CYPRESS CY7C63101C-QXC

CY7C63001C
CY7C63101C
Universal Serial Bus Microcontroller
1.0
Features
— Integrated USB transceiver
— Up to 16 Schmitt trigger I/O pins with internal pull-up
• Low-cost solution for low-speed USB peripherals such
as mouse, joystick, and gamepad
• USB Specification Compliance
— Conforms to USB 1.5 Mbps Specification, Version 1.1
— Supports 1 device address and 2 endpoints (1
control endpoint and 1 data endpoint)
• 8-bit RISC microcontroller
— Harvard architecture
— 6-MHz external ceramic resonator
— 12-MHz internal operation
— Up to 8 I/O pins with LED drive capability
— Special purpose I/O mode supports optimization of
photo transistor and LED in mouse application
•
•
•
•
•
•
•
•
— USB optimized instruction set
• Internal memory
— 128 bytes of RAM
— 4 Kbytes of EPROM
•
— Maskable Interrupts on all I/O pins
8-bit free-running timer
Watch dog timer (WDT)
Internal power-on reset (POR)
Instant-On Now™ for Suspend and Periodic Wake-up
Modes
Improved output drivers to reduce EMI
Operating voltage from 4.0V to 5.25 VDC
Operating temperature from 0 to 70 degree Celsius
Available in space saving and low cost 20-pin PDIP,
20-pin SOIC, and 24-pin QSOP packages
Industry standard programmer support
Logic Block Diagram
6-MHz
CERAMIC RESONATOR R/CEXT
OSC
EPROM
2/4 KByte
Poweron Reset
INSTANT-ON
NOW™
RAM
128-Byte
8-bit
Timer
8-bit
RISC
core
USB
Engine
Interrupt
Controller
PORT
0
PORT
1
P0.0–P0.7
P1.0–P1.7
Watch
Dog
Timer
D+,D–
VCC/VSS
Cypress Semiconductor Corporation
Document #: 38-08026 Rev. *B
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised November 28, 2005
CY7C63001C
CY7C63101C
2.0
Pin Configurations
(Top View)
24-pin
SOIC/QSOP
20-pin
DIP/SOIC
P0.0
P0.1
P0.2
P0.3
P1.0
P1.2
VSS
VPP
CEXT
XTALIN
3.0
20
19
18
17
16
15
14
13
12
11
1
2
3
4
5
6
7
8
9
10
P0.0
P0.1
P0.2
P0.3
P1.0
P1.2
P1.4
P1.6
VSS
VPP
CEXT
XTALIN
P0.4
P0.5
P0.6
P0.7
P1.1
P1.3
D+
D–
VCC
XTALOUT
1
2
3
4
5
6
7
8
9
10
11
12
Functional Overview
The CY7C630/101C is a family of 8-bit RISC One Time
Programmable (OTP) microcontrollers with a built-in 1.5-Mbps
USB Serial Interface Engine (SIE). The microcontroller
features 35 instructions that are optimized for USB applications. In addition, the microcontroller features 128 bytes of
internal RAM and 4 Kbytes of program memory space. The
Cypress USB Controller accepts a 6-MHz ceramic resonator
as its clock source. This clock signal is doubled within the chip
to provide a 12- MHz clock for the microprocessor.
The microcontroller features two ports of up to sixteen general
purpose I/Os (GPIOs). Each GPIO pin can be used to
generate an interrupt to the microcontroller. Additionally, all
4.0
P0.4
P0.5
P0.6
P0.7
P1.1
P1.3
P1.5
P1.7
D+
D–
VCC
XTALOUT
24
23
22
21
20
19
18
17
16
15
14
13
pins in Port 1 are equipped with programmable drivers strong
enough to drive LEDs. The GPIO ports feature low EMI
emissions as a result of controlled rise and fall times and
unique output driver circuits. The Cypress microcontrollers
have a range of GPIOs to fit various applications; the
CY7C63001C has twelve GPIOs and the CY7C63101C has
sixteen GPIOs. Notice that each part has eight ‘low-current’
ports (Port 0) with the remaining ports (Port 1) being
‘high-current’ ports.
The 12-GPIO CY7C63001C is available in 20-pin PDIP (-PXC)
and 20-pin SOIC (-SXC) packages. The 16-GPIO
CY7C63101C is available in 24-pin QSOP (-QXC) package.
Pin Definitions
Name
I/O
20-Pin
24-pin
Die Pad #
P0.0
I/O
1
1
1
Port 0 bit 0
P0.1
I/O
2
2
2
Port 0 bit 1
P0.2
I/O
3
3
3
Port 0 bit 2
P0.3
I/O
4
4
4
Port 0 bit 3
P0.4
I/O
20
24
24
Port 0 bit 4
P0.5
I/O
19
23
23
Port 0 bit 5
P0.6
I/O
18
22
22
Port 0 bit 6
P0.7
I/O
17
21
21
Port 0 bit 7
P1.0
I/O
5
5
5
Port 1 bit 0
P1.1
I/O
16
20
20
Port 1 bit 1
P1.2
I/O
6
6
6
Port 1 bit 2
P1.3
I/O
15
19
19
Port 1 bit 3
P1.4
I/O
–
7
7
Port 1 bit 4
P1.5
I/O
–
18
18
Port 1 bit 5
P1.6
I/O
–
8
8
Port 1 bit 6
P1.7
I/O
–
17
17
Port 1 bit 7
XTALIN
I
10
12
12
Ceramic resonator in
XTALOUT
O
11
13
13
Ceramic resonator out
Document #: 38-08026 Rev. *B
Description
Page 2 of 28
CY7C63001C
CY7C63101C
4.0
Pin Definitions (continued)
Name
I/O
20-Pin
24-pin
Die Pad #
CEXT
I/O
9
11
11
Description
Connects to external R/C timing circuit for optional
‘suspend’ wakeup
D+
I/O
14
16
16
USB data+
D–
I/O
13
15
15
USB data–
VPP
–
8
10
10
Programming voltage supply, tie to ground during normal
operation
VCC
–
12
14
14
Voltage supply
VSS
–
7
9
9
Ground
5.0
Pin Description
Name
Description
VCC
1 pin. Connects to the USB power source or to a nominal 5V power supply. Actual VCC range can vary
between 4.0V and 5.25V.
VSS
1 pin. Connects to ground.
VPP
1 pin. Used in programming the on-chip EPROM. This pin should be tied to ground during normal operations.
XTALIN
1 pin. Input from an external ceramic resonator.
XTALOUT
1 pin. Return path for the ceramic resonator (leave unconnected if driving XTALIN from an external oscillator).
P0.0–P0.7,
P1.0–P1.7
16 pins. P0.0–P0.7 are the 8 I/O lines in Port 0. P1.0–P1.7 are the 8 I/O lines in Port 1. P1.0–P1.3 are
supported in the CY7C63001C. All I/O pins include bit-programmable pull-up resistors. However, the sink
current of each pin can be programmed to one of sixteen levels. Besides functioning as GPIO lines, each
pin can be programmed as an interrupt input. The interrupt is edge-triggered, with programmable polarity.
D+, D–
2 pins. Bidirectional USB data lines. An external pull-up resistor must be connected between the D pin and
VCC to select low-speed USB operation.
CEXT
1 pin. Open-drain output with Schmitt trigger input. The input is connected to a rising edge-triggered interrupt.
CEXT may be connected to an external RC to generate a wake-up from Suspend mode. See Section 6.4.
6.0
Functional Description
6.1.1
Program Memory Organization
The Cypress CY7C630/101C USB microcontrollers are
optimized for human-interface computer peripherals such as
a mouse, joystick, and gamepad. These USB microcontrollers
conform to the low-speed (1.5 Mbps) requirements of the USB
specification version 1.1. Each microcontroller is a
self-contained unit with: a USB interface engine, USB transceivers, an 8-bit RISC microcontroller, a clock oscillator,
timers, and program memory. Each microcontroller supports
one USB device address and two endpoints.
The CY7C63001C and CY7C63101C each offer 4 Kbytes of
EPROM. The program memory space is divided into two
functional groups: interrupt vectors and program code.
The 6-MHz clock is doubled to 12 MHz to drive the microcontroller. A RISC architecture with 35 instructions provides the
best balance between performance and product cost.
6.1.2
6.1
Memory Organization
The interrupt vectors occupy the first 16 bytes of the program
space. Each vector is 2 bytes long. After a reset, the Program
Counter points to location zero of the program space.
Figure 6-1 shows the organization of the Program Memory
Space.
Security Fuse Bit
The Cypress USB microcontroller includes a security fuse bit.
When the security fuse is programmed, the EPROM program
memory outputs 0xFF to the EPROM programmer, thus
protecting the user’s code.
The memory in the USB Controller is organized into user
program memory in EPROM space and data memory in SRAM
space.
