MAXIM MAX2042ETP+T

19-4679; Rev 0; 8/09
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Features
The MAX2042 single, high-linearity upconversion/downconversion mixer provides +36dBm IIP3, 7.3dB noise figure, and 7.2dB conversion loss for 2000MHz to 3000MHz
WCS, LTE, WiMAXK, and MMDS wireless infrastructure
applications. With a wide LO frequency range of 1800MHz
to 2800MHz, this particular mixer is ideal for low-side LO
injection receiver and transmitter architectures. High-side
LO injection is supported by the MAX2042A, which is pinpin and functionally compatible with the MAX2042.
S 2000MHz to 3000MHz RF Frequency Range
S 1800MHz to 2800MHz LO Frequency Range
S 50MHz to 500MHz IF Frequency Range
S 7.2dB Conversion Loss
S 7.3dB Noise Figure
S +36dBm Typical IIP3
S +23.4dBm Typical Input 1dB Compression Point
S 70dBc Typical 2RF-2LO Spurious Rejection at PRF
= -10dBm
S Integrated LO Buffer
S Integrated RF and LO Baluns for Single-Ended
Inputs
S Low -3dBm to +3dBm LO Drive
S Pin Compatible with the MAX2042A 2000MHz to
3900MHz High-Side LO Injection Mixer
S Pin Similar with the MAX2029/MAX2031 650MHz
to 1000MHz Mixers, MAX2039/MAX2041 1700MHz
to 3000MHz Mixers, and MAX2044/MAX2044A
3000MHz to 4000MHz Mixers
S Single +5.0V or +3.3V Supply
S External Current-Setting Resistor Provides Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
Pin Configuration/
Functional Diagram
2.3GHz WCS Base Stations
VCC
1
RF
2
GND
3
GND
4
GND
+
Applications
GND
TOP VIEW
IF-
The MAX2042 is available in a compact 20-pin thin QFN
(5mm x 5mm) package with an exposed pad. Electrical
performance is guaranteed over the extended -40NC to
+85NC temperature range.
IF+
The MAX2042 is pin compatible with the MAX2042A
2000MHz to 3900MHz mixer. The device is also pin similar with the MAX2029/MAX2031 650MHz to 1000MHz
mixers, the MAX2039/MAX2041 1700MHz to 3000MHz
mixers, and the MAX2044/MAX2044A 3000MHz to
4000MHz mixers, making this entire family of up/downconverters ideal for applications where a common PCB
layout is used for multiple frequency bands.
GND
In addition to offering excellent linearity and noise
performance, the MAX2042 also yields a high level of
component integration. This device includes a doublebalanced passive mixer core, an LO buffer, and on-chip
baluns that allow for single-ended RF and LO inputs.
The MAX2042 requires a nominal LO drive of 0dBm,
and supply current is typically 138mA at VCC = +5.0V or
120mA at VCC = +3.3V.
20
19
18
17
16
15
GND
14
VCC
13
GND
12
GND
11
LO
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
MAX2042
Fixed Broadband Wireless Access
TEMP RANGE
PIN-PACKAGE
-40NC to +85NC
20 Thin QFN-EP*
MAX2042ETP+T
-40NC to +85NC
20 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
5
6
7
8
9
10
GND
PART
MAX2042ETP+
GND
GND
Ordering Information
EP*
VCC
Military Systems
LOBIAS
Private Mobile Radios
VCC
Wireless Local Loop
*EXPOSED PAD
WiMAX is a trademark of WiMAX Forum.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX2042
General Description
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND...........................................................-0.3V to +5.5V
IF+, IF-, LOBIAS to GND........................... -0.3V to (VCC + 0.3V)
RF, LO Input Power........................................................ +20dBm
RF, LO Current (RF and LO are DC shorted
to GND through a balun).................................................50mA
Continuous Power Dissipation (Note 1) ..............................5.0W
BJA (Notes 2, 3)............................................................. +38NC/W
BJC (Notes 1, 3)............................................................. +13NC/W
Operating Case Temperature Range
(Note 4)............................................................ -40NC to +85NC
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Note 1: Based on junction temperature TJ = TC + (BJC x VCC x ICC). This formula can be used when the temperature of the
exposed pad is known while the device is soldered down to a PCB. See the Applications Information section for details.
The junction temperature must not exceed +150NC.
Note 2: Junction temperature TJ = TA + (BJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150NC.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75V to +5.25V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical
values are at VCC = +5.0V, TC = +25NC, all parameters are production tested.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
4.75
TYP
MAX
UNITS
5.0
5.25
V
138
150
mA
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +3.0V to +3.6V, no input AC signals. TC = -40NC to +85NC, unless otherwise noted. Typical values
are at VCC = +3.3V, TC = +25NC, all parameters are production tested.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
3.0
TYP
MAX
UNITS
3.3
3.6
V
120
135
mA
TYP
MAX
UNITS
2000
3000
MHz
RECOMMENDED AC OPERATING CONDITIONS
PARAMETER
SYMBOL
RF Frequency Range
LO Frequency
IF Frequency
LO Drive
fLO
fIF
PLO
CONDITIONS
Typical Application Circuit with
C1 = 8.2pF, see Table 1 for details
(Notes 5, 6)
(Notes 5, 6)
MIN
1800
2800
MHz
Using M/A-Com MABAES0029 1:1
transformer as defined in the Typical
Application Circuit, IF matching components
affect the IF frequency range (Notes 5, 6)
50
500
MHz
(Notes 5, 6)
-3
+3
dBm
0
2 _______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz,
fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER
Small-Signal Conversion Loss
Loss Variation vs. Frequency
SYMBOL
LC
DLC
CONDITIONS
fRF = 2300MHz to 2900MHz, TC = +25NC
(Note 8)
MIN
TYP
MAX
UNITS
6.7
7.2
8.1
dB
fRF = 2305MHz to 2360MHz
0.15
fRF = 2500MHz to 2570MHz
0.15
fRF = 2570MHz to 2620MHz
0.15
fRF = 2500MHz to 2690MHz
0.15
fRF = 2700MHz to 2900MHz
0.20
dB
Conversion Loss Temperature
Coefficient
TCCL
TC = -40NC to +85NC
0.0071
dB/NC
Single Sideband Noise Figure
NFSSB
No blockers present
7.3
dB
Noise Figure Temperature
Coefficient
TCNF
fRF = 2300MHz to 2900MHz, single sideband, no blockers present,
TC = -40NC to +85NC
0.019
dB/NC
Noise Figure Under Blocking
NFB
+8dBm blocker tone applied to RF port,
fRF = 2600MHz, fLO = 2300MHz,
fBLOCKER = 2795MHz, PLO = 0dBm,
VCC = 5.0V, TC = +25NC (Notes 5, 9)
20.8
Input 1dB Compression Point
IP1dB
Third-Order Input Intercept Point
IIP3
TC = +25NC
(Notes 5, 10)
