April 1995 BS170 / MMBF170 N-Channel Enhancement Mode Field Effect Transistor General Description Features High density cell design for low RDS(ON). These N-Channel enhancement mode field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 500mA DC. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications. Voltage controlled small signal switch. Rugged and reliable. High saturation current capability. _______________________________________________________________________________ D G S Absolute Maximum Ratings T A = 25°C unless otherwise noted Symbol Parameter BS170 VDSS Drain-Source Voltage 60 V VDGR Drain-Gate Voltage (RGS < 1MΩ) 60 V VGSS Gate-Source Voltage ± 20 V ID Drain Current - Continuous Units 500 500 1200 800 Maximum Power Dissipation 830 300 mW Derate Above 25°C 6.6 2.4 mW/°C - Pulsed PD MMBF170 mA TJ,TSTG Operating and Storage Temperature Range -55 to 150 °C TL Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds 300 °C THERMAL CHARACTERISTICS RθJA Thermal Resistacne, Junction-to-Ambient © 1997 Fairchild Semiconductor Corporation 150 417 °C/W BS170 Rev. C / MMBF170 Rev. D Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Parameter Conditions Type Min 60 Typ Max Units OFF CHARACTERISTICS BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 100 µA All IDSS Zero Gate Voltage Drain Current VDS = 25 V, VGS = 0 V All 0.5 µA V IGSSF Gate - Body Leakage, Forward VGS = 15 V, VDS = 0 V All 10 nA All 2.1 3 V 5 ON CHARACTERISTICS (Note 1) VGS(th) Gate Threshold Voltage VDS = VGS, ID = 1 mA RDS(ON) Static Drain-Source On-Resistance VGS = 10 V, ID = 200 mA All 1.2 gFS Forward Transconductance VDS = 10 V, ID = 200 mA BS170 320 MMBF170 320 All 24 40 pF All 17 30 pF All 7 10 pF ns VDS > 2 VDS(on), ID = 200 mA 0.8 Ω mS DYNAMIC CHARACTERISTICS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 10 V, VGS = 0 V, f = 1.0 MHz SWITCHING CHARACTERISTICS (Note 1) ton toff Turn-On Time Turn-Off Time VDD = 25 V, ID = 200 m A, VGS = 10 V, RGEN = 25 Ω BS170 10 VDD = 25 V, ID = 500 mA, VGS = 10 V, RGEN = 50 Ω MMBF170 10 VDD = 25 V, ID = 200 m A, VGS = 10 V, RGEN = 25 Ω BS170 10 VDD = 25 V, ID = 500 mA, VGS = 10 V, RGEN = 50 Ω MMBF170 10 ns Note: 1. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%. BS170 Rev. C / MMBF170 Rev. D Typical Electrical Characteristics BS170 / MMBF170 2 3 9.0 V GS =4.0V 8.0 , DRAIN-SOURCE CURRENT (A) 7.0 RDS(on) , NORMALIZED 1.5 6.0 1 5.0 0.5 I D 4.0 DRAIN-SOURCE ON-RESISTANCE VGS = 10V 3.0 0 0 1 2 3 V DS , DRAIN-SOURCE VOLTAGE (V) 4 5.0 6 .0 2 7.0 8.0 1.5 9.0 10 1 0.5 5 0 0.8 1.2 I D , DRAIN CURRENT (A) 1.6 2 Figure 2. On-Resistance Variation with Gate Voltage and Drain Current. 2 3 1.75 V GS = 10V R DS(on) , NORMALIZED ID = 500mA 1.5 1.25 1 0.75 0.5 -50 -25 0 25 50 75 100 TJ , JUNCTION TEMPERATURE (°C) 125 DRAIN-SOURCE ON-RESISTANCE R DS(ON) , NORMALIZED DRAIN-SOURCE ON-RESISTANCE 0.4 Figure 1. On-Region Characteristics. V G S = 10V 2.5 TJ = 125°C 2 1.5 25°C 1 -55°C 0.5 0 150 0 Figure 3. On-Resistance Variation with Temperature. 0.4 0.8 1.2 I D , DRAIN CURRENT (A) 1.6 2 Figure 4. On-Resistance Variation with Drain Current and Temperature. 1.1 VDS = 10V T J = -55°C 25°C 125°C Vth , NORMALIZED 1.6 1.2 0.8 0.4 0 0 2 V GS 4 6 8 , GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics. 10 GATE-SOURCE THRESHOLD VOLTAGE 2 ID , DRAIN CURRENT (A) 4.5 2.5 V DS = VGS I D = 1 mA 1.05 1 0.95 0.9 0.85 0.8 -50 -25 0 25 50 75 100 TJ , JUNCTION TEMPERATURE (°C) 125 150 Figure 6. Gate Threshold Variation with Temperature. BS170 Rev. C / MMBF170 Rev. D Typical Electrical Characteristics (continued) BS170 / MMBF170 2 ID = 100µA 1.05 1.025 1 0.975 0.95 0.925 -50 -25 0 25 50 75 100 TJ , JUNCTION TEMPERATURE (°C) 125 0.5 TJ = 125°C 0.1 25°C 0.05 -55°C 0.01 0.005 0.001 0.2 150 0.4 0.6 V SD 0.8 1 1.2 1.4 , BODY DIODE FORWARD VOLTAGE (V) Figure 8. Body Diode Forward Voltage Variation with Current and Temperature. Figure 7. Breakdown Voltage Variation with Temperature. 