Design Example Report Title 13.1 W AC-DC Flyback Converter Using TNY268P Specification Input: 90 – 264 VAC Output: 5.25 V / 2.5 A Application Adapter Author Power Integrations Applications Department Document Number DER-121 Date November 3, 2005 Revision 1.0 Summary and Features • • • • • • • • Universal Input 90 VAC to 264 VAC Low Cost, Low Parts Count Minimum No Load Power Consumption <0.3 W at 264 VAC Meets CISPR22B EMI with Margin Efficiency >70% minimum. Meet CEC efficiency requirement with 5.25V2.5A. Meets +/-6KV-200A Lightning Surge. Cost reduced circuit does not require TVS The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 Table Of Contents 1 2 3 4 Introduction .................................................................................................................3 Power Supply Specification ........................................................................................4 Schematic ...................................................................................................................5 Circuit Description.......................................................................................................6 4.1 Input Rectification and EMI Filtering ....................................................................6 4.2 TOPSwitch Primary .............................................................................................6 4.3 Output Rectification .............................................................................................6 4.4 Output Feedback .................................................................................................6 5 PCB Layout.................................................................................................................7 6 Bill Of Materials...........................................................................................................8 7 Transformer Specification ...........................................................................................9 7.1 Electrical Diagram................................................................................................9 7.2 Electrical Specifications .......................................................................................9 7.3 Materials ..............................................................................................................9 7.4 Transformer Build Diagram................................................................................10 7.5 Transformer Construction ..................................................................................10 8 Transformer Spreadsheets .......................................................................................11 9 Design Results..........................................................................................................11 9.1 Device Variables................................................................................................11 10 Performance Data .................................................................................................14 10.1 Efficiency ...........................................................................................................14 10.2 No-load Input Power ..........................................................................................14 10.3 Regulation .........................................................................................................15 10.4 CEC Efficiency...................................................................................................16 11 Waveforms ............................................................................................................17 11.1 Drain Voltage and Current, Normal Operation...................................................17 11.2 Output Voltage Start-up Profile ..........................................................................17 11.3 Drain Voltage and Current Start-up Profile ........................................................18 11.4 Load Transient Response (50% to 100% Load Step)........................................18 11.5 Output Ripple Measurements ............................................................................19 12 Conducted EMI .....................................................................................................22 13 Revision History ....................................................................................................23 Important Note: This board is designed to be non-isolated. However the outputs are high voltage so please take the necessary safety precautions. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built. Page 2 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 1 Introduction This document is an engineering report describing an Adapter power supply utilizing a TNY268P. This power supply is intended as a general purpose evaluation platform for TNY268P. The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data. TOP Bottom Figure 1 – Populated Circuit Board Photograph. Page 3 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 2 Power Supply Specification Description Input Voltage Frequency No-load Input Power (264 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Total Output Power Continuous Output Power Efficiency CEC Efficiency (115 VAC and 230 VAC) Environmental Symbol Min Typ Max Units Comment VIN fLINE 90 47 264 63 0.3 VAC Hz W 2 Wire – no P.E. 50/60 VOUT1 VRIPPLE1 IOUT1 5 5.25 5.5 50 2.5 V mV A 13.1 W POUT η 70 % Measured at POUT (13.1 W), 25 C Avg. η 72.2 % Avg. Eff. At 25%, 50%, 75% and 100% load Conducted EMI Meets CISPR22B / EN55022B Surge Page 4 of 24 o Designed to meet IEC950, UL1950 Class II Safety Ambient Temperature 0 ± 5% 20 MHz bandwidth 6 TAMB 0 kV 40 o C 100 kHz ring wave, 200 A short circuit current, differential and common mode Free convection, sea level Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 3 Schematic Figure 2 – Schematic. Page 5 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 4 Circuit Description A Flyback converter is used to obtain 5.25 V / 2.5 A output from 90-264 VAC input. Using technical skill of core cancellation and balance shield windings reduce EMI noise. 4.1 Input Rectification and EMI Filtering Fuse F1 protects the charger against any fault condition, and input current exceeds 1 A. Diodes D1, D2, D3, and D4 form Full-bridge rectifier, and rectify the AC voltage into DC voltage and charge the capacitors C1 and C2. L1, L2, C1, and C2 form π – filter and attenuate EMI noise. Here, C1 and C2 act as both storage capacitors and part of EMI filter, which reduces the total cost. 4.2 TOPSwitch Primary This design uses RCD (C4, D5, R3, and R4) clamping across primary winding to limit the drain voltage below 700V, when the Mosfet inside U1 turns OFF. The capacitor C5 connected to BP (by-pass) pin of U1 stores energy and provide power for the internal circuit of U1 and also to turn ON the U1’s Mosfet, during power-up and steady state operation. The opto-coupler transistor pulls down enable (EN) pin of U1. TinySwitch-II keeps on switching as long as the pull down current < 240 µA. U1 will stop switching if the pull down current exceeds 240 µA. 4.3 Output Rectification When U1 Mosfet is turned ON, current flows through transformer primary and stores energy. When U1 is ON, output diode D6 is OFF. When the U1 Mosfet is OFF, D6 is forward biased, and the stored energy is transferred to the secondary and stores in C6, C8 and C9. The snubber C7 and R5 across output diode D6 and a bead core in series with output diode D6 will improve EMI. 4.4 Output Feedback Resistors R8, R9 divide down the supply output voltage and apply it to the reference pin of error amplifier U3. Shunt regulator U3 drives optocoupler U2 through resistor R6 to provide feedback information to the U1 EN pin. Capacitor C10 drive to the optocoupler during supply startup to reduce output voltage overshoot. C11 plays a role in compensating of the power supply feedback loop. Page 6 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 5 PCB Layout TOP BOTTOM Figure 3 – Printed Circuit Layout. Page 7 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 6 Bill Of Materials Item Qty Part Reference Value Description 1 1 C1 22 uF 22 uF, 400 