POWERINT DER-121

Design Example Report
Title
13.1 W AC-DC Flyback Converter Using
TNY268P
Specification
Input: 90 – 264 VAC
Output: 5.25 V / 2.5 A
Application
Adapter
Author
Power Integrations Applications Department
Document
Number
DER-121
Date
November 3, 2005
Revision
1.0
Summary and Features
•
•
•
•
•
•
•
•
Universal Input 90 VAC to 264 VAC
Low Cost, Low Parts Count
Minimum No Load Power Consumption <0.3 W at 264 VAC
Meets CISPR22B EMI with Margin
Efficiency >70% minimum.
Meet CEC efficiency requirement with 5.25V2.5A.
Meets +/-6KV-200A Lightning Surge.
Cost reduced circuit does not require TVS
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
Table Of Contents
1
2
3
4
Introduction .................................................................................................................3
Power Supply Specification ........................................................................................4
Schematic ...................................................................................................................5
Circuit Description.......................................................................................................6
4.1
Input Rectification and EMI Filtering ....................................................................6
4.2
TOPSwitch Primary .............................................................................................6
4.3
Output Rectification .............................................................................................6
4.4
Output Feedback .................................................................................................6
5 PCB Layout.................................................................................................................7
6 Bill Of Materials...........................................................................................................8
7 Transformer Specification ...........................................................................................9
7.1
Electrical Diagram................................................................................................9
7.2
Electrical Specifications .......................................................................................9
7.3
Materials ..............................................................................................................9
7.4
Transformer Build Diagram................................................................................10
7.5
Transformer Construction ..................................................................................10
8 Transformer Spreadsheets .......................................................................................11
9 Design Results..........................................................................................................11
9.1
Device Variables................................................................................................11
10
Performance Data .................................................................................................14
10.1 Efficiency ...........................................................................................................14
10.2 No-load Input Power ..........................................................................................14
10.3 Regulation .........................................................................................................15
10.4 CEC Efficiency...................................................................................................16
11
Waveforms ............................................................................................................17
11.1 Drain Voltage and Current, Normal Operation...................................................17
11.2 Output Voltage Start-up Profile ..........................................................................17
11.3 Drain Voltage and Current Start-up Profile ........................................................18
11.4 Load Transient Response (50% to 100% Load Step)........................................18
11.5 Output Ripple Measurements ............................................................................19
12
Conducted EMI .....................................................................................................22
13
Revision History ....................................................................................................23
Important Note:
This board is designed to be non-isolated. However the outputs are high voltage so
please take the necessary safety precautions.
Design Reports contain a power supply design specification, schematic, bill of materials,
and transformer documentation. Performance data and typical operation characteristics
are included. Typically only a single prototype has been built.
Page 2 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
1 Introduction
This document is an engineering report describing an Adapter power supply utilizing a
TNY268P. This power supply is intended as a general purpose evaluation platform for
TNY268P.
The document contains the power supply specification, schematic, bill of materials,
transformer documentation, printed circuit layout, and performance data.
TOP
Bottom
Figure 1 – Populated Circuit Board Photograph.
Page 3 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
2 Power Supply Specification
Description
Input
Voltage
Frequency
No-load Input Power (264 VAC)
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
Total Output Power
Continuous Output Power
Efficiency
CEC Efficiency (115 VAC and
230 VAC)
Environmental
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
90
47
264
63
0.3
VAC
Hz
W
2 Wire – no P.E.
50/60
VOUT1
VRIPPLE1
IOUT1
5
5.25
5.5
50
2.5
V
mV
A
13.1
W
POUT
η
70
%
Measured at POUT (13.1 W), 25 C
Avg. η
72.2
%
Avg. Eff. At 25%, 50%, 75% and
100% load
Conducted EMI
Meets CISPR22B / EN55022B
Surge
Page 4 of 24
o
Designed to meet IEC950, UL1950
Class II
Safety
Ambient Temperature
0
± 5%
20 MHz bandwidth
6
TAMB
0
kV
40
o
C
100 kHz ring wave, 200 A short
circuit current, differential and
common mode
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
3 Schematic
Figure 2 – Schematic.