10 60 40 V GS , GATE-SOURCE VOLTAGE (V) 20 C oss 10 5 C rss f = 1 MHz V GS = 0V 2 V DS = 25V ID = 5 0 0 m A C iss CAPACITANCE (pF) V GS = 0V 1 1.075 IS , REVERSE DRAIN CURRENT (A) , NORMALIZED DSS BV DRAIN-SOURCE BREAKDOWN VOLTAGE 1.1 1 8 6 4 2 0 1 2 3 V DS 5 10 20 30 50 0 0.4 0.8 , DRAIN TO SOURCE VOLTAGE (V) Figure 9. Capacitance Characteristics. t on t d(on) R GEN t d(off) tf 90% 90% V OUT Output, Vout 10% 10% 90% DUT G Input, Vin S Figure 11. Switching Test Circuit. 2 t off tr RL D VGS 1.6 Figure 10. Gate Charge Characteristics. VDD V IN 1.2 Q g , GATE CHARGE (nC) Inverted 50% 50% 10% Pulse Width Figure 12. Switching Waveforms. BS170 Rev. C / MMBF170 Rev. D Typical Electrical Characteristics (continued) 10 ID , DRAIN CURRENT (A) 1 0.5 R ( DS ) ON Lim it 1m 3 2 0u 10 s 1 I D , DRAIN CURRENT (A) 3 2 s 10 ms 10 0m s 1s 0.1 10 0.05 s DC V GS = 10V SINGLE PULSE RD S( O it 1m 10 0.1 10 0.05 0.01 0m 0u s s ms s 1s 10 s DC V GS = 10V SINGLE PULSE T A = 25°C 0.01 0.5 Lim N) T A = 25°C 0.005 0.005 1 2 5 10 20 30 V DS , DRAIN-SOURCE VOLTAGE (V) Figure 13. BS170 Maximum Safe Operating Area. 60 80 1 2 5 10 20 30 V DS , DRAIN-SOURCE VOLTAGE (V) 60 80 Figure 14. MMBF170 Maximum Safe Operating Area. r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 1 D = 0.5 0.5 R θJA (t) = r(t) * R θJA θJA = (See Datasheet) 0.2 0.2 R 0.1 0.1 P(pk) 0.05 0.05 t1 0.02 JA (t) Single Pulse 0.02 0.01 0.0001 0.001 t2 TJ - T A = P * Rθ 0.01 Duty Cycle, D = t1 /t2 0.01 0.1 t 1, TIME (sec) 1 10 100 300 Figure 15. TO-92, BS170 Transient Thermal Response Curve. r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 1 0.5 D = 0.5 0.2 0.2 0.1 0.05 R θJA (t) = r(t) * R θJA 0.1 R θJA = (See Datasheet) 0.05 0.02 P(pk) 0.01 t1 0.01 t2 Single Pulse TJ - T A = P * Rθ JA (t) Duty Cycle, D = t1 /t2 0.002 0.001 0.0001 0.001 0.01 0.1 t1 , TIME (sec) 1 10 100 300 Figure 16. SOT-23, MMBF170 Transient Thermal Response Curve. BS170 Rev. C / MMBF170 Rev. D TO-92 Tape and Reel Data TO-92 Packaging Configuration: Figure 1.0 TAPE and REEL OPTION FSCINT Label sample See Fig 2.0 for various Reeling Styles FAIRCHILD SEMICONDUCTOR CORPORATION LOT: CBVK741B019 PN2222N NSID: D/C1: HTB:B QTY: 10000 SPEC: D9842 SPEC REV: FSCINT Label B2 QA REV: 5 Reels per Intermediate Box (FSCINT) Customized Label F63TNR Label sample LOT: CBVK741B019 FSID: PN222N D/C1: D9842 D/C2: F63TNR Label QTY: 2000 SPEC: QTY1: QTY2: SPEC REV: CPN: N/F: F Customized Label (F63TNR)3 375mm x 267mm x 375mm Intermediate Box TO-92 TNR/AMMO PACKING INFROMATION Packing Style Quantity EOL code Reel A 2,000 D26Z E 2,000 D27Z Ammo M 2,000 D74Z P 2,000 D75Z AMMO PACK OPTION See Fig 3.0 for 2 Ammo Pack Options FSCINT Label Unit weight = 0.22 gm Reel weight with components = 1.04 kg Ammo weight with components = 1.02 kg Max quantity per intermediate box = 10,000 units 327mm x 158mm x 135mm Immediate Box Customized Label (TO-92) BULK PACKING INFORMATION EOL CODE DESCRIPTION QUANTITY TO-18 OPTION STD NO LEAD CLIP 2.0 K / BOX J05Z TO-5 OPTION STD NO LEAD CLIP 1.5 K / BOX NO LEADCLIP 2.0 K / BOX NO LEADCLIP 2.0 K / BOX TO-92 STANDARD STRAIGHT FOR: PKG 92, 94 (NON PROELECTRON SERIES), 96 L34Z TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES BCXXX, BFXXX, BSRXXX), 97, 98 