PRF1 = PRF2 =
0dBm/tone,
PLO = 0dBm,
TC = +25NC
fRF = 2300MHz
22.5
23.4
fRF = 2600MHz
20.6
22.1
fRF = 2900MHz
17.6
20.7
fRF1 = 2300MHz,
fRF2 = 2301MHz,
fLO = 2000MHz (Note 5)
34
36
fRF1 = 2600MHz,
fRF2 = 2601MHz,
fLO = 2300MHz (Note 8)
31
34
fRF1 = 2900MHz,
fRF2 = 2901MHz,
fLO = 2600MHz (Note 5)
28
30
fRF = 2300MHz to 2900MHz,
fRF1 - fRF2 = 1MHz, PRF1 = PRF2 = 0dBm/
tone, TC = -40NC to +85NC
IIP3 Variation with TC
Q0.5
2RF - 2LO Spur Rejection
2x2
fSPUR = fLO +
150MHz (Note 5)
PRF = -10dBm
64
70
PRF = 0dBm
54
60
3RF - 3LO Spur Rejection
3x3
fSPUR = fLO +
100MHz (Note 5)
PRF = -10dBm
80
92
60
72
RF Input Return Loss
RLRF
LO Input Return Loss
RLLO
PRF = 0dBm
LO on and IF terminated into a matched
impedance
RF and IF terminated into a matched
impedance
25
dB
dBm
dBm
dB
dBc
dBc
17
dB
15
dB
_______________________________________________________________________________________ 3
MAX2042
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PRF = 0dBm, fRF = 2300MHz to 2900MHz, fIF = 300MHz, fLO = 2000MHz to 2600MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PRF = 0dBm, PLO = 0dBm, fRF = 2300MHz, fLO = 2300MHz,
fIF = 300MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER
IF Output Impedance
IF Output Return Loss
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
ZIF
Nominal differential impedance at the IC’s
IF outputs
50
I
RLIF
RF terminated into 50I, LO driven by
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
18
dB
37
dB
RF-to-IF Isolation
PLO = +3dBm (Note 8)
30
LO Leakage at RF Port
fLO = 2000MHz to 2800MHz,
PLO = +3dBm (Note 8)
-28
2LO Leakage at RF Port
PLO = +3dBm
-36
LO Leakage at IF Port
fLO = 2000MHz to 2800MHz,
PLO = +3dBm (Note 8)
-24.2
-22
dBm
dBm
-16
dBm
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise
noted.) (Note 7)
PARAMETER
Small-Signal Conversion Loss
SYMBOL
LC
CONDITIONS
MIN
TYP
MAX
UNITS
(Note 8)
7.2
dB
fRF = 2300MHz to 2900MHz, any 100MHz
band
0.2
dB
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
TC = -40NC to +85NC
0.008
dB/NC
Single Sideband Noise Figure
NFSSB
No blockers present
7.5
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40NC to +85NC
0.019
dB/NC
Input 1dB Compression Point
IP1dB
(Note 10)
20
dBm
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm/tone
31
dBm
fRF1 = 2600MHz, fRF2 = 2601MHz,
PRF1 = PRF2 = 0dBm/tone,
TC = -40NC to +85NC
Q0.25
dB
Third-Order Input Intercept Point
IIP3
IIP3 Variation with TC
2RF - 2LO Spur Rejection
2x2
3RF - 3LO Spur Rejection
3x3
PRF = -10dBm, fSPUR = fLO + 150MHz
72
PRF = 0dBm, fSPUR = fLO + 150MHz
62
PRF = -10dBm, fSPUR = fLO + 100MHz
87
PRF = 0dBm, fSPUR = fLO + 100MHz
67
4 _______________________________________________________________________________________
dBc
dBc
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
(Typical Application Circuit with tuning elements outlined in Table 1, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = +3.3V, PRF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2300MHz, fIF = 300MHz, unless otherwise
noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
RF Input Return Loss
RLRF
LO on and IF terminated into a matched
impedance
LO Input Return Loss
RLLO
RF and IF terminated into a matched
impedance
12
dB
IF Output Impedance
ZIF
Nominal differential impedance at the IC’s
IF outputs
50
I
RLIF
RF terminated into 50I, LO driven by
50I source, IF transformed to 50I using
external components shown in the Typical
Application Circuit
18
dB
IF Output Return Loss
15
dB
Minimum RF-to-IF Isolation
fRF = 2300MHz to 2900MHz, PLO = +3dBm
36
dB
Maximum LO Leakage at RF Port
fLO = 1800MHz to 2800MHz, PLO = +3dBm
-24.5
dBm
Maximum 2LO Leakage at RF Port
fLO = 1800MHz to 2800MHz, PLO = +3dBm
-24
dBm
Maximum LO Leakage at IF Port
fLO = 1800MHz to 2800MHz, PLO = +3dBm
-20
dBm
+5.0V SUPPLY AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +4.75V to +5.25V, RF and LO ports are driven from 50I
sources, PLO = -3dBm to +3dBm, PIF = 0dBm, fRF = 2300MHz to 2900MHz, fIF =200MHz, fLO = 2100MHz to 2700MHz, fRF > fLO,
TC = -40NC to +85NC. Typical values are for TC = +25NC, VCC = +5.0V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz,
fIF = 200MHz. All parameters are guaranteed by design and characterization, unless otherwise noted.) (Note 7)
PARAMETER
Small-Signal Conversion Loss
SYMBOL
LC
Loss Variation vs. Frequency
DLC
Conversion Loss Temperature
Coefficient
TCCL
Input 1dB Compression Point
IP1dB
Third-Order Input Intercept Point
IIP3
IIP3 Variation with TC
LO Q 2IF Spur Rejection
1x2
LO Q 3IF Spur Rejection
1x3
Output Noise Floor
CONDITIONS
MIN
(Note 8)
fRF = 2300MHz to 2960MHz, any 100MHz
band
TYP
6.8
MAX
UNITS
dB
0.2
dB
TC = -40NC to +85NC
0.007
dB/NC
(Note 10)
22.7
dBm
32.4
dBm
Q0.5
dB
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz,
PLO = 0dBm, TC = +25NC (Note 8)
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz,
PLO = 0dBm, TC = -40NC to +85NC
LO - 2IF
30
70
LO + 2IF
67
LO - 3IF
82
LO + 3IF
77
POUT = 0dBm (Note 9)
-163
dBc
dBc
dBm/Hz
_______________________________________________________________________________________ 5
MAX2042
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(DOWNCONVERTER OPERATION) (continued)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
(UPCONVERTER OPERATION)
(Typical Application Circuit with tuning elements outlined in Table 2, RF and LO ports are driven from 50I sources. Typical values
are for TC = +25NC, VCC = +3.3V, PIF = 0dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2400MHz, fIF = 200MHz, unless otherwise
noted.) (Note 7)
PARAMETER
Small-Signal Conversion Loss
SYMBOL
CONDITIONS
LC
0.15
dB
0.008
dB/NC
19
dBm
29.5
dBm
Q0.75
dB
TCCL
TC = -40NC to +85NC
Input 1dB Compression Point
IP1dB
(Note 10)
1x2
LO Q 3IF Spur Rejection
1x3
Output Noise Floor
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone
fIF1 = 200MHz, fIF2 = 201MHz,
PIF1 = PIF2 = 0dBm/tone, fLO = 2400MHz,
PLO = 0dBm, TC = -40NC to +85NC
LO Q 2IF Spur Rejection
UNITS
dB
Conversion Loss Temperature
Coefficient
IIP3 Variation with TC
MAX
6.8
DLC
IIP3
TYP
fRF = 2300MHz to 2900MHz, any 100MHz
band
Loss Variation vs. Frequency
Third-Order Input Intercept Point
MIN
LO - 2IF
72
LO + 2IF
70
LO - 3IF
73
LO + 3IF
70
POUT = 0dBm (Note 9)
-160
dBc
dBc
dBm/Hz
Note 5: Not production tested.
