30 V, Micropower, Overvoltage Protection, Rail-to-Rail Input/Output Amplifier ADA4096-2 PIN CONFIGURATIONS Input overvoltage protection, 32 V above and below the supply rails Rail-to-rail input and output swing Low power: 60 μA per amplifier typical Unity-gain bandwidth 800 kHz typical @ VSY = ±15 V 550 kHz typical @ VSY = ±5 V 465 kHz typical @ VSY = ±1.5 V Single-supply operation: 3 V to 30 V Low offset voltage: 300 μV maximum High open-loop gain: 120 dB typical Unity-gain stable No phase reversal Qualified for automotive applications OUTA 1 8 +V –INA 2 ADA4096-2 7 OUTB +INA 3 TOP VIEW (Not to Scale) 6 –INB 5 +INB –V 4 09241-001 FEATURES Figure 1. 8-Lead, MSOP (RM-8) OUTA 1 +INA 3 8 +V ADA4096-2 TOP VIEW (Not to Scale) –V 4 7 OUTB 6 –INB 5 +INB NOTES 1. CONNECT THE EXPOSED PAD TO GROUND. 09241-002 –INA 2 Figure 2. 8-Lead LFCSP (CP-8-10) APPLICATIONS Battery monitoring Sensor conditioners Portable power supply control Portable instrumentation GENERAL DESCRIPTION The ADA4096 operational amplifier features micropower operation and rail-to-rail input and output ranges. The extremely low power requirements and guaranteed operation from 3 V to 30 V make these amplifiers perfectly suited to monitor battery usage and to control battery charging. Their dynamic performance, including 27 nV/√Hz voltage noise density, recommends them for battery-powered audio applications. Capacitive loads to 200 pF are handled without oscillation. The ADA4096-2 has overvoltage protection inputs and diodes that allow the voltage input to extend 32 V above and below the supply rails, making this device ideal for robust industrial applications. The ADA4096-2 features a unique input stage that allows the input voltage to exceed either supply safely without any phase reversal or latch-up; this is called overvoltage protection, or OVP. The dual ADA4096-2 is available in 8-lead LFCSP (2 mm × 2 mm) and 8-lead MSOP packages. The ADA409x family is specified over the extended industrial temperature range (−40°C to +125°C) and is part of the growing selection of 30 V, low power op amps from Analog Devices, Inc. (see Table 1). Table 1. Low Power, 30 V Operational Amplifiers Op Amp Dual Quad Rail-to-Rail I/O ADA4091-2 ADA4091-4 PJFET AD8682 AD8684 Low Noise AD8622 AD8624 Rev. 0 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved. ADA4096-2 TABLE OF CONTENTS Features .............................................................................................. 1 ±5 V Characteristics................................................................... 10 Applications....................................................................................... 1 ±15 V Characteristics ................................................................ 12 Pin Configurations ........................................................................... 1 Comparative Voltage and Variable Voltage Graphs............... 14 General Description ......................................................................... 1 Theory of Operation ...................................................................... 