POWERINT DER-62

Design Example Report
Title
3.0 W Charger using LNK363P
Specification
Input: 85 – 265 VAC
Output: 5.0V / 600 mA
Application
Cell Phone Charger
Author
Power Integrations Applications Department
Document
Number
DER-62
Date
August 24, 2005
Revision
1.0
Summary and Features
•
•
•
Low cost CV/CC cell phone charger
No Load consumption less than 300 mW
Meets CEC efficiency and no-load specification
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found
at www.powerint.com.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Table Of Contents
1
2
3
Introduction ................................................................................................................ 4
Power Supply Specification........................................................................................ 4
Schematic .................................................................................................................. 5
3.1
With RCD clamp ................................................................................................. 5
3.2
With Zener clamp and bias winding .................................................................... 5
4 PCB............................................................................................................................ 6
5 Bill Of Materials—RCD clamp .................................................................................... 6
6 Transformer Specification .......................................................................................... 7
6.1
Electrical Diagram............................................................................................... 7
6.2
Electrical Specifications ...................................................................................... 7
6.3
Materials ............................................................................................................. 7
6.4
Transformer Build Diagram ................................................................................. 8
6.5
Transformer Construction ................................................................................... 8
7 Transformer Spreadsheets ........................................................................................ 9
8 Performance Data .................................................................................................... 11
8.1
Efficiency vs CEC ............................................................................................. 11
8.1.1
With RCD Clamp, no bias winding ............................................................. 11
8.1.2
With Zener Clamp and Bias winding .......................................................... 12
8.2
Efficiency vs Input Voltage ................................................................................ 12
8.2.1
With RCD clamp, no bias winding.............................................................. 12
8.2.2
With zener clamp and bias winding ........................................................... 13
8.3
No-Load Input Power ........................................................................................ 13
8.3.1
RCD clamp, no bias winding...................................................................... 13
8.3.2
Zener clamp clamp and bias winding......................................................... 14
8.4
Output Regulation ............................................................................................. 14
8.5
Thermal Performance ....................................................................................... 15
8.5.1
Thermal testing set up ............................................................................... 15
8.5.2
Test results of RCD clamp ......................................................................... 15
8.5.3
Thermal performance of Zener clamp and bias winding. ........................... 15
9 Waveforms............................................................................................................... 16
9.1
Drain Voltage, Normal Operation ...................................................................... 16
9.2
Drain Voltage During Startup ............................................................................ 17
9.3
Output Voltage Start-up Profile ......................................................................... 17
10
Output Ripple Measurements ............................................................................... 18
10.1.1 Ripple Measurement Technique ................................................................ 18
10.1.2 Measurement Results ................................................................................ 20
11
Conducted EMI..................................................................................................... 21
12
Transformer construction with bias winding.......................................................... 22
12.1 Electrical Diagram............................................................................................. 22
12.2 Transformer Build Diagram ............................................................................... 22
13
Revision History.................................................................................................... 23
Page 2 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Design Reports contain a power supply design specification, schematic, bill of materials,
and transformer documentation. Performance data and typical operation characteristics
are included. Typically only a single prototype has been built.
Page 3 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
1 Introduction
This document is an engineering prototype report describing a 3.0 W power supply
utilizing a LNK363P. This power supply is intended as a cell phone charger evaluation
platform. Power Integrations E-shield technology of transformer construction allows this
design to meet EMI requirement without using a common mode choke.
The document contains the power supply specification, schematic, bill of materials,
transformer documentation.
Figure 1 – Populated circuit board – Top view
2 Power Supply Specification
Description
Input
Voltage
Frequency
No-load Input Power (230 VAC)