Page 5 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
4 Circuit Description
A Flyback converter is used to obtain 5.25 V / 2.5 A output from 90-264 VAC input.
Using technical skill of core cancellation and balance shield windings reduce EMI noise.
4.1 Input Rectification and EMI Filtering
Fuse F1 protects the charger against any fault condition, and input current exceeds 1 A.
Diodes D1, D2, D3, and D4 form Full-bridge rectifier, and rectify the AC voltage into DC
voltage and charge the capacitors C1 and C2. L1, L2, C1, and C2 form π – filter and
attenuate EMI noise. Here, C1 and C2 act as both storage capacitors and part of EMI
filter, which reduces the total cost.
4.2 TOPSwitch Primary
This design uses RCD (C4, D5, R3, and R4) clamping across primary winding to limit the
drain voltage below 700V, when the Mosfet inside U1 turns OFF. The capacitor C5
connected to BP (by-pass) pin of U1 stores energy and provide power for the internal
circuit of U1 and also to turn ON the U1’s Mosfet, during power-up and steady state
operation. The opto-coupler transistor pulls down enable (EN) pin of U1. TinySwitch-II
keeps on switching as long as the pull down current < 240 µA. U1 will stop switching if
the pull down current exceeds 240 µA.
4.3
Output Rectification
When U1 Mosfet is turned ON, current flows through transformer primary and stores
energy. When U1 is ON, output diode D6 is OFF. When the U1 Mosfet is OFF, D6 is
forward biased, and the stored energy is transferred to the secondary and stores in C6,
C8 and C9. The snubber C7 and R5 across output diode D6 and a bead core in series
with output diode D6 will improve EMI.
4.4 Output Feedback
Resistors R8, R9 divide down the supply output voltage and apply it to the reference pin
of error amplifier U3. Shunt regulator U3 drives optocoupler U2 through resistor R6 to
provide feedback information to the U1 EN pin. Capacitor C10 drive to the optocoupler
during supply startup to reduce output voltage overshoot. C11 plays a role in
compensating of the power supply feedback loop.
Page 6 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
5 PCB Layout
TOP
BOTTOM
Figure 3 – Printed Circuit Layout.
Page 7 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
6 Bill Of Materials
Item Qty Part Reference
Value
Description
1
1
C1
22 uF
22 uF, 400 V, Electrolytic, Low ESR, 2.9 Ohms, (12 x 20)
2
1
C2
33 uF
33 uF, 400 V, Electrolytic, Low ESR, 901 mOhm, (16 x 20)
3
1
C3
10 nF
10 nF, 1 kV, Disc Ceramic
4
1
C4
2.2 nF
2.2 nF, 1 kV, Disc Ceramic
5
1
C5
100 nF
100 nF, 50 V, Ceramic
6
2
C6 C8
1000 uF 1000 uF, 10 V, Electrolytic, Very Low ESR, 41 mOhm, (8 x 20)
7
1
C7
2.2 nF
2.2 nF, 100 V, Ceramic, COG
8
1
C9
470 uF
470 uF, 10 V, Electrolytic, Gen. Purpose, (8 x 12)
9
1
C10
2.2 uF
2.2 uF, 50 V, Electrolytic, (5 x 11)
10
1
C11
10 nF
10 nF, 50 V, Ceramic
11
1
C12
470 pF
470 pF, 250 Vac, Thru Hole, Ceramic Y-Capacitor
12
4
D1 D2 D3 D4
1N4007
1000 V, 1 A, Rectifier, DO-41
13
1
D5
1N4007GP 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41
14
1
D6
MBR1040 40 V, 10 A, Schottky, TO-220AC
15
1
F1
250V,1 A 1 A, 250V, Fast, Picofuse, Axial
16
2
L1 L2
17
1
L3
18
1
L4
3.3 uH
19
2
R1 R2
10 k
10 k, 5%, 1/4 W, Carbon Film
20
1
R3
100 k