Customized Label F63TNR Label 333mm x 231mm x 183mm Intermediate Box BULK OPTION LEADCLIP DIMENSION J18Z NO EOL CODE 5 Ammo boxes per Intermediate Box See Bulk Packing Information table Anti-static Bubble Sheets FSCINT Label 2000 units per EO70 box for std option 114mm x 102mm x 51mm Immediate Box 5 EO70 boxes per intermediate Box 530mm x 130mm x 83mm Intermediate box Customized Label FSCINT Label 10,000 units maximum per intermediate box for std option ©2001 Fairchild Semiconductor Corporation March 2001, Rev. B1 TO-92 Tape and Reel Data, continued TO-92 Reeling Style Configuration: Figure 2.0 Machine Option “A” (H) Machine Option “E” (J) Style “A”, D26Z, D70Z (s/h) Style “E”, D27Z, D71Z (s/h) TO-92 Radial Ammo Packaging Configuration: Figure 3.0 FIRST WIRE OFF IS COLLECTOR ADHESIVE TAPE IS ON THE TOP SIDE FLAT OF TRANSISTOR IS ON TOP ORDER STYLE D74Z (M) FIRST WIRE OFF IS EMITTER (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON BOTTOM FIRST WIRE OFF IS EMITTER ADHESIVE TAPE IS ON THE TOP SIDE FLAT OF TRANSISTOR IS ON BOTTOM ORDER STYLE D75Z (P) FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP September 1999, Rev. B TO-92 Tape and Reel Data, continued TO-92 Tape and Reel Taping Dimension Configuration: Figure 4.0 Hd P Pd b Ha W1 d L H1 HO L1 S WO t W2 W t1 P1 F1 DO P2 PO User Direction of Feed TO-92 Reel Configuration: Figure 5.0 ITEM DESCRIPTION SYMBOL DIMENSION Base of Package to Lead Bend b 0.098 (max) Component Height Ha 0.928 (+/- 0.025) Lead Clinch Height HO 0.630 (+/- 0.020) Component Base Height H1 0.748 (+/- 0.020) Component Alignment ( side/side ) Pd 0.040 (max) Component Alignment ( front/back ) Hd 0.031 (max) Component Pitch P 0.500 (+/- 0.020) Feed Hole Pitch PO 0.500 (+/- 0.008) Hole Center to First Lead P1 0.150 (+0.009, -0.010) Hole Center to Component Center P2 0.247 (+/- 0.007) Lead Spread F1/F2 0.104 (+/- 0 .010) Lead Thickness d 0.018 (+0.002, -0.003) Cut Lead Length L 0.429 (max) Taped Lead Length L1 0.209 (+0.051, -0.052) Taped Lead Thickness t 0.032 (+/- 0.006) Carrier Tape Thickness t1 0.021 (+/- 0.006) Carrier Tape Width W 0.708 (+0.020, -0.019) Hold - down Tape Width WO 0.236 (+/- 0.012) Hold - down Tape position W1 0.035 (max) Feed Hole Position W2 0.360 (+/- 0.025) Sprocket Hole Diameter DO 0.157 (+0.008, -0.007) Lead Spring Out S 0.004 (max) Note : All dimensions are in inches. ELECT ROSTATIC SEN SITIVE D EVICES D4 D1 D2 F63TNR Label ITEM DESCRIPTION SYSMBOL MINIMUM MAXIMUM Reel Diameter D1 13.975 14.025 Arbor Hole Diameter (Standard) D2 1.160 1.200 D2 0.650 0.700 Customized Label (Small Hole) W1 Core Diameter D3 3.100 3.300 Hub Recess Inner Diameter D4 2.700 3.100 Hub Recess Depth W1 0.370 0.570 Flange to Flange Inner Width W2 1.630 Hub to Hub Center Width W3 1.690 2.090 W3 W2 Note: All dimensions are inches D3 July 1999, Rev. A TO-92 Package Dimensions TO-92; TO-18 Reverse Lead Form (J35Z Option) (FS PKG Code 92, 94, 96) 1:1 Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.22 * * ; Note: All package 97 or 98 transistors are leadformed to this configuration prior to bulk shipment. Order L34Z option if in-line leads are preferred on package 97 or 98. * Standard Option on 97 & 98 package code ©2000 Fairchild Semiconductor International January 2000, Rev. B SOT-23 Tape and Reel Data SOT-23 Packaging Configuration: Figure 1.0 Customized Label Packaging Description: SOT-23 parts are shipped in tape. The carrier tape is made from a dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive layer, sealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 3,000 units per 7" or 177cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (antistatic coated). Other option comes in 10,000 units per 13" or 330cm diameter reel. This and some other options are described in the Packaging Information table. Antistatic Cover Tape Human Readable Label These full reels are individually labeled and placed inside a standard intermediate made of recyclable corrugated brown paper with a Fairchil d logo printing. One pizza box contains eight reels maximum. And these intermediate boxes are placed inside a labeled shipping box which comes in different sizes depending on the number of parts shipped. Embossed Carrier Tape 3P 3P 3P 3P SOT-23 Packaging Information Packaging Option Packaging type Qty per Reel/Tube/Bag Standard (no flow code) TNR 3,000 D87Z 7" Dia 13" 187x107x183 343x343x64 Max qty per Box 24,000 30,000 Weight per unit (gm) 0.0082 0.0082 Weight per Reel (kg) 0.1175 0.4006 Reel Size Box Dimension (mm) SOT-23 Unit Orientation TNR 10,000 343mm x 342mm x 64mm Intermediate box for L87Z Option Human Readable Label Note/Comments Human Readable Label sample H uman readable Label 187mm x 107mm x 183mm Intermediate Box for Standard Option SOT-23 Tape Leader and Trailer Configuration: Figure 2.0 Carrier Tape Cover Tape Components Trailer Tape 300mm minimum or 75 empt y poc kets ©2000 Fairchild Semiconductor International Leader Tape 500mm minimum or 125 empty pockets September 1999, Rev. C SOT-23 Tape and Reel Data, continued SOT-23 Embossed Carrier Tape Configuration: Figure 3.0 P0 P2 D1 D0 T E1 W F E2 Wc B0 Tc A0 P1 K0 User Direction of Feed Dimensions are in millimeter Pkg type A0 B0 SOT-23 (8mm) 3.15 +/-0.10 2.77 +/-0.10 W 8.0 +/-0.3 D0 D1 E1 E2 1.55 +/-0.05 1.125 +/-0.125 1.75 +/-0.10 F 6.25 min 3.50 +/-0.05 P1 P0 4.0 +/-0.1 4.0 +/-0.1 K0 T 1.30 +/-0.10 0.228 +/-0.013 Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C). Wc 0.06 +/-0.02 0.5mm maximum 20 deg maximum Typical component cavity center line B0 5.2 +/-0.3 Tc 0.5mm maximum 20 deg maximum component rotation Typical component center line Sketch A (Side or Front Sectional View) A0 Component Rotation Sketch C (Top View) Component lateral movement Sketch B (Top View) SOT-23 Reel Configuration: Figure 4.0 Component Rotation W1 Measured at Hub Dim A Max Dim A max See detail AA Dim N 7" Diameter Option B Min Dim C See detail AA W3 13" Diameter Option Dim D min W2 max Measured at Hub DETAIL AA Dimensions are in inches and millimeters Tape Size Reel Option Dim A Dim B Dim C Dim D Dim N Dim W1 Dim W2 Dim W3 (LSL-USL) 8mm 7" Dia 7.00 177.8 0.059 1.5 512 +0.020/-0.008 13 +0.5/-0.2 0.795 20.2 2.165 55 0.331 +0.059/-0.000 8.4 +1.5/0 0.567 14.4 0.311 – 0.429 7.9 – 10.9 8mm 13" Dia 13.00 330 0.059 1.5 512 +0.020/-0.008 13 +0.5/-0.2 0.795 20.2 4.00 100 0.331 +0.059/-0.000 8.4 +1.5/0 0.567 14.4 0.311 – 0.429 7.9 – 10.9 September 1999, Rev. C SOT-23 Package Dimensions SOT-23 (FS PKG Code 49) 1:1 Scale 1:1 on letter size paper Dimensions shown below are in: inches [millimeters] Part Weight per unit (gram): 0.0082 ©2000 Fairchild Semiconductor International September 1998, Rev. A1 TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ UHC™ VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life support device or system whose failure to perform can systems which, (a) are intended for surgical implant into be reasonably expected to cause the failure of the life the body, or (b) support or sustain life, or (c) whose support device or system, or to affect its safety or failure to perform when properly used in accordance with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. G