Document #: 38-08026 Rev. *B
Page 3 of 28
CY7C63001C
CY7C63101C
after reset
PC
Address
0x0000
Reset Vector
0x0002
Interrupt Vector - 128 µs
0x0004
Interrupt Vector - 1.024 ms
0x0006
Interrupt Vector - USB Endpoint 0
0x0008
Interrupt Vector - USB Endpoint 1
0x000A
Reserved
0x000C
Interrupt Vector - GPIO
0x000E
Interrupt Vector - Cext
0x0010
On-chip program Memory
0x0FFF
4K ROM
Figure 6-1. Program Memory Space
Document #: 38-08026 Rev. *B
Page 4 of 28
CY7C63001C
CY7C63101C
6.1.3
Data Memory Organization
The USB Controller includes 128 bytes of data RAM. The
upper 16 bytes of the data memory are used as USB FIFOs
for Endpoint 0 and Endpoint 1. Each endpoint is associated
with an 8-byte FIFO.
The USB controller includes two pointers into data RAM, the
Program Stack Pointer (PSP) and the Data Stack Pointer
(DSP). The value of PSP after reset is 0x00. The PSP increments by 2 whenever a CALL instruction is executed and it
decrements by 2 whenever a RET instruction is used.
after reset
DSP
PSP
The DSP pre-decrements by 1 whenever a PUSH instruction
is executed and it increments by 1 after a POP instruction is
used. The default value of the DSP after reset is 0x00, which
would cause the first PUSH to write into USB FIFO space for
Endpoint 1. Therefore, the DSP should be mapped to a
location such as 0x70 before initiating any data stack operations. Refer to the Reset section for more information about
DSP remapping after reset. Figure 6-2 illustrates the Data
Memory Space.
Address
0x00
0x02
0x04
user
firmware
DSP
0x70
USB FIFO - Endpoint 0
0x77
0x78
USB FIFO - Endpoint 1
0x7F
Figure 6-2. Data Memory Space
Document #: 38-08026 Rev. *B
Page 5 of 28
CY7C63001C
CY7C63101C
6.2
I/O Register Summary
I/O registers are accessed via the I/O Read (IORD) and I/O
Write (IOWR, IOWX) instructions.
Table 6-1. I/O Register Summary
Register Name
I/O Address
Read/Write
0x00
R/W
General purpose I/O Port (low current)
P1 Data
0x01
R/W
General purpose I/O Port (high current)
9
P0 IE
0x04
W
Interrupt enable for Port 0 pins
12
P0 Data
Function
Page
9
P1 IE
0x05
W
Interrupt enable for Port 1 pins
12
P0 Pull-up
0x08
W
Pull-up resistor control for Port 0 pins
10
P1 Pull-up
0x09
W
Pull-up resistor control for Port 1 pins
10
EP0 TX Config.
0x10
R/W
USB Endpoint 0 transmit configuration
15
EP1 TX Config.
0x11
R/W
USB Endpoint 1 transmit configuration
15
USB DA
0x12
R/W
USB device address
14
USB SCR
0x13
R/W
USB status and control
16
EP0 RX Status
0x14
R/W
USB Endpoint 0 receive status
14
GIE
0x20
R/W
Global Interrupt Enable
11
WDT
0x21
W
Watch Dog Timer clear
7
Cext
0x22
R/W
External R-C Timing circuit control
8
Timer
0x23
R
Free-running timer
8
P0 Isink
0x30-0x37
W
Input sink current control for Port 0 pins. There is
one Isink register for each pin. Address of the Isink
register for pin 0 is located at 0x30 and the register
address for pin 7 is located at 0x37.
10
P1 Isink
0x38-0x3F
W
Input sink current control for Port 1 pins. There is
one Isink register for each pin. Address of the Isink
register for pin 0 is located at 0x38 and the register
address for pin 7 is located at 0x3F. The number
of Port 1 pins depends on package type.
10
0xFF
R/W
Processor status and control register
7
SCR
6.3
Reset
The USB Controller supports three types of resets. All
registers are restored to their default states during a reset. The
USB Device Address is set to 0 and all interrupts are disabled.
In addition, the Program Stack Pointer (PSP) is set to 0x00 and
the Data Stack Pointer (DSP) is set to 0x00. The user should
set the DSP to a location such as 0x70 to reserve 16 bytes of
USB FIFO space. The assembly instructions to do so are:
MOV A, 70h
; Move 70 hex into Accumulator, use 70
instead of 6F because the dsp is
; always decremented by 1 before the
data transfer of the PUSH instruction occurs
SWAP A, DSP
; Move Accumulator value into dsp
The three reset types are:
1. Power-On Reset (POR)
2. Watch Dog Reset (WDR)
3. USB Reset
The occurrence of a reset is recorded in the Status and Control
Register located at I/O address 0xFF (Figure 6-3). Reading
Document #: 38-08026 Rev. *B
and writing this register are supported by the IORD and IOWR
instructions. Bits 1, 2, and 7 are reserved and must be written
as zeros during a write. During a read, reserved bit positions
should be ignored. Bits 4, 5, and 6 are used to record the
occurrence of POR, USB, and WDR Reset respectively. The
firmware can interrogate these bits to determine the cause of
a reset. If a Watch Dog Reset occurs, firmware must clear the
WDR bit (bit 6) in the Status and Control Register to re-enable
the USB transmitter (please refer to the Watch Dog Reset
section for further details). Bit 0, the “Run” control, is set to 1
at POR. Clearing this bit stops the microcontroller (firmware
normally should not clear this bit). Once this bit is set to LOW,
only a reset can set this bit HIGH.
The microcontroller resumes execution from ROM address
0x00 after a reset unless the Suspend bit (bit 3) of the Status
and Control Register is set. Setting the Suspend bit stops the
clock oscillator and the interrupt timers and powers down the
microcontroller. The detection of any USB activity, the occurrence of a GPIO Interrupt, or the occurrence of the Cext
Interrupt terminates the suspend condition.
Page 6 of 28
CY7C63001C
CY7C63101C
b7
b6
b5
b4
b3
b2
b1
b0
Reserved
WDR
USBR
POR
SUSPEND
Reserved
Reserved
RUN
R/W
R/W
R/W
R/W
0
0
1
0
0
R/W
0
0
1
Figure 6-3. Status and Control Register (SCR - Address 0xFF)
6.3.1
Power-On Reset (POR)
Power-On Reset (POR) occurs every time the power to the
device is switched on. Bit 4 of the Status and Control Register
is set to record this event (the register contents are set to
00011001 by the POR). The USB Controller is placed in
suspended mode at the end of POR to conserve power (the
clock oscillator, the timers, and the interrupt logic are turned
off in suspend mode). After POR, only a non-idle USB Bus
state terminates the suspend mode. The microcontroller then
begins execution from ROM address 0x00.
6.3.2
Watch Dog Reset (WDR)
The Watch Dog Timer Reset (WDR) occurs when the Most
Significant Bit of the 4-bit Watch Dog Timer Register transitions from LOW to HIGH. Writing any value to the write-only
Watch Dog Restart Register at 0x21 clears the timer (firmware
should periodically write to the Watch Dog Restart Register in
the ‘main loop’ of firmware). The Watch Dog timer is clocked
by a 1.024-ms clock from the free-running timer. If 8 clocks
occur between writes to the timer, a WDR occurs and bit 6 of
the Status and Control Register is set to record the event. A
Watch Dog Timer Reset lasts for 8.192 ms, at which time the
microcontroller begins execution at ROM address 0x00. The
USB transmitter is disabled by a Watch Dog Reset because
the USB Device Address Register is cleared (otherwise, the
USB Controller would respond to all address 0 transactions).
The transmitter remains disabled until the WDR bit (bit 6) in
the Status and Control Register is reset to 0 by firmware.
6.3.3
USB Bus Reset
The USB Controller recognizes a USB Reset when a Single
Ended Zero (SE0) condition persists for at least 8–16 µs (the
Reset may be recognized for an SE0 as short as 8 µs, but it is
always recognized for an SE0 longer than 16 µs). SE0 is the
condition in which both the D+ line and the D– line are LOW.
Bit 5 of the Status and Control Register is set to record this
event. If the USB reset happens while the device is
suspended, the suspend condition is cleared and the clock
7.168 to
8.192 ms
Last write to
Watchdog Timer
Register
oscillator is restarted. However, the microcontroller is not
released until the USB reset is removed.
6.4
Instant-on Feature (Suspend Mode)
The USB Controller can be placed in a low-power state by
setting the Suspend bit (bit 3) of the Status and Control
register. All logic blocks in the device are turned off except the
USB receiver, the GPIO interrupt logic, and the Cext interrupt
logic. The clock oscillator and the free-running and watch dog
timers are shut down.
The suspend mode is terminated when one of the following
three conditions occur:
1. USB activity
2. A GPIO interrupt
3. Cext interrupt
The clock oscillator, GPIO, and timers restart immediately
upon exiting suspend mode. The USB engine and microcontroller return to a fully functional state no more than 256 µs
later. Before servicing any interrupt requests, the microcontroller executes the instruction following the I/O write that
placed the device into suspend mode.