15 Revision History ............................................................................... 2 Input Stage................................................................................... 15 Specifications..................................................................................... 3 Phase Inversion........................................................................... 15 Electrical Specifications............................................................... 3 Input Overvoltage Protection ................................................... 16 Absolute Maximum Ratings............................................................ 7 Comparator Operation.............................................................. 17 Thermal Resistance ...................................................................... 7 Outline Dimensions ....................................................................... 18 ESD Caution.................................................................................. 7 Ordering Guide .......................................................................... 19 Typical Performance Characteristics ............................................. 8 Automotive Products ................................................................. 19 ±1.5 V Characteristics.................................................................. 8 REVISION HISTORY 7/11—Revision 0: Initial Version Rev. 0 | Page 2 of 20 ADA4096-2 SPECIFICATIONS ELECTRICAL SPECIFICATIONS, VSY = ±1.5 V VSY = ±1.5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Offset Voltage Drift Input Bias Current Symbol Test Conditions/Comments Min VOS ∆VOS/∆T IB 0°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C −40°C ≤ TA ≤ +125°C Typ Max Unit 35 300 450 900 μV μV μV μV/°C nA nA nA nA V dB dB dB dB dB dB 1 ±10 −40°C ≤ TA ≤ +125°C Input Offset Current IOS ±0.1 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO MATCHING CHARACTERISTICS Offset Voltage OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Closed-Loop Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density VCM = 0 V to ±1.5 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = −1.4 V to +1.4 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, VO = −1.3 V to +1.3 V −40°C ≤ TA ≤ +125°C −1.5 63 58 92 84 86 77 TA = 25°C VOH VOL ISC ZOUT PSRR ISY 1.48 1.45 1.45 1.40 VSY = 3 V to 36 V −40°C ≤ TA ≤ +125°C VO = VSY/2 −40°C ≤ TA ≤ +125°C 100 90 SR GBP UGC ΦM −3 dB RL = 100 kΩ, CL = 30 pF VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 en p-p en in 77 94 92 100 RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 2 kΩ to GND −40°C to +125°C RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 2 kΩ to GND −40°C ≤ TA ≤ +125°C Source/sink f = 100 kHz, AV = 1 ±15 ±16 ±1.5 ±3 +1.5 300 1.49 1.46 −1.49 −1.48 −1.48 −1.45 −1.47 −1.40 ±10 102 40 80 μV V V V V V V V V mA Ω dB dB μA μA AV = 1, VIN = 5 mV p-p 0.25 501 465 51 97 V/μs kHz kHz Degrees kHz 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 0.7 27 0.2 μV p-p nV/√Hz pA/√Hz Rev. 0 | Page 3 of 20 ADA4096-2 ELECTRICAL SPECIFICATIONS, VSY = ±5 V VSY = ±5.0 V, VCM = VSY/2, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Test Conditions/Comments Min VOS Typ Max Unit 35 300 500 μV μV μV/°C nA nA nA nA V dB dB dB dB dB dB dB dB −40°C ≤ TA ≤ +125°C Offset Voltage Drift Input Bias Current ∆VOS/∆T IB 1 ±10 −40°C ≤ TA ≤ +125°C Input Offset Current IOS ±1.5 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain MATCHING CHARACTERISTICS Offset Voltage OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Closed-Loop Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density CMRR AVO VCM = −5 V to +5 V −40°C ≤ TA ≤ +125°C VCM = −3 V to +3 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = ±4.8 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, VO = ±4.7 V −40°C ≤ TA ≤ +125°C −5 73 68 91 85 102 99 94 88 TA = 25°C VOH VOL ISC ZOUT PSRR ISY 4.96 4.95 4.80 4.70 VSY = 3 V to 36 V −40°C ≤ TA ≤ +125°C VO = VSY/2 −40°C ≤ TA ≤ +125°C 100 90 SR GBP UGC ΦM −3 dB RL = 100 kΩ, CL = 30 pF VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 en p-p en in 86 103 111 103 100 RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 2 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 2 kΩ to GND −40°C ≤ TA ≤ +125°C Source/sink f = 100 kHz, AV = 1 ±15 ±19 ±2 ±3 +5 300 4.97 4.90 −4.98 −4.90 −4.97 −4.95 −4.80 −4.75 ±10 71 47 55 75 μV V V V V V V V V mA Ω dB dB μA μA AV = 1, VIN = 5 mV p-p 0.3 595 550 52 114 V/μs kHz kHz Degrees kHz 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz 0.7 27 0.2 μV p-p nV/√Hz pA/√Hz Rev. 0 | Page 4 of 20 ADA4096-2 ELECTRICAL SPECIFICATIONS, VSY = ±15 V VSY = ±15.0 V, VCM = VSY/2, VO = 0.0 V, TA = 25°C, unless otherwise noted. Table 4. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Offset Voltage Drift Input Bias Current ∆VOS/∆T IB Test Conditions/Comments Min VOS Typ Max Unit 35 300 500 μV μV μV/°C nA nA nA nA V dB dB dB dB dB dB dB dB −40°C ≤ TA ≤ +125°C 1 ±3 −40°C ≤ TA ≤ +125°C Input Offset Current IOS ±0.1 −40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Input Capacitance Differential Mode Common Mode MATCHING CHARACTERISTICS Offset Voltage OUTPUT CHARACTERISTICS Output Voltage High Output Voltage Low Short-Circuit Limit Closed-Loop Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Unity-Gain Crossover Phase Margin −3 dB Closed-Loop Bandwidth Channel Separation CMRR AVO VCM = −15 V to +15 V −40°C ≤ TA ≤ +125°C VCM = −13 V to +13 V −40°C ≤ TA ≤ +125°C RL = 10 kΩ, VO = ±14.7 V −40°C ≤ TA ≤ +125°C RL = 2 kΩ, VO = ±11 V −40°C ≤ TA ≤ +125°C −15 82 75 95 89 110 105 100 90 CDM CCM VOL ISC ZOUT PSRR ISY SR tS GBP UGC ΦM −3 dB CS 95 107 120 112 2.5 7 TA = 25°C VOH ±10 ±15 ±1.5 ±3 +15 100 RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 2 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 10 kΩ to GND −40°C ≤ TA ≤ +125°C RL = 2 kΩ to GND −40°C ≤ TA ≤ +125°C Source/sink f = 100 kHz, AV = 1 14.92 14.90 14.0 12.0 VSY = 3 V to 36 V −40°C ≤ TA ≤ +125°C VO = VSY/2 −40°C ≤ TA ≤ +125°C 100 90 RL = 100 kΩ, CL = 30 pF To 0.1%, 10 V step VIN = 5 mV p-p, RL = 10 kΩ, AV = 100 VIN = 5 mV p-p, RL = 10 kΩ, AV = 1 AV = 1, VIN = 5 mV p-p f = 1 kHz Rev. 0 | Page 5 of 20 pF pF 300 14.94 14.3 −14.96 −14.75 −14.80 −14.75 −14.65 −14.0 ±10 40 60 0.4 23.4 786 800 60 152 100 75 100 μV V V V V V V V V mA Ω dB dB μA μA V/μs μs kHz kHz Degrees kHz dB ADA4096-2 Parameter NOISE PERFORMANCE Voltage Noise Voltage Noise Density Current Noise Density Symbol Test Conditions/Comments en p-p en in 0.1 Hz to 10 Hz f = 1 kHz f = 1 kHz Rev. 0 | Page 6 of 20 Min Typ 0.7 27 0.2 Max Unit μV p-p nV/√Hz pA/√Hz ADA4096-2 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 5. Parameter Supply Voltage Input Voltage Operating Condition Overvoltage Condition1 Differential Input Voltage2 Input Current Output Short-Circuit Duration to GND Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) 1 2 θJA is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow. The exposed pad is soldered to the application board. Rating 36 V −V ≤ VIN ≤ +V (−V) − 32 V ≤ VIN ≤ (+V) + 32 V ±VSY ±5 mA Indefinite Table 6. Thermal Resistance Package Type 8-Lead MSOP (RM-8) 8-Lead LFCSP (CP-8-10) ESD CAUTION −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C Performance not guaranteed during overvoltage conditions. Limit the input current to ±5 mA. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. 0 | Page 7 of 20 θJA 142 76 θJC 45 43 Unit °C/W °C/W ADA4096-2 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted. ±1.5 V CHARACTERISTICS 180 160 140 ADA4096-2 VSY = ±1.5V TA = 25°C 1k VOUT TO RAIL (mV) NUMBER OF AMPLIFIERS 10k ADA4096-2 VSY = ±1.5V TA = 25°C 120 100 80 60 100 SOURCING SINKING 10 40 1 10 100 Figure 6. Dropout Voltage vs. Load Current 140 ADA4096-2 VSY = ±1.5V TA = –40°C TO +125°C ADA4096-2 VSY = ±1.5V TA = 25°C 120 100 20 200 150 15 10 100 60 40 50 GAIN 20 0 0 –20 5 PHASE (Degrees) PHASE 80 GAIN (dB) NUMBER OF AMPLIFIERS 0.1 LOAD CURRENT (mA) Figure 3. Input Offset Voltage Distribution 25 0.01 09241-006 1 0.001 09241-003 200 VOS (µV) MORE 175 150 125 75 100 50 0 25 –25 –50 –75 –100 –125 –150 –175 0 –200 20 –50 –40 0.5 1.0 1.5 2.0 2.5 TCVOS (µV/°C) –60 100 100k –100 10M 1M Figure 7. Open-Loop Gain and Phase vs. Frequency 50 ADA4096-2 VSY = ±1.5V 20 10k FREQUENCY (Hz) Figure 4. Offset Voltage Drift Distribution 30 1k 09241-007 0 09241-004 0 –2.5 –2.0 –1.5 –1.0 –0.5 40 ADA4096-2 VSY = ±1.5V TA = 25°C G = +100 CLOSED-LOOP GAIN (dB) 30 10 TA = +125°C 0 TA = +85°C –10 TA = 0°C –20 20 G = +10 10 0 G = +1 –10 –20 –30 –30 TA = –40°C –1.0 –0.5 0 0.5 1.0 VCM (V) 1.5 –50 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 8. Closed-Loop Gain vs. Frequency Figure 5. Input Bias Current vs. VCM and Temperature Rev. 0 | Page 8 of 20 10M 09241-008 –40 –40 –1.5 09241-005 IB (nA) TA = +25°C ADA4096-2 10k 0.08 ADA4096-2 VSY = ±1.5V TA = 25°C 1k ADA4096-2 VSY = ±1.5V TA = 25°C RL = 10kΩ CL = 100pF G = +1 0.06 0.04 0.02 G = +100 VOUT (V) ZOUT (Ω) 100 10 G = +10 1 0 –0.02 –0.04 –0.06 G = +1 0.1 100 1k 10k 100k 1M 10M FREQUENCY (Hz) –0.10 09241-009 0.01 10 0 25 30 ADA4096-2 VSY = ±1.5V TA = 25°C RF = 10kΩ RS = 100Ω 1.4 1.2 PSRR+ 1.0 60 VOUT (V) PSRR– 40 0.8 0.6 20 0.4 0 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 0 09241-052 –20 10 0 1.0 0.2 80 100 ADA4096-2 VSY = ±1.5V TA = 25°C RF = 10kΩ RS = 100Ω 0 –0.2 –0.4 VOUT (V) 0.5 0 –0.5 –0.6 –0.8 –1.0 –1.0 –1.2 –1.5 –1.4 0 20 40 60 80 100 TIME (µs) 120 –1.6 09241-010 –2.0 60 Figure 13. Positive Overload Recovery ADA4096-2 VSY = ±1.5V TA = 25°C RL = 10kΩ CL = 100pF G = +1 1.5 40 TIME (µs) Figure 10. PSRR vs. Frequency 2.0 20 09241-055 0.2 0 20 40 60 80 TIME (µs) Figure 11. Large Signal Transient Response Figure 14. Negative Overload Recovery Rev. 0 | Page 9 of 20 100 09241-056 PSRR (dB) 20 1.6 80 VOUT (V) 15 Figure 12. Small Signal Transient Response ADA4096-2 VSY = ±1.5V TA = 25°C 100 10 TIME (µs) Figure 9. Output Impedance vs. Frequency 120 5 09241-011 –0.08 ADA4096-2 ±5 V CHARACTERISTICS 250 10k ADA4096-2 VSY = ±5V TA = 25°C ADA4096-2 VSY = ±5V TA = 25°C 1k VOUT TO RAIL (mV) 100 100 SOURCING 1 0.001 09241-015 200 VOS (µV) MORE 175 150 125 75 100 50 0 25 –25 –50 –75 –100 –125 –150 –175 –200 0.01 0.1 1 10 100 LOAD CURRENT (mA) Figure 18. Dropout Voltage vs. Load Current Figure 15. Input Offset Voltage Distribution 40 140 ADA4096-2 VSY = ±5V 35 T = –40°C TO +125°C A ADA4096-2 VSY = ±5V TA = 25°C 120 150 PHASE 80 25 20 15 100 60 GAIN (dB) NUMBER OF AMPLIFIERS 100 30 200 40 50 GAIN 20 0 0 PHASE (Degrees) 0 SINKING 10 50 09241-023 150 10 –20 5 –50 0 –2.5 –2.0 –1.5 –1.0 –0.5 0 0.5 1.0 1.5 2.0 2.5 TCVOS (µV/°C) 09241-016 –40 –60 100 20 10k 100k –100 10M 1M FREQUENCY (Hz) Figure 19. Open-Loop Gain and Phase vs. Frequency Figure 16. Offset Voltage Drift Distribution 30 1k 09241-020 NUMBER OF AMPLIFIERS 200 50 ADA4096-2 VSY = ±5V 40 ADA4096-2 VSY = ±5V TA = 25°C G = +100 30 CLOSED-LOOP GAIN (dB) 10 TA = +125°C TA = +85°C –10 –20 TA = +25°C –3 –2 0 G = +1 –10 –20 –40 TA = –40°C –4 10 –30 TA = 0°C –40 –50 –5 G = +10 –1 0 1 2 3 4 VCM (V) 5 –50 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 20. Closed-Loop Gain vs. Frequency Figure 17. Input Bias Current vs. VCM and Temperature Rev. 0 | Page 10 of 20 10M 09241-024 –30 09241-050 IB (nA) 0 20 ADA4096-2 10k 0.08 ADA4096-2 VSY = ±5V TA = 25°C 1k ADA4096-2 VSY = ±5V TA = 25°C RL = 10kΩ CL = 100pF G = +1 0.06 0.04 0.02 G = +100 VOUT (V) ZOUT (Ω) 100 10 0 –0.02 G = +10 1 –0.04 –0.06 G = +1 0.1 100 1k 10k 100k 1M 10M FREQUENCY (Hz) –0.10 09241-021 0.01 10 0 15 20 6 30 ADA4096-2 VSY = ±5V TA = 25°C RF = 10kΩ RS = 100Ω 5 100 4 80 PSRR+ VOUT (V) PSRR (dB) 25 Figure 24. Small Signal Transient Response ADA4096-2 VSY = ±5V TA = 25°C 120 10 TIME (µs) Figure 21. Output Impedance vs. Frequency 140 5 09241-018 –0.08 60 PSRR– 40 3 2 20 1k 10k 100k 1M 10M FREQUENCY (Hz) 0 0 1 VOUT (V) –2 –2 –3 –4 –4 0 50 100 150 200 250 300 100 –1 0 –6 80 350 TIME (µs) 400 ADA4096-2 VSY = ±5V TA = 25°C RF = 10kΩ RS = 100Ω 0 09241-017 VOUT (V) 2 60 Figure 25. Positive Overload Recovery ADA4096-2 VSY = ±5V TA = 25°C RL = 10kΩ CL = 100pF G = +1 4 40 TIME (µs) Figure 22. PSRR vs. Frequency 6 20 Figure 23. Large Signal Transient Response –5 0 20 40 60 80 TIME (µs) Figure 26. Negative Overload Recovery Rev. 0 | Page 11 of 20 100 09241-058 100 09241-053 –20 10 09241-057 1 0 ADA4096-2 ±15 V CHARACTERISTICS 250 10k ADA4096-2 VSY = ±15V TA = 25°C ADA4096-2 VSY = ±15V TA = 25°C 1k VOUT TO RAIL (mV) 100 100 SOURCING 1 0.001 09241-027 200 VOS (µV) MORE 