Note 6: Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 7: All limits reflect losses of external components, including a 0.5dB loss at fIF = 300MHz due to the 1:1 impedance transformer. Output measurements were taken at IF outputs of the Typical Application Circuit.
Note 8: 100% production tested for functional performance.
Note 9: Measured with external LO source noise filtered so that the noise floor is -174dBm/Hz. This specification reflects the effects
of all SNR degradations in the mixer including the LO noise, as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 10:Maximum reliable continuous input power applied to the RF port of this device is +20dBm from a 50I source.
6 _______________________________________________________________________________________
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V Downconverter Curves
TC = -40NC
6
5
8
7
PLO = -3dBm, 0dBm, +3dBm
6
5
2400
2600
2800
3000
MAX2042 toc03
8
7
VCC = 4.75V, 5.0V, 5.25V
6
5
2000
2200
RF FREQUENCY (MHz)
2400
2600
2800
3000
2000
2200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
TC = -40NC
40
MAX2042 toc04
40
INPUT IP3 (dBm)
35
TC = +85NC
30
2600
2800
3000
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
35
PLO = -3dBm, 0dBm, +3dBm
30
2400
RF FREQUENCY (MHz)
40
VCC = 5.25V
INPUT IP3 (dBm)
2200
MAX2042 toc05
2000
INPUT IP3 (dBm)
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc02
MAX2042 toc01
TC = +25NC
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85NC
8
CONVERSION LOSS vs. RF FREQUENCY
9
PRF = 0dBm/TONE
MAX2042 toc06
CONVERSION LOSS vs. RF FREQUENCY
9
35
VCC = 4.75V
VCC = 5.0V
30
TC = +25NC
25
2400
2600
2800
3000
25
2000
2200
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
3000
65
TC = +25NC
TC = -40NC
55
50
70
PLO = +3dBm
65
60
PLO = 0dBm
PLO = -3dBm
50
2200
2400
2600
RF FREQUENCY (MHz)
2200
2800
3000
2400
2600
2800
3000
RF FREQUENCY (MHz)
PRF = 0dBm
55
2000
2000
2RF-2LO RESPONSE vs. RF FREQUENCY
2RF-2LO RESPONSE (dBc)
2RF-2LO RESPONSE (dBc)
2800
75
MAX2042 toc07
PRF = 0dBm
70
60
2600
RF FREQUENCY (MHz)
75
TC = +85NC
2400
2RF-2LO RESPONSE vs. RF FREQUENCY
75
PRF = 0dBm
2RF-2LO RESPONSE (dBc)
2200
MAX2042 toc08
2000
70
MAX2042 toc09
25
65
60
VCC = 4.75V, 5.0V, 5.25V
55
50
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
_______________________________________________________________________________________ 7
MAX2042
Typical Operating Characteristics
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
TC = -40NC, +25NC, +85NC
65
55
75
65
PLO = -3dBm, 0dBm, +3dBm
55
2200
2400
2600
2800
3000
NOISE FIGURE vs. RF FREQUENCY
2200
2400
2600
2800
3000
2000
NOISE FIGURE vs. RF FREQUENCY
TC = +25NC
8
7
6
2400
2600
2800
3000
7
6
4
2000
2200
RF FREQUENCY (MHz)
2400
2600
2800
3000
2000
2200
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
INPUT P1dB vs. RF FREQUENCY
TC = +25NC
21
19
2800
3000
VCC = 5.25V
23
INPUT P1dB (dBm)
23
INPUT P1dB (dBm)
23
2600
INPUT P1dB vs. RF FREQUENCY
25
MAX2042 toc17
TC = -40NC
2400
RF FREQUENCY (MHz)
25
MAX2042 toc16
25
MAX2042 toc12
8
5
4
2200
3000
VCC = 4.75V, 5.0V, 5.25V
5
4
2800
9
PLO = -3dBm, 0dBm, +3dBm
TC = -40NC
2600
NOISE FIGURE vs. RF FREQUENCY
NOISE FIGURE (dB)
7
2400
10
MAX2042 toc14
9
NOISE FIGURE (dB)
8
5
2200
RF FREQUENCY (MHz)
10
MAX2042 toc13
TC = +85NC
2000
VCC = 4.75V, 5.0V, 5.25V
RF FREQUENCY (MHz)
10
6
65
55
2000
RF FREQUENCY (MHz)
9
75
MAX2042 toc15
2000
NOISE FIGURE (dB)
PRF = 0dBm
MAX2042 toc18
75
3RF-3LO RESPONSE vs. RF FREQUENCY
85
3RF-3LO RESPONSE (dBc)
MAX2042 toc10
PRF = 0dBm
3RF-3LO RESPONSE (dBc)
3RF-3LO RESPONSE (dBc)
PRF = 0dBm
3RF-3LO RESPONSE vs. RF FREQUENCY
85
MAX2042 toc11
3RF-3LO RESPONSE vs. RF FREQUENCY
85
INPUT P1dB (dBm)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
PLO = -3dBm, 0dBm, +3dBm
21
19
VCC = 4.75V
21
VCC = 5.0V
19
TC = +85NC
17
17
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
17
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
8 _______________________________________________________________________________________
2800
3000
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V Downconverter Curves
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
TC = +85NC
TC = +25NC
-30
-40
-30
1900
2100
2300
2500
2700
MAX2042 toc21
MAX2042 toc20
PLO = -3dBm, 0dBm, +3dBm
-40
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-40
1700
1900
2100
2300
2500
2700
1700
1900
2100
2300
2500
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
50
TC = +85NC
40
TC = +25NC
30
60
50
40
30
PLO = -3dBm, 0dBm, +3dBm
2700
MAX2042 toc24
60
MAX2042 toc22
60
RF-TO-IF ISOLATION (dB)
1700
RF-TO-IF ISOLATION (dB)
-20
-10
LO LEAKAGE AT IF PORT (dBm)
-20
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc23
LO LEAKAGE AT IF PORT (dBm)
TC = -40NC
LO LEAKAGE AT IF PORT (dBm)
MAX2042 toc19
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
50
40
30
VCC = 4.75V, 5.0V, 5.25V
TC = -40NC
20
20
2200
2400
2600
2800
20
2000
2200
2400
2600
2800
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
LO LEAKAGE AT RF PORT vs.
