19-4679; Rev 0; 8/09 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Features The MAX2042 single, high-linearity upconversion/downconversion mixer provides +36dBm IIP3, 7.3dB noise figure, and 7.2dB conversion loss for 2000MHz to 3000MHz WCS, LTE, WiMAXK, and MMDS wireless infrastructure applications. With a wide LO frequency range of 1800MHz to 2800MHz, this particular mixer is ideal for low-side LO injection receiver and transmitter architectures. High-side LO injection is supported by the MAX2042A, which is pinpin and functionally compatible with the MAX2042. S 2000MHz to 3000MHz RF Frequency Range S 1800MHz to 2800MHz LO Frequency Range S 50MHz to 500MHz IF Frequency Range S 7.2dB Conversion Loss S 7.3dB Noise Figure S +36dBm Typical IIP3 S +23.4dBm Typical Input 1dB Compression Point S 70dBc Typical 2RF-2LO Spurious Rejection at PRF = -10dBm S Integrated LO Buffer S Integrated RF and LO Baluns for Single-Ended Inputs S Low -3dBm to +3dBm LO Drive S Pin Compatible with the MAX2042A 2000MHz to 3900MHz High-Side LO Injection Mixer S Pin Similar with the MAX2029/MAX2031 650MHz to 1000MHz Mixers, MAX2039/MAX2041 1700MHz to 3000MHz Mixers, and MAX2044/MAX2044A 3000MHz to 4000MHz Mixers S Single +5.0V or +3.3V Supply S External Current-Setting Resistor Provides Option for Operating Device in Reduced-Power/ReducedPerformance Mode Pin Configuration/ Functional Diagram 2.3GHz WCS Base Stations VCC 1 RF 2 GND 3 GND 4 GND + Applications GND TOP VIEW IF- The MAX2042 is available in a compact 20-pin thin QFN (5mm x 5mm) package with an exposed pad. Electrical performance is guaranteed over the extended -40NC to +85NC temperature range. IF+ The MAX2042 is pin compatible with the MAX2042A 2000MHz to 3900MHz mixer. The device is also pin similar with the MAX2029/MAX2031 650MHz to 1000MHz mixers, the MAX2039/MAX2041 1700MHz to 3000MHz mixers, and the MAX2044/MAX2044A 3000MHz to 4000MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB layout is used for multiple frequency bands. GND In addition to offering excellent linearity and noise performance, the MAX2042 also yields a high level of component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip baluns that allow for single-ended RF and LO inputs. The MAX2042 requires a nominal LO drive of 0dBm, and supply current is typically 138mA at VCC = +5.0V or 120mA at VCC = +3.3V. 20 19 18 17 16 15 GND 14 VCC 13 GND 12 GND 11 LO 2.5GHz WiMAX and LTE Base Stations 2.7GHz MMDS Base Stations MAX2042 Fixed Broadband Wireless Access TEMP RANGE PIN-PACKAGE -40NC to +85NC 20 Thin QFN-EP* MAX2042ETP+T -40NC to +85NC 20 Thin QFN-EP* +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. T = Tape and reel. 5 6 7 8 9 10 GND PART MAX2042ETP+ GND GND Ordering Information EP* VCC Military Systems LOBIAS Private Mobile Radios VCC Wireless Local Loop *EXPOSED PAD WiMAX is a trademark of WiMAX Forum. ________________________________________________________________ Maxim Integrated Products 1 For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX2042 General Description MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer ABSOLUTE MAXIMUM RATINGS VCC to GND...........................................................-0.3V to +5.5V IF+, IF-, LOBIAS to GND........................... -0.3V to (VCC + 0.3V) RF, LO Input Power........................................................ +20dBm RF, LO Current (RF and LO are DC shorted to GND through a balun).................................................50mA Continuous Power Dissipation (Note 1) ..............................5.0W BJA (Notes 2, 3)............................................................. +38NC/W BJC (Notes 1, 3)............................................................. +13NC/W Operating Case Temperature Range (Note 4)............................................................ -40NC to +85NC Junction Temperature......................................................+150NC Storage Temperature Range............................. -65NC to +150NC Lead Temperature (soldering, 10s).................................+300NC Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction temperature must not exceed +150NC. Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is known. The junction temperature must not exceed +150NC. Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. +5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN 4.75 TYP MAX UNITS 5.0 5.25 V 138 150 mA +3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS (Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values are at VCC = +3.3V, TC = +25NC, all parameters are production tested.) PARAMETER SYMBOL Supply Voltage VCC Supply Current ICC CONDITIONS MIN 3.0 TYP MAX UNITS 3.3 3.6 V 120 135 mA TYP MAX UNITS 2000 3000 MHz RECOMMENDED AC OPERATING CONDITIONS PARAMETER SYMBOL RF Frequency Range LO Frequency IF Frequency LO Drive fLO fIF PLO CONDITIONS Typical Application Circuit with C1 = 8.2pF, see Table 1 for details (Notes 5, 6) (Notes 5, 6) MIN 1800 2800 MHz Using M/A-Com MABAES0029 1:1 transformer as defined in the Typical Application Circuit, IF matching components affect the IF frequency range (Notes 5, 6) 50 500 MHz (Notes 5, 6) -3 +3 dBm 0 2 _______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss Loss Variation vs. Frequency SYMBOL LC DLC CONDITIONS fRF = 2300MHz to 2900MHz, TC = +25NC (Note 8) MIN TYP MAX UNITS 6.7 7.2 8.1 dB fRF = 2305MHz to 2360MHz 0.15 fRF = 2500MHz to 2570MHz 0.15 fRF = 2570MHz to 