Both the GPIO interrupt and the Cext interrupt allow the USB
Controller to wake-up periodically and poll potentiometers,
optics, and other system components while maintaining a very
low average power consumption. The Cext Interrupt is
preferred for lowest power consumption.
For Cext to generate an “Instant-on” interrupt, the pin must be
connected to ground with an external capacitor and connected
to VCC with an external resistor. A “0” is written to the Cext
register located at I/O address 0x22 to discharge the capacitor.
Then, a “1” is written to disable the open-drain output driver. A
Schmitt trigger input circuit monitors the input and generates
a wake-up interrupt when the input voltage rises above the
input threshold. By changing the values of the external resistor
and capacitor, the user can fine tune the charge rate of the R-C
timing circuit. The format of the Cext register is shown in
8.192 ms
No write to WDT
register, so WDR
goes HIGH
Execution begins at
Reset Vector 0x00
Figure 1. Watch Dog Reset (WDR)
Document #: 38-08026 Rev. *B
Page 7 of 28
CY7C63001C
CY7C63101C
Figure 6-4. Reading the register returns the value of the Cext
pin. During a reset, the Cext pin is HIGH.
b7
b6
b5
b4
b3
b2
b1
b0
CEXT
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
0
0
0
0
0
0
0
R/W
1
Figure 6-4. The Cext Register (Address 0x22)
6.5
On-Chip Timer
The USB Controller is equipped with a free-running timer
driven by a clock one-sixth the resonator frequency. Bits 0
through 7 of the counter are readable from the read-only Timer
Register located at I/O address 0x23. The Timer Register is
cleared during a Power-On Reset and whenever Suspend
mode is entered. Figure 6-5 illustrates the format of this
register and Figure 6-6 is its block diagram.
With a 6 MHz resonator, the timer resolution is 1 µs.
The timer generates two interrupts: the 128-µs interrupt and
the 1.024-ms interrupt.
b7
b6
b5
b4
b3
b2
b1
b0
T.7
T.6
T.5
T.4
T.3
T.2
T.1
T.0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 6-5. Timer Register (Address 0x23)
1.024-ms interrupt
128-µs interrupt
9
8
7
6
5
4
3
2
1
0
Resonator Clock/6
8
To Timer Register
Figure 6-6. Timer Block Diagram
Document #: 38-08026 Rev. *B
Page 8 of 28
CY7C63001C
CY7C63101C
6.6
General Purpose I/O Ports
Interface with peripherals is conducted via as many as 16
GPIO signals. These signals are divided into two ports: Port 0
and Port 1. Port 0 contains eight lines (P0.0–P0.7) and Port 1
contains up to eight lines (P1.0–P1.7). The number of external
I/O pins depends on the package type. Both ports can be
accessed by the IORD, IOWR, and IOWX instructions. The
Port 0 data register is located at I/O address 0x00 while the
Port 1 data register is located at I/O address 0x01. The
contents of both registers are set HIGH during a reset. Refer
to Figures 6-7 and 6-8 for the formats of the data registers. In
addition to supporting general input/output functions, each I/O
line can trigger an interrupt to the microcontroller. Please refer
to the interrupt section for more details.
Each GPIO line includes an internal Rup resistor. This resistor
provides both the pull-up function and slew control. Two
factors govern the enabling and disabling of each resistor: the
state of its associated Port Pull-up register bit and the state of
the Data Register bit. NOTE: The control bits in the Port
Pull-up register are active LOW.
A GPIO line is HIGH when a “1” is written to the Data Register
and a “0” is written to the respective Port Pull-up register.
Writing a “0” to the port Data Register disables the port’s
Pull-up resistor and outputs a LOW on the GPIO line
regardless of the setting in the Port Pull-up Register. The
output goes to a high-Z state if the Data Register bit and the
Port Pull-up Register bit are both “1”. Figure 6-9 illustrates the
block diagram of one I/O line. The Port Isink Register is used
to control the output current level and it is described later in
this section. NOTE: The Isink logic block is turned off during
suspend mode (please refer to the Instant-on Feature section
for more details). Therefore, to prevent higher ICC currents
during USB suspend mode, firmware must set ALL Port 0 and
Port 1 Data Register bits (which are not externally driven to a
known state), including those that are not bonded out on a
particular package, to “1” and all Port 0 and Port 1 Pull-Up
Register data bits to “0” to enable port pull-ups before setting
the Suspend bit (bit 3 of the Status and Control Register).
Table 6-2 is the Output Control truth table.
b7
b6
b5
b4
b3
b2
b1
b0
P0.7
P0.6
P0.5
P0.4
P0.3
P0.2
P0.1
P0.0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
1
1
1
1
1
1
1
Figure 6-7. Port 0 Data Register (Address 0x00)
b7
b6
b5
b4
b3
b2
b1
b0
P1.7
P1.6
P1.5
P1.4
P1.3
P1.2
P1.1
P1.0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
1
1
1
1
1
1
1
1
Figure 6-8. Port 1 Data Register (Address 0x01)
VCC
Port Pull-Up
Register
Rup
Port Data
Register
GPIO
Pin
Port Isink
Register
Isink
DAC
Suspend
Bit
Disable
Schmitt
Trigger
Data Bus
Figure 6-9. Block Diagram of an I/O Line
Document #: 38-08026 Rev. *B
Page 9 of 28
CY7C63001C
CY7C63101C
Table 6-2. Output Control Truth Table
Data Register
Port Pull-up Register
Output at I/O Pin
Interrupt Polarity
0
0
Sink Current (‘0’)
High to Low
0
1
Sink Current (‘0’)
Low to High
1
0
Pull-up Resistor (‘1’)
High to Low
1
1
Hi-Z
Low to High
To configure a GPIO pin as an input, a “1” should be written to
the Port Data Register bit associated with that pin to disable
the pull-down function of the Isink DAC (see Figure 6-9).When
the Port Data Register is read, the bit value is a “1” if the
voltage on the pin is greater than the Schmitt trigger threshold,
or “0” if it is below the threshold. In applications where an
internal pull-up is required, the Rup pull-up resistor can be
engaged by writing a “0” to the appropriate bit in the Port
Pull-up Register.
Both Port 0 and Port 1 Pull-up Registers are write only (see
Figures 6-10 and 6-11). The Port 0 Pull-up Register is located
at I/O address 0x08 and Port 1 Pull-up Register is mapped to
address 0x09. The contents of the Port Pull-up Registers are
cleared during reset, allowing the outputs to be controlled by
the state of the Data Registers. The Port Pull-up Registers also
select the polarity of transition that generates a GPIO interrupt.
A “0” selects a HIGH to LOW transition while a “1” selects a
LOW to HIGH transition.
Writing a “0” to the Data Register drives the output LOW.
Instead of providing a fixed output drive, the USB Controller
allows the user to select an output sink current level for each
I/O pin. The sink current of each output is controlled by a
dedicated Port Isink Register. The lower four bits of this
register contain a code selecting one of sixteen sink current
levels. The upper four bits of the register are ignored. The
format of the Port Isink Register is shown in Figure 6-12.
Port 0 is a low-current port suitable for connecting photo
transistors. Port 1 is a high current port capable of driving
LEDs. See section 8.0 for current ranges. 0000 is the lowest
drive strength. 1111 is the highest.
The write-only sink current control registers for Port 0 outputs
are assigned from I/O address 0x30 to 0x37 with the control
bits for P00 starting at 0x30. Port 1 sink current control
registers are assigned from I/O address 0x38 to 0x3F with the
control bits for P10 starting at 0x38. All sink current control
registers are cleared during a reset, resulting in the minimum
current sink setting.
b7
b6
b5
b4
b3
b2
b1
b0
PULL0.7
PULL0.6
PULL0.5
PULL0.4
PULL0.3
PULL0.2
PULL0.1
PULL0.0
W
W
W
W
W
W
W
W
0
0
0
0
0
0
0
0
Figure 6-10. Port 0 Pull-up Register (Address 0x08)
b7
b6
b5
b4
b3
b2
b1
b0
PULL1.7
PULL1.6
PULL1.5
PULL1.4
PULL1.3
PULL1.2
PULL1.1
PULL1.0
W
W
W
W
W
W
W
W
0x
0
0
0
0
0
0
0
Figure 6-11. Port 1 Pull-up Register (Address 0x09)
b7
b6
b5
b4
b3
b2
b1
b0
Reserved
Reserved
Reserved
UNUSED
ISINK3
ISINK2
ISINK1
ISINK0
W
W
W
W
W
W
W
W
x
x
x
x
x
x
x
x
Figure 6-12. Port Isink Register for One GPIO Line
Document #: 38-08026 Rev. *B
Page 10 of 28
CY7C63001C
CY7C63101C
XTALOUT
clk1x
(to USB SIE)
Clock
Doubler
clk2x
(to Microcontroller)
XTALIN
30 pF
30 pF
Figure 2. Clock Oscillator On-chip Circuit
The interrupt controller contains a separate latch for each
6.7
XTALIN/XTALOUT
interrupt. See Figure 3 for the logic block diagram for the
The XTALIN and XTALOUT pins support connection of a
interrupt controller. When an interrupt is generated, it is
6-MHz ceramic resonator. The feedback capacitors and bias
latched as a pending interrupt. It stays as a pending interrupt
resistor are internal to the IC, as shown in Figure 2 Leave
until it is serviced or a reset occurs. A pending interrupt only
XTALOUT unconnected when driving XTALIN from an external
generates an interrupt request if it is enabled in the Global
oscillator.
