AD ADA4096

30 V, Micropower, Overvoltage Protection,
Rail-to-Rail Input/Output Amplifier
ADA4096-2
PIN CONFIGURATIONS
Input overvoltage protection, 32 V above and below
the supply rails
Rail-to-rail input and output swing
Low power: 60 μA per amplifier typical
Unity-gain bandwidth
800 kHz typical @ VSY = ±15 V
550 kHz typical @ VSY = ±5 V
465 kHz typical @ VSY = ±1.5 V
Single-supply operation: 3 V to 30 V
Low offset voltage: 300 μV maximum
High open-loop gain: 120 dB typical
Unity-gain stable
No phase reversal
Qualified for automotive applications
OUTA 1
8
+V
–INA 2
ADA4096-2
7
OUTB
+INA 3
TOP VIEW
(Not to Scale)
6
–INB
5
+INB
–V 4
09241-001
FEATURES
Figure 1. 8-Lead, MSOP (RM-8)
OUTA 1
+INA 3
8 +V
ADA4096-2
TOP VIEW
(Not to Scale)
–V 4
7 OUTB
6 –INB
5 +INB
NOTES
1. CONNECT THE EXPOSED
PAD TO GROUND.
09241-002
–INA 2
Figure 2. 8-Lead LFCSP (CP-8-10)
APPLICATIONS
Battery monitoring
Sensor conditioners
Portable power supply control
Portable instrumentation
GENERAL DESCRIPTION
The ADA4096 operational amplifier features micropower
operation and rail-to-rail input and output ranges. The
extremely low power requirements and guaranteed operation
from 3 V to 30 V make these amplifiers perfectly suited to
monitor battery usage and to control battery charging. Their
dynamic performance, including 27 nV/√Hz voltage noise
density, recommends them for battery-powered audio applications. Capacitive loads to 200 pF are handled without oscillation.
The ADA4096-2 has overvoltage protection inputs and diodes
that allow the voltage input to extend 32 V above and below
the supply rails, making this device ideal for robust industrial
applications.
The ADA4096-2 features a unique input stage that allows the
input voltage to exceed either supply safely without any phase
reversal or latch-up; this is called overvoltage protection, or OVP.
The dual ADA4096-2 is available in 8-lead LFCSP (2 mm × 2 mm)
and 8-lead MSOP packages. The ADA409x family is specified
over the extended industrial temperature range (−40°C to +125°C)
and is part of the growing selection of 30 V, low power op amps
from Analog Devices, Inc. (see Table 1).
Table 1. Low Power, 30 V Operational Amplifiers
Op Amp
Dual
Quad
Rail-to-Rail I/O
ADA4091-2
ADA4091-4
PJFET
AD8682
AD8684
Low Noise
AD8622
AD8624
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2011 Analog Devices, Inc. All rights reserved.
ADA4096-2
TABLE OF CONTENTS
Features .............................................................................................. 1
±5 V Characteristics................................................................... 10
Applications....................................................................................... 1
±15 V Characteristics ................................................................ 12
Pin Configurations ........................................................................... 1
Comparative Voltage and Variable Voltage Graphs............... 14
General Description ......................................................................... 1
Theory of Operation ...................................................................... 15
Revision History ............................................................................... 2
Input Stage................................................................................... 15
Specifications..................................................................................... 3
Phase Inversion........................................................................... 15
