19-4288; Rev 2; 2/11 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer The MAX19997A dual downconversion mixer is a versatile, highly integrated diversity downconverter that provides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The MAX19997A fully supports both low- and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAX™, LTE, WCS, and MMDS bands, providing 8.7dB gain, +24dBm input IP3, and 10.3dB NF in the low-side configuration, and 8.7dB gain, +24dBm input IP3, and 10.4dB NF in the high-side configuration. Highside LO injection architectures can be further extended down to 1800MHz with the addition of one tuning element (a shunt inductor) on each RF port. The device integrates baluns in the RF and LO ports, an LO buffer, two double-balanced mixers, and a pair of differential IF output amplifiers. The MAX19997A requires a typical LO drive of 0dBm and a supply current guaranteed below 420mA to achieve the targeted linearity performance. The MAX19997A is available in a compact 6mm x 6mm, 36-pin thin QFN lead-free package with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from TC = -40°C to +85°C. Applications 2.3GHz WCS Base Stations 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations UMTS/WCDMA and cdma2000® 3G Base Stations Features ♦ 1800MHz to 2900MHz RF Frequency Range ♦ 1950MHz to 3400MHz LO Frequency Range ♦ 50MHz to 550MHz IF Frequency Range ♦ Supports Both Low-Side and High-Side LO Injection ♦ 8.7dB Conversion Gain ♦ +24dBm Input IP3 ♦ 10.3dB Noise Figure ♦ +11.3dBm Input 1dB Compression Point ♦ 70dBc Typical 2 x 2 Spurious Rejection at PRF = -10dBm ♦ Dual Channels Ideal for Diversity Receiver Applications ♦ Integrated LO Buffer ♦ Integrated LO and RF Baluns for Single-Ended Inputs ♦ Low -3dBm to +3dBm LO Drive ♦ Pin Compatible with the MAX19999 3000MHz to 4000MHz Mixer ♦ Pin Similar to the MAX9995/MAX9995A and MAX19995/MAX19995A 1700MHz to 2200MHz Mixers and the MAX9985/MAX9985A and MAX19985/MAX19985A 700MHz to 1000MHz Mixers ♦ 42dB Channel-to-Channel Isolation PCS1900 and EDGE Base Stations ♦ Single +5.0V or +3.3V Supply PHS/PAS Base Stations ♦ External Current-Setting Resistors Provide Option for Operating Device in Reduced-Power/ReducedPerformance Mode Fixed Broadband Wireless Access Wireless Local Loop Private Mobile Radios Ordering Information Military Systems TEMP RANGE PIN-PACKAGE MAX19997AETX+ PART -40°C to +85°C 36 Thin QFN-EP* MAX19997AETX+T -40°C to +85°C 36 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. WiMAX is a trademark of WiMAX Forum. cdma2000 is a registered trademark of Telecommunications Industry Association. Pin Configuration/Functional Block Diagram appears at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX19997A General Description MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer ABSOLUTE MAXIMUM RATINGS VCC to GND ...........................................................-0.3V to +5.5V RF_, LO to GND.....................................................-0.3V to +0.3V IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M, LO_ADJ_D to GND.................................-0.3V to (VCC + 0.3V) RF_, LO Input Power ......................................................+15dBm RF_, LO Current (RF and LO is DC shorted to GND through balun)................................... ...50mA Continuous Power Dissipation (Note 1) ..............................8.7W Operating Case Temperature Range (Note 4) ...................................................TC = -40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C PACKAGE THERMAL CHARACTERISTICS Junction-to-Ambient Thermal Resistance (θJA) (Notes 2, 3)...................................................................38°C/W Junction-to-Case Thermal Resistance (θJC) (Notes 1, 3)..................................................................7.4°C/W Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150°C. Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150°C. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +4.75V to +5.25V, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, TC = +25°C, unless otherwise noted. R1, R4 = 750Ω, R2, R5 = 698Ω.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN TYP MAX UNITS 4.75 5.00 5.25 V 388 420 mA Total supply current +3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC = +3.3V, TC = +25°C, unless otherwise noted. R1, R4 = 1.1kΩ, R2, R5 = 845Ω.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC 2 CONDITIONS Total supply current, VCC = +3.3V MIN TYP MAX UNITS 3.0 3.3 3.6 V 279 310 mA _______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer PARAMETER RF Frequency Without External Tuning SYMBOL CONDITIONS MIN TYP MAX UNITS fRF (Note 5) 2400 2900 MHz RF Frequency with External Tuning fRF See Table 2 for an outline of tuning elements optimized for 1950MHz operation; optimization at other frequencies within the 1800MHz to 2400MHz range can be achieved with different component values; contact the factory for details 1800 2400 MHz LO Frequency fLO (Notes 5, 6) 1950 3400 MHz Using Mini-Circuits TC4-1W-17 4:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) 100 550 Using alternative Mini-Circuits TC4-1W-7A 4:1 transformer, IF matching components affect the IF frequency range (Notes 5, 6) 50 250 -3 +3 IF Frequency fIF LO Drive Level PLO MHz dBm +5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz, fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER Conversion Gain SYMBOL GC Conversion Gain Flatness CONDITIONS MIN TYP MAX UNITS fRF = 2400MHz to 2900MHz, TC = +25°C (Notes 8, 9, 10) 8.1 8.7 9.3 dB fRF = 2305MHz to 2360MHz 0.15 fRF = 2500MHz to 2570MHz 0.15 0.1 fRF = 2500MHz to 2690MHz 0.15 fRF = 2700MHz to 2900MHz 0.15 -0.01 dB/°C dBm Gain Variation Over Temperature TCCG fRF = 2300MHz to 2900MHz, TC = -40°C to +85°C Input Compression Point IP1dB (Notes 8, 9, 11) 9.6 11.3 fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone (Notes 8, 9) 22.0 24 Third-Order Input Intercept Point Third-Order Input Intercept Point Variation Over Temperature IIP3 dB fRF = 2570MHz to 2620MHz fRF = 2600MHz, fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone, TC = +25°C (Notes 8, 9) fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C dBm 22.5 24 ±0.3 dBm _______________________________________________________________________________________ 3 MAX19997A RECOMMENDED AC OPERATING CONDITIONS MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer +5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued) (Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz, fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN Single sideband, no blockers present fRF = 2400MHz to 2900MHz (Note 6, 8, 10) Noise Figure NFSSB TYP MAX 