Interrupt Enable Register. The highest priority interrupt
request is serviced following the execution of the current
6.8
Interrupts
instruction.
Interrupts are generated by the General Purpose I/O lines, the
Cext pin, the internal timer, and the USB engine. All interrupts
are maskable by the Global Interrupt Enable Register. Access
to this register is accomplished via IORD, IOWR, and IOWX
instructions to address 0x20. Writing a “1” to a bit position
enables the interrupt associated with that position. During a
reset, the contents of the Interrupt Enable Register are
cleared, disabling all interrupts. Figure 6-13 illustrates the
format of the Global Interrupt Enable Register.
When servicing an interrupt, the hardware first disables all
interrupts by clearing the Global Interrupt Enable Register.
Next, the interrupt latch of the current interrupt is cleared. This
is followed by a CALL instruction to the ROM address
associated with the interrupt being serviced (i.e., the interrupt
vector). The instruction in the interrupt table is typically a JMP
instruction to the address of the Interrupt Service Routine
(ISR). The user can re-enable interrupts in the interrupt service
routine by writing to the appropriate bits in the Global Interrupt
Enable Register. Interrupts can be nested to a level limited
only by the available stack space.
b7
b6
b5
b4
b3
b2
b1
b0
CEXTIE
GPIOIE
Reserved
EP1IE
EP0IE
1024IE
128IE
Reserved
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Figure 6-13. Global Interrupt Enable Register (GIER - Address 0x20)
128-µs CLR
CLR
Logic 1
128-µs
Interrupt
Global
Interrupt
Enable
Register
D
Q
Enable [1]
128-µs IRQ
1-ms CLR
1-ms IRQ
End P0 CLR
End P0 IRQ
End P1 CLR
End P1 IRQ
CLK
Enable [7:0]
IRQ
Interrupt
Vector
GPIO CLR
CLR
CLR
Interrupt
Acknowledge
Logic 1
GPIO
Interrupt
D
Q
GPIO IRQ
Enable [6]
CLK
Wake-up CLR
CLR
Logic 1
D
CEXT
CLK
Q
Enable [7]
Wake-up IRQ
Interrupt
Priority
Encoder
Figure 3. Interrupt Controller Logic Block Diagram
Document #: 38-08026 Rev. *B
Page 11 of 28
CY7C63001C
CY7C63101C
The Program Counter (PC) value and the Carry and Zero flags
(CF, ZF) are automatically stored onto the Program Stack by
the CALL instruction as part of the interrupt acknowledge
process. The user firmware is responsible for ensuring that the
processor state is preserved and restored during an interrupt.
For example the PUSH A instruction should be used as the
first command in the ISR to save the accumulator value. And,
the IPRET instruction should be used to exit the ISR with the
accumulator value restored and interrupts enabled. The PC,
CF, and ZF are restored when the IPRET or RET instructions
are executed.
The Interrupt Vectors supported by the USB Controller are
listed in Table 6-3. Interrupt Vector 0 (Reset) has the highest
priority, Interrupt Vector 7 has the lowest priority. Because the
JMP instruction is 2 bytes long, the interrupt vectors occupy 2
bytes.
6.8.1
Interrupt Latency
Interrupt latency can be calculated from the following
equation:
Interrupt Latency = (Number of clock cycles remaining in the
current instruction) + (10 clock cycles for
the CALL instruction) + (5 clock cycles
for the JMP instruction)
For example, if a 5-clock-cycle instruction such as JC is being
executed when an interrupt occurs, the first instruction of the
Interrupt Service Routine executes a minimum of 16 clock
cycles (1+10+5) or a maximum of 20 clock cycles (5+10+5)
after the interrupt is issued. Therefore, the interrupt latency in
this example will be = 20 clock periods = 20 / (12 MHz) =
1.667 µs. The interrupt latches are sampled at the rising edge
of the last clock cycle in the current instruction.
6.8.2
GPIO Interrupt
The General Purpose I/O interrupts are generated by signal
transitions at the Port 0 and Port 1 I/O pins. GPIO interrupts
are edge sensitive with programmable interrupt polarities.
Setting a bit HIGH in the Port Pull-up Register (see
Figure 6-10 and 6-11) selects a LOW to HIGH interrupt trigger
for the corresponding port pin. Setting a bit LOW activates a
HIGH to LOW interrupt trigger. Each GPIO interrupt is
maskable on a per-pin basis by a dedicated bit in the Port
Interrupt Enable Register. Writing a “1” enables the interrupt.
Figure 6-14 and Figure 6-15 illustrate the format of the Port
Interrupt Enable Registers for Port 0 and Port 1 located at I/O
address 0x04 and 0x05 respectively. These write only
registers are cleared during reset, thus disabling all GPIO
interrupts.
A block diagram of the GPIO interrupt logic is shown in
Figure 6-16. The bit setting in the Port Pull-up Register selects
the interrupt polarity. If the selected signal polarity is detected
on the I/O pin, a HIGH signal is generated. If the Port Interrupt
Enable bit for this pin is HIGH and no other port pins are
requesting interrupts, the OR gate issues a LOW to HIGH
signal to clock the GPIO interrupt flip-flop. The output of the
flip-flop is further qualified by the Global GPIO Interrupt Enable
bit before it is processed by the Interrupt Priority Encoder. Both
the GPIO interrupt flip-flop and the Global GPIO Enable bit are
cleared by on-chip hardware during GPIO interrupt
acknowledge.
Table 6-3. Interrupt Vector Assignments
Interrupt Priority
ROM Address
0 (Highest)
0x00
Reset
Function
1
0x02
128-µs timer interrupt
2
0x04
1.024-ms timer interrupt
3
0x06
USB endpoint 0 interrupt
4
0x08
USB endpoint 1 interrupt
5
0x0A
Reserved
6
0x0C
GPIO interrupt
7 (Lowest)
0x0E
Wake-up interrupt
b7
b6
b5
b4
b3
b2
b1
b0
IE0.7
IE0.6
IE0.5
IE0.4
IE0.3
IE0.2
IE0.1
IE0.0
W
W
W
W
W
W
W
W
0
0
0
0
0
0
0
0
Figure 6-14. Port 0 Interrupt Enable Register (P0 IE - Address 0x04)
b7
b6
b5
b4
b3
b2
b1
b0
IE1.7
IE1.6
IE1.5
IE1.4
IE1.3
IE1.2
IE1.1
IE1.0
W
W
W
W
W
W
W
W
0
0
0
0
0
0
0
0
Figure 6-15. Port 1 Interrupt Enable Register (P1 IE - Address 0x05)
Document #: 38-08026 Rev. *B
Page 12 of 28
CY7C63001C
CY7C63101C
Port
Pull-Up
Register
1=L→H
0=H→L
OR Gate
(1 input per
GPIO pin)
M
U
X
GPIO
Pin
1 = Enable
0 = Disable
GPIO Interrupt
Flip-Flop
I
D
Q
CLR
Port Interrupt
Enable Register
Interrupt
Acknowledge
CLR
Interrupt
Priority
Encoder
Global
1 = Enable
GPIO Interrupt
0 = Disable
Enable
(Bit 6, Register 0x20)
IRQ
Interrupt
Vector
Figure 6-16. GPIO Interrupt Logic Block Diagram
Note: If one port pin triggers an interrupt, no other port pin can
cause a GPIO interrupt until the port pin that triggered the
interrupt has returned to its inactive (non-trigger) state or until
its corresponding port interrupt enable bit is cleared (these
events ‘reset’ the clock of the GPIO Interrupt flip-flop, which
must be ‘reset’ to ‘0’ before another GPIO interrupt event can
‘clock’ the GPIO Interrupt flip-flop and produce an IRQ).
Note: If the port pin that triggered an interrupt is held in its
active (trigger) state while its corresponding port interrupt
enable bit is cleared and then set, a GPIO interrupt event
occurs as the GPIO Interrupt flip-flop clock transitions from ‘1’
to ‘0’ and then back to ‘1’ (please refer to Figure 6-16). The
USB Controller does not assign interrupt priority to different
port pins and the Port Interrupt Enable Registers are not
cleared during the interrupt acknowledge process. When a
GPIO interrupt is serviced, the ISR must poll the ports to
determine which pin caused the interrupt.