Electrical Specifications............................................................... 3
Input Overvoltage Protection ................................................... 16
Absolute Maximum Ratings............................................................ 7
Comparator Operation.............................................................. 17
Thermal Resistance ...................................................................... 7
Outline Dimensions ....................................................................... 18
ESD Caution.................................................................................. 7
Ordering Guide .......................................................................... 19
Typical Performance Characteristics ............................................. 8
Automotive Products ................................................................. 19
±1.5 V Characteristics.................................................................. 8
REVISION HISTORY
7/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 20
ADA4096-2
SPECIFICATIONS
ELECTRICAL SPECIFICATIONS, VSY = ±1.5 V
VSY = ±1.5 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Offset Voltage Drift
Input Bias Current
Symbol
Test Conditions/Comments
Min
VOS
∆VOS/∆T
IB
0°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
−40°C ≤ TA ≤ +125°C
Typ
Max
Unit
35
300
450
900
μV
μV
μV
μV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
dB
dB
1
±10
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
±0.1
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large Signal Voltage Gain
AVO
MATCHING CHARACTERISTICS
Offset Voltage
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Closed-Loop Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
VCM = 0 V to ±1.5 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = −1.4 V to +1.4 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, VO = −1.3 V to +1.3 V
−40°C ≤ TA ≤ +125°C
−1.5
63
58
92
84
86
77
TA = 25°C
VOH
VOL
ISC
ZOUT
PSRR
ISY
1.48
1.45
1.45
1.40
VSY = 3 V to 36 V
−40°C ≤ TA ≤ +125°C
VO = VSY/2
−40°C ≤ TA ≤ +125°C
100
90
SR
GBP
UGC
ΦM
−3 dB
RL = 100 kΩ, CL = 30 pF
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
en p-p
en
in
77
94
92
100
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C to +125°C
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
Source/sink
f = 100 kHz, AV = 1
±15
±16
±1.5
±3
+1.5
300
1.49
1.46
−1.49
−1.48
−1.48
−1.45
−1.47
−1.40
±10
102
40
80
μV
V
V
V
V
V
V
V
V
mA
Ω
dB
dB
μA
μA
AV = 1, VIN = 5 mV p-p
0.25
501
465
51
97
V/μs
kHz
kHz
Degrees
kHz
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
0.7
27
0.2
μV p-p
nV/√Hz
pA/√Hz
Rev. 0 | Page 3 of 20
ADA4096-2
ELECTRICAL SPECIFICATIONS, VSY = ±5 V
VSY = ±5.0 V, VCM = VSY/2, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Test Conditions/Comments
Min
VOS
Typ
Max
Unit
35
300
500
μV
μV
μV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
Offset Voltage Drift
Input Bias Current
∆VOS/∆T
IB
1
±10
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
±1.5
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
MATCHING CHARACTERISTICS
Offset Voltage
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Closed-Loop Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
CMRR
AVO
VCM = −5 V to +5 V
−40°C ≤ TA ≤ +125°C
VCM = −3 V to +3 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = ±4.8 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, VO = ±4.7 V
−40°C ≤ TA ≤ +125°C
−5
73
68
91
85
102
99
94
88
TA = 25°C
VOH
VOL
ISC
ZOUT
PSRR
ISY
4.96
4.95
4.80
4.70
VSY = 3 V to 36 V
−40°C ≤ TA ≤ +125°C