175 0.1 1 10 100 LOAD CURRENT (mA) Figure 30. Dropout Voltage vs. Load Current Figure 27. Input Offset Voltage Distribution 140 35 ADA4096-2 VSY = ±15V 30 TA = –40°C TO +125°C ADA4096-2 VSY = ±15V TA = 25°C 120 100 25 80 20 15 PHASE 50 GAIN 20 0 0 –20 –50 0.5 1.0 1.5 2.0 2.5 TCVOS (µV/°C) –60 100 1k 10k 100k FREQUENCY (Hz) Figure 31. Open-Loop Gain and Phase vs. Frequency Figure 28. Offset Voltage Drift Distribution 50 40 ADA4096-2 30 VSY = ±15V 40 20 TA = +125°C CLOSED-LOOP GAIN (dB) TA = +85°C 10 0 –10 –20 TA = +25°C TA = 0°C –30 –40 –50 –5 0 5 10 VCM (V) 15 09241-051 –10 ADA4096-2 VSY = ±15V TA = 25°C G = +100 30 20 G = +10 10 0 G = +1 –10 –20 –30 TA = –40°C –60 –15 –100 10M 1M 09241-030 0 09241-028 –40 0 –2.5 –2.0 –1.5 –1.0 –0.5 IB (nA) 150 100 40 10 5 200 60 GAIN (dB) NUMBER OF AMPLIFIERS 0.01 PHASE (Degrees) 150 125 75 100 50 0 25 –25 –50 –75 –100 –125 –150 –175 –200 50 0 SINKING 10 09241-034 150 Figure 29. Input Bias Current vs. VCM and Temperature –40 10 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 32. Closed-Loop Gain vs. Frequency Rev. 0 | Page 12 of 20 10M 09241-036 NUMBER OF AMPLIFIERS 200 ADA4096-2 10k 0.08 ADA4096-2 VSY = ±15V TA = 25°C 1k ADA4096-2 VSY = ±15V TA = 25°C RL = 10kΩ CL = 100pF G = +1 0.06 0.04 0.02 10 VOUT (V) ZOUT (Ω) 100 G = +100 G = +10 1 0 –0.02 –0.04 G = +1 –0.06 0.1 100 1k 10k 100k 1M 10M FREQUENCY (Hz) –0.10 09241-035 0.01 10 0 15 20 25 ADA4096-2 VSY = ±15V TA = 25°C 100 ADA4096-2 VSY = ±15V TA = 25°C RF = 10kΩ RS = 100Ω 14 12 80 30 Figure 36. Small Signal Transient Response 16 120 PSRR+ 10 60 VOUT (V) PSRR– 40 8 6 20 4 0 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 0 09241-054 –20 10 0 5 60 80 100 Figure 37. Positive Overload Recovery 0 ADA4096-2 VSY = ±15V TA = 25°C RL = 10kΩ CL = 100pF G = +1 10 40 TIME (µs) Figure 34. PSRR vs. Frequency 15 20 09241-059 2 ADA4096-2 VSY = ±15V TA = 25°C RF = 10kΩ RS = 100Ω –2 –4 VOUT (V) –6 0 –8 –10 –5 –12 –10 0 50 100 150 200 250 300 350 TIME (µs) 400 09241-031 –15 –14 –16 0 20 40 60 80 TIME (µs) Figure 38. Negative Overload Recovery Figure 35. Large Signal Transient Response Rev. 0 | Page 13 of 20 100 09241-060 PSRR (dB) 10 TIME (µs) Figure 33. Output Impedance vs. Frequency VOUT (V) 5 09241-032 –0.08 ADA4096-2 COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS 70 0.4 SUPPLY CURRENT PER AMPLIFIER (µA) ADA4096-2 VSY = ±15V TA = 25°C 0.3 NOISE (µV) 0.2 0.1 0 –0.1 –0.2 –0.4 –10 –8 –6 –4 –2 0 2 4 6 8 10 TIME (s) 50 40 30 20 10 0 09241-039 –0.3 ADA4096-2 TA = 25°C RL = ∞ 60 0 4 16 20 24 28 32 36 Figure 42. Supply Current vs. Supply Voltage 100 ADA4096-2 VSY = ±15V TA = 25°C ADA4096-2 VSY = ±15V TA = 25°C –100 en (nV/ Hz) CHANNEL SEPARATION (dB) –90 12 SUPPLY VOLTAGE (V) Figure 39. Input Voltage Noise, 0.1 Hz to 10 Hz Bandwidth –80 8 09241-043 0.5 –110 10kΩ –120 1kΩ 2kΩ –130 100 1k 10k 50k FREQUENCY (Hz) 10 0.1 09241-040 –140 20 50 100 40 70 VSY = ±15V OVERSHOOT (%) 80 VSY = ±1.5V VSY = ±5V 60 1k ADA4096-2 VSY = ±15V TA = 25°C RL = 2kΩ G = +1 VIN = 100mV p-p 30 20 OS– 50 40 10 20 100 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 41. CMRR vs. Frequency 0 0.01 0.1 CLOAD (nF) Figure 44. Overshoot vs. Load Capacitance Rev. 0 | Page 14 of 20 1 09241-100 OS+ 30 09241-041 CMRR (dB) 90 100 Figure 43. Voltage Noise Density ADA4096-2 TA = 25°C 110 10 FREQUENCY (Hz) Figure 40. Channel Separation vs. Frequency 120 1 09241-044 VIN = 10V p-p ADA4096-2 THEORY OF OPERATION INPUT STAGE VCC R2 I1 R7 R5 I3 D6 Q5 D3 Q3 Q6 D10 Q11 D9 C2 Q4 Q18 OUT Q13 D4 Q20 Q12 Q7 Q8 C1 Q9 Q14 Q10 D8 Q17 ×1 +IN OVP –IN OVP Q1 R6 D2 D1 Q19 Q2 I2 R3 Q15 R4 D7 Q16 D11 VEE 09241-045 R1 Figure 45. Simplified Schematic Figure 45 shows a simplified schematic of the ADA4096-2. The input stage comprises two differential pairs (Q1 to Q4 and Q5 to Q8) operating in parallel. When the input common-mode voltage approaches VCC − 1.5 V, Q1 to Q4 shut down as I1 reaches its minimum voltage compliance. Conversely, when the input common-mode voltage approaches VEE + 1.5 V, Q5 to Q8 shut down as I2 reaches its minimum voltage compliance. This topology allows for maximum input dynamic range because the amplifier can function with its inputs at 200 mV outside the rail (at room temperature). Although phase inversion persists for only as long as the inputs are saturated, it can be detrimental to applications where the amplifier is part of a closed-loop system. The ADA4096-2 is free from phase inversion over the entire common-mode voltage range, as well as the overvoltage protected range stated in the Absolute Maximum Ratings section, Table 5. Figure 46 shows the ADA4096-2 in a unity-gain configuration with the input signal at ±40 V and the amplifier supplies at ±10 V. As with any rail-to-rail input amplifier, VOS mismatch between the two input pairs determines the CMRR of the amplifier. If the input common-mode voltage range is kept within 1.5 V of each rail, transitions between the input pairs are avoided, thus improving the CMRR by approximately 10 dB (see Table 3 and Table 4). T 1 Some single-supply amplifiers exhibit phase inversion when the input signal extends beyond the common-mode voltage range of the amplifier. When the input devices become saturated, the inverting and noninverting inputs exchange functions, causing the output to move in the opposing direction. Rev. 0 | Page 15 of 20 CH1 10.0V CH2 10.0V M2.00ms T 34.20% A CH1 Figure 46. No Phase Reversal –3.6V 09241-046 PHASE INVERSION ADA4096-2 INPUT OVERVOLTAGE PROTECTION The ADA4096-2 inputs are protected from input voltage excursions up to 32 V outside each rail. This feature is of particular importance in applications with power supply sequencing issues that could cause the signal source to be active before the supplies to the amplifier. 4 3 2 1 0 –1 –2 –3 –4 –5 LOW RDSON SERIES FET 5kΩ SERIES RESISTOR –6 –7 –48 –40 –32 –24 –16 –8 0 8 16 24 32 VIN (V) 40 48 09241-047 INPUT BIAS CURRENT (mA) 5 Note that Figure 47 represents input protection under abnormal conditions only. The correct amplifier operation input voltage range (IVR) is specified in Table 2 to Table 4. VCC = +15V 6 VEE = 0V 7 VEE = –15V Figure 47 shows the input current limiting capability of the ADA4096-2 (green curves) compared to using a 5 kΩ series resistor (red