6.8.3
USB Interrupt
A USB Endpoint 0 interrupt is generated after the host has
written data to Endpoint 0 or after the USB Controller has
transmitted a packet from Endpoint 0 and receives an ACK
from the host. An OUT packet from the host which is NAKed
by the USB Controller does not generate an interrupt. This
interrupt is masked by the USB EP0 Interrupt Enable bit (bit 3)
of the Global Interrupt Enable Register.
A USB Endpoint 1 interrupt is generated after the USB
Controller has transmitted a packet from Endpoint 1 and has
received an ACK from the host. This interrupt is masked by the
USB EP1 Interrupt Enable bit (bit 4) of the Global Interrupt
Enable Register.
6.8.4
Timer Interrupt
There are two timer interrupts: the 128-µs interrupt and the
1.024-ms interrupt. They are masked by bits 1 and 2 of the
Global Interrupt Enable Register respectively. The user should
disable both timer interrupts before going into the suspend
Document #: 38-08026 Rev. *B
mode to avoid possible conflicts from timer interrupts occurring
just as suspend mode is entered.
6.8.5
Wake-Up Interrupt
A wake-up interrupt is generated when the Cext pin goes
HIGH. This interrupt is latched in the interrupt controller. It can
be masked by the Wake-up Interrupt Enable bit (bit 7) of the
Global Interrupt Enable Register. This interrupt can be used to
perform periodic checks on attached peripherals when the
USB Controller is placed in the low-power suspend mode. See
the Instant-On Feature section for more details.
6.9
USB Engine
The USB engine includes the Serial Interface Engine (SIE)
and the low-speed USB I/O transceivers. The SIE block
performs most of the USB interface functions with only minimal
support from the microcontroller core. Two endpoints are
supported. Endpoint 0 is used to receive and transmit control
(including setup) packets while Endpoint 1 is only used to
transmit data packets.
The USB SIE processes USB bus activity at the transaction
level independently. It does all the NRZI encoding/decoding
and bit stuffing/unstuffing. It also determines token type,
checks address and endpoint values, generates and checks
CRC values, and controls the flow of data bytes between the
bus and the Endpoint FIFOs. NOTE: the SIE stalls the CPU for
3 cycles per byte when writing data to the endpoint FIFOs (or
3 * 1/12 MHz * 8 bytes = 2 µs per 8-byte transfer).
The firmware handles higher level and function-specific tasks.
During control transfers the firmware must interpret device
requests and respond correctly. It also must coordinate
Suspend/Resume, verify and select DATA toggle values, and
perform function specific tasks.
The USB engine and the firmware communicate though the
Endpoint FIFOs, USB Endpoint interrupts, and the USB
registers described in the sections below.
Page 13 of 28
CY7C63001C
CY7C63101C
b7
b6
b5
b4
b3
b2
b1
b0
Reserved
ADR6
ADR5
ADR4
ADR3
ADR2
ADR1
ADR0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Figure 6-17. USB Device Address Register (USB DA - Address 0x12)
6.9.1
USB Enumeration Process
The USB Controller provides a USB Device Address Register
at I/O location 0x12. Reading and writing this register is
achieved via the IORD and IOWR instructions. The register
contents are cleared during a reset, setting the USB address
of the USB Controller to 0. Figure 6-17 shows the format of the
USB Address Register.
Typical enumeration steps:
1. The host computer sends a SETUP packet followed by a
DATA packet to USB address 0 requesting the Device
descriptor.
2. The USB Controller decodes the request and retrieves its
Device descriptor from the program memory space.
3. The host computer performs a control read sequence and
the USB Controller responds by sending the Device
descriptor over the USB bus.
4. After receiving the descriptor, the host computer sends a
SETUP packet followed by a DATA packet to address 0
assigning a new USB address to the device.
5. The USB Controller stores the new address in its USB
Device Address Register after the no-data control
sequence completes.
6. The host sends a request for the Device descriptor using
the new USB address.
7. The USB Controller decodes the request and retrieves the
Device descriptor from the program memory.
8. The host performs a control read sequence and the USB
Controller responds by sending its Device descriptor over
the USB bus.
9. The host generates control reads to the USB Controller to
request the Configuration and Report descriptors.
10.The USB Controller retrieves the descriptors from its
program space and returns the data to the host over the
USB.
11.Enumeration is complete after the host has received all the
descriptors.
6.9.2
Endpoint 0
All USB devices are required to have an endpoint number 0
that is used to initialize and manipulate the device. Endpoint 0
provides access to the device’s configuration information and
allows generic USB status and control accesses.
Endpoint 0 can receive and transmit data. Both receive and
transmit data share the same 8-byte Endpoint 0 FIFO located
at data memory space 0x70 to 0x77. Received data may
overwrite the data previously in the FIFO.
6.9.2.1 Endpoint 0 Receive
After receiving a packet and placing the data into the Endpoint
0 FIFO, the USB Controller updates the USB Endpoint 0 RX
register to record the receive status and then generates a USB
Endpoint 0 interrupt. The format of the Endpoint 0 RX Register
is shown in Figure 6-18.
This is a read/write register located at I/O address 0x14. Any
write to this register clears all bits except bit 3 which remains
unchanged. All bits are cleared during reset.
Bit 0 is set to 1 when a SETUP token for Endpoint 0 is received.
Once set to a 1, this bit remains HIGH until it is cleared by an
I/O write or a reset. While the data following a SETUP is being
received by the USB engine, this bit is not cleared by an I/O
write. User firmware writes to the USB FIFOs are disabled
when bit 0 is set. This prevents SETUP data from being
overwritten.
Bits 1 and 2 are updated whenever a valid token is received
on Endpoint 0. Bit 1 is set to 1 if an OUT token is received and
cleared to 0 if any other token is received. Bit 2 is set to 1 if an
IN token is received and cleared to 0 if any other token is
received.
Bit 3 shows the Data Toggle status of DATA packets received
on Endpoint 0. This bit is updated for DATA following SETUP
tokens and for DATA following OUT tokens if Stall (bit 5 of
0x10) is not set and either EnableOuts or StatusOuts (bits 3
and 4 of 0x13) are set.
Bits 4 to 7 are the count of the number of bytes received in a
DATA packet. The two CRC bytes are included in the count,
so the count value is two greater than the number of data bytes
received. The count is always updated and the data is always
stored in the FIFO for DATA packets following a SETUP token.
The count for DATA following an OUT token is updated if Stall
(bit 5 of 0x10) is 0 and either EnableOuts or StatusOuts (bits
3 and 4 of 0x13) are 1. The DATA following an OUT is written
into the FIFO if EnableOuts is set to 1 and Stall and StatusOuts
are 0.
b7
b6
b5
b4
b3
b2
b1
b0
COUNT3
COUNT2
COUNT1
COUNT0
R/W
R/W
R/W
R/W
TOGGLE
IN
OUT
SETUP
R
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Figure 6-18. USB Endpoint 0 RX Register (Address 0x14)
Document #: 38-08026 Rev. *B
Page 14 of 28
CY7C63001C
CY7C63101C
A maximum of 8 bytes are written into the Endpoint 0 FIFO. If
there are less than 8 bytes of data the CRC is written into the
FIFO.
Due to register space limitations, the Receive Data Invalid bit
is located in the USB Endpoint 0 TX Configuration Register.
Refer to the Endpoint 0 Transmit section for details. This bit is
set by the SIE if an error is detected in a received DATA packet.
Table 6-4 summarizes the USB Engine response to SETUP
and OUT transactions on Endpoint 0. In the Data Packet
column ‘Error’ represents a packet with a CRC, PID or
bit-stuffing error, or a packet with more than 8 bytes of data.
‘Valid’ is a packet without an Error. ‘Status’ is a packet that is
a valid control read Status stage, while ‘N/Status’ is not a
correct Status stage (see section 6.9.4). The ‘Stall’ bit is
described in Section 6.9.2.2. The ‘StatusOuts’ and
‘EnableOuts’ bits are described in section 6.9.4.
6.9.2.2 Endpoint 0 Transmit
The USB Endpoint 0 TX Register located at I/O address 0x10
controls data transmission from Endpoint 0 (see Figure 6-19).
This is a read/write register. All bits are cleared during reset.
Bits 0 to 3 indicate the numbers of data bytes to be transmitted
during an IN packet, valid values are 0 to 8 inclusive. Bit 4
indicates that a received DATA packet error (CRC, PID, or
bitstuffing error) occurred during a SETUP or OUT data phase.
Setting the Stall bit (bit 5) stalls IN and OUT packets. This bit
is cleared whenever a SETUP packet is received by
Endpoint 0. Bit 6 (Data 1/0) must be set to 0 or 1 to select the
DATA packet’s toggle state (0 for DATA0, 1 for DATA1).
After the transmit data has been loaded into the FIFO, bit 6
should be set according to the data toggle state and bit 7 set
to “1”. This enables the USB Controller to respond to an IN
packet. Bit 7 is cleared and an Endpoint 0 interrupt is
generated by the SIE once the host acknowledges the data
transmission. Bit 7 is also cleared when a SETUP token is
received. The Interrupt Service Routine can check bit 7 to
confirm that the data transfer was successful.