VO = VSY/2
−40°C ≤ TA ≤ +125°C
100
90
SR
GBP
UGC
ΦM
−3 dB
RL = 100 kΩ, CL = 30 pF
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
en p-p
en
in
86
103
111
103
100
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
Source/sink
f = 100 kHz, AV = 1
±15
±19
±2
±3
+5
300
4.97
4.90
−4.98
−4.90
−4.97
−4.95
−4.80
−4.75
±10
71
47
55
75
μV
V
V
V
V
V
V
V
V
mA
Ω
dB
dB
μA
μA
AV = 1, VIN = 5 mV p-p
0.3
595
550
52
114
V/μs
kHz
kHz
Degrees
kHz
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
0.7
27
0.2
μV p-p
nV/√Hz
pA/√Hz
Rev. 0 | Page 4 of 20
ADA4096-2
ELECTRICAL SPECIFICATIONS, VSY = ±15 V
VSY = ±15.0 V, VCM = VSY/2, VO = 0.0 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
Symbol
Offset Voltage Drift
Input Bias Current
∆VOS/∆T
IB
Test Conditions/Comments
Min
VOS
Typ
Max
Unit
35
300
500
μV
μV
μV/°C
nA
nA
nA
nA
V
dB
dB
dB
dB
dB
dB
dB
dB
−40°C ≤ TA ≤ +125°C
1
±3
−40°C ≤ TA ≤ +125°C
Input Offset Current
IOS
±0.1
−40°C ≤ TA ≤ +125°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Input Capacitance
Differential Mode
Common Mode
MATCHING CHARACTERISTICS
Offset Voltage
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Closed-Loop Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current per Amplifier
DYNAMIC PERFORMANCE
Slew Rate
Settling Time
Gain Bandwidth Product
Unity-Gain Crossover
Phase Margin
−3 dB Closed-Loop Bandwidth
Channel Separation
CMRR
AVO
VCM = −15 V to +15 V
−40°C ≤ TA ≤ +125°C
VCM = −13 V to +13 V
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ, VO = ±14.7 V
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ, VO = ±11 V
−40°C ≤ TA ≤ +125°C
−15
82
75
95
89
110
105
100
90
CDM
CCM
VOL
ISC
ZOUT
PSRR
ISY
SR
tS
GBP
UGC
ΦM
−3 dB
CS
95
107
120
112
2.5
7
TA = 25°C
VOH
±10
±15
±1.5
±3
+15
100
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 10 kΩ to GND
−40°C ≤ TA ≤ +125°C
RL = 2 kΩ to GND
−40°C ≤ TA ≤ +125°C
Source/sink
f = 100 kHz, AV = 1
14.92
14.90
14.0
12.0
VSY = 3 V to 36 V
−40°C ≤ TA ≤ +125°C
VO = VSY/2
−40°C ≤ TA ≤ +125°C
100
90
RL = 100 kΩ, CL = 30 pF
To 0.1%, 10 V step
VIN = 5 mV p-p, RL = 10 kΩ, AV = 100
VIN = 5 mV p-p, RL = 10 kΩ, AV = 1
AV = 1, VIN = 5 mV p-p
f = 1 kHz
Rev. 0 | Page 5 of 20
pF
pF
300
14.94
14.3
−14.96
−14.75
−14.80
−14.75
−14.65
−14.0
±10
40
60
0.4
23.4
786
800
60
152
100
75
100
μV
V
V
V
V
V
V
V
V
mA
Ω
dB
dB
μA
μA
V/μs
μs
kHz
kHz
Degrees
kHz
dB
ADA4096-2
Parameter
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
Symbol
Test Conditions/Comments
en p-p
en
in
0.1 Hz to 10 Hz
f = 1 kHz
f = 1 kHz
Rev. 0 | Page 6 of 20
Min
Typ
0.7
27
0.2
Max
Unit
μV p-p
nV/√Hz
pA/√Hz
ADA4096-2
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 5.
Parameter
Supply Voltage
Input Voltage
Operating Condition
Overvoltage Condition1
Differential Input Voltage2
Input Current
Output Short-Circuit Duration to
GND
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering,
60 sec)
1
2
θJA is specified for the device soldered on a 4-layer JEDEC standard
printed circuit board (PCB) with zero airflow. The exposed pad
is soldered to the application board.
Rating
36 V
−V ≤ VIN ≤ +V
(−V) − 32 V ≤ VIN ≤ (+V) + 32 V
±VSY
±5 mA
Indefinite
Table 6. Thermal Resistance
Package Type
8-Lead MSOP (RM-8)
8-Lead LFCSP (CP-8-10)
ESD CAUTION
−65°C to +150°C
−40°C to +125°C
−65°C to +150°C
300°C
Performance not guaranteed during overvoltage conditions.
Limit the input current to ±5 mA.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. 0 | Page 7 of 20
θJA
142
76
θJC
45
43
Unit
°C/W
°C/W
ADA4096-2
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, unless otherwise noted.