10.4 12.5 dB Single sideband, no blockers present, fRF = 2400MHz to 2900MHz , TC = +25°C (Note 6, 8, 10) 10.4 Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40°C to +85°C 0.018 Noise Figure Under Blocking Conditions NFB fBLOCKER = 2412MHz, PBLOCKER = 8dBm, fRF = 2600MHz, fLO = 2950MHz, PLO = 0dBm, VCC = +5.0V, TC = +25°C (Notes 8, 12) 22.5 fRF = 2600MHz, fLO = 2950MHz, PRF = -10dBm, fSPUR = fLO - 175MHz (Note 8) 2LO - 2RF Spur 3LO - 3RF Spur UNITS 62 11.4 dB/°C 25 dB 69 dBc 2x2 fRF = 2600MHz, fLO = 2950MHz, PRF = -5dBm, fSPUR = fLO - 175MHz (Notes 8, 9) 57 64 fRF = 2600MHz, fLO = 2950MHz, PRF = -10dBm, fSPUR = fLO - 116.67MHz, TC = +25°C (Note 8) 73 84 dBc 3x3 fRF = 2600MHz, fLO = 2950MHz, PRF = -5dBm, fSPUR = fLO - 116.67MHz, TC = +25°C (Notes 8, 9) 63 74 RF Input Return Loss LO on and IF terminated into a matched impedance 14 dB LO Input Return Loss RF and IF terminated into a matched impedance 13 dB Nominal differential impedance at the IC’s IF outputs 200 Ω RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit 21 dB IF Output Impedance IF Output Return Loss 4 ZIF _______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer (Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz, fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN RF-to-IF Isolation LO Leakage at RF Port (Notes 8, 9) 2LO Leakage at RF Port LO Leakage at IF Port RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω Channel Isolation 38.5 TYP MAX UNITS 25 dB -28 dBm -33 dBm -18.5 dBm 43 dB +5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz, fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER Conversion Gain SYMBOL GC Conversion Gain Flatness CONDITIONS MIN TYP MAX UNITS fRF = 2400MHz to 2900MHz, TC = +25°C (Notes 8, 9, 10) 8.1 8.7 9.3 dB fRF = 2305MHz to 2360MHz 0.2 fRF = 2500MHz to 2570MHz 0.15 fRF = 2570MHz to 2620MHz 0.2 fRF = 2500MHz to 2690MHz 0.25 fRF = 2700MHz to 2900MHz 0.25 -0.01 dB/°C dB Gain Variation Over Temperature TCCG fRF = 2300MHz to 2900MHz, TC = -40°C to +85°C Input Compression Point IP1dB (Notes 6, 8, 11) 9.6 11.3 dBm fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone (Notes 8, 9) 21.6 23 dBm 22 23.8 dBm ±0.3 dBm Third-Order Input Intercept Point Third-Order Input Intercept Point Variation Over Temperature IIP3 fRF = 2600MHz, fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone, TC = +25°C (Notes 8, 9) fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C _______________________________________________________________________________________ 5 MAX19997A +5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer +5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued) (Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz, fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN Single sideband, no blockers present fRF = 2400MHz to 2900MHz (Notes 6, 8) Noise Figure Noise Figure Temperature Coefficient Noise Figure Under Blocking Conditions NFSSB 3RF-3LO Spur 0.018 NFB fBLOCKER = 2793MHz, PBLOCKER = 8dBm, fRF = 2600MHz, fLO = 2250MHz, PLO = 0dBm, Vcc = +5.0V, TC = +25°C (Notes 6, 8, 12) 22 62 11.3 dB/°C 25 dB 67 dBc 2x2 fRF = 2600MHz, fLO = 2250MHz, PRF = -5dBm, fSPUR = fLO + 175MHz, TC = +25°C (Notes 8, 9) 57 62 fRF = 2600MHz, fLO = 2250MHz, PRF = -10dBm, fSPUR = fLO + 116.67MHz, TC = +25°C (Note 8) 78 83 dBc 3x3 LO Input Return Loss ZIF UNITS dB Single sideband, no blockers present, TC = -40°C to +85°C LO on and IF terminated into a matched impedance 6 13.0 TCNF RF Input Return Loss IF Output Return Loss 10.3 10.3 fRF = 2600MHz, fLO = 2250MHz, PRF = -5dBm, fSPUR = fLO + 116.67MHz, TC = +25°C (Notes 8, 9) IF Output Impedance MAX Single sideband, no blockers present, fRF = 2400MHz to 2900MHz, TC = +25°C (Notes 6, 8) fRF = 2600MHz, fLO = 2250MHz, PRF = -10dBm, fSPUR = fLO + 175MHz, TC = +25°C (Note 8) 2RF-2LO Spur TYP 68 73 16 dB RF and IF terminated into a matched impedance 11.5 dB Nominal differential impedance at the IC’s IF outputs 200 Ω RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit 20 dB _______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer (Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz, fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN RF-to-IF Isolation TYP MAX 23.5 LO Leakage at RF Port (Notes 8, 9) -31 UNITS dB -24 dBm 2LO Leakage at RF Port -27 dBm LO Leakage at IF Port -9.6 dBm 42 dB RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω (Notes 8, 9) Channel Isolation 38.5 +3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER Conversion Gain SYMBOL GC Conversion Gain Flatness Gain Variation Over Temperature TCCG Input Compression Point IP1dB Third-Order Input Intercept Point IIP3 Third-Order Input Intercept Variation Over Temperature CONDITIONS MIN TYP (Note 9) 8.5 fRF = 2305MHz to 2360MHz 0.2 fRF = 2500MHz to 2570MHz 0.15 fRF = 2570MHz to 2620MHz 0.15 fRF = 2500MHz to 2690MHz 0.25 MAX UNITS dB dB fRF = 2700MHz to 2900MHz 0.15 fRF = 2300MHz to 2900MHz, TC = -40°C to +85°C -0.01 7.7 dBm fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone 19.7 dBm fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C ±0.5 dBm dB/°C Noise Figure NFSSB Single sideband, no blockers present 9.7 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40°C to +85°C 0.018 dB/°C _______________________________________________________________________________________ 7 MAX19997A +5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer +3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS (continued) (Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS PRF = -10dBm, fSPUR = fLO + 175MHz 74 PRF = -5dBm, fSPUR = fLO + 175MHz 69 PRF = -10dBm, fSPUR = fLO + 116.67MHz 74 PRF = -5dBm, fSPUR = fLO + 116.67MHz 64 RF Input Return Loss LO on and IF terminated into a matched impedance 16 dB LO Input Return Loss RF and IF terminated into a matched impedance 11 dB Nominal differential impedance at the IC’s IF outputs 200 Ω RF terminated into 50Ω, LO driven by 50Ω source, IF transformed to 50Ω using external components shown in the Typical Application Circuit 26 dB RF-to-IF Isolation 25 dB LO Leakage at RF Port -36 dBm 2LO Leakage at RF Port -31 dBm -13.5 dBm 42 dB 2RF-2LO Spur 2x2 3RF-3LO Spur 3x3 IF Output Impedance IF Output Return Loss ZIF LO Leakage at IF Port Channel Isolation RFMAIN (RFDIV) converted power measured at IFDIV (IFMAIN) relative to IFMAIN (IFDIV), all unused ports terminated to 50Ω dBc dBc Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 6: Not production tested. Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 350MHz due to the 4:1 impedance transformer. Output measurements taken at the IF outputs of Typical Application Circuit. Note 8: Guaranteed by design and characterization. Note 9: 100% production tested for functional performance. Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2. Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source. Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 5: 8 _______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 8 TC = +25°C 7 10 CONVERSION GAIN (dB) 10 CONVERSION GAIN (dB) 9 11 MAX19997A toc02 TC = -30°C 10 CONVERSION GAIN (dB) 11 MAX19997A toc01 11 CONVERSION GAIN vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) CONVERSION GAIN vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 9 8 PLO = -3dBm, 0dBm, +3dBm MAX19997A toc03 CONVERSION GAIN vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 9 8 VCC = 4.75V, 5.0V, 5.25V 7 7 TC = +85°C 2400 2600 2800 3000 2200 2600 2800 2200 3000 2600 2800 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) INPUT IP3 vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) INPUT IP3 vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 24 23 24 23 22 PRF = -5dBm/TONE 25 3000 2200 2200 3000 11 10 9 13 11 10 PLO = -3dBm, 0dBm, +3dBm 9 12 NOISE FIGURE (dB) 12 2400 2600 2800 RF FREQUENCY (MHz) 3000 NOISE FIGURE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc08 13 NOISE FIGURE (dB) 12 2400 2600 2800 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc07 TC = +85°C VCC = 4.75V MAX19997A toc09 NOISE FIGURE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 13 24 22 22 2400 2600 2800 RF FREQUENCY (MHz) VCC = 5.25V VCC = 5.0V 23 PLO = -3dBm, 0dBm, +3dBm TC = -30°C 3000 26 INPUT IP3 (dBm) 25 INPUT IP3 (dBm) TC = +25°C PRF = -5dBm/TONE MAX19997A toc05 26 MAX19997A toc04 TC = +85°C 25 2200 2400 RF FREQUENCY (MHz) PRF = -5dBm/TONE NOISE FIGURE (dB) 2400 RF FREQUENCY (MHz) 26 INPUT IP3 (dBm) 6 6 2200 MAX19997A toc06 6 11 10 9 VCC = 4.75V, 5.0V, 5.25V TC = +25°C TC = -30°C 8 8 8 7 7 7 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) _______________________________________________________________________________________ 3000 9 MAX19997A Typical Operating Characteristics (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) TC = +85°C 60 TC = +25°C 70 60 PRF = -5dBm VCC = 4.75V, 5.0V, 5.25V 50 50 2200 TC = -30°C 75 65 95 PRF = -5dBm 85 75 65 TC = +25°C, +85°C 3LO - 3RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 95 PRF = -5dBm 3000 2200 INPUT P1dB vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 2400 2600 2800 RF FREQUENCY (MHz) VCC = 4.75V, 5.0V, 5.25V 65 2200 3000 TC = +25°C 13 11 PLO = -3dBm, 0dBm, +3dBm 3000 11 VCC = 4.75V 10 10 VCC = 5.0V VCC = 5.25V 12 INPUT P1dB (dBm) 12 2400 2600 2800 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc17 13 INPUT P1dB (dBm) 11 10 75 INPUT P1dB vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc16 TC = +85°C 12 85 55 55 13 3000 PLO = -3dBm, 0dBm, +3dBm 55 2400 2600 2800 RF FREQUENCY (MHz) 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc18 85 2200 3000 3LO - 3RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 3LO - 3RF RESPONSE (dBc) PRF = -5dBm MAX19997A toc13 95 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc15 3000 3LO - 3RF RESPONSE (dBc) 2400 2600 2800 RF FREQUENCY (MHz) 3LO - 3RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 2200 60 PLO = 0dBm 50 2200 70 PLO = -3dBm TC = -30°C 3LO - 3RF RESPONSE (dBc) 80 MAX19997A toc12 PLO = +3dBm MAX19997A toc11 PRF = -5dBm 2LO - 2RF RESPONSE (dBc) 70 80 MAX19997A toc14 2LO - 2RF RESPONSE (dBc) PRF = -5dBm 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 2LO - 2RF RESPONSE (dBc) 80 MAX19997A toc10 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) INPUT P1dB (dBm) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer TC = -30°C 9 10 9 9 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 50 45 40 TC = -30°C, +25°C, +85°C 35 45 40 PLO = -3dBm, 0dBm, +3dBm 2400 2600 2800 RF FREQUENCY (MHz) 3000 MAX19997A toc21 55 50 45 40 VCC = 4.75V, 5.0V, 5.25V 35 30 30 2200 2200 2400 2600 2800 RF FREQUENCY (MHz) 2200 3000 2400 2600 2800 RF FREQUENCY (MHz) 3000 0 0 TC = -30°C -20 -30 TC = +25°C, +85°C -40 PLO = -3dBm, 0dBm, +3dBm -10 -20 -30 3350 2550 RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) TC = +85°C 30 20 TC = -30°C 2550 3350 40 PLO = -3dBm, 0dBm, +3dBm 30 20 2750 2950 3150 LO FREQUENCY (MHz) 3350 RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 40 VCC = 4.75V, 5.0V, 5.25V 30 20 TC = +25°C 10 10 10 2200 VCC = 4.75V, 5.0V, 5.25V -30 RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) RF-TO-IF ISOLATION (dB) MAX19997A toc25 40 2750 2950 3150 LO FREQUENCY (MHz) RF-TO-IF ISOLATION (dB) 2750 2950 3150 LO FREQUENCY (MHz) -20 -40 -40 2550 -10 MAX19997A toc27 -10 MAX19997A toc24 0 LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc23 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc22 LO LEAKAGE AT IF PORT (dBm) 50 60 35 30 RF-TO-IF ISOLATION (dB) MAX19997A toc20 55 MAX19997A toc26 CHANNEL ISOLATION (dB) 55 60 CHANNEL ISOLATION (dB) MAX19997A toc19 60 CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) CHANNEL ISOLATION (dB) CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 11 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) -30 -40 -50 -30 PLO = -3dBm, 0dBm, +3dBm -40 2520 2740 2960 3180 3400 -20 -30 VCC = 4.75V, 5.0V, 5.25V -40 -50 -50 2300 2300 2520 2740 2960 3180 2300 3400 2520 2740 2960 3180 3400 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) -30 -40 -50 PLO = -3dBm, 0dBm, +3dBm -30 -40 2520 2740 2960 LO FREQUENCY (MHz) 3180 3400 -20 VCC = 4.75V, 5.0V, 5.25V -30 -40 -50 -50 2300 MAX19997A toc33 -20 -10 2LO LEAKAGE AT RF PORT (dBm) TC = -30°C, +25°C, +85°C MAX19997A toc32 -20 -10 2LO LEAKAGE AT RF PORT (dBm) MAX19997A toc31 -10 12 -20 -10 MAX19997A toc30 -20 MAX19997A toc29 TC = -30°C, +25°C, +85°C -10 LO LEAKAGE AT RF PORT (dBm) MAX19997A toc28 LO LEAKAGE AT RF PORT (dBm) -10 LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT (dBm) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 2300 2520 2740 2960 LO FREQUENCY (MHz) 3180 3400 2300 2520 2740 2960 LO FREQUENCY (MHz) ______________________________________________________________________________________ 3180 3400 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, STANDARD RF BAND) 15 20 PLO = -3dBm, 0dBm, +3dBm 5 10 0 5 VCC = 4.75V, 5.0V, 5.25V 15 20 fLO = 2350MHz 10 15 20 25 25 MAX19997A toc36 fLO = 2600MHz IF PORT RETURN LOSS (dB) 10 25 fLO = 2600MHz 30 30 3000 30 50 140 230 320 500 410 50 140 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY (LO > RF, STANDARD RF BAND) 0 PLO = +3dBm 10 15 PLO = 0dBm PLO = -3dBm 20 400 VCC = 5.25V 390 320 410 500 380 370 VCC = 5.0V VCC = 4.75V 360 25 230 IF FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) (LO > RF, STANDARD RF BAND) SUPPLY CURRENT (mA) 5 fLO = 2950MHz MAX19997A toc38 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc37 