6.9.3
Endpoint 1
Endpoint 1 is capable of transmit only. The data to be transmitted is stored in the 8-byte Endpoint 1 FIFO located at data
memory space 0x78 to 0x7F.
6.9.3.1 Endpoint 1 Transmit
Transmission is controlled by the USB Endpoint 1 TX Register
located at I/O address 0x11 (see Figure 6-20). This is a
read/write register. All bits are cleared during reset.
Table 6-4. USB Engine Response to SETUP and OUT Transactions on Endpoint 0
Control Bit Settings
Received Packets
USB Engine Response
Stall
Status Out
Enable
Out
Token
Type
Data
Packet
FIFO Write
Toggle
Update
Count
Update
Interrupt
Reply
-
-
-
SETUP
Valid
Yes
Yes
Yes
Yes
ACK
-
-
-
SETUP
Error
Yes
Yes
Yes
Yes
None
0
0
1
OUT
Valid
Yes
Yes
Yes
Yes
ACK
0
0
1
OUT
Error
Yes
Yes
Yes
Yes
None
0
0
0
OUT
Valid
No
No
No
No
NAK
0
0
0
OUT
Error
No
No
No
No
None
1
0
0
OUT
Valid
No
No
No
No
STALL
1
0
0
OUT
Error
No
No
No
No
None
0
1
0
OUT
Status
No
Yes
Yes
Yes
ACK
0
1
0
OUT
N/Status
No
Yes
Yes
Yes
STALL
0
1
0
OUT
Error
No
Yes
No
No
None
b7
b6
b5
b4
b3
b2
b1
b0
INEN
DATA1/0
STALL
ERR
COUNT3
COUNT2
COUNT1
COUNT0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Figure 6-19. USB Endpoint 0 TX Configuration Register (Address 0x10)
b7
b6
b5
b4
b3
b2
b1
b0
INEN
DATA1/0
STALL
EP1EN
COUNT3
COUNT2
COUNT1
COUNT0
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Figure 6-20. USB Endpoint 1 TX Configuration Register (Address 0x11)
Document #: 38-08026 Rev. *B
Page 15 of 28
CY7C63001C
CY7C63101C
Bits 0 to 3 indicate the numbers of data bytes to be transmitted
during an IN packet, valid values are 0 to 8 inclusive.
Writing a 0 to this bit clears it. Writing a 1 does not change its
value.
Bit 4 must be set before Endpoint 1 can be used. If this bit is
cleared, the USB Controller ignores all traffic to Endpoint 1.
Bit 1 is used to force the on-chip USB transmitter to the K state
which sends a Resume signal to the host. Bit 2 is used to force
the transmitter to the J state. This bit should normally be set to
zero. However, for resume signaling, force a J state for one
instruction before forcing resume.
Setting the Stall bit (bit 5) stalls IN and OUT packets until this
bit is cleared.
Bit 6 (Data 1/0) must be set to either 0 or 1 depending on the
data packet’s toggle state, 0 for DATA0, 1 for DATA1.
After the transmit data has been loaded into the FIFO, bit 6
should be set according to the data toggle state and bit 7 set
to “1”. This enables the USB Controller to respond to an IN
packet. Bit 7 is cleared and an Endpoint 1 interrupt is
generated by the SIE once the host acknowledges the data
transmission.
6.9.4
USB Status and Control
USB status and control is regulated by USB Status and Control
Register located at I/O address 0x13 as shown in Figure 6-21.
This is a read/write register. All reserved bits must be written
to zero. All bits in the register are cleared during reset.
Bit 0 is set by the SIE if any USB activity except idle (D+ LOW,
D– HIGH) is detected. The user program should check and
clear this bit periodically to detect any loss of bus activity.
Bit 3 is used to automatically respond to the Status stage OUT
of a control read transfer on Endpoint 0. A valid Status stage
OUT contains a DATA1 packet with 0 bytes of data. If the StatusOuts bit is set, the USB engine responds to a valid Status
stage OUT with an ACK, and any other OUT with a STALL.
The data is not written into the FIFO when this bit is set. This
bit is cleared when a SETUP token is received by Endpoint 0.
Bit 4 is used to enable the receiving of Endpoint 0 OUT
packets. When this bit is set to 1, the data from an OUT transaction is written into the Endpoint 0 FIFO. If this bit is 0, data
is not written to the FIFO and the SIE responds with a NAK.
This bit is cleared following a SETUP or ACKed OUT transaction. Note: After firmware decodes a SETUP packet and
prepares for a subsequent OUT transaction by setting bit 4, bit
4 is not cleared until the hand-shake phase of an ACKed OUT
transaction (a NAKed OUT transaction does not clear this bit).
b7
b6
b5
b4
b3
b2
b1
b0
Reserved
Reserved
Reserved
ENOUTS
STATOUTS
FORCEJ
FORCEK
BUSACT
R/W
R/W
R/W
R/W
0
0
0
0
0
0
0
0
Figure 6-21. USB Status and Control Register (USB SCR - Address 0x13)
Document #: 38-08026 Rev. *B
Page 16 of 28
CY7C63001C
CY7C63101C
6.10
USB Physical Layer Characteristics
The following section describes the CY7C630/101C
compliance to the Chapter 7 Electrical section of the USB
Specification, Revision 1.1. The section contains all signaling,
power distribution, and physical layer specifications necessary
to describe a low- speed USB function.
6.10.1
Low-Speed Driver Characteristics
The CY7C630/101C devices use a differential output driver to
drive the Low-speed USB data signal onto the USB cable, as
shown in Figure 6-22. The output swings between the differential HIGH and LOW state are well balanced to minimize
signal skew. Slew rate control on the driver minimizes the
radiated noise and cross talk on the USB cable. The driver’s
outputs support three-state operation to achieve bidirectional
half duplex operation. The CY7C630/101C driver tolerates a
voltage on the signal pins of –0.5V to 3.8V with respect to local
ground reference without damage. The driver tolerates this
voltage for 10.0 µs while the driver is active and driving, and
tolerates this condition indefinitely when the driver is in its
high-impedance state.
A low-speed USB connection is made through an unshielded,
untwisted wire cable a maximum of 3 meters in length. The rise
and fall time of the signals on this cable are well controlled to
reduce RFI emissions while limiting delays, signaling skews
and distortions. The CY7C630/101C driver reaches the
specified static signal levels with smooth rise and fall times,
resulting in minimal reflections and ringing when driving the
USB cable. This cable and driver are intended to be used only
on network segments between low-speed devices and the
ports to which they are connected.
6.10.2
Receiver Characteristics
The CY7C630/101C has a differential input receiver which is
able to accept the USB data signal. The receiver features an
input sensitivity of at least 200 mV when both differential data
inputs are in the range of at least 0.8V to 2.5V with respect to
its local ground reference. This is the common mode input
voltage range. Proper data reception is also guaranteed when
the differential data lines are outside the common mode range,
as shown in Figure 6-23. The receiver tolerates static input
voltages between –0.5V and 3.8V with respect to its local
ground reference without damage. In addition to the differential receiver, there is a single-ended receiver for each of the
two data lines. The single-ended receivers have a switching
threshold between 0.8V and 2.0V (TTL inputs).
One Bit
Time
(1.5Mb/s)
VSE (max)
Driver
Signal Pins
Signal pins
pass output
spec levels
with minimal
reflections and
ringing
VSE (min)
VSS
MinimumDifferential Sensitivity (volts)
Figure 6-22. Low-speed Driver Signal Waveforms
1.0
0.8
0.6
0.4
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
Common Mode Input Voltage (volts)
Figure 6-23. Differential Input Sensitivity Over Entire Common Mode Range
Document #: 38-08026 Rev. *B
Page 17 of 28
CY7C63001C
CY7C63101C
External USB Pull-Up Resistor
PCB trace capacitance + integrated cable capacitance) must
be less than 250 pF. As Cypress D+/D– transceiver input
capacitance is 20 pF max, up to 230 pF of capacitance is
allowed for in the low speed device’s integrated cable and
PCB. If the cable + PCB capacitance on the D+/D– lines will
be greater than approximately 230 pF, an external 3.3V
regulator must be used as shown in Figure 6-25.
The USB system specifies that a pull-up resistor be connected
on the D– pin of low-speed peripherals as shown in
Figure 6-24. To meet the USB 1.1 spec (section 7.1.6), which
states that the termination must charge the D– line from 0 to
2.0V in 2.5 µs, the total load capacitance on the D+/D– lines
of the low-speed USB device (Cypress device capacitance +
Switches,
Devices, Etc.
Port0
Port1
VSS
VPP
CEXT
XTALIN
Port0
Port1
D+
D–
VCC
XTALOUT
Switches,
Devices, Etc.