LO FREQUENCY
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40NC, +25NC, +85NC
-35
-40
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
-40
2000
2200
2400
LO FREQUENCY (MHz)
2600
2800
3000
MAX2042 toc27
-20
LO LEAKAGE AT RF PORT (dBm)
-30
-20
MAX2042 toc26
MAX2042 toc25
-25
1800
2000
RF FREQENCY (MHz)
-20
LO LEAKAGE AT RF PORT (dBm)
3000
LO LEAKAGE AT RF PORT (dBm)
2000
-25
-30
VCC = 4.75V, 5.0V, 5.25V
-35
-40
1800
2000
2200
2400
LO FREQUENCY (MHz)
2600
2800
1800
2000
2200
2400
2600
2800
LO FREQUENCY (MHz)
_______________________________________________________________________________________ 9
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +5.0V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+5.0V Downconverter Curves
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
TC = +85NC
-45
-30
-35
-40
-45
-30
-35
-40
-50
2000
2200
2400
2600
2800
-50
1800
2000
LO FREQUENCY (MHz)
2200
2400
2600
fLO = 2200MHz
5
IF PORT RETURN LOSS (dB)
5
2200
2400
LO FREQUENCY (MHz)
0
MAX2042 toc31
fIF = 300MHz
RF PORT RETURN LOSS (dB)
2000
IF PORT RETURN LOSS
vs. IF FREQUENCY
0
10
15
PLO = -3dBm, 0dBm, +3dBm
25
10
VCC = 4.75V, 5.0V, 5.25V
15
20
25
30
30
2000
2200
2400
2600
2800
3000
50
140
230
320
410
RF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
150
MAX2042 toc33
0
PLO = -3dBm
10
20
PLO = +3dBm
VCC = 5.25V
145
SUPPLY CURRENT (mA)
LO PORT RETURN LOSS (dB)
1800
LO FREQUENCY (MHz)
RF PORT RETURN LOSS
vs. RF FREQUENCY
20
2800
VCC = 5.0V
500
MAX2042 toc34
1800
VCC = 4.75V, 5.0V, 5.25V
-45
PLO = -3dBm, 0dBm, +3dBm
TC = +25NC
-50
-25
MAX2042 toc32
-35
-25
2LO LEAKAGE AT RF PORT (dBm)
-30
-20
MAX2042 toc29
TC = -40NC
-25
-20
2LO LEAKAGE AT RF PORT (dBm)
MAX2042 toc28
-20
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
MAX2042 toc30
2LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
140
135
130
VCC = 4.75V
125
PLO = 0dBm
30
120
1700
1900
2100
2300
LO FREQUENCY (MHz)
2500
2700
-40
-15
10
35
60
TEMPERATURE (˚C)
10 �������������������������������������������������������������������������������������
85
2600
2800
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V Downconverter Curves
5
7
PLO = -3dBm, 0dBm, +3dBm
6
5
2400
2600
2800
3000
2200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2800
3000
MAX2042 toc38
30
TC = +85NC
25
2600
2800
30
PLO = -3dBm, 0dBm, +3dBm
25
3000
2200
TC = +25NC
60
TC = +85NC
55
2600
2800
70
3000
PLO = +3dBm
65
60
PLO = 0dBm
50
2200
2400
2600
RF FREQUENCY (MHz)
2000
2200
2800
3000
2400
2600
2800
3000
2RF-2LO RESPONSE vs. RF FREQUENCY
75
VCC = 3.6V
70
PRF = 0dBm
VCC = 3.3V
65
60
VCC = 3.0V
55
PLO = -3dBm
TC = -40NC
2000
25
RF FREQUENCY (MHz)
PRF = 0dBm
55
50
PRF = 0dBm/TONE
VCC = 3.0V
2RF-2LO RESPONSE vs. RF FREQUENCY
2RF-2LO RESPONSE (dBc)
70
65
2400
75
MAX2042 toc41
PRF = 0dBm
3000
30
RF FREQUENCY (MHz)
2RF-2LO RESPONSE vs. RF FREQUENCY
2800
20
2000
RF FREQUENCY (MHz)
75
2600
VCC = 3.3V, 3.6V
2RF-2LO RESPONSE (dBc)
2400
2400
INPUT IP3 vs. RF FREQUENCY
MAX2042 toc42
2200
2200
35
20
2000
MAX2042 toc37
2000
RF FREQUENCY (MHz)
PRF = 0dBm/TONE
INPUT IP3 (dBm)
INPUT IP3 (dBm)
2600
35
20
2RF-2LO RESPONSE (dBc)
2400
INPUT IP3 vs. RF FREQUENCY
PRF = 0dBm/TONE
TC = +25NC
VCC = 3.0V, 3.3V, 3.6V
6
RF FREQUENCY (MHz)
35
TC = -40NC
7
5
2000
INPUT IP3 (dBm)
2200
MAX2042 toc39
2000
8
MAX2042 toc40
TC = -40NC
6
8
CONVERSION LOSS (dB)
7
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc36
MAX2042 toc35
TC = +25NC
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
TC = +85NC
8
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc43
CONVERSION LOSS vs. RF FREQUENCY
9
50
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 11
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
70
PLO = -3dBm, 0dBm, +3dBm
60
VCC = 3.6V
50
2400
2600
2800
2200
NOISE FIGURE vs. RF FREQUENCY
2800
3000
2000
NOISE FIGURE vs. RF FREQUENCY
9
NOISE FIGURE (dB)
TC = +25°C
7
6
4
7
PLO = -3dBm, 0dBm, +3dBm
2600
2800
3000
2200
2400
2600
2800
3000
INPUT P1dB (dBm)
TC = +25°C
2400
2600
RF FREQUENCY (MHz)
2800
3000
2400
2600
2800
3000
INPUT P1dB vs. FREQUENCY
MAX2042 toc51
24
VCC = 3.6V
22
20
PLO = -3dBm, 0dBm, +3dBm
VCC = 3.3V
20
VCC = 3.0V
18
16
16
16
2200
2200
RF FREQUENCY (MHz)
18
TC = +85°C
2000
2000
22
20
VCC = 3.3V
VCC = 3.6V
6
INPUT P1dB vs. FREQUENCY
24
MAX2042 toc50
TC = -40°C
18
7
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
22
VCC = 3.0V
8
4
2000
RF FREQUENCY (MHz)
24
3000
5
INPUT P1dB (dBm)
2400
2800
9
4
2200
2600
NOISE FIGURE vs. RF FREQUENCY
8
6
2400
10
5
TC = -40°C
2000
2200
RF FREQUENCY (MHz)
MAX2042 toc48
TC = +85°C
5
2600
10
MAX2042 toc47
10
8
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
9
VCC = 3.0V
50
2000
3000
VCC = 3.3V
60
MAX2042 toc49
2200
NOISE FIGURE (dB)
2000
70
MAX2042 toc52
50
NOISE FIGURE (dB)
PRF = 0dBm
3RF-3LO RESPONSE (dBc)
TC = -40NC, +25NC, +85NC
3RF-3LO RESPONSE vs. RF FREQUENCY
80
MAX2042 toc45
MAX2042 toc44
70
60
PRF = 0dBm
3RF-3LO RESPONSE (dBc)
3RF-3LO RESPONSE (dBc)
PRF = 0dBm
80
MAX2042 toc46
3RF-3LO RESPONSE vs. RF FREQUENCY
3RF-3LO RESPONSE vs. RF FREQUENCY
80
INPUT P1dB (dBm)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
2000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2000
2200
2400
2600
2800
RF FREQUENCY (MHz)
12 �������������������������������������������������������������������������������������
3000
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V Downconverter Curves
TC = +25NC
-30
-40
PLO = -3dBm, 0dBm, +3dBm
-30
-40
2100
2300
2500
LO FREQUENCY (MHz)
2700
2100
2300
2500
LO FREQUENCY (MHz)
2700
TC = +85NC
TC = +25NC
40
TC = -40NC
30
50
40
PLO = -3dBm, 0dBm, +3dBm
30
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
TC = -40NC, +25NC, +85NC
-40
2000
2200
2400
2600
LO FREQUENCY (MHz)
VCC = 3.0V, 3.3V, 3.6V
30
2000
-25
-30
PLO = -3dBm, 0dBm, +3dBm
-35
2800
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-40
1800
40
3000
MAX2042 toc60
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2042 toc59
-30
-35
50
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
2700
20
2000
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-20
2100
2300
2500
LO FREQUENCY (MHz)
60
-20
LO LEAKAGE AT RF PORT (dBm)
2200
1900
RF-TO-IF ISOLATION
vs. RF FREQUENCY
20
2000
MAX2042 toc55
1700
MAX2042 toc57
MAX2042 toc56
60
20
LO LEAKAGE AT RF PORT (dBm)
1900
RF-TO-IF ISOLATION
vs. RF FREQUENCY
RF-TO-IF ISOLATION (dB)
RF-TO-IF ISOLATION (dB)
50
-30
-40
1700
RF-TO-IF ISOLATION
vs. RF FREQUENCY
60
VCC = 3.0V, 3.3V, 3.6V
MAX2042 toc58
1900
RF-TO-IF ISOLATION (dB)
1700
-20
MAX2042 toc61
TC = +85NC
-20
-10
LO LEAKAGE AT IF PORT (dBm)
-20
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc54
LO LEAKAGE AT IF PORT (dBm)
TC = -40NC
-10
LO LEAKAGE AT IF PORT (dBm)
-10
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
MAX2042 toc53
LO LEAKAGE AT IF PORT
vs. LO FREQUENCY
-25
VCC = 3.6V
-30
-35
VCC = 3.0V
VCC = 3.3V
-40
1800
2000
2200
2400
2600
LO FREQUENCY (MHz)
2800
1800
2000
2200
2400
2600
LO FREQUENCY (MHz)
2800
______________________________________________________________________________________ 13
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 1, VCC = +3.3V, fRF > fLO, fIF = 300MHz, PRF = 0dBm, PLO = 0dBm,
TC = +25NC, unless otherwise noted.)