V, Electrolytic, Low ESR, 2.9 Ohms, (12 x 20) 2 1 C2 33 uF 33 uF, 400 V, Electrolytic, Low ESR, 901 mOhm, (16 x 20) 3 1 C3 10 nF 10 nF, 1 kV, Disc Ceramic 4 1 C4 2.2 nF 2.2 nF, 1 kV, Disc Ceramic 5 1 C5 100 nF 100 nF, 50 V, Ceramic 6 2 C6 C8 1000 uF 1000 uF, 10 V, Electrolytic, Very Low ESR, 41 mOhm, (8 x 20) 7 1 C7 2.2 nF 2.2 nF, 100 V, Ceramic, COG 8 1 C9 470 uF 470 uF, 10 V, Electrolytic, Gen. Purpose, (8 x 12) 9 1 C10 2.2 uF 2.2 uF, 50 V, Electrolytic, (5 x 11) 10 1 C11 10 nF 10 nF, 50 V, Ceramic 11 1 C12 470 pF 470 pF, 250 Vac, Thru Hole, Ceramic Y-Capacitor 12 4 D1 D2 D3 D4 1N4007 1000 V, 1 A, Rectifier, DO-41 13 1 D5 1N4007GP 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41 14 1 D6 MBR1040 40 V, 10 A, Schottky, TO-220AC 15 1 F1 250V,1 A 1 A, 250V, Fast, Picofuse, Axial 16 2 L1 L2 17 1 L3 18 1 L4 3.3 uH 19 2 R1 R2 10 k 10 k, 5%, 1/4 W, Carbon Film 20 1 R3 100 k 100 k, 5%, 1/2 W, Carbon Film 21 1 R4 200 200 R, 5%, 1/2 W, Carbon Film 22 1 R5 10 10 R, 5%, 1/2 W, Carbon Film 23 1 R6 47 47 R, 5%, 1/8 W, Carbon Film 24 1 R7 1k 1 k, 5%, 1/8 W, Carbon Film 2 mH 2mH, 0.15A Bead Core 3.5 mm x 10 mm, 213 Ohms at 10 MHz, 24 AWG hole, Ferrite Bead 3.3 uH, 2.66 A 25 1 R8 10 k 10 k, 1%, 1/8 W, Carbon Film 26 1 R9 11k 11 k, 1%, 1/8 W, Carbon Film 27 1 RV1 275 Vac 275 V, 45 J, 10 mm, RADIAL 28 1 T1 EI22 29 1 U1 30 1 U2 31 1 U3 Page 8 of 24 Transformer, EI22 10pins TNY268P TinySwitch-II, TNY268P, DIP-8B PC817B Opto coupler, 35 V, 4-DIP TL431 2.495 V Shunt Regulator IC, 2%, 0 to 70C, TO-92 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 7 Transformer Specification 7.1 Electrical Diagram T1 EI22 1 8 N2 0.23mm x1 64T / 2L 3 N3 0.25mm x4 7T / 1L N1 0.28mm x1 27T / 1L N4 0.45mm x3 4T / 1L NC 1 10 NC Figure 4 – Transformer Electrical Diagram. 7.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 7.3 1 second, 60 Hz, from Pins 1-5 to Pins 6-10 Pins 1-3, all other windings open, measured at 100 kHz, 0.4 VRMS Pins 1-3, all other windings open Pin 1-3 with Pin 8-10 shorted, measured at 100 kHz, 0.4 VRMS 3000 VAC 1.32mH, -/+5% 1MHz (Min.) 30 µH (Max.) Materials Item [1] [2] [3] [4] [5] [6] [7] [8] [9] Description Core: PC40 EI22 Bobbin: EI 22, 10 Pin Magnet Wire: 0.28mm heavy Nyleaze Magnet Wire: 0.23mm heavy Nyleaze Magnet Wire: 0.25mm heavy Nyleaze Triple Insulated Wire: 0.45mm Tape: 3M 1298 Polyester Film (yellow) 15mm, 0.26m Thick. Tape: 3M 1298 Polyester Film (yellow) 10mm, 0.25mm Thick. Varnish Page 9 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 7.4 13.1 W adapter – TNY268 November 3, 2005 Transformer Build Diagram -> 3L Tape N4/0.45mm*3 4T/1L N3/0.25mm*4 7T/1L Pin10 Pin8 -> 2L Tape NC Pin1 -> 3L Tape Pin1 N2/0.23mm*1 64T/2L Pin3 -> 2L Tape N1/0.28mm*1 27T/1L NC Pin1 UP Bottom Figure 5 – Transformer Build Diagram. 7.5 Transformer Construction Core Canceling Winding Insulation Primary Layer Insulation Balance Shield Winding Insulation Secondary Winding Insulation Final Assembly Page 10 of 24 Start at Pin 1.wind 27 turns of item [3] from right to left. Finish at Pin NC. 2 Layers of tape [7] for insulation Start at Pin 3. Wind 64 turns / 2Layers of item [4]. Wind 1’st layer from left to right; and add 1 layer of tape [7] for insulation; and then wind 2’nd layer from right to left. Finish at Pin 1. 3 Layers of tape [7] for insulation Start at Pin 1. Wind quad–filar 7 turns of item [5] from right to left. Finish at NC. 2 Layers of tape [7] for insulation. Start at Pin 8 Wind tri-filar 4 turns of item [6] from right to left. Finish at Pin 10. 3 Layers of tape [7] for insulation. Assemble and secure core halves. Put 3 Layers of item [8]. Impregnate uniformly with dip varnish [9] and bake. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 8 13.1 W adapter – TNY268 November 3, 2005 Transformer Spreadsheets Design Warning (No Optimization) EI22 Vout 1: 5.00 V, 2.50 A CLAMP 64T 4T RTN Vin 90-265 V EN/UV EMI AC Cin & From Vout 1 Rectifier TNY268P D EN Feedback BP S 9 Design Results Power Supply Input Var Value VACMIN 90 Output 1. (main) Units Volts % Description Min Input AC Voltage. Max Input AC Voltage Line Frequency Diode Conduction Time Loss Allocation Factor Efficiency Estimate VACMAX 265 Volts FL 50 Hertz TC 2.59 mSeconds Z 0.56 N 70.0 Units Volts Amps Description Output Voltage Output Current Power Supply Outputs Var VOx IOx 9.1 Value Output 1. (main) 5.00 2.50 Device Variables Output 1. (main) Var Value Device PO VDRAIN VDS TNY268P 12.5 580 3.04 Watts Volts Volts FSNOM 132000 Hertz FSMIN 120000 Hertz FSMAX 144000 Hertz KRPKDP 0.53 Page 11 of 24 Units Description PI Device Name Total Output Power Maximum Drain Voltage Drain to Source Voltage TinySwitch-II Switching Frequency Minimum Switching Frequency Maximum Switching Frequency Continuous/Discontinuous Operating Ratio. See Errors, Warnings, Information section for detail Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 ILIMITMIN ILIMITMAX IRMS DMAX 13.1 W adapter – TNY268 0.51 0.59 0.27 0.46 November 3, 2005 Amps Amps Amps Current Limit Minimum Current Limit Maximum Primary RMS Current Maximum Duty Cycle Power Supply Components Selection Var Value Output 1. (main) Units VBRIDGE 600 Volts IAVG 0.17 Amps CIN 55.0 uFarads VMIN 106.7 Volts VMAX 374.8 Volts VCLO 130 Volts PZ 1.5 Watts Description Diode Bridge Voltage Rating Average Diode Bridge Current Input Capacitance Minimum DC Input Voltage Maximum DC Input Voltage Clamp Zener Voltage Primary Zener Clamp Loss Power Supply Output Parameters Var Value Output 1. (main) Units VDx 0.50 Volts PIVSx 28 Volts ISPx 7.88 Amps ISRMSx 4.35 Amps IRIPPLEx 3.56 Amps Output 1. (main) Units Description Output Winding Diode Forward Voltage Drop Output Rectifier Maximum Peak Inverse Voltage Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Transformer Construction Parameters Var Core/Bobbin Core Manuf. Value EI22 9.1.1 Core Manufacturer Generic Bobbin Manuf Generic LPmin 1263 NP 64.0 uHenries AWG 32 AWG CMA 238 Cmils/A VOR 88.00 Volts BW 8.45 mm M 0.0 mm L 2.00 AE 42.00 mm^2 ALG 308 nH/T^2 Page 12 of 24 Description Core Type Bobbin Manufacturer Minimum Primary Inductance Primary Number of Turns Primary Wire Gauge Primary Winding Current Capacity Reflected Output Voltage Bobbin Winding Width Safety Margin Width Primary Number of Layers Core Cross Sectional Area Gapped Core Effective Inductance Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 BM 2863 Gauss BAC 659 Gauss LG 0.149 mm LL 25.3 uHenries LSEC 20 nHenries Maximum Flux Density AC Flux Density for Core Loss Estimated Gap Length Primary Leakage Inductance Secondary Trace Inductance Secondary Parameters Var NSx Value Output 1. (main) Units 4.0 Rounded Down NSx Rounded Down Vox Volts Rounded Up NSx Rounded Up Vox AWGSx Range Page 13 of 24 Volts 17 - 21 AWG Description Secondary Number of Turns Rounded to Integer Secondary Number of Turns Auxiliary Output Voltage for Rounded down to Integer Secondary Number of Turns Rounded to Next Integer Secondary Number of Turns Auxiliary Output Voltage for Rounded up to Next Integer Secondary Number of Turns Secondary Wire Gauge Range. See Errors, Warnings, Information section for detail Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 10 Performance Data All measurements performed at room temperature, 60 Hz input frequency. 10.1 Efficiency Eff vs. Input Voltage 77 76 Eff (%) 75 74 73 72 71 70 90 115 140 160 180 230 264 Vin (Vac) Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz. 10.2 No-load Input Power Zero Load Input Power vs. Input Voltage 300 Eff (%) 250 200 150 100 50 0 90 115 140 160 180 230 264 Vin (Vac) Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz. Page 14 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 10.3 Regulation 10.3.1 Load (Vin: 115 VAC) Eff (%) Load Regulation vs. Voltage Output 5.3 5.29 5.28 5.27 5.26 5.25 5.24 5.23 5.22 5.21 5.2 0 0.3 0.7 1 1.3 1.7 2 2.3 2.5 Vin (Vac) Figure 8 – Load Regulation, Room Temperature. 