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
Total Output Power
Continuous Output Power
Efficiency
Symbol
Min
Typ
Max
Units
Comment
VIN
fLINE
85
47
265
64
0.5
VAC
Hz
W
2 Wire – no P.E.
50/60
VOUT1
VRIPPLE1
IOUT1
4.75
5.75
V
mV
mA
POUT
η
534
5.0
60
600
666
3.0
W
%
59
20 MHz Bandwidth
typical at full load, 25 oC
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Designed to meet IEC950, UL1950
Class II
Safety
Ambient Temperature
Page 4 of 24
TAMB
0
50
o
C
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
3 Schematic
3.1
With RCD clamp
FL
J3
9
D7
1
5
R1
100 k
D2
D1
1N4005 1N4005
J1
R2
100 k
RF1
1
8.2
2.5 W
85-265V AC
C2
4.7 uF
400 V
D3
D4
1N4005 1N4005
C6
330 uF
10 V
Q1
MMST3906
FL
R8
D5
1N4007G
J2
1
8
T1
EE16
5
R11
D
FB
BP
U1
LNK363
1 mH
VR1
BZX79-B5V1
5.1 V
2%
820
U2A
PC817D
51 k
J4
R9
1
U2B
1.7
1W
S
L1
R6
1.2 k
R10
4.7
R4
68
C9
2.2 nF
50 V
3
R3
200
C1
4.7 uF
400 V
SS14
C3
2.2 nF
1 kV
PC817D
C5
100 nF
50 V
Figure 2 – Schematic with RCD clamp.
With Zener clamp and bias winding
FL
3.2
9
J1
VR2
BZY97C200
200 V
D5
1N4007GP
D2
D1
1N4005 1N4005
RF1
1
85-265V AC
R1
130 k
J2
C3
1 uF
50 V
1
C2
4.7 uF
400 V
D3
1N4005
D4
1N4005
D
FB
BP
S
L1
1
SS14
R4
68
3
4
C1
4.7 uF
400 V
8.2
2.5 W
J3
D7
5
8
C9
2.2 nF
50 V
R7
4.7
C6
330 uF
10 V
Q1
MMST3906
R8
T1
2
EE16
D8
1N4148
R10
J4
1
1.7
1W
U2B
PC817D
1 mH
Figure 3 - Schematic with zener clamp and bias winding.
Page 5 of 24
VR1
BZX79-B5V1
5.1 V
2%
820
U2A
PC817D
R9
51 k
U1
LNK363
C5
100 nF
50 V
R6
1.2 k
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
4 PCB
Figure 4 – Printed circuit board
5 Bill Of Materials—RCD clamp
Item Qty
Value
Description
1
2
4.7 uF
4.7 uF, 400 V, Electrolytic, (8 x 11.5)
2
1
2.2 nF
2.2 nF, 1 kV, Disc Ceramic
3
1
100 nF
100 nF, 50 V, Ceramic, X7R, 0805
4
1
330 uF
330 uF, 10 V, Electrolytic, Low ESR, 180 mOhm
5
1
2.2 nF
2.2 nF, 50 V, Ceramic, X7R, 0805
6
4
1N4005 600 V, 1 A, Rectifier, DO-41
7
1
1N4007G 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41
8
1
SS14
40 V, 1 A, Schottky, DO-214AC
13 1
1 mH
1 mH, 0.15 A, Ferrite Core
14 1 MMST3906 PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323
15 2
100 k
100 k, 5%, 1/4 W, Metal Film, 1206
16 1
200
200 R, 5%, 1/8 W, Metal Film, 0805
17 1
68
68 R, 5%, 1/8 W, Metal Film, 0805
18 1
1.2 k
1.0k 5%, 1/8 W, Metal Film, 0805
19 1
820
820 R, 5%, 1/8 W, Metal Film, 0805
20 1
1.7
1.7 R, 5%, 1 W, Metal Oxide
21 1
8.2
8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound
22 1
4.7
4.7 R, 5% Metal film 0805
23 1
51 k
51 k, 5% Metal film 0805
24 1
EE16
Bobbin, EE16 Horizontal, 10 Pins
25 1
LNK363P PI’s device
26 1
PC817D Opto coupler, 35 V, CTR 300-600%, 4-DIP
27 1 BZX79-B5V1 5.1 V, 500 mW, 2%, DO-35
Page 6 of 24
Ref
C1 C2
C3
C5
C6
C9
D1 D2 D3 D4
D5
D7
L1
Q1
R1 R2
R3
R4
R6
R8
R9
RF1
R10
R11
T1
U1
U2
VR1
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
6 Transformer Specification
6.1
Electrical Diagram
5
WD#1
Cancellation
25T #36X2
Floating
Floating
WD#3
Shield
9
10T # 26 TIW
8T #29X3
Secondary
8
5
WD#2
Primary
WD#4
5
152T #36
3
Figure 5 – Transformer Electrical Diagram
6.2
Electrical Specifications
Electrical Strength
Primary Inductance
(Pin 3 to Pin 5)
Resonant Frequency.
(Pin 3 to Pin 5)
Primary Leakage Inductance.