+3.3V Downconverter Curves
-35
-40
TC = +85NC
-45
-50
-30
-35
-40
PLO = -3dBm, 0dBm, +3dBm
-45
-50
2000
2200
2400
2600
LO FREQUENCY (MHz)
2800
2000
2200
2400
2600
LO FREQUENCY (MHz)
-45
VCC = 3.0V, 3.3V, 3.6V
5
2800
1800
2000
2200
2400
2600
LO FREQUENCY (MHz)
10
15
20
0
fLO = 2200MHz
5
IF PORT RETURN LOSS (dB)
fIF = 300MHz
RF PORT RETURN LOSS (dB)
-40
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2042 toc65
0
10
VCC = 3.0V, 3.3V, 3.6V
15
20
25
PLO = -3dBm, 0dBm, +3dBm
30
30
2000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
50
140
LO PORT RETURN LOSS
vs. LO FREQUENCY
130
10
PLO = 0dBm
VCC = 3.6V
SUPPLY CURRENT (mA)
PLO = -3dBm
20
230
320
410
IF FREQUENCY (MHz)
500
SUPPLY CURRENT
vs. TEMPERATURE
MAX2042 toc67
0
LO PORT RETURN LOSS (dB)
-35
-50
1800
RF PORT RETURN LOSS
vs. RF FREQUENCY
25
-30
PLO = +3dBm
MAX2042 toc68
1800
-25
MAX2042 toc66
TC = +25NC
-25
2LO LEAKAGE AT RF PORT (dBm)
TC = -40NC
-30
-20
MAX2042 toc63
-25
2LO LEAKAGE AT RF PORT
vs. FREQUENCY
-20
2LO LEAKAGE AT RF PORT (dBm)
MAX2042 toc62
-20
2LO LEAKAGE AT RF PORT
vs. FREQUENCY
MAX2042 toc64
2LO LEAKAGE AT RF PORT
vs. FREQUENCY
2LO LEAKAGE AT RF PORT (dBm)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC = 3.3V
125
120
115
VCC = 3.0V
110
30
1700
1900
2100
2300
2500
LO FREQUENCY (MHz)
2700
-40
-15
10
35
TEMPERATURE (NC)
60
14 �������������������������������������������������������������������������������������
85
2800
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V Upconverter Curves
TC = +25°C
7
6
TC = -40°C
5
8
7
PLO = -3dBm, 0dBm, +3dBm
6
5
2200
2400
2600
2800
3000
2200
RF FREQUENCY (MHz)
MAX2042 toc71
7
VCC = 4.75V, 5.0V, 5.25V
6
2400
2600
2800
3000
2000
2200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
38
TC = -40°C
TC = +25°C
32
30
36
34
32
3000
PIF = 0dBm/TONE
38
VCC = 5.25V
36
VCC = 5.0V
34
32
VCC = 4.75V
PLO = -3dBm, 0dBm, +3dBm
30
2800
40
INPUT IP3 (dBm)
INPUT IP3 (dBm)
36
2600
INPUT IP3 vs. RF FREQUENCY
40
MAX2042 toc72
PIF = 0dBm/TONE
38
2400
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
40
34
8
5
2000
MAX2042 toc73
2000
INPUT IP3 (dBm)
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
8
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc70
MAX2042 toc69
TC = +85°C
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc74
CONVERSION LOSS vs. RF FREQUENCY
9
30
TC = +85°C
28
2400
2600
2800
3000
28
2000
2200
RF FREQUENCY (MHz)
2800
3000
LO-2IF RESPONSE vs. RF FREQUENCY
TC = +25°C
65
55
PIF = 0dBm
PLO = +3dBm
LO-2IF RESPONSE (dBc)
75
65
PLO = 0dBm
55
2600
RF FREQUENCY (MHz)
2800
3000
2600
2800
3000
PIF = 0dBm
75
65
55
VCC = 4.75V, 5.0V, 5.25V
45
2400
2400
85
PLO = -3dBm
45
2200
2200
LO-2IF RESPONSE vs. RF FREQUENCY
75
TC = -40°C
2000
2000
RF FREQUENCY (MHz)
85
MAX2042 toc75
PIF = 0dBm
TC = +85°C
LO-2IF RESPONSE (dBc)
2600
RF FREQUENCY (MHz)
LO-2IF RESPONSE vs. RF FREQUENCY
85
2400
LO-2IF RESPONSE (dBc)
2200
MAX2042 toc76
2000
MAX2042 toc77
28
45
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 15
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
PLO = +3dBm
65
TC = +25°C
55
75
65
PLO = 0dBm
55
TC = -40°C
45
2800
3000
2200
2400
2600
2800
3000
2000
LO-3IF RESPONSE (dBc)
TC = +25°C
80
TC = +85°C
60
2800
PIF = 0dBm
90
80
PLO = -3dBm, 0dBm, +3dBm
70
3000
2200
80
TC = +85°C
2600
2800
TC = +25°C
60
2200
2400
2600
RF FREQUENCY (MHz)
VCC = 4.75V
70
2000
2200
PIF = 0dBm
2800
3000
2600
2800
3000
LO+3IF RESPONSE vs. RF FREQUENCY
90
80
PLO = -3dBm, 0dBm, +3dBm
70
2400
RF FREQUENCY (MHz)
60
2000
VCC = 5.0V
80
3000
100
LO+3IF RESPONSE (dBc)
TC = -40°C
70
VCC = 5.25V
90
LO+3IF RESPONSE vs. RF FREQUENCY
LO+3IF RESPONSE (dBc)
90
2400
100
MAX2042 toc84
PIF = 0dBm
3000
PIF = 0dBm
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
2800
60
2000
RF FREQUENCY (MHz)
100
2600
LO-3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc85
2600
2400
100
60
2400
2200
RF FREQUENCY (MHz)
LO-3IF RESPONSE vs. RF FREQUENCY
100
MAX2042 toc81
TC = -40°C
2200
55
RF FREQUENCY (MHz)
PIF = 0dBm
2000
65
45
2000
LO-3IF RESPONSE vs. RF FREQUENCY
100
70
VCC = 4.75V, 5.0V, 5.25V
MAX2042 toc83
2600
RF FREQUENCY (MHz)
90
75
90
PIF = 0dBm
MAX2042 toc86
2400
LO-3IF RESPONSE (dBc)
2200
MAX2042 toc82
2000
PIF = 0dBm
PLO = -3dBm
45
LO-3IF RESPONSE (dBc)
LO+2IF RESPONSE (dBc)
TC = +85°C
PIF = 0dBm
LO+2IF RESPONSE vs. RF FREQUENCY
85
MAX2042 toc80
MAX2042 toc78
75
LO+2IF RESPONSE (dBc)
LO+2IF RESPONSE (dBc)
PIF = 0dBm
LO+2IF RESPONSE vs. RF FREQUENCY
85
MAX2042 toc79
LO+2IF RESPONSE vs. RF FREQUENCY
85
LO+3IF RESPONSE (dBc)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
VCC = 5.25V
80
VCC = 4.75V
70
VCC = 5.0V
60
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
16 �������������������������������������������������������������������������������������
2800
3000
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+5.0V Upconverter Curves
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