±1.5 V CHARACTERISTICS
180
160
140
ADA4096-2
VSY = ±1.5V
TA = 25°C
1k
VOUT TO RAIL (mV)
NUMBER OF AMPLIFIERS
10k
ADA4096-2
VSY = ±1.5V
TA = 25°C
120
100
80
60
100
SOURCING
SINKING
10
40
1
10
100
Figure 6. Dropout Voltage vs. Load Current
140
ADA4096-2
VSY = ±1.5V
TA = –40°C TO +125°C
ADA4096-2
VSY = ±1.5V
TA = 25°C
120
100
20
200
150
15
10
100
60
40
50
GAIN
20
0
0
–20
5
PHASE (Degrees)
PHASE
80
GAIN (dB)
NUMBER OF AMPLIFIERS
0.1
LOAD CURRENT (mA)
Figure 3. Input Offset Voltage Distribution
25
0.01
09241-006
1
0.001
09241-003
200
VOS (µV)
MORE
175
150
125
75
100
50
0
25
–25
–50
–75
–100
–125
–150
–175
0
–200
20
–50
–40
0.5
1.0
1.5
2.0
2.5
TCVOS (µV/°C)
–60
100
100k
–100
10M
1M
Figure 7. Open-Loop Gain and Phase vs. Frequency
50
ADA4096-2
VSY = ±1.5V
20
10k
FREQUENCY (Hz)
Figure 4. Offset Voltage Drift Distribution
30
1k
09241-007
0
09241-004
0
–2.5 –2.0 –1.5 –1.0 –0.5
40
ADA4096-2
VSY = ±1.5V
TA = 25°C
G = +100
CLOSED-LOOP GAIN (dB)
30
10
TA = +125°C
0
TA = +85°C
–10
TA = 0°C
–20
20
G = +10
10
0
G = +1
–10
–20
–30
–30
TA = –40°C
–1.0
–0.5
0
0.5
1.0
VCM (V)
1.5
–50
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 8. Closed-Loop Gain vs. Frequency
Figure 5. Input Bias Current vs. VCM and Temperature
Rev. 0 | Page 8 of 20
10M
09241-008
–40
–40
–1.5
09241-005
IB (nA)
TA = +25°C
ADA4096-2
10k
0.08
ADA4096-2
VSY = ±1.5V
TA = 25°C
1k
ADA4096-2
VSY = ±1.5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
0.06
0.04
0.02
G = +100
VOUT (V)
ZOUT (Ω)
100
10
G = +10
1
0
–0.02
–0.04
–0.06
G = +1
0.1
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–0.10
09241-009
0.01
10
0
25
30
ADA4096-2
VSY = ±1.5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
1.4
1.2
PSRR+
1.0
60
VOUT (V)
PSRR–
40
0.8
0.6
20
0.4
0
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
0
09241-052
–20
10
0
1.0
0.2
80
100
ADA4096-2
VSY = ±1.5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
0
–0.2
–0.4
VOUT (V)
0.5
0
–0.5
–0.6
–0.8
–1.0
–1.0
–1.2
–1.5
–1.4
0
20
40
60
80
100
TIME (µs)
120
–1.6
09241-010
–2.0
60
Figure 13. Positive Overload Recovery
ADA4096-2
VSY = ±1.5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
1.5
40
TIME (µs)
Figure 10. PSRR vs. Frequency
2.0
20
09241-055
0.2
0
20
40
60
80
TIME (µs)
Figure 11. Large Signal Transient Response
Figure 14. Negative Overload Recovery
Rev. 0 | Page 9 of 20
100
09241-056
PSRR (dB)
20
1.6
80
VOUT (V)
15
Figure 12. Small Signal Transient Response
ADA4096-2
VSY = ±1.5V
TA = 25°C
100
10
TIME (µs)
Figure 9. Output Impedance vs. Frequency
120
5
09241-011
–0.08
ADA4096-2
±5 V CHARACTERISTICS
250
10k
ADA4096-2
VSY = ±5V
TA = 25°C
ADA4096-2
VSY = ±5V
TA = 25°C
1k
VOUT TO RAIL (mV)
100
100
SOURCING
1
0.001
09241-015
200
VOS (µV)
MORE
175
150
125
75
100
50
0
25
–25
–50
–75
–100
–125
–150
–175
–200
0.01
0.1
1
10
100
LOAD CURRENT (mA)