(Pin 3 to Pin 5)
6.3
Materials
Item
[1]
[2]
[3]
[4]
[5]
[6]
[7]
Page 7 of 24
60Hz 1minute, from Pins
1-5 to Pins 6-10
All windings open
3000 V ac
All windings open
1940 uH +/- 5%
at 132 KHz
700 kHz (Min.)
Pins 9-8 shorted
110 uH Max.
Description
Core: PC40EE16-Z, TDK or equivalent Gapped for AL of 84
nH/T2
Bobbin: Horizontal 10 pin
Magnet Wire: #36AWG
Magnet Wire: #29 AWG
Triple Insulated Wire: #26 AWG.
Tape: 3M 1298 Polyester Film, 2.0 mils thick, 8.2 mm wide
Varnish
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
6.4
3W Charger using LNK363P
August 24, 2005
Transformer Build Diagram
8
9
Secondary
Tape
WD#3 Shield
5
5
Tape
WD#2 Primary
3
Tape
WD#1
Cancellation
5
Figure 6 – Transformer Build Diagram
6.5
Transformer Construction
WD1
Cancellation Winding
Insulation
WD#2
Primary winding
Insulation
WD #3
Shield Winding
Insulation
WD #4
Secondary Winding
Outer Insulation
Core Assembly
Varnish
Page 8 of 24
Primary pin side of the bobbin oriented to left hand side. Start at Pin 5. Wind
25 bifilar turns of item [8] from right to left. Wind with tight tension across
entire bobbin evenly. Cut at the end.
4 Layers of tape [6] for insulation.
Start at pin 3 wind 51 turns of item [3] from left to right. Apply 1 layer tape of
[6]. Then wind another 50 turns next layer from right to left. Apply 1 layer
tape of [6]. Wind the rest 51 turns in third layer from left to right. Wind with
tight tension across entire bobbin evenly Finish at pin 5
2 Layers of tape [6] for insulation.
Start at Pin 8 temporarily, wind 8 Trifilar turns of item [4]. Wind from right to
left with tight tension. Wind uniformly, in a single layer across entire width of
bobbin. Finish at pin5. Cut at the start lead.
2 Layers of tape [6] for insulation.
Start at pin 9, wind 10 turns of item [5] from right to left. Wind uniformly, in a
single layer across entire bobbin evenly. Finish on pin 8.
3 Layers of tape [6] for insulation.
Assemble and secure core halves.
Varnish
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
7 Transformer Spreadsheets
ACDC_LinkSwitchXT_063005; Rev.0.2;
Copyright Power
Integrations 2005
ENTER APPLICATION
VARIABLES
VACMIN
VACMAX
fL
VO
IO
CC Threshold Voltage
INPUT
INFO
OUTP UNIT
UT
ACDC_LinkSwitch-XT_063005_Rev0-2.xls; LinkSwitchXT Continuous/Discontinuous Flyback Transformer
Design Spreadsheet
85
265
50
5.00
0.60
1.00
Minimum AC Input Voltage
Maximum AC Input Voltage
AC Mains Frequency
Output Voltage (main)
Power Supply Output Current
Voltage drop across sense resistor. For CV only circuits
enter "0"
3.6 Watts Output Power (VO x IO + CC dissipation)
n
0.60
Z
0.75
tC
2.90
CIN
9.40
Efficiency Estimate at output terminals. For CV only
designs enter 0.7 if no better data available
0.75
Loss Allocation Factor (suggest 0.5 for CC=0 V, 0.75 for
CC=1 V)
mSec Bridge Rectifier Conduction Time Estimate
onds
uFara Input Capacitance
ds
PO
ENTER LinkSwitch-HF
VARIABLES
LinkSwitch-XT
Chosen Device
ILIMITMIN
ILIMITMAX
fSmin
I^2fmin
VOR
VDS
VD
KP
Volts
Volts
Hertz
Volts
Amps
Volts
LNK36
3
Univer 115 Doubled/230V
sal
LNK363 Power 10 W 10 W
Out
0.195 Amps Minimum Current Limit
0.225 Amps Maximum Current Limit
12400 Hertz Minimum Device Switching Frequency
0
5471.7 Hertz I^2f (product of current limit squared and frequency is
4
trimmed for tighter tolerance)
99.00
99 Volts Reflected Output Voltage
10 Volts LinkSwitch-HF on-state Drain to Source Voltage
0.5 Volts Output Winding Diode Forward Voltage Drop
0.90
Ripple to Peak Current Ratio (0.6<KRP<1.0 :