TC = -40°C, +25°C, +85°C
-25
-30
-35
2000
2200
2400
2600
PLO = -3dBm, 0dBm, +3dBm
2800
1800
2200
2400
2600
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
VCC = 4.75V, 5.0V, 5.25V
TC = -40°C
-35
2000
2200
2400
2600
-50
TC = +25°C
-60
-70
-80
TC = +85°C
-90
2800
1800
2000
2200
2400
2600
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-60
-70
-80
2800
MAX2042 toc92
PLO = -3dBm, 0dBm, +3dBm
-40
IF LEAKAGE AT RF PORT (dBm)
MAX2042 toc91
-40
2800
MAX2042 toc90
-40
IF LEAKAGE AT RF PORT (dBm)
-25
1800
2000
LO FREQUENCY (MHz)
MAX2042 toc89
LO LEAKAGE AT RF PORT (dBm)
-30
LO FREQUENCY (MHz)
-20
IF LEAKAGE AT RF PORT (dBm)
-25
-35
1800
-50
MAX2042 toc88
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2042 toc87
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-50
VCC = 5.0V, 5.25V
-60
-70
-80
VCC = 4.75V
-90
-90
1800
2000
2200
2400
LO FREQUENCY (MHz)
2600
2800
1800
2000
2200
2400
2600
2800
LO FREQUENCY (MHz)
______________________________________________________________________________________ 17
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +5.0V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+5.0V Upconverter Curves
RF PORT RETURN LOSS
vs. RF FREQUENCY
IF PORT RETURN LOSS
vs. IF FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
10
15
20
MAX2042 toc94
5
0
fLO = 2200MHz
5
IF PORT RETURN LOSS (dB)
25
10
VCC = 4.75V, 5.0V, 5.25V
15
20
25
30
30
2000
2200
2400
2600
2800
3000
50
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
150
MAX2042 toc95
0
PLO = -3dBm
PLO = +3dBm
15
20
25
VCC = 5.25V
145
SUPPLY CURRENT (mA)
5
10
140
RF FREQUENCY (MHz)
VCC = 5.0V
500
MAX2042 toc96
RF PORT RETURN LOSS (dB)
fIF = 300MHz
MAX2042 toc93
0
LO PORT RETURN LOSS (dB)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
140
135
130
VCC = 4.75V
125
PLO = 0dBm
30
120
1700
1900
2100
2300
LO FREQUENCY (MHz)
2500
2700
-40
-15
10
35
60
TEMPERATURE (°C)
18 �������������������������������������������������������������������������������������
85
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V Upconverter Curves
TC = +25°C
7
6
8
CONVERSION LOSS (dB)
CONVERSION LOSS (dB)
8
CONVERSION LOSS vs. RF FREQUENCY
9
MAX2042 toc98
MAX2042 toc97
TC = +85°C
CONVERSION LOSS (dB)
CONVERSION LOSS vs. RF FREQUENCY
9
7
PLO = -3dBm, 0dBm, +3dBm
6
MAX2042 toc99
CONVERSION LOSS vs. RF FREQUENCY
9
8
7
VCC = 3.0V, 3.3V, 3.6V
6
TC = -40°C
5
2600
2800
3000
5
2000
2200
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
2000
MAX2042 toc100
30
TC = +25°C
TC = +85°C
30
PLO = 0dBm
PLO = +3dBm
26
22
2800
3000
2200
RF FREQUENCY (MHz)
LO-2IF RESPONSE vs. RF FREQUENCY
2400
2600
2800
VCC = 3.3V
26
3000
VCC = 3.0V
2000
LO-2IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
PLO = +3dBm
LO-2IF RESPONSE (dBc)
75
65
TC = +25°C
55
75
45
PLO = 0dBm
55
RF FREQUENCY (MHz)
3000
2600
2800
3000
PIF = 0dBm
75
65
55
VCC = 3.0V, 3.3V, 3.6V
45
2800
2400
85
PLO = -3dBm
2600
2200
LO-2IF RESPONSE vs. RF FREQUENCY
65
TC = -40°C
2400
28
RF FREQUENCY (MHz)
85
MAX2042 toc103
PIF = 0dBm
TC = +85°C
2200
30
RF FREQUENCY (MHz)
85
2000
VCC = 3.6V
22
2000
LO-2IF RESPONSE (dBc)
2600
3000
24
MAX2042 toc104
2400
2800
PIF = 0dBm/TONE
32
22
2200
2600
INPUT IP3 vs. RF FREQUENCY
PLO = -3dBm
28
2400
34
24
2000
2200
RF FREQUENCY (MHz)
PIF = 0dBm/TONE
32
24
LO-2IF RESPONSE (dBc)
3000
34
INPUT IP3 (dBm)
INPUT IP3 (dBm)
TC = -40°C
26
2800
INPUT IP3 vs. RF FREQUENCY
PIF = 0dBm/TONE
28
2600
RF FREQUENCY (MHz)
34
32
2400
MAX2042 toc102
2400
INPUT IP3 (dBm)
2200
MAX2042 toc101
2000
MAX2042 toc105
5
45
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________ 19
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
LO+2IF RESPONSE vs. RF FREQUENCY
TC = +25°C
55
65
PLO = 0dBm
55
45
2800
45
2000
3000
2200
LO-3IF RESPONSE vs. RF FREQUENCY
PIF = 0dBm
2800
3000
2000
70
TC = -40°C
TC = +25°C
PIF = 0dBm
50
2800
80
70
PLO = -3dBm, 0dBm, +3dBm
60
3000
PIF = 0dBm
2200
70
TC = +25°C
TC = +85°C
50
2600
2800
40
2400
2600
RF FREQUENCY (MHz)
2000
2200
PIF = 0dBm
80
2800
3000
2600
2800
3000
LO+3IF RESPONSE vs. RF FREQUENCY
70
60
2400
RF FREQUENCY (MHz)
PLO = -3dBm, 0dBm, +3dBm
90
PIF = 0dBm
80
VCC = 3.6V
70
60
VCC = 3.3V
VCC = 3.0V
50
40
2200
VCC = 3.0V
60
3000
50
2000
VCC = 3.6V
70
LO+3IF RESPONSE vs. RF FREQUENCY
LO+3IF RESPONSE (dBc)
TC = -40°C
60
2400
90
MAX2042 toc112
PIF = 0dBm
80
80
RF FREQUENCY (MHz)
LO+3IF RESPONSE vs. RF FREQUENCY
3000
50
2000
RF FREQUENCY (MHz)
90
2800
VCC = 3.3V
LO+3IF RESPONSE (dBc)
2600
2600
LO-3IF RESPONSE vs. RF FREQUENCY
MAX2042 toc113
2400
2400
90
50
2200
2200
RF FREQUENCY (MHz)
LO-3IF RESPONSE vs. RF FREQUENCY
LO-3IF RESPONSE (dBc)
80
60
2600
90
MAX2042 toc109
90
TC = +85°C
2400
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
2000
55
MAX2042 toc111
2600
LO-3IF RESPONSE (dBc)
2400
MAX2042 toc110
2200
65
MAX2042 toc114
45
2000
VCC = 3.0V, 3.3V, 3.6V
75
PLO = -3dBm
TC = -40°C
LO-3IF RESPONSE (dBc)
PIF = 0dBm
LO+2IF RESPONSE (dBc)
65
