Order this document by IRF540/D SEMICONDUCTOR TECHNICAL DATA N–Channel Enhancement–Mode Silicon Gate TMOS POWER FET 27 AMPERES 100 VOLTS RDS(on) = 0.070 OHMS This advanced TMOS power FET is designed to withstand high energy in the avalanche and commutation modes. This new energy efficient design also offers a drain–to–source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters, and PWM motor controls. These devices are particularly well suited for bridge circuits where diode speed and commutating safe operating area are critical and offer additional safety margin against unexpected voltage transients. • Avalanche Energy Specified • Source–to–Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode • Diode is Characterized for Use in Bridge Circuits • IDSS and VDS(on) Specified at Elevated Temperature D G S CASE 221A–09 TO-220AB MAXIMUM RATINGS (TC = 25°C unless otherwise noted) Rating Symbol Value Unit Drain–to–Source Voltage VDSS 100 Vdc Drain–to–Gate Voltage (RGS = 1.0 MΩ) VDGR 100 Vdc Gate–to–Source Voltage — Continuous Gate–to–Source Voltage — Non–repetitive (tp ≤ 10 ms) VGS VGSM ± 20 ± 40 Vdc Vpk Drain Current — Continuous Drain Current — Continuous @ 100°C Drain Current — Single Pulse (tp ≤ 10 ms) ID ID IDM 27 19 95 Adc Total Power Dissipation Derate above 25°C PD 145 1.16 Watts W/°C TJ, Tstg – 55 to 150 °C Single Pulse Drain–to–Source Avalanche Energy — STARTING TJ = 25°C (VDD = 50 Vdc, VGS = 10 Vdc, PEAK IL = 27 Apk, L = 1.0 mH, RG = 25 W) EAS 365 mJ Thermal Resistance — Junction–to–Case° Thermal Resistance — Junction–to–Ambient° RθJC RθJA 0.86 62.5 °C/W TL 260 °C Operating and Storage Temperature Range Maximum Lead Temperature for Soldering Purposes, 1/8″ from case for 10 seconds Apk This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. E–FET is a trademark of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc. REV 3 TMOS Motorola Motorola, Inc. 1998 Power MOSFET Transistor Device Data 1 IRF540 ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit 100 — — 116 — — — — — — 10 100 — — 100 2.0 — 2.9 6.8 4.0 — — 0.047 0.070 — — — — 1.9 1.8 gFS 6.0 15 — Mhos Ciss — 1460 1600 pF Coss — 390 800 Crss — 120 300 td(on) — 11.6 30 tr — 50 60 td(off) — 26 80 tf — 19 30 QT — 50 60 Q1 — 9.0 — Q2 — 26 — Q3 — 20 — — — 0.93 0.84 2.4 — trr — 110 — ta — 100 — tb — 10 — QRR — 0.67 — — — 3.5 4.5 — — — 7.5 — OFF CHARACTERISTICS Drain–to–Source Breakdown Voltage (VGS = 0 Vdc, ID = 0.25 mAdc) Temperature Coefficient (Positive) V(BR)DSS Zero Gate Voltage Drain Current (VDS = 100 Vdc, VGS = 0 Vdc) (VDS = 100 Vdc, VGS = 0 Vdc, TJ = 125°C) IDSS Gate–Body Leakage Current (VGS = ± 20 Vdc, VDS = 0 Vdc) IGSS Vdc mV/°C mAdc nAdc ON CHARACTERISTICS(1) Gate Threshold Voltage (VDS = VGS, ID = 250 µAdc) Threshold Temperature Coefficient (Negative) Cpk ≥ 2.0(3) Static Drain–to–Source On–Resistance (VGS = 10 Vdc, ID = 15 Adc) Cpk ≥ 2.0(3) Drain–to–Source On–Voltage (VGS = 10 Vdc, ID = 27 Adc) (VGS = 10 Vdc, ID = 15 Adc, TJ = 125°C) VGS(th) Vdc RDS(on) Ohms VDS(on) Forward Transconductance (VDS = 15 Vdc, ID = 15 Adc) mV/°C Vdc DYNAMIC CHARACTERISTICS Input Capacitance (VDS = 25 Vdc, Vdc VGS = 0 Vdc, Vdc f = 1.0 MHz) Output Capacitance Transfer Capacitance SWITCHING CHARACTERISTICS(2) Turn–On Delay Time Rise Time ( DD = 30 Vdc, (V Vd , ID = 15 Adc, Ad , VGS = 10 Vdc, RG = 4.7 Ω) Turn–Off Delay Time Fall Time Gate Charge (See Figure 8) ((VDS = 80 Vdc, Vd , ID = 27 Adc, Ad , VGS = 10 Vdc) ns nC SOURCE–DRAIN DIODE CHARACTERISTICS Forward On–Voltage (IS = 27 Adc, VGS = 0 Vdc) (IS = 27 Adc, VGS = 0 Vdc, TJ = 125°C) VSD Reverse Recovery Time ((IS = 27 Adc, Ad , VGS = 0 Vdc, Vd , dIS/dt = 100 A/µs) Reverse Recovery Stored Charge Vdc ns mC INTERNAL PACKAGE INDUCTANCE Internal Drain Inductance (Measured from the contact screw on tab to center of die) (Measured from the drain lead 0.25″ from package to center of die) Ld Internal Source Inductance (Measured from the source lead 0.25″ from package to source bond pad) Ls Ť nH Ť (1) Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%. (2) Switching characteristics are independent of operating junction temperature. Max limit – Typ (3) Reflects typical values. Cpk 