100 k, 5%, 1/2 W, Carbon Film
21
1
R4
200
200 R, 5%, 1/2 W, Carbon Film
22
1
R5
10
10 R, 5%, 1/2 W, Carbon Film
23
1
R6
47
47 R, 5%, 1/8 W, Carbon Film
24
1
R7
1k
1 k, 5%, 1/8 W, Carbon Film
2 mH
2mH, 0.15A
Bead Core 3.5 mm x 10 mm, 213 Ohms at 10 MHz, 24 AWG hole, Ferrite Bead
3.3 uH, 2.66 A
25
1
R8
10 k
10 k, 1%, 1/8 W, Carbon Film
26
1
R9
11k
11 k, 1%, 1/8 W, Carbon Film
27
1
RV1
275 Vac
275 V, 45 J, 10 mm, RADIAL
28
1
T1
EI22
29
1
U1
30
1
U2
31
1
U3
Page 8 of 24
Transformer, EI22 10pins
TNY268P TinySwitch-II, TNY268P, DIP-8B
PC817B Opto coupler, 35 V, 4-DIP
TL431
2.495 V Shunt Regulator IC, 2%, 0 to 70C, TO-92
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
7 Transformer Specification
7.1
Electrical Diagram
T1
EI22
1
8
N2
0.23mm x1 64T / 2L
3
N3
0.25mm x4 7T / 1L
N1
0.28mm x1 27T / 1L
N4
0.45mm x3 4T / 1L
NC
1
10
NC
Figure 4 – Transformer Electrical Diagram.
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
Resonant Frequency
Primary Leakage Inductance
7.3
1 second, 60 Hz, from Pins 1-5 to Pins 6-10
Pins 1-3, all other windings open, measured at
100 kHz, 0.4 VRMS
Pins 1-3, all other windings open
Pin 1-3 with Pin 8-10 shorted, measured at
100 kHz, 0.4 VRMS
3000 VAC
1.32mH, -/+5%
1MHz (Min.)
30 µH (Max.)
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
Description
Core: PC40 EI22
Bobbin: EI 22, 10 Pin
Magnet Wire: 0.28mm heavy Nyleaze
Magnet Wire: 0.23mm heavy Nyleaze
Magnet Wire: 0.25mm heavy Nyleaze
Triple Insulated Wire: 0.45mm
Tape: 3M 1298 Polyester Film (yellow) 15mm, 0.26m Thick.
Tape: 3M 1298 Polyester Film (yellow) 10mm, 0.25mm Thick.
Varnish
Page 9 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
7.4
13.1 W adapter – TNY268
November 3, 2005
Transformer Build Diagram
-> 3L Tape
N4/0.45mm*3 4T/1L
N3/0.25mm*4 7T/1L
Pin10
Pin8
-> 2L Tape
NC
Pin1
-> 3L Tape
Pin1
N2/0.23mm*1 64T/2L
Pin3
-> 2L Tape
N1/0.28mm*1 27T/1L
NC
Pin1
UP
Bottom
Figure 5 – Transformer Build Diagram.
7.5
Transformer Construction
Core Canceling
Winding
Insulation
Primary Layer
Insulation
Balance Shield
Winding
Insulation
Secondary Winding
Insulation
Final Assembly
Page 10 of 24
Start at Pin 1.wind 27 turns of item [3] from right to left. Finish at Pin NC.
2 Layers of tape [7] for insulation
Start at Pin 3. Wind 64 turns / 2Layers of item [4]. Wind 1’st layer from left
to right; and add 1 layer of tape [7] for insulation; and then wind 2’nd layer
from right to left. Finish at Pin 1.
3 Layers of tape [7] for insulation
Start at Pin 1. Wind quad–filar 7 turns of item [5] from right to left. Finish
at NC.
2 Layers of tape [7] for insulation.
Start at Pin 8 Wind tri-filar 4 turns of item [6] from right to left. Finish at Pin
10.
3 Layers of tape [7] for insulation.
Assemble and secure core halves. Put 3 Layers of item [8]. Impregnate
uniformly with dip varnish [9] and bake.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
8
13.1 W adapter – TNY268
November 3, 2005
Transformer Spreadsheets
Design Warning (No Optimization)
EI22
Vout 1: 5.00 V, 2.50 A
CLAMP
64T
4T
RTN
Vin
90-265 V
EN/UV
EMI
AC
Cin
&
From Vout 1
Rectifier
TNY268P
D
EN
Feedback
BP
S
9
Design Results
Power Supply Input
Var
Value
VACMIN
90
Output 1. (main)
Units
Volts
%
Description
Min Input AC
Voltage.
