Design Example Report Title 3.0 W Charger using LNK363P Specification Input: 85 – 265 VAC Output: 5.0V / 600 mA Application Cell Phone Charger Author Power Integrations Applications Department Document Number DER-62 Date August 24, 2005 Revision 1.0 Summary and Features • • • Low cost CV/CC cell phone charger No Load consumption less than 300 mW Meets CEC efficiency and no-load specification The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 Table Of Contents 1 2 3 Introduction ................................................................................................................ 4 Power Supply Specification........................................................................................ 4 Schematic .................................................................................................................. 5 3.1 With RCD clamp ................................................................................................. 5 3.2 With Zener clamp and bias winding .................................................................... 5 4 PCB............................................................................................................................ 6 5 Bill Of Materials—RCD clamp .................................................................................... 6 6 Transformer Specification .......................................................................................... 7 6.1 Electrical Diagram............................................................................................... 7 6.2 Electrical Specifications ...................................................................................... 7 6.3 Materials ............................................................................................................. 7 6.4 Transformer Build Diagram ................................................................................. 8 6.5 Transformer Construction ................................................................................... 8 7 Transformer Spreadsheets ........................................................................................ 9 8 Performance Data .................................................................................................... 11 8.1 Efficiency vs CEC ............................................................................................. 11 8.1.1 With RCD Clamp, no bias winding ............................................................. 11 8.1.2 With Zener Clamp and Bias winding .......................................................... 12 8.2 Efficiency vs Input Voltage ................................................................................ 12 8.2.1 With RCD clamp, no bias winding.............................................................. 12 8.2.2 With zener clamp and bias winding ........................................................... 13 8.3 No-Load Input Power ........................................................................................ 13 8.3.1 RCD clamp, no bias winding...................................................................... 13 8.3.2 Zener clamp clamp and bias winding......................................................... 14 8.4 Output Regulation ............................................................................................. 14 8.5 Thermal Performance ....................................................................................... 15 8.5.1 Thermal testing set up ............................................................................... 15 8.5.2 Test results of RCD clamp ......................................................................... 15 8.5.3 Thermal performance of Zener clamp and bias winding. ........................... 15 9 Waveforms............................................................................................................... 16 9.1 Drain Voltage, Normal Operation ...................................................................... 16 9.2 Drain Voltage During Startup ............................................................................ 17 9.3 Output Voltage Start-up Profile ......................................................................... 17 10 Output Ripple Measurements ............................................................................... 18 10.1.1 Ripple Measurement Technique ................................................................ 18 10.1.2 Measurement Results ................................................................................ 