2200 LO PORT RETURN LOSS (dB) RF PORT RETURN LOSS (dB) 5 0 IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, STANDARD RF BAND) MAX19997A toc35 fIF = 350MHz IF PORT RETURN LOSS (dB) 0 MAX19997A toc34 RF PORT RETURN LOSS vs. RF FREQUENCY (LO > RF, STANDARD RF BAND) 350 1900 2150 2400 2650 2900 LO FREQUENCY (MHz) 3150 3400 -35 -15 5 25 45 65 85 TEMPERATURE (°C) ______________________________________________________________________________________ 13 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) TC = +85°C PLO = -3dBm, 0dBm, +3dBm 7 TC = +25°C 1900 2000 2100 2200 1900 2000 2100 2200 1900 2000 2100 2200 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) INPUT IP3 vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) INPUT IP3 vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) PRF = -5dBm/TONE TC = +25°C 24 23 24 PRF = -5dBm/TONE 25 2100 2200 VCC = 5.0V VCC = 4.75V 22 22 2000 24 PLO = -3dBm, 0dBm, +3dBm TC = -30°C 1900 VCC = 5.25V 23 23 22 2300 1800 1900 2000 2100 2200 1800 2300 1900 2000 2100 2200 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) NOISE FIGURE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) NOISE FIGURE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 12 NOISE FIGURE (dB) 12 11 10 9 TC = +25°C 13 12 NOISE FIGURE (dB) TC = +85°C MAX19997A toc46 13 MAX19997A toc45 13 2300 26 INPUT IP3 (dBm) 25 INPUT IP3 (dBm) TC = +85°C 25 26 MAX19997A toc43 PRF = -5dBm/TONE 8 MAX19997A toc41 1800 2300 RF FREQUENCY (MHz) 26 1800 VCC = 4.75V, 5.0V, 5.25V 6 1800 2300 MAX19997A toc42 1800 8 7 6 6 INPUT IP3 (dBm) 8 9 11 10 9 PLO = -3dBm, 0dBm, +3dBm 8 2300 MAX19997A toc47 7 9 MAX19997A toc44 8 10 CONVERSION GAIN (dB) 10 CONVERSION GAIN (dB) CONVERSION GAIN (dB) 9 11 MAX19997A toc40 TC = -30°C 10 11 MAX19997A toc39 11 CONVERSION GAIN vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) CONVERSION GAIN vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) CONVERSION GAIN vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) NOISE FIGURE (dB) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 11 10 9 VCC = 4.75V, 5.0V, 5.25V 8 TC = -30°C 7 7 1800 1900 2000 2100 RF FREQUENCY (MHz) 14 2200 2300 7 1800 1900 2000 2100 RF FREQUENCY (MHz) 2200 2300 1800 1900 2000 2100 RF FREQUENCY (MHz) ______________________________________________________________________________________ 2200 2300 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer TC = +25°C 50 TC = -30°C 50 PLO = -3dBm, 0dBm, +3dBm PRF = -5dBm 1800 1900 2000 2100 2200 60 50 VCC = 4.75V, 5.0V, 5.25V 40 1800 2300 MAX19997A toc50 70 40 40 1900 2000 2100 2200 2300 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz) 3LO - 3RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 3LO - 3RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 3LO - 3RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) TC = -30°C 75 65 PRF = -5dBm 85 75 65 PLO = -3dBm, 0dBm, +3dBm 95 PRF = -5dBm 3LO - 3RF RESPONSE (dBc) 85 95 3LO - 3RF RESPONSE (dBc) PRF = -5dBm 85 MAX19997A toc53 RF FREQUENCY (MHz) MAX19997A toc51 RF FREQUENCY (MHz) 95 3LO - 3RF RESPONSE (dBc) 60 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 2LO - 2RF RESPONSE (dBc) 60 PRF = -5dBm MAX19997A toc52 2LO - 2RF RESPONSE (dBc) TC = +85°C 70 2LO - 2RF RESPONSE (dBc) PRF = -5dBm MAX19997A toc48 70 MAX19997A toc49 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 2LO - 2RF RESPONSE vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 75 65 VCC = 4.75V, 5.0V, 5.25V TC = +25°C, +85°C 1900 2000 2100 2200 2300 1800 1900 2000 2100 2200 1900 2000 2100 2200 RF FREQUENCY (MHz) RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) INPUT P1dB vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) INPUT P1dB vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 12 10 PLO = -3dBm, 0dBm, +3dBm 11 10 TC = -30°C 2100 RF FREQUENCY (MHz) 2200 2300 11 10 VCC = 4.75V 9 2000 VCC = 5.25V VCC = 5.0V TC = +25°C 9 1900 12 INPUT P1dB (dBm) INPUT P1dB (dBm) 11 13 MAX19997A toc55 13 MAX19997A toc54 TC = +85°C 12 1800 1800 2300 RF FREQUENCY (MHz) 13 INPUT P1dB (dBm) 55 55 1800 MAX19997A toc56 55 2300 9 1800 1900 2000 2100 RF FREQUENCY (MHz) 2200 2300 1800 1900 2000 2100 2200 2300 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) 50 45 40 TC = -30°C, +25°C, +85°C 45 40 PLO = -3dBm, 0dBm, +3dBm 1800 1900 2000 2100 2200 50 45 40 VCC = 4.75V, 5.0V, 5.25V 35 30 1800 2300 MAX19997A toc59 55 30 30 1900 2000 2100 2200 2300 1800 1900 2000 2100 2200 2300 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) 0 0 0 -10 -20 TC = -30°C, +25°C, +85°C -30 -10 -20 PLO = -3dBm, 0dBm, +3dBm -30 2150 2250 2350 2450 2550 2650 MAX19997A toc62 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) LO LEAKAGE AT IF PORT (dBm) RF FREQUENCY (MHz) MAX19997A toc61 RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT (dBm) RF FREQUENCY (MHz) MAX19997A toc60 -10 -20 VCC = 4.75V, 5.0V, 5.25V -30 2150 2250 2350 2450 2550 2650 2150 2250 2350 2450 2550 2650 LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) RF-TO-IF ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) TC = +85°C 20 TC = +25°C 30 RF-TO-IF ISOLATION (dB) MAX19997A toc63 30 PLO = -3dBm, 0dBm, +3dBm 20 10 1900 VCC = 4.75V, 5.0V, 5.25V 20 TC = -30°C 10 1800 30 MAX19997A toc65 LO FREQUENCY (MHz) RF-TO-IF ISOLATION (dB) LO LEAKAGE AT IF PORT (dBm) 50 60 35 35 16 MAX19997A toc58 55 MAX19997A toc64 CHANNEL ISOLATION (dB) 55 60 CHANNEL ISOLATION (dB) MAX19997A toc57 60 CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) CHANNEL ISOLATION (dB) CHANNEL ISOLATION vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) RF-TO-IF ISOLATION (dB) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 2000 2100 2200 RF FREQUENCY (MHz) 2300 10 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) 2300 1800 1900 2000 2100 2200 RF FREQUENCY (MHz) ______________________________________________________________________________________ 2300 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) TC = -30°C, +25°C, +85°C -40 -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 -50 2740 2960 3180 LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) -20 TC = -30°C, +25°C, +85°C -30 -40 -50 2520 2740 2960 3180 LO FREQUENCY (MHz) -10 -20 PLO = -3dBm, 0dBm, +3dBm -30 -40 -50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400 MAX19997A toc68 -30 VCC = 4.75V, 5.0V, 5.25V -40 2300 3400 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) 2LO LEAKAGE AT RF PORT (dBm) MAX19997A toc69 -10 -20 -50 2300 3400 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) -10 2LO LEAKAGE AT RF PORT (dBm) 2520 MAX19997A toc70 2300 2LO LEAKAGE AT RF PORT (dBm) -20 -10 MAX19997A toc71 -30 MAX19997A toc67 -20 -10 LO LEAKAGE AT RF PORT (dBm) MAX19997A