1.0<KDP<6.0)
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
Core Type
EE16
Suggested smallest commonly available core
Core
EE16
P/N: PC40EE16-Z
Bobbin
EE16_B
P/N: EE16_BOBBIN
OBBIN
AE
0.192 cm^2 Core Effective Cross Sectional Area
LE
3.5 cm
Core Effective Path Length
AL
1140 nH/T^ Ungapped Core Effective Inductance
2
BW
8.6 mm
Bobbin Physical Winding Width
M
0 mm
Safety Margin Width (Half the Primary to Secondary
Creepage Distance)
L
3
Number of Primary Layers
NS
10
10
Number of Secondary Turns
DC INPUT VOLTAGE
PARAMETERS
VMIN
VMAX
83 Volts
375 Volts
Minimum DC Input Voltage
Maximum DC Input Voltage
CURRENT WAVEFORM SHAPE
PARAMETERS
DMAX
0.61
Maximum Duty Cycle
Page 9 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
IAVG
IP
IR
IRMS
0.07
0.1950
0.1746
0.09
TRANSFORMER PRIMARY DESIGN
PARAMETERS
LP
Amps
Amps
Amps
Amps
August 24, 2005
Average Primary Current
Minimum Peak Primary Current
Primary Ripple Current
Primary RMS Current
1942 uHenri
es
12 %
152
84 nH/T^
2
1494 Gauss
Typical Primary Inductance. +/- 12%
TRANSFORMER SECONDARY DESIGN
PARAMETERS
Lumped parameters
ISP
ISRMS
IRIPPLE
CMS
AWGS
2.97
1.16
0.99
232
26
DIAS
ODS
0.41 mm
0.86 mm
INSS
0.23 mm
Peak Secondary Current
Secondary RMS Current
Output Capacitor RMS Ripple Current
Secondary Bare Conductor minimum circular mils
Secondary Wire Gauge (Rounded up to next larger
standard AWG value)
Secondary Minimum Bare Conductor Diameter
Secondary Maximum Outside Diameter for Triple Insulated
Wire
Maximum Secondary Insulation Wall Thickness
VOLTAGE STRESS
PARAMETERS
VDRAIN
603 Volts
LP_TOLERANCE
NP
ALG
12.00
BM
BAC
ur
LG
BWE
OD
INS
DIA
AWG
CM
CMA
PIVS
Primary inductance tolerance
Primary Winding Number of Turns
Gapped Core Effective Inductance
Maximum Operating Flux Density, BM<1500 is
recommended
600 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to
Peak)
1654
Relative Permeability of Ungapped Core
0.27 mm
Gap Length (Lg > 0.1 mm)
25.8 mm
Effective Bobbin Width
0.169 mm
Maximum Primary Wire Diameter including insulation
0.04 mm
Estimated Total Insulation Thickness (= 2 * film thickness)
0.132 mm
Bare conductor diameter
36 AWG Primary Wire Gauge (Rounded to next smaller standard
AWG value)
25 Cmils Bare conductor effective area in circular mils
286 Cmils/ Primary Winding Current Capacity (200 < CMA < 500)
Amp
Amps
Amps
Amps
Cmils
AWG
30 Volts
Maximum Drain Voltage Estimate (Includes Effect of
Leakage Inductance)
Output Rectifier Maximum Peak Inverse Voltage
TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS)
1st output
VO1
5.50
5.5 Volts Main Output Voltage (if unused, defaults to single output
design)
IO1
0.60
0.600 Amps Output DC Current
PO1
3.30 Watts Output Power
VD1
0.500 Volts Output Diode Forward Voltage Drop
NS1
10.91
Output Winding Number of Turns
ISRMS1
1.160 Amps Output Winding RMS Current
IRIPPLE1
0.99 Amps Output Capacitor RMS Ripple Current
PIVS1
32 Volts Output Rectifier Maximum Peak Inverse Voltage
CMS1
AWGS1
DIAS1
ODS1
Page 10 of 24
232 Cmils Output Winding Bare Conductor minimum circular mils
26 AWG Wire Gauge (Rounded up to next larger standard AWG
value)
0.41 mm
Minimum Bare Conductor Diameter
0.79 mm
Maximum Outside Diameter for Triple Insulated Wire
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8 Performance Data
All measurements performed at room temperature, 60 Hz input frequency. The data were
taken at the end of a 6 feet long output cable. The DC resistance of the cable is about 0.2
ohm.