Max Input AC
Voltage
Line Frequency
Diode Conduction
Time
Loss Allocation
Factor
Efficiency Estimate
VACMAX
265
Volts
FL
50
Hertz
TC
2.59
mSeconds
Z
0.56
N
70.0
Units
Volts
Amps
Description
Output Voltage
Output Current
Power Supply Outputs
Var
VOx
IOx
9.1
Value
Output 1. (main)
5.00
2.50
Device Variables
Output 1.
(main)
Var
Value
Device
PO
VDRAIN
VDS
TNY268P
12.5
580
3.04
Watts
Volts
Volts
FSNOM
132000
Hertz
FSMIN
120000
Hertz
FSMAX
144000
Hertz
KRPKDP
0.53
Page 11 of 24
Units
Description
PI Device Name
Total Output Power
Maximum Drain Voltage
Drain to Source Voltage
TinySwitch-II Switching
Frequency
Minimum Switching
Frequency
Maximum Switching
Frequency
Continuous/Discontinuous
Operating Ratio. See
Errors, Warnings,
Information section for
detail
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
ILIMITMIN
ILIMITMAX
IRMS
DMAX
13.1 W adapter – TNY268
0.51
0.59
0.27
0.46
November 3, 2005
Amps
Amps
Amps
Current Limit Minimum
Current Limit Maximum
Primary RMS Current
Maximum Duty Cycle
Power Supply Components Selection
Var
Value
Output 1. (main)
Units
VBRIDGE
600
Volts
IAVG
0.17
Amps
CIN
55.0
uFarads
VMIN
106.7
Volts
VMAX
374.8
Volts
VCLO
130
Volts
PZ
1.5
Watts
Description
Diode Bridge
Voltage Rating
Average Diode
Bridge Current
Input Capacitance
Minimum DC Input
Voltage
Maximum DC Input
Voltage
Clamp Zener
Voltage
Primary Zener
Clamp Loss
Power Supply Output Parameters
Var
Value
Output 1. (main)
Units
VDx
0.50
Volts
PIVSx
28
Volts
ISPx
7.88
Amps
ISRMSx
4.35
Amps
IRIPPLEx
3.56
Amps
Output 1. (main)
Units
Description
Output Winding
Diode Forward
Voltage Drop
Output Rectifier
Maximum Peak
Inverse Voltage
Peak Secondary
Current
Secondary RMS
Current
Output Capacitor
RMS Ripple Current
Transformer Construction Parameters
Var
Core/Bobbin
Core Manuf.
Value
EI22
9.1.1
Core Manufacturer
Generic
Bobbin Manuf
Generic
LPmin
1263
NP
64.0
uHenries
AWG
32
AWG
CMA
238
Cmils/A
VOR
88.00
Volts
BW
8.45
mm
M
0.0
mm
L
2.00
AE
42.00
mm^2
ALG
308
nH/T^2
Page 12 of 24
Description
Core Type
Bobbin Manufacturer
Minimum Primary
Inductance
Primary Number of
Turns
Primary Wire Gauge
Primary Winding
Current Capacity
Reflected Output
Voltage
Bobbin Winding
Width
Safety Margin Width
Primary Number of
Layers
Core Cross Sectional
Area
Gapped Core
Effective Inductance
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
BM
2863
Gauss
BAC
659
Gauss
LG
0.149
mm
LL
25.3
uHenries
LSEC
20
nHenries
Maximum Flux
Density
AC Flux Density for
Core Loss
Estimated Gap
Length
Primary Leakage
Inductance
Secondary Trace
Inductance
Secondary Parameters
Var
NSx
Value
Output 1. (main)
Units
4.0
Rounded Down NSx
Rounded Down Vox
Volts
Rounded Up NSx
Rounded Up Vox
AWGSx Range
Page 13 of 24
Volts
17 - 21
AWG
Description
Secondary Number
of Turns
Rounded to Integer
Secondary Number
of Turns
Auxiliary Output
Voltage for Rounded
down to Integer
Secondary Number
of Turns
Rounded to Next
Integer Secondary
Number of Turns
Auxiliary Output
Voltage for Rounded
up to Next Integer
Secondary Number
of Turns
Secondary Wire
Gauge Range. See
Errors, Warnings,
Information section
for detail
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
10 Performance Data
All measurements performed at room temperature, 60 Hz input frequency.