2620MHz 0.15 fRF = 2500MHz to 2690MHz 0.15 fRF = 2700MHz to 2900MHz 0.20 dB Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.0071 dB/NC Single Sideband Noise Figure NFSSB No blockers present 7.3 dB Noise Figure Temperature Coefficient TCNF fRF = 2300MHz to 2900MHz, single sideband, no blockers present, TC = -40NC to +85NC 0.019 dB/NC Noise Figure Under Blocking NFB +8dBm blocker tone applied to RF port, fRF = 2600MHz, fLO = 2300MHz, fBLOCKER = 2795MHz, PLO = 0dBm, VCC = 5.0V, TC = +25NC (Notes 5, 9) 20.8 Input 1dB Compression Point IP1dB Third-Order Input Intercept Point IIP3 TC = +25NC (Notes 5, 10) PRF1 = PRF2 = 0dBm/tone, PLO = 0dBm, TC = +25NC fRF = 2300MHz 22.5 23.4 fRF = 2600MHz 20.6 22.1 fRF = 2900MHz 17.6 20.7 fRF1 = 2300MHz, fRF2 = 2301MHz, fLO = 2000MHz (Note 5) 34 36 fRF1 = 2600MHz, fRF2 = 2601MHz, fLO = 2300MHz (Note 8) 31 34 fRF1 = 2900MHz, fRF2 = 2901MHz, fLO = 2600MHz (Note 5) 28 30 fRF = 2300MHz to 2900MHz, fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/ tone, TC = -40NC to +85NC IIP3 Variation with TC Q0.5 2RF - 2LO Spur Rejection 2x2 fSPUR = fLO + 150MHz (Note 5) PRF = -10dBm 64 70 PRF = 0dBm 54 60 3RF - 3LO Spur Rejection 3x3 fSPUR = fLO + 100MHz (Note 5) PRF = -10dBm 80 92 60 72 RF Input Return Loss RLRF LO Input Return Loss RLLO PRF = 0dBm LO on and IF terminated into a matched impedance RF and IF terminated into a matched impedance 25 dB dBm dBm dB dBc dBc 17 dB 15 dB _______________________________________________________________________________________ 3 MAX2042 +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz, fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER IF Output Impedance IF Output Return Loss SYMBOL CONDITIONS MIN TYP MAX UNITS ZIF Nominal differential impedance at the IC’s IF outputs 50 I RLIF RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit 18 dB 37 dB RF-to-IF Isolation PLO = +3dBm (Note 8) 30 LO Leakage at RF Port fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8) -28 2LO Leakage at RF Port PLO = +3dBm -36 LO Leakage at IF Port fLO = 2000MHz to 2800MHz, PLO = +3dBm (Note 8) -24.2 -22 dBm dBm -16 dBm +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss SYMBOL LC CONDITIONS MIN TYP MAX UNITS (Note 8) 7.2 dB fRF = 2300MHz to 2900MHz, any 100MHz band 0.2 dB Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL TC = -40NC to +85NC 0.008 dB/NC Single Sideband Noise Figure NFSSB No blockers present 7.5 dB Noise Figure Temperature Coefficient TCNF Single sideband, no blockers present, TC = -40NC to +85NC 0.019 dB/NC Input 1dB Compression Point IP1dB (Note 10) 20 dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone 31 dBm fRF1 = 2600MHz, fRF2 = 2601MHz, PRF1 = PRF2 = 0dBm/tone, TC = -40NC to +85NC Q0.25 dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC 2RF - 2LO Spur Rejection 2x2 3RF - 3LO Spur Rejection 3x3 PRF = -10dBm, fSPUR = fLO + 150MHz 72 PRF = 0dBm, fSPUR = fLO + 150MHz 62 PRF = -10dBm, fSPUR = fLO + 100MHz 87 PRF = 0dBm, fSPUR = fLO + 100MHz 67 4 _______________________________________________________________________________________ dBc dBc SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer (Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise noted.) (Note 7) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS RF Input Return Loss RLRF LO on and IF terminated into a matched impedance LO Input Return Loss RLLO RF and IF terminated into a matched impedance 12 dB IF Output Impedance ZIF Nominal differential impedance at the IC’s IF outputs 50 I RLIF RF terminated into 50I, LO driven by 50I source, IF transformed to 50I using external components shown in the Typical Application Circuit 18 dB IF Output Return Loss 15 dB Minimum RF-to-IF Isolation fRF = 2300MHz to 2900MHz, PLO = +3dBm 36 dB Maximum LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24.5 dBm Maximum 2LO Leakage at RF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -24 dBm Maximum LO Leakage at IF Port fLO = 1800MHz to 2800MHz, PLO = +3dBm -20 dBm +5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO, TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss SYMBOL LC Loss Variation vs. Frequency DLC Conversion Loss Temperature Coefficient TCCL Input 1dB Compression Point IP1dB Third-Order Input Intercept Point IIP3 IIP3 Variation with TC LO Q 2IF Spur Rejection 1x2 LO Q 3IF Spur Rejection 1x3 Output Noise Floor CONDITIONS MIN (Note 8) fRF = 2300MHz to 2960MHz, any 100MHz band TYP 6.8 MAX UNITS dB 0.2 dB TC = -40NC to +85NC 0.007 dB/NC (Note 10) 22.7 dBm 32.4 dBm Q0.5 dB fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = +25NC (Note 8) fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC LO - 2IF 30 70 LO + 2IF 67 LO - 3IF 82 LO + 3IF 77 POUT = 0dBm (Note 9) -163 dBc dBc dBm/Hz _______________________________________________________________________________________ 5 MAX2042 +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (DOWNCONVERTER OPERATION) (continued) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS (UPCONVERTER OPERATION) (Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise noted.) (Note 7) PARAMETER Small-Signal Conversion Loss SYMBOL CONDITIONS LC 0.15 dB 0.008 dB/NC 19 dBm 29.5 dBm Q0.75 dB TCCL TC = -40NC to +85NC Input 1dB Compression Point IP1dB (Note 10) 1x2 LO Q 3IF Spur Rejection 1x3 Output Noise Floor fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone fIF1 = 200MHz, fIF2 = 201MHz, PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz, PLO = 0dBm, TC = -40NC to +85NC LO Q 2IF Spur Rejection UNITS dB Conversion Loss Temperature Coefficient IIP3 Variation with TC MAX 6.8 DLC IIP3 TYP fRF = 2300MHz to 2900MHz, any 100MHz band Loss Variation vs. Frequency Third-Order Input Intercept Point MIN LO - 2IF 72 LO + 2IF 70 LO - 3IF 73 LO + 3IF 70 POUT = 0dBm (Note 9) -160 dBc dBc dBm/Hz Note 5: Not production tested. Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating Characteristics. Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit. Note 8: 100% production tested for functional performance. Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers. Note 10:Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source. 6 _______________________________________________________________________________________ SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +5.0V Downconverter Curves TC = -40NC 6 5 8 7 PLO = -3dBm, 0dBm, +3dBm 6 5 2400 2600 2800 3000 MAX2042 toc03 8 7 VCC = 4.75V, 5.0V, 5.25V 6 5 2000 2200 RF FREQUENCY (MHz) 2400 2600 2800 3000 2000 2200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE TC = -40NC 40 MAX2042 toc04 40 INPUT IP3 (dBm) 35 TC = +85NC 30 2600 2800 3000 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE 35 PLO = -3dBm, 0dBm, +3dBm 30 2400 RF FREQUENCY (MHz) 40 VCC = 5.25V INPUT IP3 (dBm) 2200 MAX2042 toc05 2000 INPUT IP3 (dBm) CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042 toc02 MAX2042 toc01 TC = +25NC CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85NC 8 CONVERSION LOSS vs. RF FREQUENCY 9 PRF = 0dBm/TONE MAX2042 toc06 CONVERSION LOSS vs. RF FREQUENCY 9 35 VCC = 4.75V VCC = 5.0V 30 TC = +25NC 25 2400 2600 2800 3000 25 2000 2200 RF FREQUENCY (MHz) 2RF-2LO RESPONSE vs. RF FREQUENCY 3000 65 TC = +25NC TC = -40NC 55 50 70 PLO = +3dBm 65 60 PLO = 0dBm PLO = -3dBm 50 2200 2400 2600 RF FREQUENCY (MHz) 2200 2800 3000 2400 2600 2800 3000 RF FREQUENCY (MHz) PRF = 0dBm 55 2000 2000 2RF-2LO RESPONSE vs. RF FREQUENCY 2RF-2LO RESPONSE (dBc) 2RF-2LO RESPONSE (dBc) 2800 75 MAX2042 toc07 PRF = 0dBm 70 60 2600 RF FREQUENCY (MHz) 75 TC = +85NC 2400 2RF-2LO RESPONSE vs. RF FREQUENCY 75 PRF = 0dBm 2RF-2LO RESPONSE (dBc) 2200 MAX2042 toc08 2000 70 MAX2042 toc09 25 65 60 VCC = 4.75V, 5.0V, 5.25V 55 50 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) _______________________________________________________________________________________ 7 MAX2042 Typical Operating Characteristics (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Downconverter Curves TC = -40NC, +25NC, +85NC 65 55 75 65 PLO = -3dBm, 0dBm, +3dBm 55 2200 2400 2600 2800 3000 NOISE FIGURE vs. RF FREQUENCY 2200 2400 2600 2800 3000 2000 NOISE FIGURE vs. RF FREQUENCY TC = +25NC 8 7 6 2400 2600 2800 3000 7 6 4 2000 2200 RF FREQUENCY (MHz) 2400 2600 2800 3000 2000 2200 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY INPUT P1dB vs. RF FREQUENCY TC = +25NC 21 19 2800 3000 VCC = 5.25V 23 INPUT P1dB (dBm) 23 INPUT P1dB (dBm) 23 2600 INPUT P1dB vs. RF FREQUENCY 25 MAX2042 toc17 TC = -40NC 2400 RF FREQUENCY (MHz) 25 MAX2042 toc16 25 MAX2042 toc12 8 5 4 2200 3000 VCC = 4.75V, 5.0V, 5.25V 5 4 2800 9 PLO = -3dBm, 0dBm, +3dBm TC = -40NC 2600 NOISE FIGURE vs. RF FREQUENCY NOISE FIGURE (dB) 7 2400 10 MAX2042 toc14 9 NOISE FIGURE (dB) 8 5 2200 RF FREQUENCY (MHz) 10 MAX2042 toc13 TC = +85NC 2000 VCC = 4.75V, 5.0V, 5.25V RF FREQUENCY (MHz) 10 6 65 55 2000 RF FREQUENCY (MHz) 9 75 MAX2042 toc15 2000 NOISE FIGURE (dB) PRF = 0dBm MAX2042 toc18 75 3RF-3LO RESPONSE vs. RF FREQUENCY 85 3RF-3LO RESPONSE (dBc) MAX2042 toc10 PRF = 0dBm 3RF-3LO RESPONSE (dBc) 3RF-3LO RESPONSE (dBc) PRF = 0dBm 3RF-3LO RESPONSE vs. RF FREQUENCY 85 MAX2042 toc11 3RF-3LO RESPONSE vs. RF FREQUENCY 85 INPUT P1dB (dBm) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer PLO = -3dBm, 0dBm, +3dBm 21 19 VCC = 4.75V 21 VCC = 5.0V 19 TC = +85NC 17 17 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 17 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) 8 _______________________________________________________________________________________ 2800 3000 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +5.0V Downconverter Curves LO LEAKAGE AT IF PORT vs. LO FREQUENCY TC = +85NC TC = +25NC -30 -40 -30 1900 2100 2300 2500 2700 MAX2042 toc21 MAX2042 toc20 PLO = -3dBm, 0dBm, +3dBm -40 -20 VCC = 4.75V, 5.0V, 5.25V -30 -40 1700 1900 2100 2300 2500 2700 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) 50 TC = +85NC 40 TC = +25NC 30 60 50 40 30 PLO = -3dBm, 0dBm, +3dBm 2700 MAX2042 toc24 60 MAX2042 toc22 60 RF-TO-IF ISOLATION (dB) 1700 RF-TO-IF ISOLATION (dB) -20 -10 LO LEAKAGE AT IF PORT (dBm) -20 -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc23 LO LEAKAGE AT IF PORT (dBm) TC = -40NC LO LEAKAGE AT IF PORT (dBm) MAX2042 toc19 -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY 50 40 30 VCC = 4.75V, 5.0V, 5.25V TC = -40NC 20 20 2200 2400 2600 2800 20 2000 2200 2400 2600 2800 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40NC, +25NC, +85NC -35 -40 -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 -40 2000 2200 2400 LO FREQUENCY (MHz) 2600 2800 3000 MAX2042 toc27 -20 LO LEAKAGE AT RF PORT (dBm) -30 -20 MAX2042 toc26 MAX2042 toc25 -25 1800 2000 RF FREQENCY (MHz) -20 LO LEAKAGE AT RF PORT (dBm) 3000 LO LEAKAGE AT RF PORT (dBm) 2000 -25 -30 VCC = 4.75V, 5.0V, 5.25V -35 -40 1800 2000 2200 2400 LO FREQUENCY (MHz) 2600 2800 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) _______________________________________________________________________________________ 