10.3.2 Line (Load: 2.5A) Line Regulation vs. Voltage Output 5.28 5.275 Eff (%) 5.27 5.265 5.26 5.255 5.25 90 115 140 160 180 230 264 Vin (Vac) Figure 9 – Line Regulation, Room Temperature, Full Load. Page 15 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 10.4 CEC Efficiency CEC Specification: Eff. > 0.09 x ln (Po)+0.49 = 72.17 % @ 115 VAC and 230 VAC. Load (%) 25% 50% 75% 100% (0.625 A) (1.25 A) (1.875 A) (2.5 A) 115 72.3% 73.3% 74.3% 73.2% 73.2% 230 73.5% 75.8% 74.8% 74.63% 74.625% Vin (VAC) Page 16 of 24 Avg. Eff (%) Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 11 Waveforms 11.1 Drain Voltage and Current, Normal Operation Figure 10 – 90 VAC, Full Load. Lower: IDRAIN, 0.2 A / div Upper: VDRAIN, 100 V, 10 µs / div Figure 11 – 264 VAC, Full Load Lower: IDRAIN, 0.2 A / div Upper: VDRAIN, 200 V / div, 10 µs / div 11.2 Output Voltage Start-up Profile Figure 12 – Start-up Profile, 90 VAC, Full load 1 V/ div, 10 ms / div. Page 17 of 24 Figure 13 – Start-up Profile, 264 VAC, Full load 1 V/ div, 10 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 11.3 Drain Voltage and Current Start-up Profile Figure 14 – 90 VAC Input and Maximum Load. Lower: IDRAIN, 0.2 A / div. Upper: VDRAIN, 100 V & 1 ms / div. Figure 15 – 264 VAC Input and Maximum Load. Lower: IDRAIN, 0.2 A / div. Upper: VDRAIN, 200 V & 1 ms / div. 11.4 Load Transient Response (50% to 100% Load Step) Figure 16 – Transient Response, 90 VAC, 50-10050% Load Step. Upper: Load Current, 1 A/div. Lower: Output Voltage 100 mV/ div, 5 ms / div. Page 18 of 24 Figure 17 – Transient Response, 264 VAC, 50-10050% Load Step Upper: Load Current, 1 A/ div. Lower: Output Voltage 100 mV/ div, 5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 11.5 Output Ripple Measurements 11.5.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 18 and Figure 19. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 18 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed). Figure 19 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added). Page 19 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 Page 20 of 24 13.1 W adapter – TNY268 November 3, 2005 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 11.5.2 Measurement Results Figure 20 – 5.25V Ripple, 90 VAC, Full Load. 20 ms/ div, 20 mV / div Figure 21 – 5.25V Ripple, 115 VAC, Full Load. 20 ms/ div, 20 mV / div Figure 22 – 5.25V Ripple, 230 VAC, Full Load. 20 ms/ div, 20 mV / div Figure 23 – 5.25V Ripple, 264 VAC, Full Load. 20 ms/ div, 20 mV / div Page 21 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 12 Conducted EMI 115 VAC Att dBµV OVLD 1 QP * MAXH 2 AV * MAXH 1 100 10 dB RBW MT PREAMP 9 kHz 50 ms OFF MHz 10 MHz 90 80 70 TDS EN55022Q 60 PRN EN55022A 50 40 30 20 10 0 150 Date: kHz 9.MAY.2005 30 MHz 09:20:09 Figure 24 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits 220 VAC Att dBµV OVLD 1 QP * MAXH 2 AV * MAXH 1 100 10 dB MHz RBW MT PREAMP 9 kHz 50 ms OFF 10 MHz 90 80 70 TDS EN55022Q 60 PRN EN55022A 50 40 30 20 10 0 150 Date: kHz 9.MAY.2005 30 MHz 08:58:09 Figure 25 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits Page 22 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 13 Revision History Date 11-3-05 Page 23 of 24 Author Ralph Sung Revision 1.0 Description & changes Initial Release Reviewed JC/KM Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-121 13.1 W adapter – TNY268 November 3, 2005 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, EcoSmart, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Rueckertstrasse 3 D-80336, Munich Germany Phone: +49-89-5527-3910 Fax: +49-89-5527-3920 e-mail: [email protected] JAPAN Keihin Tatemono 1st Bldg 2-12-20 Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa ken, Japan 222-0033 Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei, Taiwan 114, R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 807-808A, Pacheer Commercial Centre, 555 Nanjing Rd. West Shanghai, P.R.C. 200041 Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728, Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey, GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-140 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) Room 2206-2207, Block A, Elec. Sci. Tech. Bldg. 2070 Shennan Zhong Rd. Shenzhen, Guangdong, China, 518031 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via Vittorio Veneto 12 20091 Bresso MI Italy Phone: +39-028-928-6000 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 Page 24 of 24 APPLICATIONS FAX World Wide +1-408-414-9760 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com