Figure 18. Dropout Voltage vs. Load Current
Figure 15. Input Offset Voltage Distribution
40
140
ADA4096-2
VSY = ±5V
35 T = –40°C TO +125°C
A
ADA4096-2
VSY = ±5V
TA = 25°C
120
150
PHASE
80
25
20
15
100
60
GAIN (dB)
NUMBER OF AMPLIFIERS
100
30
200
40
50
GAIN
20
0
0
PHASE (Degrees)
0
SINKING
10
50
09241-023
150
10
–20
5
–50
0
–2.5 –2.0 –1.5 –1.0 –0.5
0
0.5
1.0
1.5
2.0
2.5
TCVOS (µV/°C)
09241-016
–40
–60
100
20
10k
100k
–100
10M
1M
FREQUENCY (Hz)
Figure 19. Open-Loop Gain and Phase vs. Frequency
Figure 16. Offset Voltage Drift Distribution
30
1k
09241-020
NUMBER OF AMPLIFIERS
200
50
ADA4096-2
VSY = ±5V
40
ADA4096-2
VSY = ±5V
TA = 25°C
G = +100
30
CLOSED-LOOP GAIN (dB)
10
TA = +125°C
TA = +85°C
–10
–20
TA = +25°C
–3
–2
0
G = +1
–10
–20
–40
TA = –40°C
–4
10
–30
TA = 0°C
–40
–50
–5
G = +10
–1
0
1
2
3
4
VCM (V)
5
–50
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 20. Closed-Loop Gain vs. Frequency
Figure 17. Input Bias Current vs. VCM and Temperature
Rev. 0 | Page 10 of 20
10M
09241-024
–30
09241-050
IB (nA)
0
20
ADA4096-2
10k
0.08
ADA4096-2
VSY = ±5V
TA = 25°C
1k
ADA4096-2
VSY = ±5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
0.06
0.04
0.02
G = +100
VOUT (V)
ZOUT (Ω)
100
10
0
–0.02
G = +10
1
–0.04
–0.06
G = +1
0.1
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–0.10
09241-021
0.01
10
0
15
20
6
30
ADA4096-2
VSY = ±5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
5
100
4
80
PSRR+
VOUT (V)
PSRR (dB)
25
Figure 24. Small Signal Transient Response
ADA4096-2
VSY = ±5V
TA = 25°C
120
10
TIME (µs)
Figure 21. Output Impedance vs. Frequency
140
5
09241-018
–0.08
60
PSRR–
40
3
2
20
1k
10k
100k
1M
10M
FREQUENCY (Hz)
0
0
1
VOUT (V)
–2
–2
–3
–4
–4
0
50
100
150
200
250
300
100
–1
0
–6
80
350
TIME (µs)
400
ADA4096-2
VSY = ±5V
TA = 25°C
RF = 10kΩ
RS = 100Ω
0
09241-017
VOUT (V)
2
60
Figure 25. Positive Overload Recovery
ADA4096-2
VSY = ±5V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
4
40
TIME (µs)
Figure 22. PSRR vs. Frequency
6
20
Figure 23. Large Signal Transient Response
–5
0
20
40
60
80
TIME (µs)
Figure 26. Negative Overload Recovery
Rev. 0 | Page 11 of 20
100
09241-058
100
09241-053
–20
10
09241-057
1
0
ADA4096-2
±15 V CHARACTERISTICS
250
10k
ADA4096-2
VSY = ±15V
TA = 25°C
ADA4096-2
VSY = ±15V
TA = 25°C
1k
VOUT TO RAIL (mV)
100
100
SOURCING
1
0.001
09241-027
200
VOS (µV)
MORE
175
0.1
1
10
100
LOAD CURRENT (mA)
Figure 30. Dropout Voltage vs. Load Current
Figure 27. Input Offset Voltage Distribution
140
35
ADA4096-2
VSY = ±15V
30 TA = –40°C TO +125°C
ADA4096-2
VSY = ±15V
TA = 25°C
120
100
25
80
20
15
PHASE
50
GAIN
20
0
0
–20
–50
0.5
1.0
1.5
2.0
2.5
TCVOS (µV/°C)
–60
100
1k
10k
100k
FREQUENCY (Hz)
Figure 31. Open-Loop Gain and Phase vs. Frequency
Figure 28. Offset Voltage Drift Distribution
50
40
ADA4096-2
30 VSY = ±15V
40
20
TA = +125°C
CLOSED-LOOP GAIN (dB)