toc66 LO LEAKAGE AT RF PORT (dBm) -10 LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) -20 VCC = 4.75V, 5.0V, 5.25V -30 -40 -50 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) 3400 2300 2520 2740 2960 3180 LO FREQUENCY (MHz) ______________________________________________________________________________________ 3400 17 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) 10 15 20 PLO = -3dBm, 0dBm, +3dBm 5 VCC = 4.75V, 5.0V, 5.25V 10 15 20 0 MAX19997A toc74 fLO = 2600MHz IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, EXTENDED RF BAND) 5 IF PORT RETURN LOSS (dB) 5 0 MAX19997A toc73 fIF = 350MHz IF PORT RETURN LOSS vs. IF FREQUENCY (LO > RF, EXTENDED RF BAND) IF PORT RETURN LOSS (dB) 0 MAX19997A toc72 RF PORT RETURN LOSS vs. RF FREQUENCY (LO > RF, EXTENDED RF BAND) RF PORT RETURN LOSS (dB) fLO = 2350MHz 10 15 20 25 25 25 30 30 30 fLO = 2600MHz fLO = 2950MHz 1900 2000 2100 2200 RF FREQUENCY (MHz) 2300 50 140 230 320 410 IF FREQUENCY (MHz) 15 PLO = 0dBm 230 320 410 IF FREQUENCY (MHz) 380 370 VCC = 5.0V VCC = 4.75V 360 20 350 25 1900 18 VCC = 5.25V 390 SUPPLY CURRENT (mA) 10 PLO = -3dBm 400 MAX19997A toc75 PLO = +3dBm 5 140 SUPPLY CURRENT vs. TEMPERATURE (TC) (LO > RF, EXTENDED RF BAND) LO PORT RETURN LOSS vs. LO FREQUENCY (LO > RF, EXTENDED RF BAND) 0 50 500 MAX19997A toc76 1800 LO PORT RETURN LOSS (dB) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 2150 2400 2650 2900 LO FREQUENCY (MHz) 3150 3400 -35 -15 5 25 45 TEMPERATURE (°C) 65 85 ______________________________________________________________________________________ 500 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 9 8 TC = +25°C 7 10 CONVERSION GAIN (dB) 10 CONVERSION GAIN (dB) 10 11 MAX19997A toc78 TC = -30°C CONVERSION GAIN (dB) 11 MAX19997A toc77 11 CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 9 8 PLO = -3dBm, 0dBm, +3dBm MAX19997A toc79 CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 7 9 8 VCC = 4.75V, 5.0V, 5.25V 7 TC = +85°C 6 2400 2600 2800 RF FREQUENCY (MHz) 6 2200 3000 TC = +25°C 24 23 26 25 PLO = -3dBm, 0dBm, +3dBm 24 24 23 23 VCC = 4.75V, 5.0V, 5.25V 22 22 22 2200 3000 10 9 TC = +25°C 8 11 10 9 PLO = -3dBm, 0dBm, +3dBm 8 TC = -30°C 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 12 3000 11 10 9 VCC = 4.75V, 5.0V, 5.25V 8 7 7 7 13 NOISE FIGURE (dB) 11 2400 2600 2800 RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) MAX19997A toc84 12 NOISE FIGURE (dB) NOISE FIGURE (dB) 13 MAX19997A toc83 TC = +85°C 12 2200 3000 NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 13 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc85 2400 2600 2800 RF FREQUENCY (MHz) 3000 PRF = -5dBm/TONE TC = -30°C 2200 2400 2600 2800 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) PRF = -5dBm/TONE 25 INPUT IP3 (dBm) INPUT IP3 (dBm) 2200 INPUT IP3 (dBm) TC = +85°C 26 MAX19997A toc80 PRF = -5dBm/TONE 25 3000 INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 26 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc81 2200 MAX19997A toc82 6 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 19 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) PLO = 0dBm 70 PLO = +3dBm 60 80 2RF-2LO RESPONSE (dBc) 60 PRF = -5dBm 2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) MAX19997A toc87 2RF-2LO RESPONSE (dBc) 70 80 2RF-2LO RESPONSE (dBc) PRF = -5dBm TC = +85°C MAX19997A toc86 80 2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) PRF = -5dBm 70 MAX19997A toc88 2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) VCC = 4.75V, 5.0V, 5.25V 60 TC = -30°C PLO = -3dBm TC = +25°C 50 50 2200 75 65 95 3RF-3LO RESPONSE (dBc) 85 MAX19997A toc89 PRF = -5dBm 85 65 95 PLO = -3dBm, 0dBm, +3dBm 55 55 2200 2400 2600 2800 RF FREQUENCY (MHz) 2400 2600 2800 RF FREQUENCY (MHz) 13 MAX19997A toc92 PLO = -3dBm, 0dBm, +3dBm 12 INPUT P1dB (dBm) 11 65 VCC = 4.75V, 5.0V, 5.25V 2200 11 3000 VCC = 5.25V 12 VCC = 5.0V 11 10 VCC = 4.75V 9 2400 2600 2800 RF FREQUENCY (MHz) 2400 2600 2800 RF FREQUENCY (MHz) 13 TC = +25°C 9 2200 75 INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 10 10 TC = -30°C 85 3000 INPUT P1dB (dBm) TC = +85°C 12 PRF = -5dBm INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 13 3000 55 2200 3000 2400 2600 2800 RF FREQUENCY (MHz) 3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 75 TC = -30°C, +25°C, +85°C 20 2200 MAX19997A toc93 3RF-3LO RESPONSE (dBc) PRF = -5dBm 3000 3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 95 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc91 3000 3RF-3LO RESPONSE (dBc) 2400 2600 2800 RF FREQUENCY (MHz) MAX19997A toc90 2200 MAX19997A toc94 50 INPUT P1dB (dBm) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 3000 9 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 45 40 TC = -30°C, +25°C, +85°C 35 45 40 PLO = -3dBm, 0dBm, +3dBm 2400 2600 2800 RF FREQUENCY (MHz) 40 VCC = 4.75V, 5.0V, 5.25V 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 0 TC = -30°C, +25°C, +85°C -20 -10 PLO = -3dBm, 0dBm, +3dBm -20 1850 2650 TC = +25°C 20 PLO = -3dBm, 0dBm, +3dBm 2050 2250 2450 LO FREQUENCY (MHz) 2650 RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 30 RF-TO-IF ISOLATION (dB) 20 30 RF-TO-IF ISOLATION (dB) MAX19997A toc101 TC = +85°C 1850 2650 RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 30 2050 2250 2450 LO FREQUENCY (MHz) MAX19997A toc102 2050 2250 2450 LO FREQUENCY (MHz) VCC = 4.75V, 5.0V, 5.25V -20 -30 -30 1850 -10 MAX19997A toc103 -10 MAX19997A toc100 0 LO LEAKAGE AT IF PORT (dBm) 0 MAX19997A toc99 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT IF PORT (dBm) LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) MAX19997A toc98 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) -30 RF-TO-IF ISOLATION (dB) 45 30 2200 3000 50 35 30 2200 MAX19997A toc97 50 55 35 30 LO LEAKAGE AT IF PORT (dBm) MAX19997A toc96 50 55 CHANNEL ISOLATION (dB) MAX19997A toc95 CHANNEL ISOLATION (dB) 55 CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) CHANNEL ISOLATION (dB) CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 20 VCC = 4.75V, 5.0V, 5.25V TC = -30°C 10 10 10 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 21 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) TC = -30°C, +25°C, +85°C -40 PLO = -3dBm, 0dBm, +3dBm 2300 2500 2700 LO FREQUENCY (MHz) 1900 2900 -30 -40 TC = -30°C, +25°C, +85°C -10 2LO LEAKAGE AT RF PORT (dBm) MAX19997A toc107 -20 2300 2500 2700 LO FREQUENCY (MHz) -20 -30 PLO = -3dBm, 0dBm, +3dBm -40 -50 -50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900 MAX19997A toc106 -40 VCC = 4.75V, 5.0V, 5.25V 1900 2900 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) -10 2100 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) -10 2LO LEAKAGE AT RF PORT (dBm) 2100 