9 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Downconverter Curves 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY -40 TC = +85NC -45 -30 -35 -40 -45 -30 -35 -40 -50 2000 2200 2400 2600 2800 -50 1800 2000 LO FREQUENCY (MHz) 2200 2400 2600 fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 5 2200 2400 LO FREQUENCY (MHz) 0 MAX2042 toc31 fIF = 300MHz RF PORT RETURN LOSS (dB) 2000 IF PORT RETURN LOSS vs. IF FREQUENCY 0 10 15 PLO = -3dBm, 0dBm, +3dBm 25 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 30 30 2000 2200 2400 2600 2800 3000 50 140 230 320 410 RF FREQUENCY (MHz) IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 150 MAX2042 toc33 0 PLO = -3dBm 10 20 PLO = +3dBm VCC = 5.25V 145 SUPPLY CURRENT (mA) LO PORT RETURN LOSS (dB) 1800 LO FREQUENCY (MHz) RF PORT RETURN LOSS vs. RF FREQUENCY 20 2800 VCC = 5.0V 500 MAX2042 toc34 1800 VCC = 4.75V, 5.0V, 5.25V -45 PLO = -3dBm, 0dBm, +3dBm TC = +25NC -50 -25 MAX2042 toc32 -35 -25 2LO LEAKAGE AT RF PORT (dBm) -30 -20 MAX2042 toc29 TC = -40NC -25 -20 2LO LEAKAGE AT RF PORT (dBm) MAX2042 toc28 -20 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY MAX2042 toc30 2LO LEAKAGE AT RF PORT vs. LO FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer 140 135 130 VCC = 4.75V 125 PLO = 0dBm 30 120 1700 1900 2100 2300 LO FREQUENCY (MHz) 2500 2700 -40 -15 10 35 60 TEMPERATURE (˚C) 10 ������������������������������������������������������������������������������������� 85 2600 2800 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +3.3V Downconverter Curves 5 7 PLO = -3dBm, 0dBm, +3dBm 6 5 2400 2600 2800 3000 2200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2800 3000 MAX2042 toc38 30 TC = +85NC 25 2600 2800 30 PLO = -3dBm, 0dBm, +3dBm 25 3000 2200 TC = +25NC 60 TC = +85NC 55 2600 2800 70 3000 PLO = +3dBm 65 60 PLO = 0dBm 50 2200 2400 2600 RF FREQUENCY (MHz) 2000 2200 2800 3000 2400 2600 2800 3000 2RF-2LO RESPONSE vs. RF FREQUENCY 75 VCC = 3.6V 70 PRF = 0dBm VCC = 3.3V 65 60 VCC = 3.0V 55 PLO = -3dBm TC = -40NC 2000 25 RF FREQUENCY (MHz) PRF = 0dBm 55 50 PRF = 0dBm/TONE VCC = 3.0V 2RF-2LO RESPONSE vs. RF FREQUENCY 2RF-2LO RESPONSE (dBc) 70 65 2400 75 MAX2042 toc41 PRF = 0dBm 3000 30 RF FREQUENCY (MHz) 2RF-2LO RESPONSE vs. RF FREQUENCY 2800 20 2000 RF FREQUENCY (MHz) 75 2600 VCC = 3.3V, 3.6V 2RF-2LO RESPONSE (dBc) 2400 2400 INPUT IP3 vs. RF FREQUENCY MAX2042 toc42 2200 2200 35 20 2000 MAX2042 toc37 2000 RF FREQUENCY (MHz) PRF = 0dBm/TONE INPUT IP3 (dBm) INPUT IP3 (dBm) 2600 35 20 2RF-2LO RESPONSE (dBc) 2400 INPUT IP3 vs. RF FREQUENCY PRF = 0dBm/TONE TC = +25NC VCC = 3.0V, 3.3V, 3.6V 6 RF FREQUENCY (MHz) 35 TC = -40NC 7 5 2000 INPUT IP3 (dBm) 2200 MAX2042 toc39 2000 8 MAX2042 toc40 TC = -40NC 6 8 CONVERSION LOSS (dB) 7 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042 toc36 MAX2042 toc35 TC = +25NC CONVERSION LOSS (dB) CONVERSION LOSS (dB) TC = +85NC 8 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042 toc43 CONVERSION LOSS vs. RF FREQUENCY 9 50 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Downconverter Curves 70 PLO = -3dBm, 0dBm, +3dBm 60 VCC = 3.6V 50 2400 2600 2800 2200 NOISE FIGURE vs. RF FREQUENCY 2800 3000 2000 NOISE FIGURE vs. RF FREQUENCY 9 NOISE FIGURE (dB) TC = +25°C 7 6 4 7 PLO = -3dBm, 0dBm, +3dBm 2600 2800 3000 2200 2400 2600 2800 3000 INPUT P1dB (dBm) TC = +25°C 2400 2600 RF FREQUENCY (MHz) 2800 3000 2400 2600 2800 3000 INPUT P1dB vs. FREQUENCY MAX2042 toc51 24 VCC = 3.6V 22 20 PLO = -3dBm, 0dBm, +3dBm VCC = 3.3V 20 VCC = 3.0V 18 16 16 16 2200 2200 RF FREQUENCY (MHz) 18 TC = +85°C 2000 2000 22 20 VCC = 3.3V VCC = 3.6V 6 INPUT P1dB vs. FREQUENCY 24 MAX2042 toc50 TC = -40°C 18 7 RF FREQUENCY (MHz) INPUT P1dB vs. RF FREQUENCY 22 VCC = 3.0V 8 4 2000 RF FREQUENCY (MHz) 24 3000 5 INPUT P1dB (dBm) 2400 2800 9 4 2200 2600 NOISE FIGURE vs. RF FREQUENCY 8 6 2400 10 5 TC = -40°C 2000 2200 RF FREQUENCY (MHz) MAX2042 toc48 TC = +85°C 5 2600 10 MAX2042 toc47 10 8 2400 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 9 VCC = 3.0V 50 2000 3000 VCC = 3.3V 60 MAX2042 toc49 2200 NOISE FIGURE (dB) 2000 70 MAX2042 toc52 50 NOISE FIGURE (dB) PRF = 0dBm 3RF-3LO RESPONSE (dBc) TC = -40NC, +25NC, +85NC 3RF-3LO RESPONSE vs. RF FREQUENCY 80 MAX2042 toc45 MAX2042 toc44 70 60 PRF = 0dBm 3RF-3LO RESPONSE (dBc) 3RF-3LO RESPONSE (dBc) PRF = 0dBm 80 MAX2042 toc46 3RF-3LO RESPONSE vs. RF FREQUENCY 3RF-3LO RESPONSE vs. RF FREQUENCY 80 INPUT P1dB (dBm) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 12 ������������������������������������������������������������������������������������� 3000 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +3.3V Downconverter Curves TC = +25NC -30 -40 PLO = -3dBm, 0dBm, +3dBm -30 -40 2100 2300 2500 LO FREQUENCY (MHz) 2700 2100 2300 2500 LO FREQUENCY (MHz) 2700 TC = +85NC TC = +25NC 40 TC = -40NC 30 50 40 PLO = -3dBm, 0dBm, +3dBm 30 2400 2600 2800 RF FREQUENCY (MHz) 3000 2200 2400 2600 2800 RF FREQUENCY (MHz) TC = -40NC, +25NC, +85NC -40 2000 2200 2400 2600 LO FREQUENCY (MHz) VCC = 3.0V, 3.3V, 3.6V 30 2000 -25 -30 PLO = -3dBm, 0dBm, +3dBm -35 2800 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -40 1800 40 3000 MAX2042 toc60 -20 LO LEAKAGE AT RF PORT (dBm) MAX2042 toc59 -30 -35 50 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 2700 20 2000 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -20 2100 2300 2500 LO FREQUENCY (MHz) 60 -20 LO LEAKAGE AT RF PORT (dBm) 2200 1900 RF-TO-IF ISOLATION vs. RF FREQUENCY 