10.1 Efficiency
Eff vs. Input Voltage
77
76
Eff (%)
75
74
73
72
71
70
90
115
140
160
180
230
264
Vin (Vac)
Figure 6 – Efficiency vs. Input Voltage, Room Temperature, 60 Hz.
10.2 No-load Input Power
Zero Load Input Power vs. Input Voltage
300
Eff (%)
250
200
150
100
50
0
90
115
140
160
180
230
264
Vin (Vac)
Figure 7 – Zero Load Input Power vs. Input Line Voltage, Room Temperature, 60 Hz.
Page 14 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
10.3 Regulation
10.3.1 Load (Vin: 115 VAC)
Eff (%)
Load Regulation vs. Voltage Output
5.3
5.29
5.28
5.27
5.26
5.25
5.24
5.23
5.22
5.21
5.2
0
0.3
0.7
1
1.3
1.7
2
2.3
2.5
Vin (Vac)
Figure 8 – Load Regulation, Room Temperature.
10.3.2 Line (Load: 2.5A)
Line Regulation vs. Voltage Output
5.28
5.275
Eff (%)
5.27
5.265
5.26
5.255
5.25
90
115
140
160
180
230
264
Vin (Vac)
Figure 9 – Line Regulation, Room Temperature, Full Load.
Page 15 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
10.4 CEC Efficiency
CEC Specification: Eff. > 0.09 x ln (Po)+0.49 = 72.17 % @ 115 VAC and 230 VAC.
Load (%)
25%
50%
75%
100%
(0.625 A)
(1.25 A)
(1.875 A)
(2.5 A)
115
72.3%
73.3%
74.3%
73.2%
73.2%
230
73.5%
75.8%
74.8%
74.63%
74.625%
Vin (VAC)
Page 16 of 24
Avg. Eff
(%)
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
11 Waveforms
11.1 Drain Voltage and Current, Normal Operation
Figure 10 – 90 VAC, Full Load.
Lower: IDRAIN, 0.2 A / div
Upper: VDRAIN, 100 V, 10 µs / div
Figure 11 – 264 VAC, Full Load
Lower: IDRAIN, 0.2 A / div
Upper: VDRAIN, 200 V / div, 10 µs / div
11.2 Output Voltage Start-up Profile
Figure 12 – Start-up Profile, 90 VAC, Full load
1 V/ div, 10 ms / div.
Page 17 of 24
Figure 13 – Start-up Profile, 264 VAC, Full load
1 V/ div, 10 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
11.3 Drain Voltage and Current Start-up Profile
Figure 14 – 90 VAC Input and Maximum Load.
Lower: IDRAIN, 0.2 A / div.
Upper: VDRAIN, 100 V & 1 ms / div.
Figure 15 – 264 VAC Input and Maximum Load.
Lower: IDRAIN, 0.2 A / div.
Upper: VDRAIN, 200 V & 1 ms / div.
11.4 Load Transient Response (50% to 100% Load Step)
Figure 16 – Transient Response, 90 VAC, 50-10050% Load Step.
Upper: Load Current, 1 A/div.
Lower: Output Voltage
100 mV/ div, 5 ms / div.
Page 18 of 24
Figure 17 – Transient Response, 264 VAC, 50-10050% Load Step
Upper: Load Current, 1 A/ div.
Lower: Output Voltage
100 mV/ div, 5 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
11.5 Output Ripple Measurements
11.5.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in Figure 18 and Figure 19.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 18 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead
Removed).
Figure 19 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added).
Page 19 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
Page 20 of 24
13.1 W adapter – TNY268
November 3, 2005
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
11.5.2 Measurement Results
Figure 20 – 5.25V Ripple, 90 VAC, Full Load.