3 sigma + 2 Motorola TMOS Power MOSFET Transistor Device Data IRF540 TYPICAL ELECTRICAL CHARACTERISTICS 55 VDS ≥ 10 V 8V 45 7V VGS = 10 V 40 35 30 6V 25 20 15 5V 10 5 0 25°C 100°C 40 30 20 10 0 1 0 3 5 7 4 6 8 VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS) 2 9 10 2 3 4 5 6 7 VGS, GATE–TO–SOURCE VOLTAGE (VOLTS) 0.09 VGS = 10 V 0.08 TJ = 100°C 0.07 0.06 25°C 0.05 0.04 –55°C 0.03 0.02 0.01 0 5 0 10 15 20 25 30 35 40 ID, DRAIN CURRENT (AMPS) 45 8 Figure 2. Transfer Characteristics 50 55 RDS(on), DRAIN–TO–SOURCE RESISTANCE (OHMS) R DS(on), DRAIN–TO–SOURCE RESISTANCE (OHMS) Figure 1. On–Region Characteristics 0.060 TJ = 25°C 0.055 VGS = 10 V 0.050 15 V 0.045 0.040 0.035 0.030 0 5 10 15 20 25 30 35 40 45 50 55 ID, DRAIN CURRENT (AMPS) Figure 3. On–Resistance versus Drain Current and Temperature Figure 4. On–Resistance versus Drain Current and Gate Voltage 1000 2.0 VGS = 10 V ID = 15 A 1.8 VGS = 0 V TJ = 125°C 1.6 IDSS, LEAKAGE (nA) RDS(on) , DRAIN–TO–SOURCE RESISTANCE (NORMALIZED) TJ = –55°C 50 ID, DRAIN CURRENT (AMPS) I D, DRAIN CURRENT (AMPS) 50 60 9V TJ = 25°C 1.4 1.2 1.0 0.8 0.6 100°C 100 0.4 0.2 0 10 –50 –25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) Figure 5. On–Resistance Variation with Temperature Motorola TMOS Power MOSFET Transistor Device Data 150 0 10 20 30 40 50 60 70 80 90 100 110 VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS) Figure 6. Drain–to–Source Leakage Current versus Voltage 3 IRF540 TYPICAL ELECTRICAL CHARACTERISTICS 4000 10 VGS = 0 V Ciss TJ = 25°C C, CAPACITANCE (pF) 3500 3000 Crss 2500 2000 Ciss 1500 1000 Coss 500 0 –10 Crss –5 VGS 0 VDS 10 5 15 9 QT 64 Q1 7 48 40 4 32 3 24 TJ = 25°C ID = 27 A 2 1 0 Q3 0 5 8 0 VDS 30 35 15 20 25 QG, TOTAL GATE CHARGE (nC) 40 45 50 30 IS, SOURCE CURRENT (AMPS) t, TIME (ns) TJ = 25°C ID = 15 A VDD = 30 V VGS = 10 V tr tf td(off) td(on) 10 TJ = 25°C VGS = 0 V 25 20 15 10 5 0 1.0 10 RG, GATE RESISTANCE (OHMS) 0.55 100 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 VSD, SOURCE–TO–DRAIN VOLTAGE (VOLTS) Figure 9. Resistive Switching Time Variation versus Gate Resistance Figure 10. Diode Forward Voltage versus Current 400 1000 RDS(on) LIMIT THERMAL LIMIT PACKAGE LIMIT VGS = 20 V SINGLE PULSE TC = 25°C 100 EAS , SINGLE PULSE DRAIN–TO–SOURCE AVALANCHE ENERGY (mJ) ID, DRAIN CURRENT (AMPS) 10 16 Figure 8. Gate–to–Source and Drain–to–Source Voltage versus Total Charge 1000 10 ms 100 ms 10 1.0 ms 10 ms dc 1.0 0.1 4 56 6 Figure 7. Capacitance Variation 1.0 Q2 5 GATE–TO–SOURCE OR DRAIN–TO–SOURCE VOLTAGE (VOLTS) 100 72 VGS 8 25 20 80 VDS , DRAIN–TO–SOURCE VOLTAGE (VOLTS) VDS = 0 V VGS, GATE–TO–SOURCE VOLTAGE (VOLTS) 4500 1.0 10 100 1000 ID = 27 A 350 300 250 200 150 100 50 0 25 50 75 100 125 150 VDS, DRAIN–TO–SOURCE VOLTAGE (VOLTS) TJ, STARTING JUNCTION TEMPERATURE (°C) Figure 11. Maximum Rated Forward Biased Safe Operating Area Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature Motorola TMOS Power MOSFET Transistor Device Data IRF540 1.0 Rthjl(t), EFFECTIVE TRANSIENT THERMAL RESISTANCE D = 0.5 0.2 0.1 0.1 P(pk) 0.05 0.02 t1 0.01 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE RθJC(t) = r(t) RθJC RθJC = 1.67°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) – TC = P(pk) RθJC(t) 0.01 1.0E–05 1.0E–04 1.0E–03 1.0E–02 1.0E–01 1.0E+0 t, TIME (seconds) Figure 13. Thermal Response Motorola TMOS Power MOSFET Transistor Device Data 5 IRF540 PACKAGE DIMENSIONS –T– B SEATING PLANE C F T S 4 A Q 1 2 3 DIM A B C D F G H J K L N Q R S T U V Z U H K Z L R V J NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.147 0.095 0.105 0.110 0.155 0.018 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ––– ––– 0.080 MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 3.73 2.42 2.66 2.80 3.93 0.46 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ––– ––– 2.04 CASE 221A–09 (TO–220AB) ISSUE Z Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488 Customer Focus Center: 1–800–521–6274 Mfax: [email protected] – TOUCHTONE 1–602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 – http://sps.motorola.com/mfax/ HOME PAGE: http://motorola.com/sps/ 6 ◊ IRF540/D Motorola TMOS Power MOSFET Transistor Device Data