20 2000 MAX2042 toc55 1700 MAX2042 toc57 MAX2042 toc56 60 20 LO LEAKAGE AT RF PORT (dBm) 1900 RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION (dB) RF-TO-IF ISOLATION (dB) 50 -30 -40 1700 RF-TO-IF ISOLATION vs. RF FREQUENCY 60 VCC = 3.0V, 3.3V, 3.6V MAX2042 toc58 1900 RF-TO-IF ISOLATION (dB) 1700 -20 MAX2042 toc61 TC = +85NC -20 -10 LO LEAKAGE AT IF PORT (dBm) -20 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc54 LO LEAKAGE AT IF PORT (dBm) TC = -40NC -10 LO LEAKAGE AT IF PORT (dBm) -10 LO LEAKAGE AT IF PORT vs. LO FREQUENCY MAX2042 toc53 LO LEAKAGE AT IF PORT vs. LO FREQUENCY -25 VCC = 3.6V -30 -35 VCC = 3.0V VCC = 3.3V -40 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 ______________________________________________________________________________________ 13 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Downconverter Curves -35 -40 TC = +85NC -45 -50 -30 -35 -40 PLO = -3dBm, 0dBm, +3dBm -45 -50 2000 2200 2400 2600 LO FREQUENCY (MHz) 2800 2000 2200 2400 2600 LO FREQUENCY (MHz) -45 VCC = 3.0V, 3.3V, 3.6V 5 2800 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) 10 15 20 0 fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) fIF = 300MHz RF PORT RETURN LOSS (dB) -40 IF PORT RETURN LOSS vs. IF FREQUENCY MAX2042 toc65 0 10 VCC = 3.0V, 3.3V, 3.6V 15 20 25 PLO = -3dBm, 0dBm, +3dBm 30 30 2000 2200 2400 2600 2800 RF FREQUENCY (MHz) 3000 50 140 LO PORT RETURN LOSS vs. LO FREQUENCY 130 10 PLO = 0dBm VCC = 3.6V SUPPLY CURRENT (mA) PLO = -3dBm 20 230 320 410 IF FREQUENCY (MHz) 500 SUPPLY CURRENT vs. TEMPERATURE MAX2042 toc67 0 LO PORT RETURN LOSS (dB) -35 -50 1800 RF PORT RETURN LOSS vs. RF FREQUENCY 25 -30 PLO = +3dBm MAX2042 toc68 1800 -25 MAX2042 toc66 TC = +25NC -25 2LO LEAKAGE AT RF PORT (dBm) TC = -40NC -30 -20 MAX2042 toc63 -25 2LO LEAKAGE AT RF PORT vs. FREQUENCY -20 2LO LEAKAGE AT RF PORT (dBm) MAX2042 toc62 -20 2LO LEAKAGE AT RF PORT vs. FREQUENCY MAX2042 toc64 2LO LEAKAGE AT RF PORT vs. FREQUENCY 2LO LEAKAGE AT RF PORT (dBm) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer VCC = 3.3V 125 120 115 VCC = 3.0V 110 30 1700 1900 2100 2300 2500 LO FREQUENCY (MHz) 2700 -40 -15 10 35 TEMPERATURE (NC) 60 14 ������������������������������������������������������������������������������������� 85 2800 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +5.0V Upconverter Curves TC = +25°C 7 6 TC = -40°C 5 8 7 PLO = -3dBm, 0dBm, +3dBm 6 5 2200 2400 2600 2800 3000 2200 RF FREQUENCY (MHz) MAX2042 toc71 7 VCC = 4.75V, 5.0V, 5.25V 6 2400 2600 2800 3000 2000 2200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 38 TC = -40°C TC = +25°C 32 30 36 34 32 3000 PIF = 0dBm/TONE 38 VCC = 5.25V 36 VCC = 5.0V 34 32 VCC = 4.75V PLO = -3dBm, 0dBm, +3dBm 30 2800 40 INPUT IP3 (dBm) INPUT IP3 (dBm) 36 2600 INPUT IP3 vs. RF FREQUENCY 40 MAX2042 toc72 PIF = 0dBm/TONE 38 2400 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 40 34 8 5 2000 MAX2042 toc73 2000 INPUT IP3 (dBm) CONVERSION LOSS (dB) CONVERSION LOSS (dB) 8 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042 toc70 MAX2042 toc69 TC = +85°C CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042 toc74 CONVERSION LOSS vs. RF FREQUENCY 9 30 TC = +85°C 28 2400 2600 2800 3000 28 2000 2200 RF FREQUENCY (MHz) 2800 3000 LO-2IF RESPONSE vs. RF FREQUENCY TC = +25°C 65 55 PIF = 0dBm PLO = +3dBm LO-2IF RESPONSE (dBc) 75 65 PLO = 0dBm 55 2600 RF FREQUENCY (MHz) 2800 3000 2600 2800 3000 PIF = 0dBm 75 65 55 VCC = 4.75V, 5.0V, 5.25V 45 2400 2400 85 PLO = -3dBm 45 2200 2200 LO-2IF RESPONSE vs. RF FREQUENCY 75 TC = -40°C 2000 2000 RF FREQUENCY (MHz) 85 MAX2042 toc75 PIF = 0dBm TC = +85°C LO-2IF RESPONSE (dBc) 2600 RF FREQUENCY (MHz) LO-2IF RESPONSE vs. RF FREQUENCY 85 2400 LO-2IF RESPONSE (dBc) 2200 MAX2042 toc76 2000 MAX2042 toc77 28 45 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Upconverter Curves PLO = +3dBm 65 TC = +25°C 55 75 65 PLO = 0dBm 55 TC = -40°C 45 2800 3000 2200 2400 2600 2800 3000 2000 LO-3IF RESPONSE (dBc) TC = +25°C 80 TC = +85°C 60 2800 PIF = 0dBm 90 80 PLO = -3dBm, 0dBm, +3dBm 70 3000 2200 80 TC = +85°C 2600 2800 TC = +25°C 60 2200 2400 2600 RF FREQUENCY (MHz) VCC = 4.75V 70 2000 2200 PIF = 0dBm 2800 3000 2600 2800 3000 LO+3IF RESPONSE vs. RF FREQUENCY 90 80 PLO = -3dBm, 0dBm, +3dBm 70 2400 RF FREQUENCY (MHz) 60 2000 VCC = 5.0V 80 3000 100 LO+3IF RESPONSE (dBc) TC = -40°C 70 VCC = 5.25V 90 LO+3IF RESPONSE vs. RF FREQUENCY LO+3IF RESPONSE (dBc) 90 2400 100 MAX2042 toc84 PIF = 0dBm 3000 PIF = 0dBm RF FREQUENCY (MHz) LO+3IF RESPONSE vs. RF FREQUENCY 2800 60 2000 RF FREQUENCY (MHz) 100 2600 LO-3IF RESPONSE vs. RF FREQUENCY MAX2042 toc85 2600 2400 100 60 2400 2200 RF FREQUENCY (MHz) LO-3IF RESPONSE vs. RF FREQUENCY 100 MAX2042 toc81 TC = -40°C 2200 55 RF FREQUENCY (MHz) PIF = 0dBm 2000 65 45 2000 LO-3IF RESPONSE vs. RF FREQUENCY 100 70 VCC = 4.75V, 5.0V, 5.25V MAX2042 toc83 2600 RF FREQUENCY (MHz) 90 75 90 PIF = 0dBm MAX2042 toc86 2400 LO-3IF RESPONSE (dBc) 2200 MAX2042 toc82 2000 PIF = 0dBm PLO = -3dBm 45 LO-3IF RESPONSE (dBc) LO+2IF RESPONSE (dBc) TC = +85°C PIF = 0dBm LO+2IF RESPONSE vs. RF FREQUENCY 85 MAX2042 toc80 MAX2042 toc78 75 LO+2IF RESPONSE (dBc) LO+2IF RESPONSE (dBc) PIF = 0dBm LO+2IF RESPONSE vs. RF FREQUENCY 85 MAX2042 toc79 LO+2IF RESPONSE vs. RF FREQUENCY 85 LO+3IF RESPONSE (dBc) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer VCC = 5.25V 80 VCC = 4.75V 70 VCC = 5.0V 60 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) 16 ������������������������������������������������������������������������������������� 2800 3000 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +5.0V Upconverter Curves LO LEAKAGE AT RF PORT vs. LO FREQUENCY TC = -40°C, +25°C, +85°C -25 -30 -35 2000 2200 2400 2600 PLO = -3dBm, 0dBm, +3dBm 2800 1800 2200 2400 2600 LO LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY -30 VCC = 4.75V, 5.0V, 5.25V TC = -40°C -35 2000 2200 2400 2600 -50 TC = +25°C -60 -70 -80 TC = +85°C -90 2800 1800 2000 2200 2400 2600 LO FREQUENCY (MHz) LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY -60 -70 -80 2800 MAX2042 toc92 PLO = -3dBm, 0dBm, +3dBm -40 IF LEAKAGE AT RF PORT (dBm) MAX2042 toc91 -40 2800 MAX2042 toc90 -40 IF LEAKAGE AT RF PORT (dBm) -25 1800 2000 LO FREQUENCY (MHz) MAX2042 toc89 LO LEAKAGE AT RF PORT (dBm) -30 LO FREQUENCY (MHz) -20 IF LEAKAGE AT RF PORT (dBm) -25 -35 1800 -50 MAX2042 toc88 -20 LO LEAKAGE AT RF PORT (dBm) MAX2042 toc87 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT vs. LO FREQUENCY -50 VCC = 5.0V, 5.25V -60 -70 -80 VCC = 4.75V -90 -90 1800 2000 2200 2400 LO FREQUENCY (MHz) 2600 2800 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) ______________________________________________________________________________________ 17 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +5.0V Upconverter Curves RF PORT RETURN LOSS vs. RF FREQUENCY IF PORT RETURN LOSS vs. IF FREQUENCY PLO = -3dBm, 0dBm, +3dBm 10 15 20 MAX2042 toc94 5 0 fLO = 2200MHz 5 IF PORT RETURN LOSS (dB) 25 10 VCC = 4.75V, 5.0V, 5.25V 15 20 25 30 30 2000 2200 2400 2600 2800 3000 50 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 150 MAX2042 toc95 0 PLO = -3dBm PLO = +3dBm 15 20 25 VCC = 5.25V 145 SUPPLY CURRENT (mA) 5 10 140 RF FREQUENCY (MHz) VCC = 5.0V 500 MAX2042 toc96 RF PORT RETURN LOSS (dB) fIF = 300MHz MAX2042 toc93 0 LO PORT RETURN LOSS (dB) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer 140 135 130 VCC = 4.75V 125 PLO = 0dBm 30 120 1700 1900 2100 2300 LO FREQUENCY (MHz) 2500 2700 -40 -15 10 35 60 TEMPERATURE (°C) 18 ������������������������������������������������������������������������������������� 85 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +3.3V Upconverter Curves TC = +25°C 7 6 8 CONVERSION LOSS (dB) CONVERSION LOSS (dB) 8 CONVERSION LOSS vs. RF FREQUENCY 9 MAX2042 toc98 MAX2042 toc97 TC = +85°C CONVERSION LOSS (dB) CONVERSION LOSS vs. RF FREQUENCY 9 7 PLO = -3dBm, 0dBm, +3dBm 6 MAX2042 toc99 CONVERSION LOSS vs. RF FREQUENCY 9 8 7 VCC = 3.0V, 3.3V, 3.6V 6 TC = -40°C 5 2600 2800 3000 5 2000 2200 RF FREQUENCY (MHz) INPUT IP3 vs. RF FREQUENCY 2000 MAX2042 toc100 30 TC = +25°C TC = +85°C 30 PLO = 0dBm PLO = +3dBm 26 22 2800 3000 2200 RF FREQUENCY (MHz) LO-2IF RESPONSE vs. RF FREQUENCY 2400 2600 2800 VCC = 3.3V 26 3000 VCC = 3.0V 2000 LO-2IF RESPONSE vs. RF FREQUENCY PIF = 0dBm PLO = +3dBm LO-2IF RESPONSE (dBc) 75 65 TC = +25°C 55 75 45 PLO = 0dBm 55 RF FREQUENCY (MHz) 3000 2600 2800 3000 PIF = 0dBm 75 65 55 VCC = 3.0V, 3.3V, 3.6V 45 2800 2400 85 PLO = -3dBm 2600 2200 LO-2IF RESPONSE vs. RF FREQUENCY 65 TC = -40°C 2400 28 RF FREQUENCY (MHz) 85 MAX2042 toc103 PIF = 0dBm TC = +85°C 2200 30 RF FREQUENCY (MHz) 85 2000 VCC = 3.6V 22 2000 LO-2IF RESPONSE (dBc) 2600 3000 24 MAX2042 toc104 2400 2800 PIF = 0dBm/TONE 32 22 2200 2600 INPUT IP3 vs. RF FREQUENCY PLO = -3dBm 28 2400 34 24 2000 2200 RF FREQUENCY (MHz) PIF = 0dBm/TONE 32 24 LO-2IF RESPONSE (dBc) 3000 34 INPUT IP3 (dBm) INPUT IP3 (dBm) TC = -40°C 26 2800 INPUT IP3 vs. RF FREQUENCY PIF = 0dBm/TONE 28 2600 RF FREQUENCY (MHz) 34 32 2400 MAX2042 toc102 2400 INPUT IP3 (dBm) 2200 MAX2042 toc101 2000 MAX2042 toc105 5 45 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 2800 3000 RF FREQUENCY (MHz) ______________________________________________________________________________________ 19 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Upconverter Curves LO+2IF RESPONSE vs. RF FREQUENCY TC = +25°C 55 65 PLO = 0dBm 55 45 2800 45 2000 3000 2200 LO-3IF RESPONSE vs. RF FREQUENCY PIF = 0dBm 2800 3000 2000 70 TC = -40°C TC = +25°C PIF = 0dBm 50 2800 80 70 PLO = -3dBm, 0dBm, +3dBm 60 3000 PIF = 0dBm 2200 70 TC = +25°C TC = +85°C 50 2600 2800 40 2400 2600 RF FREQUENCY (MHz) 2000 2200 PIF = 0dBm 80 2800 3000 2600 2800 3000 LO+3IF RESPONSE vs. RF FREQUENCY 70 60 2400 RF FREQUENCY (MHz) PLO = -3dBm, 0dBm, +3dBm 90 PIF = 0dBm 80 VCC = 3.6V 70 60 VCC = 3.3V VCC = 3.0V 50 40 2200 VCC = 3.0V 60 3000 50 2000 VCC = 3.6V 70 LO+3IF RESPONSE vs. RF FREQUENCY LO+3IF RESPONSE (dBc) TC = -40°C 60 2400 90 MAX2042 toc112 PIF = 0dBm 80 80 RF FREQUENCY (MHz) LO+3IF RESPONSE vs. RF FREQUENCY 3000 50 2000 RF FREQUENCY (MHz) 90 2800 VCC = 3.3V LO+3IF RESPONSE (dBc) 2600 2600 LO-3IF RESPONSE vs. RF FREQUENCY MAX2042 toc113 2400 2400 90 50 2200 2200 RF FREQUENCY (MHz) LO-3IF RESPONSE vs. RF FREQUENCY LO-3IF RESPONSE (dBc) 80 60 2600 90 MAX2042 toc109 90 TC = +85°C 2400 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 2000 55 MAX2042 toc111 2600 LO-3IF RESPONSE (dBc) 2400 MAX2042 toc110 2200 65 MAX2042 toc114 45 2000 VCC = 3.0V, 3.3V, 3.6V 75 PLO = -3dBm TC = -40°C LO-3IF RESPONSE (dBc) PIF = 0dBm LO+2IF RESPONSE (dBc) 65 PLO = +3dBm 75 LO+2IF RESPONSE vs. RF FREQUENCY 85 MAX2042 toc107 MAX2042 toc106 TC = +85°C PIF = 0dBm LO+2IF RESPONSE (dBc) LO+2IF RESPONSE (dBc) PIF = 0dBm 75 85 MAX2042 toc108 LO+2IF RESPONSE vs. RF FREQUENCY 85 LO+3IF RESPONSE (dBc) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer 40 2000 2200 2400 2600 RF FREQUENCY (MHz) 2800 