TA = +85°C
10
0
–10
–20
TA = +25°C
TA = 0°C
–30
–40
–50
–5
0
5
10
VCM (V)
15
09241-051
–10
ADA4096-2
VSY = ±15V
TA = 25°C
G = +100
30
20
G = +10
10
0
G = +1
–10
–20
–30
TA = –40°C
–60
–15
–100
10M
1M
09241-030
0
09241-028
–40
0
–2.5 –2.0 –1.5 –1.0 –0.5
IB (nA)
150
100
40
10
5
200
60
GAIN (dB)
NUMBER OF AMPLIFIERS
0.01
PHASE (Degrees)
150
125
75
100
50
0
25
–25
–50
–75
–100
–125
–150
–175
–200
50
0
SINKING
10
09241-034
150
Figure 29. Input Bias Current vs. VCM and Temperature
–40
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
Figure 32. Closed-Loop Gain vs. Frequency
Rev. 0 | Page 12 of 20
10M
09241-036
NUMBER OF AMPLIFIERS
200
ADA4096-2
10k
0.08
ADA4096-2
VSY = ±15V
TA = 25°C
1k
ADA4096-2
VSY = ±15V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
0.06
0.04
0.02
10
VOUT (V)
ZOUT (Ω)
100
G = +100
G = +10
1
0
–0.02
–0.04
G = +1
–0.06
0.1
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
–0.10
09241-035
0.01
10
0
15
20
25
ADA4096-2
VSY = ±15V
TA = 25°C
100
ADA4096-2
VSY = ±15V
TA = 25°C
RF = 10kΩ
RS = 100Ω
14
12
80
30
Figure 36. Small Signal Transient Response
16
120
PSRR+
10
60
VOUT (V)
PSRR–
40
8
6
20
4
0
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
0
09241-054
–20
10
0
5
60
80
100
Figure 37. Positive Overload Recovery
0
ADA4096-2
VSY = ±15V
TA = 25°C
RL = 10kΩ
CL = 100pF
G = +1
10
40
TIME (µs)
Figure 34. PSRR vs. Frequency
15
20
09241-059
2
ADA4096-2
VSY = ±15V
TA = 25°C
RF = 10kΩ
RS = 100Ω
–2
–4
VOUT (V)
–6
0
–8
–10
–5
–12
–10
0
50
100
150
200
250
300
350
TIME (µs)
400
09241-031
–15
–14
–16
0
20
40
60
80
TIME (µs)
Figure 38. Negative Overload Recovery
Figure 35. Large Signal Transient Response
Rev. 0 | Page 13 of 20
100
09241-060
PSRR (dB)
10
TIME (µs)
Figure 33. Output Impedance vs. Frequency
VOUT (V)
5
09241-032
–0.08
ADA4096-2
COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS
70
0.4
SUPPLY CURRENT PER AMPLIFIER (µA)
ADA4096-2
VSY = ±15V
TA = 25°C
0.3
NOISE (µV)
0.2
0.1
0
–0.1
–0.2
–0.4
–10
–8
–6
–4
–2
0
2
4
6
8
10
TIME (s)
50
40
30
20
10
0
09241-039
–0.3
ADA4096-2
TA = 25°C
RL = ∞
60
0
4
16
20
24
28
32
36
Figure 42. Supply Current vs. Supply Voltage
100
ADA4096-2
VSY = ±15V
TA = 25°C
ADA4096-2
VSY = ±15V
TA = 25°C
–100
en (nV/ Hz)
CHANNEL SEPARATION (dB)
–90
12
SUPPLY VOLTAGE (V)
Figure 39. Input Voltage Noise, 0.1 Hz to 10 Hz Bandwidth
–80
8
09241-043
0.5
–110
10kΩ
–120
1kΩ
2kΩ
–130
100
1k
10k
50k
FREQUENCY (Hz)
10
0.1
09241-040
–140
20
50
100
40
70
VSY = ±15V
OVERSHOOT (%)
80
VSY = ±1.5V
VSY = ±5V
60
1k
ADA4096-2
VSY = ±15V
TA = 25°C
RL = 2kΩ
G = +1
VIN = 100mV p-p
30
20
OS–
50
40
10
20
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
Figure 41. CMRR vs. Frequency
0
0.01
0.1
CLOAD (nF)
Figure 44. Overshoot vs. Load Capacitance
Rev. 0 | Page 14 of 20
1
09241-100
OS+
30
09241-041
CMRR (dB)
90
100
Figure 43. Voltage Noise Density