MAX19997A toc108 1900 -30 -50 -50 -50 22 -30 -20 MAX19997A toc109 -40 -20 -10 LO LEAKAGE AT RF PORT (dBm) -30 MAX19997A toc105 -20 -10 LO LEAKAGE AT RF PORT (dBm) MAX19997A toc104 LO LEAKAGE AT RF PORT (dBm) -10 LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT (dBm) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer -20 -30 VCC = 4.75V, 5.0V, 5.25V -40 -50 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) 2900 1900 2100 2300 2500 2700 LO FREQUENCY (MHz) ______________________________________________________________________________________ 2900 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 20 PLO = -3dBm, 0dBm, +3dBm 25 VCC = 4.75V, 5.0V, 5.25V 10 15 20 5 2400 2600 2800 RF FREQUENCY (MHz) 3000 50 140 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) PLO = +3dBm 10 15 PLO = -3dBm 20 fLO = 1850MHz PLO = 0dBm 20 400 VCC = 5.25V 390 140 230 320 410 IF FREQUENCY (MHz) 500 380 370 VCC = 4.75V 360 25 50 500 SUPPLY CURRENT vs. TEMPERATURE (TC) (RF > LO, STANDARD RF BAND) SUPPLY CURRENT (mA) MAX19997A toc113 0 5 fLO = 2650MHz 15 30 30 2200 10 25 25 30 fLO = 2250MHz MAX19997A toc112 5 0 MAX19997A toc114 15 fLO = 2250MHz IF PORT RETURN LOSS (dB) 10 LO PORT RETURN LOSS (dB) RF PORT RETURN LOSS (dB) 5 0 MAX19997A toc111 fIF = 350MHz IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND) IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND) IF PORT RETURN LOSS (dB) 0 MAX19997A toc110 RF PORT RETURN LOSS vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) VCC = 5.0V 350 1900 2150 2400 2650 2900 LO FREQUENCY (MHz) 3150 3400 -35 -15 5 25 45 TEMPERATURE (°C) 65 85 ______________________________________________________________________________________ 23 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) 8 7 TC = +85°C 6 PLO = -3dBm, 0dBm, +3dBm 7 2400 2600 2800 3000 MAX19997A toc117 5 2200 2400 2600 2800 2200 3000 2400 2600 2800 INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) INPUT IP3 vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 21 PLO = -3dBm, 0dBm, +3dBm 20 19 PRF = -5dBm/TONE 21 17 2600 2800 3000 19 VCC = 3.0V, 3.3V, 3.6V 17 17 2400 20 18 18 TC = -30°C 2200 2400 2600 2800 2200 3000 2400 2600 2800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) RF FREQUENCY (MHz) NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) NOISE FIGURE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 12 NOISE FIGURE (dB) 11 10 9 TC = +25°C VCC = 3.3V 11 10 9 PLO = -3dBm, 0dBm, +3dBm 8 TC = -30°C 7 2600 2800 RF FREQUENCY (MHz) 3000 12 11 10 9 VCC = 3.0V, 3.3V, 3.6V 8 7 7 2400 13 3000 MAX19997A toc123 TC = +85°C 12 13 NOISE FIGURE (dB) VCC = 3.3V MAX19997A toc121 13 3000 22 INPUT IP3 (dBm) 19 PRF = -5dBm/TONE MAX19997A toc119 VCC = 3.3V INPUT IP3 (dBm) 20 18 22 MAX19997A toc118 PRF = -5dBm/TONE TC = +25°C 2200 VCC = 3.0V, 3.3V, 3.6V RF FREQUENCY (MHz) TC = +85°C 8 7 RF FREQUENCY (MHz) VCC = 3.3V 2200 8 RF FREQUENCY (MHz) 22 21 9 6 5 2200 INPUT IP3 (dBm) 8 6 5 24 9 10 MAX19997A toc120 9 10 11 CONVERSION GAIN (dB) TC = +25°C VCC = 3.3V MAX19997A toc122 CONVERSION GAIN (dB) 10 11 MAX19997A toc116 VCC = 3.3V TC = -30°C CONVERSION GAIN (dB) 11 CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) MAX19997A toc115 CONVERSION GAIN vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) NOISE FIGURE (dB) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 60 TC = +85°C TC = +25°C 70 PLO = 0dBm 60 2400 2600 2800 3000 VCC = 3.3V 60 VCC = 3.0V 2400 2200 2600 2800 2200 3000 2400 2600 2800 3000 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 3RF-3LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 75 65 PRF = -5dBm VCC = 3.3V 55 85 PLO = -3dBm, 0dBm, +3dBm 75 65 95 3RF-3LO RESPONSE (dBc) 85 95 3RF-3LO RESPONSE (dBc) PRF = -5dBm VCC = 3.3V MAX19997A toc127 RF FREQUENCY (MHz) 95 MAX19997A toc126 70 50 50 2200 VCC = 3.6V 80 PLO = -3dBm 50 3RF-3LO RESPONSE (dBc) 80 PRF = -5dBm PRF = -5dBm 85 MAX19997A toc129 70 PLO = +3dBm 90 2RF-2LO RESPONSE (dBc) 80 PRF = -5dBm VCC = 3.3V MAX19997A toc128 2RF-2LO RESPONSE (dBc) TC = -30°C 90 MAX19997A toc125 PRF = -5dBm VCC = 3.3V 2RF-2LO RESPONSE (dBc) 90 2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) MAX19997A toc124 2RF-2LO RESPONSE vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) VCC = 3.0V, 3.3V, 3.6V 75 65 55 55 TC = -30°C, +25°C, +85°C 2400 2600 2800 3000 2200 2600 2800 2400 2600 2800 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) INPUT P1dB vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) VCC = 3.3V 8 7 TC = +25°C TC = -30°C PLO = -3dBm, 0dBm, +3dBm 8 7 2600 2800 RF FREQUENCY (MHz) 3000 7 VCC = 3.0V 5 5 2400 VCC = 3.6V 3000 8 6 6 5 VCC = 3.3V 9 INPUT P1dB (dBm) INPUT P1dB (dBm) 9 10 MAX19997A toc131 10 MAX19997A toc130 TC = +85°C 9 2200 2200 3000 RF FREQUENCY (MHz) VCC = 3.3V 6 2400 RF FREQUENCY (MHz) 10 INPUT P1dB (dBm) 45 45 2200 MAX19997A toc132 45 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 25 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) 45 40 TC = -30°C, +25°C, +85°C 35 45 40 PLO = -3dBm, 0dBm, +3dBm 35 2400 2600 2800 3000 50 45 40 VCC = 3.0V, 3.3V, 3.6V 35 30 30 2200 2200 2400 2600 2800 2200 3000 2400 2600 2800 3000 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) 0 0 0 VCC = 3.3V TC = -30°C -10 -20 TC = +85°C TC = +25°C -30 VCC = 3.3V -10 -20 PLO = -3dBm, 0dBm, +3dBm 2050 2250 2450 2650 -10 -20 VCC = 3.0V, 3.3V, 3.6V -30 -30 1850 MAX19997A toc138 LO LEAKAGE AT IF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT IF PORT (dBm) RF FREQUENCY (MHz) MAX19997A toc137 RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT (dBm) RF FREQUENCY (MHz) MAX19997A toc136 1850 2050 2250 2450 1850 2650 2050 2250 2450 2650 LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) RF-TO-IF ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) 25 20 TC = +25°C 15 TC = -30°C 10 30 VCC = 3.3V 25 20 PLO = -3dBm, 0dBm, +3dBm 15 2400 2600 2800 RF FREQUENCY (MHz) 3000 25 VCC = 3.0V, 3.3V, 3.6V 20 15 10 10 2200 30 MAX19997A toc141 VCC = 3.3V TC = +85°C RF-TO-IF ISOLATION (dB) 30 MAX19997A toc139 LO FREQUENCY (MHz) RF-TO-IF ISOLATION (dB) LO LEAKAGE AT IF PORT (dBm) 50 55 MAX19997A toc135 VCC = 3.3V 30 26 MAX19997A toc134 50 55 MAX19997A toc140 CHANNEL ISOLATION (dB) VCC = 3.3V CHANNEL ISOLATION (dB) MAX19997A toc133 55 CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) CHANNEL ISOLATION (dB) CHANNEL ISOLATION vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) RF-TO-IF ISOLATION (dB) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) ______________________________________________________________________________________ 3000 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer TC = -30°C, +25°C, +85°C -30 -40 -20 -30 -40 -10 MAX19997A toc144 VCC = 3.3V LO LEAKAGE AT RF