20 ms/ div, 20 mV / div
Figure 21 – 5.25V Ripple, 115 VAC, Full Load.
20 ms/ div, 20 mV / div
Figure 22 – 5.25V Ripple, 230 VAC, Full Load.
20 ms/ div, 20 mV / div
Figure 23 – 5.25V Ripple, 264 VAC, Full Load.
20 ms/ div, 20 mV / div
Page 21 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
12 Conducted EMI
115 VAC
Att
dBµV
OVLD
1 QP *
MAXH
2 AV *
MAXH
1
100
10
dB
RBW
MT
PREAMP
9 kHz
50 ms
OFF
MHz
10
MHz
90
80
70
TDS
EN55022Q
60
PRN
EN55022A
50
40
30
20
10
0
150
Date:
kHz
9.MAY.2005
30
MHz
09:20:09
Figure 24 – Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits
220 VAC
Att
dBµV
OVLD
1 QP *
MAXH
2 AV *
MAXH
1
100
10
dB
MHz
RBW
MT
PREAMP
9 kHz
50 ms
OFF
10
MHz
90
80
70
TDS
EN55022Q
60
PRN
EN55022A
50
40
30
20
10
0
150
Date:
kHz
9.MAY.2005
30
MHz
08:58:09
Figure 25 – Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits
Page 22 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
13 Revision History
Date
11-3-05
Page 23 of 24
Author
Ralph Sung
Revision
1.0
Description & changes
Initial Release
Reviewed
JC/KM
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-121
13.1 W adapter – TNY268
November 3, 2005
For the latest updates, visit our website: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power
Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS
MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered
by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations.
A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license
under certain patent rights as set forth at http://www.powerint.com/ip.htm.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, EcoSmart, PI Expert and PI FACTS are trademarks
of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2005 Power Integrations, Inc.
Power Integrations Worldwide Sales Support Locations
WORLD HEADQUARTERS
5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main:
+1-408-414-9200
Customer Service:
Phone:
+1-408-414-9665
Fax:
+1-408-414-9765
e-mail: [email protected]
GERMANY
Rueckertstrasse 3
D-80336, Munich
Germany
Phone:
+49-89-5527-3910
Fax:
+49-89-5527-3920
e-mail: [email protected]
JAPAN
Keihin Tatemono 1st Bldg
2-12-20
Shin-Yokohama, Kohoku-ku,
Yokohama-shi, Kanagawa ken,
Japan 222-0033
Phone:
+81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu Dist.
Taipei, Taiwan 114, R.O.C.
Phone:
+886-2-2659-4570
Fax:
+886-2-2659-4550
e-mail:
[email protected]
CHINA (SHANGHAI)
Rm 807-808A,
Pacheer Commercial Centre,
555 Nanjing Rd. West
Shanghai, P.R.C. 200041
Phone:
+86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail: [email protected]
INDIA
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India 560080
Phone:
+91-80-5113-8020
Fax:
+91-80-5113-8023
e-mail: [email protected]
KOREA
RM 602, 6FL
Korea City Air Terminal B/D,
159-6
Samsung-Dong, Kangnam-Gu,
Seoul, 135-728, Korea
Phone:
+82-2-2016-6610
Fax:
+82-2-2016-6630
e-mail:
[email protected]
EUROPE HQ
1st Floor, St. James’s House
East Street, Farnham
Surrey, GU9 7TJ
United Kingdom
Phone:
+44 (0) 1252-730-140
Fax:
+44 (0) 1252-727-689
e-mail: [email protected]
CHINA (SHENZHEN)
Room 2206-2207, Block A,
Elec. Sci. Tech. Bldg.
2070 Shennan Zhong Rd.
Shenzhen, Guangdong,
China, 518031
Phone:
+86-755-8379-3243
Fax:
+86-755-8379-5828
e-mail: [email protected]
ITALY
Via Vittorio Veneto 12
20091 Bresso MI
Italy
Phone: +39-028-928-6000
Fax: +39-028-928-6009
e-mail: [email protected]
SINGAPORE
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone:
+65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
Page 24 of 24
APPLICATIONS FAX
World Wide +1-408-414-9760
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com