PLO = +3dBm
75
LO+2IF RESPONSE vs. RF FREQUENCY
85
MAX2042 toc107
MAX2042 toc106
TC = +85°C
PIF = 0dBm
LO+2IF RESPONSE (dBc)
LO+2IF RESPONSE (dBc)
PIF = 0dBm
75
85
MAX2042 toc108
LO+2IF RESPONSE vs. RF FREQUENCY
85
LO+3IF RESPONSE (dBc)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
40
2000
2200
2400
2600
RF FREQUENCY (MHz)
2800
3000
2000
2200
2400
2600
RF FREQUENCY (MHz)
20 �������������������������������������������������������������������������������������
2800
3000
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
+3.3V Upconverter Curves
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
-25
TC = -40°C, +25°C, +85°C
-30
-35
2000
2200
2400
2600
PLO = -3dBm, 0dBm, +3dBm
-30
2800
2400
2600
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
-30
-50
TC = +85°C
-60
-70
TC = -40°C
-80
TC = +25°C
VCC = 3.0V
-90
-35
2000
2800
MAX2042 toc118
-40
IF LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
2200
2400
2600
1800
2800
2000
2200
2400
2600
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
IF LEAKAGE AT RF PORT
vs. LO FREQUENCY
PLO = -3dBm, 0dBm, +3dBm
-70
-80
-90
-50
-60
2800
MAX2042 toc120
-50
-40
IF LEAKAGE AT RF PORT (dBm)
MAX2042 toc119
-40
-60
2200
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.6V
1800
2000
LO FREQUENCY (MHz)
MAX2042 toc117
-25
1800
LO FREQUENCY (MHz)
-20
LO LEAKAGE AT RF PORT (dBm)
-25
-35
1800
IF LEAKAGE AT RF PORT (dBm)
MAX2042 toc116
-20
LO LEAKAGE AT RF PORT (dBm)
MAX2042 toc115
LO LEAKAGE AT RF PORT (dBm)
-20
LO LEAKAGE AT RF PORT
vs. LO FREQUENCY
VCC = 3.0V
-70
VCC = 3.6V
-80
VCC = 3.3V
-90
1800
2000
2200
2400
LO FREQUENCY (MHz)
2600
2800
1800
2000
2200
2400
2600
2800
LO FREQUENCY (MHz)
______________________________________________________________________________________ 21
MAX2042
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit with tuning elements outlined in Table 2, VCC = +3.3V, fRF = fLO + fIF, fIF = 200MHz, PIF = 0dBm, PLO =
0dBm, TC = +25NC, unless otherwise noted.)
+3.3V Upconverter Curves
5
PLO = -3dBm, 0dBm, +3dBm
10
15
20
0
fLO = 2200MHz
5
25
10
VCC = 3.0V, 3.3V, 3.6V
15
20
25
30
30
2200
2400
2600
2800
3000
140
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS
vs. LO FREQUENCY
SUPPLY CURRENT
vs. TEMPERATURE (TC)
5
PLO = -3dBm
10
15
PLO = +3dBm
PLO = 0dBm
130
MAX2042 toc123
0
20
50
RF FREQUENCY (MHz)
VCC = 3.6V
SUPPLY CURRENT (mA)
2000
VCC = 3.3V
125
500
MAX2042 toc124
RF PORT RETURN LOSS (dB)
fIF = 300MHz
IF PORT RETURN LOSS (dB)
0
MAX2042 toc122
IF PORT RETURN LOSS
vs. IF FREQUENCY
MAX2042 toc121
RF PORT RETURN LOSS
vs. RF FREQUENCY
LO PORT RETURN LOSS (dB)
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
120
115
VCC = 3.0V
25
110
30
1700
1900
2100
2300
LO FREQUENCY (MHz)
2500
2700
-40
-15
10
35
60
TEMPERATURE (°C)
22 �������������������������������������������������������������������������������������
85
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
PIN
NAME
1, 6, 8, 14
VCC
2
RF
Single-Ended 50I RF Input. Internally matched and DC shorted to GND through a balun. Provide
a DC-blocking capacitor if required. Capacitor also provides some RF match tuning.
3, 4, 5, 10,
12, 13, 17
GND
Ground. Internally connected to the exposed pad. Connect all ground pins and the exposed pad
(EP) together.
7
LOBIAS
LO Amplifier Bias Control. Output bias resistor for the LO buffer. Connect a 698I Q1% resistor (nominal bias condition) from LOBIAS to ground. The maximum current seen by this resistor is 3mA.
9, 15
GND
11
LO
16, 20
GND
18, 19
IF-, IF+
—
EP
FUNCTION
Power Supply. Bypass to GND with 0.01FF capacitors as close as possible to the pin.
Ground. Not internally connected. Ground these pins or leave unconnected.
Local Oscillator Input. This input is internally matched to 50I. Requires an input DC-blocking
capacitor. Capacitor also provides some LO match tuning.
Ground. Connect all ground pins and the exposed pad (EP) together.
Mixer Differential IF Output/Input
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses
multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These
multiple via grounds are also required to achieve the noted RF performance.
______________________________________________________________________________________ 23
MAX2042
Pin Description
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Detailed Description
When used as a low-side LO injection mixer in the
2300MHz to 2900MHz band, the MAX2042 provides
+36dBm of IIP3, with typical noise figure and conversion loss values of only 7.3dB and 7.2dB, respectively.
The integrated baluns and matching circuitry allow for
50I single-ended interfaces to the RF and the LO ports.
The integrated LO buffer provides a high drive level to
the mixer core, reducing the LO drive required at the
MAX2042’s input to a -3dBm to +3dBm range. The IF
port incorporates a differential interface, which is ideal
for providing enhanced 2RF-2LO performance.