PORT (dBm) -20 -10 MAX19997A toc143 VCC = 3.3V LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) LO LEAKAGE AT RF PORT (dBm) LO LEAKAGE AT RF PORT (dBm) -10 MAX19997A toc142 LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) -20 -30 -40 PLO = -3dBm, 0dBm, +3dBm -50 -50 -50 1900 2100 2300 2500 2700 1900 2900 2100 2300 2500 2700 1900 2900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) -30 -40 TC = -30°C, +25°C, +85°C -50 -20 -30 -40 PLO = -3dBm, 0dBm, +3dBm 2100 2300 2500 LO FREQUENCY (MHz) 2700 2900 -20 -30 -40 VCC = 3.0V, 3.3V, 3.6V -50 -50 1900 -10 MAX19997A toc147 VCC = 3.3V 2LO LEAKAGE AT RF PORT (dBm) -20 -10 2LO LEAKAGE AT RF PORT (dBm) VCC = 3.3V MAX19997A toc146 LO FREQUENCY (MHz) MAX19997A toc145 LO FREQUENCY (MHz) -10 2LO LEAKAGE AT RF PORT (dBm) VCC = 3.0V, 3.3V, 3.6V 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700 2900 1900 2100 2300 2500 2700 2900 LO FREQUENCY (MHz) ______________________________________________________________________________________ 27 MAX19997A Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm, PRF = -5dBm, TC = +25°C, unless otherwise noted.) 10 15 20 fLO = 2250MHz 10 20 VCC = 3.0V, 3.3V, 3.6V 30 0 VCC = 3.3V fLO = 2650MHz 10 MAX19997A toc150 PLO = -3dBm, 0dBm, +3dBm 0 IF PORT RETURN LOSS (dB) 5 fIF = 350MHz MAX19997A toc149 VCC = 3.3V IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND) IF PORT RETURN LOSS vs. IF FREQUENCY (RF > LO, STANDARD RF BAND) IF PORT RETURN LOSS (dB) 0 MAX19997A toc148 RF PORT RETURN LOSS vs. RF FREQUENCY (RF > LO, STANDARD RF BAND) RF PORT RETURN LOSS (dB) 20 fLO = 1850MHz 30 25 fLO = 2250MHz 30 40 40 2400 2600 2800 3000 50 140 230 RF FREQUENCY (MHz) 320 50 500 140 VCC = 3.3V PLO = +3dBm 5 10 15 PLO = -3dBm PLO = 0dBm 300 VCC = 3.6V 290 280 VCC = 3.3V 270 260 20 230 VCC = 3.0V 250 25 1900 2150 2400 2650 2900 LO FREQUENCY (MHz) 3150 3400 -35 320 IF FREQUENCY (MHz) SUPPLY CURRENT vs. TEMPERATURE (TC) (RF > LO, STANDARD RF BAND) SUPPLY CURRENT (mA) 0 MAX19997A toc151 LO PORT RETURN LOSS vs. LO FREQUENCY (RF > LO, STANDARD RF BAND) 28 410 IF FREQUENCY (MHz) MAX19997A toc152 2200 LO PORT RETURN LOSS (dB) MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer -15 5 25 45 65 85 TEMPERATURE (°C) ______________________________________________________________________________________ 410 500 Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer PIN NAME FUNCTION Main Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking capacitor. 1 RFMAIN 2, 5, 6, 8, 12, 15, 18, 23, 28, 31, 34 GND Ground. Not internally connected. Ground these pins or leave unconnected. 3, 7, 20, 22, 24–27 GND Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. 4, 10, 16, 21, 30, 36 VCC Power Supply. Connect bypass capacitors as close as possible to the pin (see the Typical Application Circuit). 9 RFDIV Diversity Channel RF Input. Internal matched to 50Ω. Requires a DC-blocking capacitor. 11 IFD_SET IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity IF amplifier. 13, 14 IFD+, IFD- Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). 17 LO_ADJ_D LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the diversity LO amplifier. 19 LO 29 LO_ADJ_M LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main LO amplifier. 32, 33 IFM-, IFM+ Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to VCC (see the Typical Application Circuit). 35 IFM_SET IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias current for the main IF amplifier. — EP Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the noted RF performance. Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DCblocking capacitor. Detailed Description The MAX19997A dual, downconversion mixer provides high linearity and low noise figure for a multitude of 1800MHz to 2900MHz base-station applications. The device fully supports both low-side and high-side LO injection architectures for the 2300MHz to 2900MHz WiMAX, LTE, WCS, and MMDS bands. WCDMA, cdma2000, and PCS1900 applications utilizing highside LO injection architectures are also supported by adding one additional tuning element (a shunt inductor) on each RF port. The MAX19997A operates over an LO range of 1950MHz to 3400MHz and an IF range of 50MHz to 550MHz. Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX19997A’s input to a range of -3dBm to +3dBm. The IF port incorporates a differential output, which is ideal for providing enhanced 2RF - 2LO (low-side injection) and 2LO - 2RF (high-side injection) performance. RF Input and Balun The MAX19997A’s two RF inputs (RFMAIN and RFDIV) provide a 50Ω match when combined with a series DCblocking capacitor. This DC-blocking capacitor is required as the input is internally DC shorted to ground through each channel’s on-chip balun. When using a 22pF DC-blocking capacitor, the RF port input return loss is typically 15dB over the RF frequency range of 2600MHz to 2900MHz. ______________________________________________________________________________________ 29 MAX19997A Pin Description MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer The MAX19997A’s RF range can be further extended down to 1800MHz by adding one additional tuning element on each RF port. For 1950MHz RF applications, connect a 12nH shunt inductor from pins 1 and 9 to ground. Also, change the value of the DC-blocking capacitors (C1 and C8) from 22pF to 1pF. See the Typical Application Circuit for details. LO Input, Buffer, and Balun A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO input to the IF outputs are integrated on-chip. Applications Information Input and Output Matching The RF and LO inputs are internally matched to 50Ω. No matching components are required for RF frequencies ranging from 2400MHz to 2900MHz. RF and LO inputs require only DC-blocking capacitors for interfacing. If desired, the RF band can be extended down to 1800MHz by adding two external matching components on each RF port. See the Typical Application Circuit and Table 2 for details. The IF output impedance is 200Ω (differential). For evaluation, an external low-loss 4:1 (impedance ratio) balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit). High-Linearity Mixer Reduced-Power Mode The core of the MAX19997A is a pair of doublebalanced, high-performance passive mixers. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. When combined with the integrated IF amplifiers, the cascaded IIP3, 2RF-2LO rejection, and NF performance are typically +24dBm IIP3, -67dBc, and 10.3dB, respectively for low-side LO injection architectures covering the 2300MHz to 2900MHz band. Cascaded performance levels are comparable for high-side LO injection architectures; IIP3, 2LO - 2RF rejection, and NF levels are typically rated at +24dBm IIP3, -73dBc, and 10.4dB, respectively over the same 2300MHz to 2900MHz band. Each channel of the MAX19997A has two pins (LO_ADJ_ _, IF_ _SET) that allow external resistors to set the internal bias currents. Nominal values for these resistors are shown in Tables 1 and 2. Larger-value resistors can be used to reduce power dissipation at the expense of some performance loss. If ±1% resistors are not readily available, ±5% resistors may be substituted. Significant reductions in power consumption can be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 53%. See the +3.3V Supply, Low-Side LO Injection AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs. Differential IF Output Amplifier The MAX19997A mixers have an IF frequency range of 50MHz to 550MHz. The differential, open-collector IF output ports require external pullup inductors to VCC. These pullup inductors are also used to resonate out the parasitic shunt capacitance of the IC, PCB components, and PCB to provide an optimized IF match at the frequency of interest. Note that differential IF outputs are ideal for providing enhanced 2RF - 2LO and 2LO - 2RF rejection performance. Single-ended IF applications require a 4:1 balun to transform the 200Ω differential output impedance to a 50Ω single-ended output. After the balun, voltage standing-wave ratio (VSWR) is typically 1.2:1. 30 Layout Considerations A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX19997A evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. ______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX19997A’s 36-pin thin QFN-EP package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX19997A is mounted be designed to conduct heat from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. Table 1. Standard RF Band Application Circuit Component Values (Optimized for Frequencies Ranging from 2400MHz to 2900MHz) DESIGNATION QTY C1, C8 2 22pF microwave capacitors (0402) Murata Electronics North America, Inc. C14 1 1.5pF microwave capacitor (0402) Murata Electronics North America, Inc. C4, C9, C13, C15, C17, C18 6 0.01µF microwave capacitors (0402) Murata Electronics North America, Inc. C10, C11, C12, C19, C20, C21 6 82pF microwave capacitors (0603) Murata Electronics North America, Inc. L1, L2, L3, L4 4 120nH wire-wound high-Q inductors* (0805) Coilcraft, Inc. L7, L8 0 Not used — 750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. Digi-Key Corp. 1.1kΩ ±1% resistors (0402). Use for VCC = +3.3V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. Digi-Key Corp. 698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. Digi-Key Corp. 845Ω ±1% resistors (0402). Use for VCC = +3.3V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. Digi-Key Corp. R1, R4 R2, R5 DESCRIPTION COMPONENT SUPPLIER 2 2 R3, R6 2 0Ω resistors (1206). These resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. Full P1dB performance achieved using 0Ω. Digi-Key Corp. T1, T2 2 4:1 IF baluns (TC4-1W-17+) Mini-Circuits U1 1 MAX19997A IC (36 TQFN-EP) Maxim Integrated Products, Inc. *Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details. ______________________________________________________________________________________ 31 MAX19997A Power-Supply Bypassing Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit. MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer Table 2. Extended RF Band Application Circuit Component Values (Optimized for 1950MHz Operation) DESIGNATION QTY DESCRIPTION COMPONENT SUPPLIER C1, C8 2 1pF microwave capacitors (0402) Murata Electronics North America, Inc. C14 1 1.5pF microwave capacitor (0402) Murata Electronics North America, Inc. C4, C9, C13, C15, C17, C18 6 0.01µF microwave capacitors (0402) Murata Electronics North America, Inc. C10, C11, C12, C19, C20, C21 6 82pF microwave capacitors (0603) Murata Electronics North America, Inc. L1, L2, L3, L4 4 120nH wire-wound high-Q inductors* (0805) Coilcraft, Inc. L7, L8 2 12nH inductor (0402). Use to improve RF match from 1800MHz to 2400MHz. Connect L7 and L8 from pins 1 and 9, respectively, to ground. Coilcraft, Inc. R1, R4 2 750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. Digi-Key Corp. R2, R5 2 698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger values can be used to reduce power at the expense of some performance loss. See the Typical Operating Characteristics section. Digi-Key Corp. R3, R6 2 0Ω resistors (1206). These resistors can be increased in value to reduce power dissipation in the device, but reduces the compression point. Full P1dB performance achieved using 0Ω. Digi-Key Corp. T1, T2 2 4:1 IF balun (TC4-1W-17+) Mini-Circuits U1 1 MAX19997A IC (36 TQFN-EP) Maxim Integrated Products, Inc. *Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details. 32 ______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer C19 T1 L1* VCC IF MAIN OUTPUT C21 R3 L2* 4:1 R1 VCC C20 VCC RF MAIN INPUT GND C17 28 29 30 VCC GND 31 IFM32 IFM+ 33 IFM_SET GND 34 36 L7** C1 35 VCC C18 LO_ADJ_M R2 + RFMAIN GND GND VCC VCC C4 GND GND GND GND RFDIV RF DIV INPUT 27 1 MAX19997A 2 26 3 25 4 24 5 23 6 22 21 7 EXPOSED PAD 8 20 9 19 GND GND GND GND GND GND VCC VCC C15 GND LO LO C14 18 17 GND VCC 16 15 GND 14 IFD- 13 IFD+ 12 GND R4 LO_ADJ_D C9 IFD_SET VCC VCC 10 L8** 11 C8 R5 VCC C13 C11 *USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz. CONTACT FACTORY FOR DETAILS. **CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO 2400MHz. SEE TABLE 2 FOR DETAILS. T2 L4* VCC R6 C12 IF DIV OUTPUT L3* 4:1 C10 ______________________________________________________________________________________ 33 MAX19997A Typical Application Circuit 28 GND 29 LO_ADJ_M 30 VCC 31 GND 32 IFM- 33 IFM+ 34 GND 36 VCC TOP VIEW 35 IFM_SET Pin Configuration/ Functional Block Diagram RFMAIN 1 MAX19997A 27 GND 26 GND GND 2 GND 3 25 GND VCC 4 24 GND GND 5 23 GND GND 6 22 GND GND 7 21 VCC 20 GND 19 LO 12 13 14 15 16 17 18 GND IFD+ IFD- GND VCC LO_ADJ_D GND 9 11 RFDIV IFD_SET 8 10 GND EXPOSED PAD Chip Information PROCESS: SiGe BiCMOS Package Information + VCC MAX19997A Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 36 Thin QFN-EP T3666+2 21-0141 90-0049 6mm x 6mm THIN QFN (EXPOSED PAD) EXPOSED PAD ON THE BOTTOM OF THE PACKAGE. 34 ______________________________________________________________________________________ Dual, SiGe High-Linearity, 1800MHz to 2900MHz Downconversion Mixer with LO Buffer REVISION NUMBER REVISION DATE 0 10/08 Initial release 1 9/10 Minor style edits 2 2/11 Increased IF frequency range from 50MHz to 550MHz DESCRIPTION PAGES CHANGED — 2, 3, 4, 10, 15, 29, 30, 34 1, 3, 29, 30 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35 © 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX19997A Revision History