7.5kW±1%
+4.35V (min)
For Cext
Wake-up Mode
6-MHz
Resonator
0.1µF
4.7 µF
USB Connector
6.11
Figure 6-24. Application Showing 7.5kΩ±1% Pull-Up Resistor
+3.3V
Port1
VSS
VPP
CEXT
XTALIN
For Cext
Wake-up Mode
Port0
Port1
D+
D–
VCC
XTALOUT
Switches,
Devices, Etc.
3.3V
Reg
0.1 µF
1.5±kW
+4.35V (min.)
6-MHz
Resonator
0.1µF
4.7 µF
USB Connector
Switches,
Devices, Etc.
Port0
Figure 6-25. Application Showing 1.5-kΩ±5% Pull-Up Resistor
Document #: 38-08026 Rev. *B
Page 18 of 28
CY7C63001C
CY7C63101C
6.12
Instruction Set Summary
Table 6-5. Instruction Set Map
MNEMONIC
operand
HALT
opcode
cycles
MNEMONIC
00
7
NOP
operand
opcode
cycles
20
4
ADD A,expr
data
01
4
INC A
acc
21
4
ADD A,[expr]
direct
02
6
INC X
x
22
4
ADD A,[X+expr]
index
03
7
INC [expr]
direct
23
7
ADC A,expr
data
04
4
INC [X+expr]
index
24
8
ADC A,[expr]
direct
05
6
DEC A
acc
25
4
ADC A,[X+expr]
index
06
7
DEC X
x
26
4
SUB A,expr
data
07
4
DEC [expr]
direct
27
7
SUB A,[expr]
direct
08
6
DEC [X+expr]
index
28
8
SUB A,[X+expr]
index
09
7
IORD expr
address
29
5
SBB A,expr
data
0A
4
IOWR expr
address
2A
5
SBB A,[expr]
direct
0B
6
POP A
2B
4
SBB A,[X+expr]
index
0C
7
POP X
2C
4
OR A,expr
data
0D
4
PUSH A
2D
5
OR A,[expr]
direct
OE
6
PUSH X
2E
5
OR A,[X+expr]
index
0F
7
SWAP A,X
2F
5
AND A,expr
data
10
4
SWAP A,DSP
30
5
AND A,[expr]
direct
11
6
MOV [expr],A
direct
31
5
AND A,[X+expr]
index
12
7
MOV [X+expr],A
index
32
6
XOR A,expr
data
13
4
OR [expr],A
direct
33
7
XOR A,[expr]
direct
14
6
OR [X+expr],A
index
34
8
XOR A,[X+expr]
index
15
7
AND [expr],A
direct
35
7
CMP A,expr
data
16
5
AND [X+expr],A
index
36
8
CMP A,[expr]
direct
17
7
XOR [expr],A
direct
37
7
CMP A,[X+expr]
index
18
8
XOR [X+expr],A
index
38
8
MOV A,expr
data
19
4
IOWX [X+expr]
index
39
6
MOV A,[expr]
direct
1A
5
CPL
3A
4
MOV A,[X+expr]
index
1B
6
ASL
3B
4
MOV X,expr
data
1C
4
ASR
3C
4
MOV X,[expr]
direct
1D
5
RLC
3D
4
IPRET
addr
1E
13
RRC
3E
4
1F
4
RET
3F
8
XPAGE
JMP
addr
8x
5
JC
addr
Cx
5
CALL
addr
9x
10
JNC
addr
Dx
5
JZ
addr
Ax
5
JACC
addr
Ex
7
JNZ
addr
Bx
5
INDEX
addr
Fx
14
Document #: 38-08026 Rev. *B
Page 19 of 28
CY7C63001C
CY7C63101C
7.0
Absolute Maximum Ratings
Storage Temperature ................................. –65°C to +150°C
Ambient Temperature with Power Applied ...... –0°C to +70°C
Supply Voltage on VCC Relative to VSS ......... –0.5V to +7.0V
DC Input Voltage................................... –0.5V to +VCC+0.5V
DC Voltage Applied to Outputs in High-Z state –0.5V to +VCC+0.5V
Max. Output Current into Port 1 Pins ...........................60 mA
Max. Output Current into Non-Port 1 Pins .................. 10 mA
Power Dissipation .....................................................300 mW
Static Discharge Voltage ...........................................>2000V
Latch-up Current[1] .................................................. >200 mA
8.0
Electrical Characteristics fOSC = 6 MHz; Operating Temperature = 0 to 70°C, VCC = 4.0 to 5.25 volts
Parameter
General
ICC
ISB1
ISB2
VPP
tstart
twatch
VCC Operating Supply Current
Supply Current—Suspend Mode
Supply Current—Start-up Mode
Programming Voltage (disabled)
Resonator Start-up Interval
Watch Dog Timer Period
tVCCS
VCC Slew
Voh
Vol
Vdi
Vcm
Vse
Cin
Ilo
Rpu1
Rpu2
Rpd
USB Interface
Static Output High
Static Output Low
Differential Input Sensitivity
Differential Input Common Mode Range
Single Ended Receiver Threshold
Transceiver Input Capacitance
Data Line (D+, D–) Leakage
External Bus Pull-up Resistance, D– pin
External Bus Pull-up Resistance, D– pin
External Bus Pull-down Resistance
Min
Max
Units
7.168
25
20
4
0.4
256
8.192
mA
µA
mA
V
µs
ms
0.010
1000
ms
Linear ramp on VCC pin to VCC[3, 4]
2.8
3.6
0.3
V
V
V
V
V
pF
µA
kΩ
kΩ
kΩ
15kΩ ± 5% to Gnd[5,6]
See Notes 5 and 6
|(D+)–(D–)|, and Figure 6-23
Figure 6-23
–0.4
Conditions
Resonator off, D– > Voh min[2]
Ceramic resonator
Power On Reset
0.2
0.8
0.8
–10
1.425
7.425
14.25
2.5
2.0
20
10
1.575
7.575
15.75
D+ to Vss; D- to Vss
0 V <(D+, D–)<3.3 V, Hi-Z State
1.5 kΩ ± 5% to 3.3V supply
7.5 kΩ ± 1% to Vcc[7]
15 kΩ ± 5%
Notes:
1. All pins specified for >200 mA positive and negative injection, except P1.0 is specified for >50 mA negative injection.
2. Cext at VCC or Gnd, Port 0 and Port1 at VCC.
3. Part powers up in suspend mode, able to be reset by USB Bus Reset.
4. POR may re-occur whenever VCC drops to approximately 2.5V.
5. Level guaranteed for range of VCC = 4.35V to 5.25V.
6. With Rpu1 of 1.5 KW±5% on D– to 3.3V regulator.
7. Maximum matched capacitive loading allowed on D+ and D– (including USB cable and host/hub) is approximately 230 pF.
Document #: 38-08026 Rev. *B
Page 20 of 28
CY7C63001C
CY7C63101C
8.0
Electrical Characteristics (continued) fOSC = 6 MHz; Operating Temperature = 0 to 70°C, VCC = 4.0 to 5.25 volts
Parameter
Rup
Isink0(0)
Isink0(F)
Isink1(0)
Isink1(F)
General Purpose I/O Interface
Pull-up Resistance
Port 0 Sink Current (0), lowest current
Port 0 Sink Current (F), highest current
Port 1 Sink Current (0), lowest current
Port 1 Sink Current (F), highest current
Irange
Ilin
Tratio
tsink
Imax
Pmax
Vith
VH
VHCext
Iin
IinCx
ICext
Vol1
Vol2
Sink Current max./min.
Differential Nonlinearity
Tracking Ratio Port1 to Port0
Current Sink Response Time
Port 1 Max Sink Current
Port 1 & Cext Sink Mode Dissipation
Input Threshold Voltage
Input Hysteresis Voltage
Input Hysteresis Voltage, Cext
Input Leakage Current, GPIO Pins
Input Leakage Current, Cext Pin
Sink Current, Cext Pin
Output LOW Voltage, Cext Pin
Output LOW Voltage, Cext Pin
Min
Max
Units
8
0.1
0.5
1.6
8
5
4.5
24
0.3
1.5
4.8
24
kΩ
mA
mA
mA
mA
mA
14.4
45%
6%
12%
–1
6
5.5
0.5
19.6
0.8
60
25
65%
12%
30%
1
50
18
0.4
2.0
lSB
µs
mA
mW
VCC
VCC
VCC
µA
nA
mA
V
V
Conditions
Vout = 2.0V DC, Port 0 only[5]
Vout = 2.0V DC, Port 0 only[5]
Vout = 2.0V DC, Port 1 only[5]
Vout = 2.0V DC, Port 1 only[5]
Vout = 0.4V DC, Port 1 only[5]
Vout = 2.0V DC, Port 0 or 1[5, 8]
Port 0 or Port 1[9]
Vout = 2.0V[10]
Full scale transition
Summed over all Port 1 bits
Per pin
All ports and Cext[11]
Port 0 and Port 1[12]
Cext Pin Only[12]
Port 0 and Port 1, Vout = 0 or VCC[13]
VCext = 0 or VCC
VCext = VCC
VCC = Min., Iol = 2 mA
VCC = Min., Iol = 5 mA
Notes:
8. Irange = Isink(F)/Isink(0 ) for each port 0 or 1 output.
9. Measured as largest step size vs. nominal according to measured full scale and zero programmed values.
10. Tratio = Isink1(n)/Isink0(n) for the same n.
11. Low to High transition.
12. This parameter is guaranteed, but not tested.
13. With Ports configured in Hi-Z mode.
Document #: 38-08026 Rev. *B
Page 21 of 28
CY7C63001C
CY7C63101C
9.0
Switching Characteristics
Parameter
Description
Min.