3000 2000 2200 2400 2600 RF FREQUENCY (MHz) 20 ������������������������������������������������������������������������������������� 2800 3000 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer +3.3V Upconverter Curves LO LEAKAGE AT RF PORT vs. LO FREQUENCY -25 TC = -40°C, +25°C, +85°C -30 -35 2000 2200 2400 2600 PLO = -3dBm, 0dBm, +3dBm -30 2800 2400 2600 IF LEAKAGE AT RF PORT vs. LO FREQUENCY -30 -50 TC = +85°C -60 -70 TC = -40°C -80 TC = +25°C VCC = 3.0V -90 -35 2000 2800 MAX2042 toc118 -40 IF LEAKAGE AT RF PORT (dBm) VCC = 3.3V 2200 2400 2600 1800 2800 2000 2200 2400 2600 LO FREQUENCY (MHz) LO FREQUENCY (MHz) IF LEAKAGE AT RF PORT vs. LO FREQUENCY IF LEAKAGE AT RF PORT vs. LO FREQUENCY PLO = -3dBm, 0dBm, +3dBm -70 -80 -90 -50 -60 2800 MAX2042 toc120 -50 -40 IF LEAKAGE AT RF PORT (dBm) MAX2042 toc119 -40 -60 2200 LO LEAKAGE AT RF PORT vs. LO FREQUENCY VCC = 3.6V 1800 2000 LO FREQUENCY (MHz) MAX2042 toc117 -25 1800 LO FREQUENCY (MHz) -20 LO LEAKAGE AT RF PORT (dBm) -25 -35 1800 IF LEAKAGE AT RF PORT (dBm) MAX2042 toc116 -20 LO LEAKAGE AT RF PORT (dBm) MAX2042 toc115 LO LEAKAGE AT RF PORT (dBm) -20 LO LEAKAGE AT RF PORT vs. LO FREQUENCY VCC = 3.0V -70 VCC = 3.6V -80 VCC = 3.3V -90 1800 2000 2200 2400 LO FREQUENCY (MHz) 2600 2800 1800 2000 2200 2400 2600 2800 LO FREQUENCY (MHz) ______________________________________________________________________________________ 21 MAX2042 Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) Typical Operating Characteristics (continued) (Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO = 0dBm, TC = +25NC, unless otherwise noted.) +3.3V Upconverter Curves 5 PLO = -3dBm, 0dBm, +3dBm 10 15 20 0 fLO = 2200MHz 5 25 10 VCC = 3.0V, 3.3V, 3.6V 15 20 25 30 30 2200 2400 2600 2800 3000 140 230 320 410 IF FREQUENCY (MHz) LO PORT RETURN LOSS vs. LO FREQUENCY SUPPLY CURRENT vs. TEMPERATURE (TC) 5 PLO = -3dBm 10 15 PLO = +3dBm PLO = 0dBm 130 MAX2042 toc123 0 20 50 RF FREQUENCY (MHz) VCC = 3.6V SUPPLY CURRENT (mA) 2000 VCC = 3.3V 125 500 MAX2042 toc124 RF PORT RETURN LOSS (dB) fIF = 300MHz IF PORT RETURN LOSS (dB) 0 MAX2042 toc122 IF PORT RETURN LOSS vs. IF FREQUENCY MAX2042 toc121 RF PORT RETURN LOSS vs. RF FREQUENCY LO PORT RETURN LOSS (dB) MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer 120 115 VCC = 3.0V 25 110 30 1700 1900 2100 2300 LO FREQUENCY (MHz) 2500 2700 -40 -15 10 35 60 TEMPERATURE (°C) 22 ������������������������������������������������������������������������������������� 85 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer PIN NAME 1, 6, 8, 14 VCC 2 RF Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required. Capacitor also provides some RF match tuning. 3, 4, 5, 10, 12, 13, 17 GND Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad (EP) together. 7 LOBIAS LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nominal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA. 9, 15 GND 11 LO 16, 20 GND 18, 19 IF-, IF+ — EP FUNCTION Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin. Ground. Not internally connected. Ground these pins or leave unconnected. Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking capacitor. Capacitor also provides some LO match tuning. Ground. Connect all ground pins and the exposed pad (EP) together. Mixer Differential IF Output/Input Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple via grounds are also required to achieve the noted RF performance. ______________________________________________________________________________________ 23 MAX2042 Pin Description MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Detailed Description When used as a low-side LO injection mixer in the 2300MHz to 2900MHz band, the MAX2042 provides +36dBm of IIP3, with typical noise figure and conversion loss values of only 7.3dB and 7.2dB, respectively. The integrated baluns and matching circuitry allow for 50I single-ended interfaces to the RF and the LO ports. The integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX2042’s input to a -3dBm to +3dBm range. The IF port incorporates a differential interface, which is ideal for providing enhanced 2RF-2LO performance. Specifications are guaranteed over broad frequency ranges to allow for use in WCS, LTE, WiMAX, and MMDS base stations. The MAX2042 is specified to operate over an RF input range of 2000MHz to 3000MHz, an LO range of 1800MHz to 2800MHz, and an IF range of 50MHz to 500MHz. The external IF transformer sets the lower frequency range (see the Typical Operating Characteristics for details). Operation beyond these ranges is possible (see the Typical Operating Characteristics for additional information). RF Interface and Balun The MAX2042 RF input provides a 50I match when combined with a series DC-blocking capacitor. This DC-blocking capacitor required as the input is internally DC shorted to ground through the on-chip balun. When using an 8.2pF DC-blocking capacitor, the RF port input return loss is typically 15dB over the RF frequency range of 2500MHz to 2900MHz. LO Inputs, Buffer, and Balun The MAX2042 is optimized for low-side LO injection applications with an 1800MHz to 2800MHz LO frequency range. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage internal LO buffer allows for a -3dBm to +3dBm LO input power range. The on-chip low-loss balun, along with an LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the IF outputs are integrated on-chip. High-Linearity Mixer The core of the MAX2042 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer. IIP3, 2RF-2LO rejection, and noise-figure performance are typically +36dBm, 70dBc, and 7.3dB, respectively. Differential IF Interface The MAX2042 has an IF frequency range of 50MHz to 500MHz, where the low-end frequency depends on the frequency response of the external IF components. The MAX2042’s differential ports are ideal for providing enhanced 2RF-2LO performance. The user can use a differential IF amplifier or SAW filter on the mixer IF port, but a DC block is required on both IF+/IF- ports to keep external DC from entering the IF ports of the mixer. Typical applications typically use a 1:1 transformer such as the MABAES0029 to transform the 50I differential interface to a 50I single-ended interface. The loss of this transformer is included in the data presented in this data sheet. In addition, the IF interface directly supports single-ended AC-coupled signals into or out of IF+ by shorting IF- to ground, and a 1kI resistor from IF+ to ground. Applications Information Input and Output Matching The RF input provides a 50I match when combined with a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to 3000MHz. The LO input is internally matched to 50I; use a 2pF DC-blocking capacitor to cover operations spanning the 1800MHz to 2800MHz range. The IF output impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this impedance down to a 50I single-ended output (see the Typical Application Circuit). Reduced-Power Mode The MAX2042 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal value for this resistor is shown in Tables 1 and 2. Larger value resistors can be used to reduce power dissipation at the expense of some performance loss. See the Typical Operating Characteristics to evaluate the power vs. performance tradeoff. If Q1% resistors are not readily available, substitute with Q5% resistors. Significant reductions in power consumption can also be realized by operating the mixer with an optional supply voltage of +3.3V. Doing so reduces the overall power consumption by up to 43%. See the +3.3V Supply AC Electrical Characteristics table and the relevant +3.3V curves in the Typical Operating Characteristics section to evaluate the power vs. performance tradeoffs. 24 ������������������������������������������������������������������������������������� SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Power-Supply Bypassing Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the capacitors shown in the Typical Application Circuit and see Tables 1 and 2. Exposed Pad RF/Thermal Considerations The exposed pad (EP) of the MAX2042’s 20-pin thin QFN package provides a low thermal-resistance path to the die. It is important that the PCB on which the MAX2042 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP MUST be soldered to a ground plane on the PCB, either directly or through an array of plated via holes. Table 1. Downconverter Mode Component Values DESIGNATION QTY C1 1 8.2pF microwave capacitor (0402) DESCRIPTION Murata Electronics North America, Inc. COMPONENT SUPPLIER C2, C6, C8, C11 4 0.01FF microwave capacitors (0402) Murata Electronics North America, Inc. C3, C9 0 Not installed, capacitors — C5 0 Not installed, capacitor — C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. R1 1 698I Q1% resistor (0402) Digi-Key Corp. T1 1 1:1 IF balun MABAES0029 M/A-Com, Inc. U1 1 MAX2042 IC (20 TQFN) Maxim Integrated Products, Inc. Table 2. Upconverter Mode Component Values DESIGNATION QTY C1 1 8.2pF microwave capacitor (0402) DESCRIPTION Murata Electronics North America, Inc. COMPONENT SUPPLIER C2, C6, C8, C11 4 Murata Electronics North America, Inc. C3, C9 0 0.01FF microwave capacitors (0402) Not installed, capacitors C5 0 Not installed, capacitor — C10 1 2pF microwave capacitor (0402) Murata Electronics North America, Inc. R1 1 698I Q1% resistor (0402) Digi-Key Corp. T1 1 1:1 IF balun MABAES0029 M/A-Com, Inc. U1 1 MAX2042 IC (20 TQFN) Maxim Integrated Products, Inc. — ______________________________________________________________________________________ 25 MAX2042 Layout Considerations A properly designed PCB is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PCB exposed pad MUST be connected to the ground plane of the PCB. It is suggested that multiple vias be used to connect this pad to the lower-level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PCB. The MAX2042 evaluation kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. MAX2042 SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer Typical Application Circuit N.C. 3 5 2 T1 IF 1 4 1:1 20 C3 C2 VCC C1 RF RF 19 18 GND GND IF- VCC IF+ GND C5 17 16 15 1 MAX2042 2 GND VCC 14 C11 GND GND 3 13 4 12 GND GND EP 11 5 VCC C6 9 LO C10 LO INPUT 10 GND 8 GND 7 LOBIAS VCC 6 VCC GND R1 NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY CONNECTED TO THE EXPOSED GROUND PAD. CONNECT THESE PINS TO GROUND TO IMPROVE ISOLATION. C8 VCC C9 PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE EXTERNALLY GROUNDED TO IMPROVE ISOLATION. 26 ������������������������������������������������������������������������������������� SiGe High-Linearity, 2000MHz to 3000MHz Upconversion/Downconversion Mixer with LO Buffer PROCESS: SiGe BiCMOS Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 20 TQFN-EP T2055+3 21-0140 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2009 Maxim Integrated Products 27 Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX2042 Chip Information