ADA4096-2
TA = 25°C
110
10
FREQUENCY (Hz)
Figure 40. Channel Separation vs. Frequency
120
1
09241-044
VIN =
10V p-p
ADA4096-2
THEORY OF OPERATION
INPUT STAGE
VCC
R2
I1
R7
R5
I3
D6
Q5
D3
Q3
Q6
D10
Q11
D9
C2
Q4
Q18
OUT
Q13
D4
Q20
Q12
Q7
Q8
C1
Q9
Q14
Q10
D8
Q17
×1
+IN
OVP
–IN
OVP
Q1
R6
D2
D1
Q19
Q2
I2
R3
Q15
R4
D7
Q16
D11
VEE
09241-045
R1
Figure 45. Simplified Schematic
Figure 45 shows a simplified schematic of the ADA4096-2. The
input stage comprises two differential pairs (Q1 to Q4 and Q5
to Q8) operating in parallel. When the input common-mode
voltage approaches VCC − 1.5 V, Q1 to Q4 shut down as I1 reaches
its minimum voltage compliance. Conversely, when the input
common-mode voltage approaches VEE + 1.5 V, Q5 to Q8 shut
down as I2 reaches its minimum voltage compliance. This
topology allows for maximum input dynamic range because the
amplifier can function with its inputs at 200 mV outside the rail
(at room temperature).
Although phase inversion persists for only as long as the inputs are
saturated, it can be detrimental to applications where the amplifier
is part of a closed-loop system. The ADA4096-2 is free from phase
inversion over the entire common-mode voltage range, as well as
the overvoltage protected range stated in the Absolute Maximum
Ratings section, Table 5. Figure 46 shows the ADA4096-2 in a
unity-gain configuration with the input signal at ±40 V and the
amplifier supplies at ±10 V.
As with any rail-to-rail input amplifier, VOS mismatch between
the two input pairs determines the CMRR of the amplifier. If
the input common-mode voltage range is kept within 1.5 V of
each rail, transitions between the input pairs are avoided, thus
improving the CMRR by approximately 10 dB (see Table 3 and
Table 4).
T
1
Some single-supply amplifiers exhibit phase inversion when
the input signal extends beyond the common-mode voltage
range of the amplifier. When the input devices become saturated,
the inverting and noninverting inputs exchange functions,
causing the output to move in the opposing direction.
Rev. 0 | Page 15 of 20
CH1 10.0V
CH2 10.0V
M2.00ms
T 34.20%
A CH1
Figure 46. No Phase Reversal
–3.6V
09241-046
PHASE INVERSION
ADA4096-2
INPUT OVERVOLTAGE PROTECTION
The ADA4096-2 inputs are protected from input voltage
excursions up to 32 V outside each rail. This feature is of
particular importance in applications with power supply
sequencing issues that could cause the signal source to be active
before the supplies to the amplifier.
4
3
2
1
0
–1
–2
–3
–4
–5
LOW RDSON SERIES FET
5kΩ SERIES RESISTOR
–6
–7
–48 –40 –32 –24 –16 –8
0
8
16
24
32
VIN (V)
40
48
09241-047
INPUT BIAS CURRENT (mA)
5
Note that Figure 47 represents input protection under abnormal
conditions only. The correct amplifier operation input voltage
range (IVR) is specified in Table 2 to Table 4.