Max.
Unit
166.67
166.67
ns
Conditions
Clock
tCYC
Input Clock Cycle Time
tCH
Clock HIGH Time
0.45 tCYC
ns
tCL
Clock LOW Time
0.45 tCYC
ns
tr
USB Data Transition Rise Time
75
300
ns
tf
USB Data Transition Fall Time
75
300
ns
See Notes 5, 6, and 14
trfm
Rise/Fall Time Matching
80
125
%
tr/tf
Vcrs
Output Signal Crossover Voltage
1.3
2.0
V
See Note 5
1.4775
1.5225
Mb/s
Ave. Bit Rate (1.5 Mb/s ± 1.5%)
USB Driver Characteristics
See Notes 5, 6, and 14
USB Data Timing
tdrate
Low Speed Data Rate
tdjr1
Receiver Data Jitter Tolerance
–75
75
ns
To Next Transition, Figure 9-3[15]
tdjr2
Receiver Data Jitter Tolerance
–45
45
ns
For Paired Transitions, Figure 9-3[15]
tdeop
Differential to EOP Transition Skew
–40
100
ns
Figure 9-4[15]
teopr
EOP Width at Receiver
670
ns
Accepts as EOP[15]
tlst
Width of SE0 Interval During
Differential Transition
teopt
Source EOP Width
tudj1
Differential Driver Jitter
tudj2
Differential Driver Jitter
210
ns
1.50
µs
–95
95
ns
To next transition, Figure 9-5
–150
150
ns
To paired transition, Figure 9-5
1.25
Notes:
14. Cload of 200 (75 ns) to 600 pF (300 ns).
15. Measured at crossover point of differential data signals.
Document #: 38-08026 Rev. *B
Page 22 of 28
CY7C63001C
CY7C63101C
tCYC
tCH
CLOCK
tCL
Figure 9-1. Clock Timing
Voh
tf
tr
D+
90%
Vcrs
90%
10%
Vol
10%
D−
Figure 9-2. USB Data Signal Timing and Voltage Levels
TPERIOD
Differential
Data Lines
TJR
TJR1
TJR2
Consecutive
Transitions
N * TPERIOD + TJR1
Paired
Transitions
N * TPERIOD + TJR2
Figure 9-3. Receiver Jitter Tolerance
Document #: 38-08026 Rev. *B
Page 23 of 28
CY7C63001C
CY7C63101C
TPERIOD
Crossover
Point Extended
Crossover
Point
Differential
Data Lines
Diff. Data to
SE0 Skew
N * TPERIOD + TDEOP
Source EOP Width:
TEOPT
Receiver EOP Width: TEOPR1, TEOPR2
Figure 9-4. Differential to EOP Transition Skew and EOP Width
TPERIOD
Crossover
Points
Differential
Data Lines
Consecutive
Transitions
N * TPERIOD + TxJR1
Paired
Transitions
N * TPERIOD + TxJR2
Figure 9-5. Differential Data Jitter
10.0
Ordering Information
EPROM
Size
Number
of GPIO
Package
Name
CY7C63001C-PXC
4KB
12
P5
20-Pin (300-Mil) PDIP Lead-free
Commercial
CY7C63001C-SXC
4KB
12
S5
20-Pin (300-Mil) SOIC Lead-free
Commercial
CY7C63001C-SXCT
4KB
12
S5
20-Pin (300-Mil) SOIC Lead-free Tape
reel
Commercial
CY7C63101C-QXC
4KB
16
Q13
24-Pin (150-Mil) QSOP Lead-free
Commercial
CY7C63001C-XC
4KB
16
-
DIE Form Lead-free
Commercial
Ordering Code
Document #: 38-08026 Rev. *B
Package Type
Operating
Range
Page 24 of 28
CY7C63001C
CY7C63101C
11.0
Package Diagrams
20-Lead (300-Mil) Molded DIP P5
51-85011-*A
24-Lead Quarter Size Outline Q13
51-85055-*B
Document #: 38-08026 Rev. *B
Page 25 of 28
CY7C63001C
CY7C63101C
11.0
Package Diagrams (continued)
20-Lead (300-Mil) SOIC S5
PIN 1 ID
10
1
DIMENSIONS IN INCHES [MM] MIN.
MAX.
0.291[7.391]
0.300[7.620]
*
0.394[10.007]
0.419[10.642]
REFERENCE JEDEC MO-119
PACKAGE WEIGHT 0.55 gms
11
20
PART #
S20.3 STANDARD PKG.
SZ20.3 LEAD FREE PKG.
0.026[0.660]
0.032[0.812]
SEATING PLANE
0.497[12.623]
0.513[13.030]
0.092[2.336]
0.105[2.667]
*
0.004[0.101]
*
0.050[1.270]
TYP.
0.004[0.101]
0.0118[0.299]
0.013[0.330]
0.019[0.482]
0.0091[0.231]
0.0125[0.317]
0.015[0.381]
0.050[1.270]
51-85024-*B
(300-Mil)
SOIC S13
24 Lead (30024-Lead
Mil) SOIC
- S13
PIN 1 ID
12
1
DIMENSIONS IN INCHES[MM]
*
0.394[10.007]
0.419[10.642]
REFERENCE JEDEC MO-119
0.291[7.391]
0.300[7.620]
13
24
MIN.
MAX.
PACKAGE WEIGHT 0.65gms
PART #
S24.3 STANDARD PKG.
SZ24.3 LEAD FREE PKG.
0.026[0.660]
0.032[0.812]
SEATING PLANE
0.597[15.163]
0.615[15.621]
0.092[2.336]
0.105[2.667]
*
0.050[1.270]
TYP.
0.004[0.101]
0.0118[0.299]
*
0.004[0.101]
0.015[0.381]
0.050[1.270]
0.0091[0.231]
0.0125[0.317]
0.013[0.330]
0.019[0.482]
51-85025-*B
Document #: 38-08026 Rev. *B
Page 26 of 28
CY7C63001C
CY7C63101C
11.0
Package Diagrams (continued)
DIE FORM
4 3 2 1 24 23 22 21
5
6
7
8
20
19
18
17
Y
9 10 11 12 13 14 15 16
(0,0)
X
Table 11-1 below shows the die pad coordinates for the
CY7C63001C-XC. The center location of each bond pad is
relative to the bottom left corner of the die which has
coordinate (0,0).
Table 11-1. CY7C63001C-XC Probe Pad Coordinates in microns ((0,0) to bond pad centers)
Pad #
Pin
Name
X
(microns)
Y
(microns)
Pad #
Pin
Name
X
(microns)
Y
(microns)
1
Port00
676.00
2325.40
13
Xtlout
794.85
121.80
2
Port01
507.35
2325.40
14
Vcc
1033.55
121.80
3
Port02
338.70
2325.40
15
D-
1129.75
121.80
4
Port03
170.05
2325.40
16
D+
1451.70
121.80
5
Port10
120.10
2132.30
17
Port17
1446.10
1595.80
6
Port12
120.10
1962.90
18
Port15
1446.10
1765.20
7
Port14
120.10
1765.20
19
Port13
1446.10
1962.90
8
Port16
120.10
1595.80
20
Port11
1446.10
2132.30
9
Vss
148.50
121.80
21
Port07
1395.65
2325.40
10
Vpp
278.30
121.80
22
Port06
1227.00
2325.40
11
Cext
414.25
121.80
23
Port05
1058.35
2325.40
12
Xtalin
653.45
121.80
24
Port04
889.7
2325.40
Instant-On Now is a trademark of Cypress Semiconductor Corporation. All products and company names mentioned in this
document may be the trademarks of their respective holders.
Document #: 38-08026 Rev. *B
Page 27 of 28
© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
CY7C63001C
CY7C63101C
Document History Page
Document Title: CY7C63001C, CY7C63101C Universal Serial Bus Microcontroller
Document Number: 38-08026
REV.
ECN NO.
Issue
Date
Orig. of
Change
Description of Change
**
116223
06/12/02
DSG
Change from Spec number: 38-00662 to 38-08026
*A
276070
See ECN
BON
Added die form and bond pad information. Added lead free packages.
Removed obsolete packages and their references
*B
408068
See ECN
TYJ
128-ms timer interrupts corrected to 128-µs interrupts
Part Ordering information updated - Table 10.0. Type A updated with type C
Data-sheet header changed to CY7C63001C, CY7C63101C
Document #: 38-08026 Rev. *B
Page 28 of 28