8.1
Efficiency vs CEC
8.1.1 With RCD Clamp, no bias winding
Efficiency vs CEC
70%
68%
Efficiency (%)
65%
63%
60%
58%
55%
53%
50%
25%
115 VAC
CEC
50%
230 VAC
75%
100%
Load percentage (%)
Figure 7 – Efficiency vs load, RCD clamp.
Note the CEC requirement is 58.9%, Tested average efficiency: 115VAC, 62.4%;
230VAC, 61.2%
Page 11 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.1.2 With Zener Clamp and Bias winding
Efficiency vs CEC
70%
68%
Efficiency (%)
65%
63%
60%
58%
55%
115 VAC
CEC
53%
50%
25%
230 VAC
50%
75%
100%
Load percentage (%)
Figure 8 - Efficiency vs output current with Zener clamp and bias winding.
Note the CEC requirement is 58.9%, Tested average efficiency: 115VAC, 62.9%;
230VAC, 60.4%
8.2
Efficiency vs Input Voltage
8.2.1 With RCD clamp, no bias winding
Efficiency vs Input Voltage
65%
Efficiency (%)
63%
60%
58%
55%
53%
50%
85
115
145
175
205
235
265
Input Voltage (VAC)
Figure 9 - Efficiency vs input voltage, RCD clamp , no bias winding. Tested at 3.03W output.
Page 12 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.2.2 With zener clamp and bias winding
Efficiency vs Input Voltage
65%
Efficiency (%)
63%
60%
58%
55%
53%
50%
85
115
145
175
205
235
265
Input Voltage (VAC)
Figure 10 - Full load efficiency vs input voltage, zener clamp and bias winding.
8.3
No-Load Input Power
8.3.1 RCD clamp, no bias winding
No Load Consumption
125
Input Power (mW)
100
75
50
25
0
85
115
145
175
205
235
265
Input Voltage (VAC)
Figure 11 - No load consumption RCD clamp, no bias winding.
Note the CEC requirement is < 500mW
Page 13 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.3.2 Zener clamp clamp and bias winding
No Load Consum ption
50
Input Power (mW)
40
30
20
10
0
85
115
145
175
205
235
265
Input Voltage (VAC)
Figure 12 - No load consumption, zener clamp with bias winding.
8.4 Output Regulation
Output characteristic was tested at the end of a 6 feet long output cable. The DC
resistance of the cable is about 0.2 ohm.
VI Curve
6
Output Voltage (VDC)
5
4
115 VAC
3
230 VAC
Low Limit
2
High Limit
1
0
0
100
200
300
400
500
600
700
Output Current (mA)
Figure 13 – Output characteristic
Page 14 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
8.5 Thermal Performance
Thermal performance was measured inside an enclosure, full load, with no airflow. The
ambient thermal probe was about 1 inch away from the device.
8.5.1 Thermal testing set up
8.5.2 Test results of RCD clamp
Item
85 VAC
265 VAC
Ambient
50°C
50°C
LNK363P
108°C at 2.82 W
output (5.22V,
540mA)
103°C at 2.84 W
output (5.23V,
542mA).
8.5.3 Thermal performance of Zener clamp and bias winding.
Item
Page 15 of 24
85 VAC
265 VAC
Ambient
50°C
50°C
LNK363P
96°C at 2.82 W
output (5.22V,
544mA)
89°C at 2.82 W
output (5.22V,
544mA).
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
9 Waveforms
9.1
Drain Voltage, Normal Operation
Figure 14 – Drain voltage at 85 VAC input, full load.
Figure 15 – Drain voltage at 265 VAC, full load.
Page 16 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
9.2
3W Charger using LNK363P
August 24, 2005
Drain Voltage During Startup
Figure 16 – Drain voltage during startup, 264 VAC, full load.
9.3
Output Voltage Start-up Profile
Figure 17 – Output voltage overshoot at 85 VAC, full load.
Page 17 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Figure 18 – Output voltage overshoot at 265 VAC, full load.