VCC = +15V
6
VEE = 0V
7
VEE = –15V
Figure 47 shows the input current limiting capability of the
ADA4096-2 (green curves) compared to using a 5 kΩ series
resistor (red curves).
Figure 47 was generated with the ADA4096-2 in a buffer configuration with the supplies connected to GND (or ±15 V) and the
positive input swept until it exceeds the supplies by 32 V. In general,
input current is limited to 1 mA during positive overvoltage conditions and 200 μA during negative undervoltage conditions. For
example, at an overvoltage of 20 V, the ADA4096-2 input current is
limited to 1 mA, providing a current limit equivalent to a series
20 kΩ resistor. Figure 47 also shows that the current limiting
circuitry is active whether the amplifier is powered or not.
Figure 47. Input Current Limiting Capability
Rev. 0 | Page 16 of 20
ADA4096-2
500
400
VOUT = HIGH
300
VOUT = LOW
200
100
BUFFER
0
0
4
8
12
16
20
24
28
SUPPLY VOLTAGE (V)
Figure 48. Comparator Supply Current
Rev. 0 | Page 17 of 20
32
36
09241-048
Although op amps are quite different from comparators,
occasionally an unused section of a dual or a quad op amp
may be pressed into service as a comparator; however, this is
not recommended for any rail-to-rail output op amps. For railto-rail output op amps, the output stage is generally a ratioed
current mirror with bipolar or MOSFET transistors. With the part
operating open loop, the second stage increases the current drive
to the ratioed mirror to close the loop, but it cannot, which results
in an increase in supply current. With the op amp configured as
a comparator, the supply current can be significantly higher (see
Figure 48).
SUPPLY CURRENT PER AMPLIFIER (µA)
COMPARATOR OPERATION
ADA4096-2
OUTLINE DIMENSIONS
3.20
3.00
2.80
8
3.20
3.00
2.80
1
5
5.15
4.90
4.65
4
PIN 1
IDENTIFIER
0.65 BSC
0.95
0.85
0.75
15° MAX
1.10 MAX
0.40
0.25
0.80
0.55
0.40
0.23
0.09
6°
0°
10-07-2009-B
0.15
0.05
COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 49. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
1.70
1.60
1.50
2.00
BSC SQ
0.50 BSC
8
5
1.10
1.00
0.90
EXPOSED
PAD
0.425
0.350
0.275
1
4
TOP VIEW
0.60
0.55
0.50
SEATING
PLANE
BOTTOM VIEW
0.05 MAX
0.02 NOM
0.30
0.25
0.20
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 REF
Figure 50. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]
2 mm × 2 mm Body, Ultra Thin, Dual Lead
(CP-8-10)
Dimensions shown in millimeters
Rev. 0 | Page 18 of 20
PIN 1
INDICATOR
(R 0.15)
063009-A
PIN 1 INDEX
AREA
ADA4096-2
ORDERING GUIDE
Model 1, 2
ADA4096-2ARMZ
ADA4096-2ARMZ-R7
ADA4096-2ARMZ-RL
ADA4096-2ACPZ-R7
ADA4096-2ACPZ-RL
ADA4096-2WARMZ-R7
ADA4096-2WARMZ-RL
1
2
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package Description
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Frame Chip Scale Package [LFCSP_UD]
8-Lead Frame Chip Scale Package [LFCSP_UD]
8-Lead Mini Small Outline Package [MSOP]
8-Lead Mini Small Outline Package [MSOP]
Package Option
RM-8
RM-8
RM-8
CP-8-10
CP-8-10
RM-8
RM-8
Branding
A2T
A2T
A2T
A4
A4
A2T
A2T
Z = RoHS Compliant Part.
W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The ADA4096-2W models are available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
Rev. 0 | Page 19 of 20
ADA4096-2
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09241-0-7/11(0)
Rev. 0 | Page 20 of 20