curves). Figure 47 was generated with the ADA4096-2 in a buffer configuration with the supplies connected to GND (or ±15 V) and the positive input swept until it exceeds the supplies by 32 V. In general, input current is limited to 1 mA during positive overvoltage conditions and 200 μA during negative undervoltage conditions. For example, at an overvoltage of 20 V, the ADA4096-2 input current is limited to 1 mA, providing a current limit equivalent to a series 20 kΩ resistor. Figure 47 also shows that the current limiting circuitry is active whether the amplifier is powered or not. Figure 47. Input Current Limiting Capability Rev. 0 | Page 16 of 20 ADA4096-2 500 400 VOUT = HIGH 300 VOUT = LOW 200 100 BUFFER 0 0 4 8 12 16 20 24 28 SUPPLY VOLTAGE (V) Figure 48. Comparator Supply Current Rev. 0 | Page 17 of 20 32 36 09241-048 Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp may be pressed into service as a comparator; however, this is not recommended for any rail-to-rail output op amps. For railto-rail output op amps, the output stage is generally a ratioed current mirror with bipolar or MOSFET transistors. With the part operating open loop, the second stage increases the current drive to the ratioed mirror to close the loop, but it cannot, which results in an increase in supply current. With the op amp configured as a comparator, the supply current can be significantly higher (see Figure 48). SUPPLY CURRENT PER AMPLIFIER (µA) COMPARATOR OPERATION ADA4096-2 OUTLINE DIMENSIONS 3.20 3.00 2.80 8 3.20 3.00 2.80 1 5 5.15 4.90 4.65 4 PIN 1 IDENTIFIER 0.65 BSC 0.95 0.85 0.75 15° MAX 1.10 MAX 0.40 0.25 0.80 0.55 0.40 0.23 0.09 6° 0° 10-07-2009-B 0.15 0.05 COPLANARITY 0.10 COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 49. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters 1.70 1.60 1.50 2.00 BSC SQ 0.50 BSC 8 5 1.10 1.00 0.90 EXPOSED PAD 0.425 0.350 0.275 1 4 TOP VIEW 0.60 0.55 0.50 SEATING PLANE BOTTOM VIEW 0.05 MAX 0.02 NOM 0.30 0.25 0.20 FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS SECTION OF THIS DATA SHEET. 0.20 REF Figure 50. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD] 2 mm × 2 mm Body, Ultra Thin, Dual Lead (CP-8-10) Dimensions shown in millimeters Rev. 0 | Page 18 of 20 PIN 1 INDICATOR (R 0.15) 063009-A PIN 1 INDEX AREA ADA4096-2 ORDERING GUIDE Model 1, 2 ADA4096-2ARMZ ADA4096-2ARMZ-R7 ADA4096-2ARMZ-RL ADA4096-2ACPZ-R7 ADA4096-2ACPZ-RL ADA4096-2WARMZ-R7 ADA4096-2WARMZ-RL 1 2 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Package Description 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Frame Chip Scale Package [LFCSP_UD] 8-Lead Frame Chip Scale Package [LFCSP_UD] 8-Lead Mini Small Outline Package [MSOP] 8-Lead Mini Small Outline Package [MSOP] Package Option RM-8 RM-8 RM-8 CP-8-10 CP-8-10 RM-8 RM-8 Branding A2T A2T A2T A4 A4 A2T A2T Z = RoHS Compliant Part. W = Qualified for Automotive Applications. AUTOMOTIVE PRODUCTS The ADA4096-2W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. Rev. 0 | Page 19 of 20 ADA4096-2 NOTES ©2011 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09241-0-7/11(0) Rev. 0 | Page 20 of 20