Specifications are guaranteed over broad frequency
ranges to allow for use in WCS, LTE, WiMAX, and MMDS
base stations. The MAX2042 is specified to operate over
an RF input range of 2000MHz to 3000MHz, an LO range
of 1800MHz to 2800MHz, and an IF range of 50MHz to
500MHz. The external IF transformer sets the lower frequency range (see the Typical Operating Characteristics
for details). Operation beyond these ranges is possible
(see the Typical Operating Characteristics for additional
information).
RF Interface and Balun
The MAX2042 RF input provides a 50I match when
combined with a series DC-blocking capacitor. This
DC-blocking capacitor required as the input is internally
DC shorted to ground through the on-chip balun. When
using an 8.2pF DC-blocking capacitor, the RF port input
return loss is typically 15dB over the RF frequency range
of 2500MHz to 2900MHz.
LO Inputs, Buffer, and Balun
The MAX2042 is optimized for low-side LO injection
applications with an 1800MHz to 2800MHz LO frequency
range. The LO input is internally matched to 50I, requiring only a 2pF DC-blocking capacitor. A two-stage
internal LO buffer allows for a -3dBm to +3dBm LO input
power range. The on-chip low-loss balun, along with an
LO buffer, drives the double-balanced mixer. All interfacing and matching components from the LO inputs to the
IF outputs are integrated on-chip.
High-Linearity Mixer
The core of the MAX2042 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer.
IIP3, 2RF-2LO rejection, and noise-figure performance
are typically +36dBm, 70dBc, and 7.3dB, respectively.
Differential IF Interface
The MAX2042 has an IF frequency range of 50MHz to
500MHz, where the low-end frequency depends on the
frequency response of the external IF components.
The MAX2042’s differential ports are ideal for providing enhanced 2RF-2LO performance. The user can use
a differential IF amplifier or SAW filter on the mixer IF
port, but a DC block is required on both IF+/IF- ports to
keep external DC from entering the IF ports of the mixer.
Typical applications typically use a 1:1 transformer such
as the MABAES0029 to transform the 50I differential
interface to a 50I single-ended interface. The loss of
this transformer is included in the data presented in this
data sheet. In addition, the IF interface directly supports
single-ended AC-coupled signals into or out of IF+ by
shorting IF- to ground, and a 1kI resistor from IF+ to
ground.
Applications Information
Input and Output Matching
The RF input provides a 50I match when combined with
a series DC-blocking capacitor. Use an 8.2pF capacitor value for RF frequencies ranging from 2000MHz to
3000MHz. The LO input is internally matched to 50I;
use a 2pF DC-blocking capacitor to cover operations
spanning the 1800MHz to 2800MHz range. The IF output
impedance is 50I (differential). For evaluation, an external low-loss 1:1 (impedance ratio) balun transforms this
impedance down to a 50I single-ended output (see the
Typical Application Circuit).
Reduced-Power Mode
The MAX2042 has one pin (LOBIAS) that allows an external resistor to set the internal bias current. A nominal
value for this resistor is shown in Tables 1 and 2. Larger
value resistors can be used to reduce power dissipation at the expense of some performance loss. See the
Typical Operating Characteristics to evaluate the power
vs. performance tradeoff. If Q1% resistors are not readily
available, substitute with Q5% resistors.
Significant reductions in power consumption can also be
realized by operating the mixer with an optional supply
voltage of +3.3V. Doing so reduces the overall power
consumption by up to 43%. See the +3.3V Supply AC
Electrical Characteristics table and the relevant +3.3V
curves in the Typical Operating Characteristics section
to evaluate the power vs. performance tradeoffs.
24 �������������������������������������������������������������������������������������
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with the
capacitors shown in the Typical Application Circuit and
see Tables 1 and 2.
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX2042’s 20-pin thin QFN
package provides a low thermal-resistance path to the
die. It is important that the PCB on which the MAX2042
is mounted be designed to conduct heat from the EP. In
addition, provide the EP with a low-inductance path to
electrical ground. The EP MUST be soldered to a ground
plane on the PCB, either directly or through an array of
plated via holes.
Table 1. Downconverter Mode Component Values
DESIGNATION
QTY
C1
1
8.2pF microwave capacitor (0402)
DESCRIPTION
Murata Electronics North America, Inc.
COMPONENT SUPPLIER
C2, C6, C8, C11
4
0.01FF microwave capacitors (0402)
Murata Electronics North America, Inc.
C3, C9
0
Not installed, capacitors
—
C5
0
Not installed, capacitor
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
R1
1
698I Q1% resistor (0402)
Digi-Key Corp.
T1
1
1:1 IF balun MABAES0029
M/A-Com, Inc.
U1
1
MAX2042 IC (20 TQFN)
Maxim Integrated Products, Inc.
Table 2. Upconverter Mode Component Values
DESIGNATION
QTY
C1
1
8.2pF microwave capacitor (0402)
DESCRIPTION
Murata Electronics North America, Inc.
COMPONENT SUPPLIER
C2, C6, C8, C11
4
Murata Electronics North America, Inc.
C3, C9
0
0.01FF microwave capacitors (0402)
Not installed, capacitors
C5
0
Not installed, capacitor
—
C10
1
2pF microwave capacitor (0402)
Murata Electronics North America, Inc.
R1
1
698I Q1% resistor (0402)
Digi-Key Corp.
T1
1
1:1 IF balun MABAES0029
M/A-Com, Inc.
U1
1
MAX2042 IC (20 TQFN)
Maxim Integrated Products, Inc.
—
______________________________________________________________________________________ 25
MAX2042
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground pin traces
directly to the exposed pad under the package. The PCB
exposed pad MUST be connected to the ground plane
of the PCB. It is suggested that multiple vias be used to
connect this pad to the lower-level ground planes. This
method provides a good RF/thermal conduction path for
the device. Solder the exposed pad on the bottom of the
device package to the PCB. The MAX2042 evaluation
kit can be used as a reference for board layout. Gerber
files are available upon request at www.maxim-ic.com.
MAX2042
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
Typical Application Circuit
N.C.
3
5
2
T1
IF
1
4
1:1
20
C3
C2
VCC
C1
RF
RF
19
18
GND
GND
IF-
VCC
IF+
GND
C5
17
16
15
1
MAX2042
2
GND
VCC
14
C11
GND
GND
3
13
4
12
GND
GND
EP
11
5
VCC
C6
9
LO
C10
LO
INPUT
10
GND
8
GND
7
LOBIAS
VCC
6
VCC
GND
R1
NOTE: PINS 3, 4, 5, 10, 12, 13, AND 17 ARE ALL INTERNALLY
CONNECTED TO THE EXPOSED GROUND PAD. CONNECT
THESE PINS TO GROUND TO IMPROVE ISOLATION.
C8
VCC
C9
PINS 9 AND 15 HAVE NO INTERNAL CONNECTION BUT CAN BE
EXTERNALLY GROUNDED TO IMPROVE ISOLATION.
26 �������������������������������������������������������������������������������������
SiGe High-Linearity, 2000MHz to 3000MHz
Upconversion/Downconversion Mixer with LO Buffer
PROCESS: SiGe BiCMOS
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
20 TQFN-EP
T2055+3
21-0140
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2009
Maxim Integrated Products 27
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX2042
Chip Information