC-70 8-Lead LFCSP_VD 8-Lead LFCSP_VD 8-Lead LFCSP_VD 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP Z = RoHS Compliant Part. Rev. B | Page 18 of 20 Package Option RJ-5 RJ-5 RJ-5 KS-5 KS-5 KS-5 CP-8-2 CP-8-2 CP-8-2 RM-8 RM-8 RM-8 Branding A0U A0U A0U A0U A0U A0U A2M A2M A2M A2M A2M A2M ADA4051-1/ADA4051-2 NOTES Rev. B | Page 19 of 20 ADA4051-1/ADA4051-2 NOTES ©2009–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08056-0-1/10(B) Rev. B | Page 20 of 20