10 Output Ripple Measurements
10.1.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in Figure 19 and Figure 20.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Page 18 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
Probe Ground
Probe Tip
Figure 19 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 20 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added)
Page 19 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
10.1.2 Measurement Results
Figure 21 – Output Ripple at 115 VAC, full load.
Figure 22 – Output Ripple at 230 VAC input, full load.
Page 20 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
11 Conducted EMI
Conducted EMI was tested at full load. The worst case results shown below.
Figure 23 – 120VAC, Line with artificial hand. RCD
clamp.
Figure 24 – 230VAC, Line with artificial hand, RCD
clamp.
Figure 25 – 120VAC, Line with artificial hand. zener
clamp.
Figure 26 – 230VAC, Line with artificial hand, zener
clamp.
Page 21 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
12 Transformer construction with bias winding
12.1 Electrical Diagram
4
WD#1
Cancellation
25T #36X2
2
Floating
WD#3
Shield
Primary
WD#4
10T # 26 TIW
8T #29X3
5
WD#2
9
Secondary
8
5
152T #36
3
Figure 27 – Transformer Electrical Diagram
12.2 Transformer Build Diagram
8
9
Secondary
Tape
WD#3 Shield
5
5
Tape
WD#2 Primary
3
Tape
WD#1
Cancellation
4
2
Figure 28 – Transformer Build Diagram
Page 22 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
13 Revision History
Date
Author
August 24, 2005 YG
Page 23 of 24
Revision
1.0
Description & changes
Initial release
Reviewed
AM / VC
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-62
3W Charger using LNK363P
August 24, 2005
For the latest updates, visit our Web site: www.powerint.com
Power Integrations reserves the right to make changes to its products at any time to improve reliability or
manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit
described herein, nor does it convey any license under its patent rights or the rights of others.
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power
Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations.
© Copyright 2004, Power Integrations.
WORLD HEADQUARTERS
Power Integrations
5245 Hellyer Avenue,
San Jose, CA 95138, USA
Main:
+1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax:
+1-408-414-9765
e-mail:
[email protected]
CHINA (SHENZHEN)
Power Integrations
International Holdings, Inc.
Rm# 1705, Bao Hua Bldg.
1016 Hua Qiang Bei Lu,
Shenzhen, Guangdong,
518031, China
Phone: +86-755-8367-5143
Fax:
+86-755-8377-9610
e-mail: [email protected]
ITALY
Power Integrations s.r.l.
Via Vittorio Veneto 12,
Bresso, Milano,
20091, Italy
Phone: +39-028-928-6001
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE (ASIA PACIFIC
HEADQUARTERS)
Power Integrations, Singapore
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone: +65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
AMERICAS
Power Integrations, Inc.
4335 South Lee Street,
Suite G,
Buford, GA 30518, USA
Phone: +1-678-714-6033
Fax:
+1-678-714-6012
e-mail:
[email protected]
GERMANY
Power Integrations, GmbH
Rueckerstrasse 3,
D-80336, Munich, Germany
Phone: +49-895-527-3910
Fax:
+49-895-527-3920
e-mail: [email protected]
JAPAN
Power Integrations, K.K.
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama,
2-Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033, Japan
Phone: +81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
Power Integrations
International Holdings, Inc.
17F-3, No. 510,
Chung Hsiao E. Rd., Sec. 5,
Taipei, Taiwan 110, R.O.C.
Phone: +886-2-2727-1221
Fax:
+886-2-2727-1223
e-mail:
[email protected]
CHINA (SHANGHAI)
Power Integrations
International Holdings, Inc.
Rm 807, Pacheer,
Commercial Centre,
555 Nanjing West Road,
Shanghai, 200041, China
Phone: +86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail:
[email protected]
INDIA (TECHNICAL SUPPORT)
Innovatech
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India, 560080
Phone: +91-80-5113-8020
Fax:
+91-80-5113-8023
e-mail: [email protected]
KOREA
Power Integrations
International Holdings, Inc.
8th Floor, DongSung Bldg.
17-8 Yoido-dong,
Youngdeungpo-gu,
Seoul, 150-874, Korea
Phone: +82-2-782-2840
Fax:
+82-2-782-4427
e-mail:
[email protected]
UK (EUROPE & AFRICA
HEADQUARTERS)
1st Floor, St. James’s House
East Street
Farnham, Surrey GU9 7TJ
United Kingdom
Phone: +44-1252-730-140
Fax:
+44-1252-727-689
e-mail: [email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 24 of 24
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com