20 11 Conducted EMI..................................................................................................... 21 12 Transformer construction with bias winding.......................................................... 22 12.1 Electrical Diagram............................................................................................. 22 12.2 Transformer Build Diagram ............................................................................... 22 13 Revision History.................................................................................................... 23 Page 2 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built. Page 3 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 1 Introduction This document is an engineering prototype report describing a 3.0 W power supply utilizing a LNK363P. This power supply is intended as a cell phone charger evaluation platform. Power Integrations E-shield technology of transformer construction allows this design to meet EMI requirement without using a common mode choke. The document contains the power supply specification, schematic, bill of materials, transformer documentation. Figure 1 – Populated circuit board – Top view 2 Power Supply Specification Description Input Voltage Frequency No-load Input Power (230 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 Total Output Power Continuous Output Power Efficiency Symbol Min Typ Max Units Comment VIN fLINE 85 47 265 64 0.5 VAC Hz W 2 Wire – no P.E. 50/60 VOUT1 VRIPPLE1 IOUT1 4.75 5.75 V mV mA POUT η 534 5.0 60 600 666 3.0 W % 59 20 MHz Bandwidth typical at full load, 25 oC Environmental Conducted EMI Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II Safety Ambient Temperature Page 4 of 24 TAMB 0 50 o C Free convection, sea level Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 3 Schematic 3.1 With RCD clamp FL J3 9 D7 1 5 R1 100 k D2 D1 1N4005 1N4005 J1 R2 100 k RF1 1 8.2 2.5 W 85-265V AC C2 4.7 uF 400 V D3 D4 1N4005 1N4005 C6 330 uF 10 V Q1 MMST3906 FL R8 D5 1N4007G J2 1 8 T1 EE16 5 R11 D FB BP U1 LNK363 1 mH VR1 BZX79-B5V1 5.1 V 2% 820 U2A PC817D 51 k J4 R9 1 U2B 1.7 1W S L1 R6 1.2 k R10 4.7 R4 68 C9 2.2 nF 50 V 3 R3 200 C1 4.7 uF 400 V SS14 C3 2.2 nF 1 kV PC817D C5 100 nF 50 V Figure 2 – Schematic with RCD clamp. With Zener clamp and bias winding FL 3.2 9 J1 VR2 BZY97C200 200 V D5 1N4007GP D2 D1 1N4005 1N4005 RF1 1 85-265V AC R1 130 k J2 C3 1 uF 50 V 1 C2 4.7 uF 400 V D3 1N4005 D4 1N4005 D FB BP S L1 1 SS14 R4 68 3 4 C1 4.7 uF 400 V 8.2 2.5 W J3 D7 5 8 C9 2.2 nF 50 V R7 4.7 C6 330 uF 10 V Q1 MMST3906 R8 T1 2 EE16 D8 1N4148 R10 J4 1 1.7 1W U2B PC817D 1 mH Figure 3 - Schematic with zener clamp and bias winding. Page 5 of 24 VR1 BZX79-B5V1 5.1 V 2% 820 U2A PC817D R9 51 k U1 LNK363 C5 100 nF 50 V R6 1.2 k Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 4 PCB Figure 4 – Printed circuit board 5 Bill Of Materials—RCD clamp Item Qty Value Description 1 2 4.7 uF 4.7 uF, 400 V, Electrolytic, (8 x 11.5) 2 1 2.2 nF 2.2 nF, 1 kV, Disc Ceramic 3 1 100 nF 100 nF, 50 V, Ceramic, X7R, 0805 4 1 330 uF 330 uF, 10 V, Electrolytic, Low ESR, 180 mOhm 5 1 2.2 nF 2.2 nF, 50 V, Ceramic, X7R, 0805 6 4 1N4005 600 V, 1 A, Rectifier, DO-41 7 1 1N4007G 1000 V, 1 A, Rectifier, Glass Passivated, 2 us, DO-41 8 1 SS14 40 V, 1 A, Schottky, DO-214AC 13 1 1 mH 1 mH, 0.15 A, Ferrite Core 14 1 MMST3906 PNP, Small Signal BJT, 40 V, 0.2 A, SOT-323 15 2 100 k 100 k, 5%, 1/4 W, Metal Film, 1206 16 1 200 200 R, 5%, 1/8 W, Metal Film, 0805 17 1 68 68 R, 5%, 1/8 W, Metal Film, 0805 18 1 1.2 k 1.0k 5%, 1/8 W, Metal Film, 0805 19 1 820 820 R, 5%, 1/8 W, Metal Film, 0805 20 1 1.7 1.7 R, 5%, 1 W, Metal Oxide 21 1 8.2 8.2 R, 2.5 W, Fusible/Flame Proof Wire Wound 22 1 4.7 4.7 R, 5% Metal film 0805 23 1 51 k 51 k, 5% Metal film 0805 24 1 EE16 Bobbin, EE16 Horizontal, 10 Pins 25 1 LNK363P PI’s device 26 1 PC817D Opto coupler, 35 V, CTR 300-600%, 4-DIP 27 1 BZX79-B5V1 5.1 V, 500 mW, 2%, DO-35 Page 6 of 24 Ref C1 C2 C3 C5 C6 C9 D1 D2 D3 D4 D5 D7 L1 Q1 R1 R2 R3 R4 R6 R8 R9 RF1 R10 R11 T1 U1 U2 VR1 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 6 Transformer Specification 6.1 Electrical Diagram 5 WD#1 Cancellation 25T #36X2 Floating Floating WD#3 Shield 9 10T # 26 TIW 8T #29X3 Secondary 8 5 WD#2 Primary WD#4 5 152T #36 3 Figure 5 – Transformer Electrical Diagram 6.2 Electrical Specifications Electrical Strength Primary Inductance (Pin 3 to Pin 5) Resonant Frequency. (Pin 3 to Pin 5) Primary Leakage Inductance. (Pin 3 to Pin 5) 6.3 Materials Item [1] [2] [3] [4] [5] [6] [7] Page 7 of 24 60Hz 1minute, from Pins 1-5 to Pins 6-10 All windings open 3000 V ac All windings open 1940 uH +/- 5% at 132 KHz 700 kHz (Min.) Pins 9-8 shorted 110 uH Max. Description Core: PC40EE16-Z, TDK or equivalent Gapped for AL of 84 nH/T2 Bobbin: Horizontal 10 pin Magnet Wire: #36AWG Magnet Wire: #29 AWG Triple Insulated Wire: #26 AWG. Tape: 3M 1298 Polyester Film, 2.0 mils thick, 8.2 mm wide Varnish Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 6.4 3W Charger using LNK363P August 24, 2005 Transformer Build Diagram 8 9 Secondary Tape WD#3 Shield 5 5 Tape WD#2 Primary 3 Tape WD#1 Cancellation 5 Figure 6 – Transformer Build Diagram 6.5 Transformer Construction WD1 Cancellation Winding Insulation WD#2 Primary winding Insulation WD #3 Shield Winding Insulation WD #4 Secondary Winding Outer Insulation Core Assembly Varnish Page 8 of 24 Primary pin side of the bobbin oriented to left hand side. Start at Pin 5. Wind 25 bifilar turns of item [8] from right to left. Wind with tight tension across entire bobbin evenly. Cut at the end. 4 Layers of tape [6] for insulation. Start at pin 3 wind 51 turns of item [3] from left to right. Apply 1 layer tape of [6]. Then wind another 50 turns next layer from right to left. Apply 1 layer tape of [6]. Wind the rest 51 turns in third layer from left to right. Wind with tight tension across entire bobbin evenly Finish at pin 5 2 Layers of tape [6] for insulation. Start at Pin 8 temporarily, wind 8 Trifilar turns of item [4]. Wind from right to left with tight tension. Wind uniformly, in a single layer across entire width of bobbin. Finish at pin5. Cut at the start lead. 2 Layers of tape [6] for insulation. Start at pin 9, wind 10 turns of item [5] from right to left. Wind uniformly, in a single layer across entire bobbin evenly. Finish on pin 8. 3 Layers of tape [6] for insulation. Assemble and secure core halves. Varnish Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 7 Transformer Spreadsheets ACDC_LinkSwitchXT_063005; Rev.0.2; Copyright Power Integrations 2005 ENTER APPLICATION VARIABLES VACMIN VACMAX fL VO IO CC Threshold Voltage INPUT INFO OUTP UNIT UT ACDC_LinkSwitch-XT_063005_Rev0-2.xls; LinkSwitchXT Continuous/Discontinuous Flyback Transformer Design Spreadsheet 85 265 50 5.00 0.60 1.00 Minimum AC Input Voltage Maximum AC Input Voltage AC Mains Frequency Output Voltage (main) Power Supply Output Current Voltage drop across sense resistor. For CV only circuits enter "0" 3.6 Watts Output Power (VO x IO + CC dissipation) n 0.60 Z 0.75 tC 2.90 CIN 9.40 Efficiency Estimate at output terminals. For CV only designs enter 0.7 if no better data available 0.75 Loss Allocation Factor (suggest 0.5 for CC=0 V, 0.75 for CC=1 V) mSec Bridge Rectifier Conduction Time Estimate onds uFara Input Capacitance ds PO ENTER LinkSwitch-HF VARIABLES LinkSwitch-XT Chosen Device ILIMITMIN ILIMITMAX fSmin I^2fmin VOR VDS VD KP Volts Volts Hertz Volts Amps Volts LNK36 3 Univer 115 Doubled/230V sal LNK363 Power 10 W 10 W Out 0.195 Amps Minimum Current Limit 0.225 Amps Maximum Current Limit 12400 Hertz Minimum Device Switching Frequency 0 5471.7 Hertz I^2f (product of current limit squared and frequency is 4 trimmed for tighter tolerance) 99.00 99 Volts Reflected Output Voltage 10 Volts LinkSwitch-HF on-state Drain to Source Voltage 0.5 Volts Output Winding Diode Forward Voltage Drop 0.90 Ripple to Peak Current Ratio (0.6<KRP<1.0 : 1.0<KDP<6.0) ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type EE16 Suggested smallest commonly available core Core EE16 P/N: PC40EE16-Z Bobbin EE16_B P/N: EE16_BOBBIN OBBIN AE 0.192 cm^2 Core Effective Cross Sectional Area LE 3.5 cm Core Effective Path Length AL 1140 nH/T^ Ungapped Core Effective Inductance 2 BW 8.6 mm Bobbin Physical Winding Width M 0 mm Safety Margin Width (Half the Primary to Secondary Creepage Distance) L 3 Number of Primary Layers NS 10 10 Number of Secondary Turns DC INPUT VOLTAGE PARAMETERS VMIN VMAX 83 Volts 375 Volts Minimum DC Input Voltage Maximum DC Input Voltage CURRENT WAVEFORM SHAPE PARAMETERS DMAX 0.61 Maximum Duty Cycle Page 9 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P IAVG IP IR IRMS 0.07 0.1950 0.1746 0.09 TRANSFORMER PRIMARY DESIGN PARAMETERS LP Amps Amps Amps Amps August 24, 2005 Average Primary Current Minimum Peak Primary Current Primary Ripple Current Primary RMS Current 1942 uHenri es 12 % 152 84 nH/T^ 2 1494 Gauss Typical Primary Inductance. +/- 12% TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP ISRMS IRIPPLE CMS AWGS 2.97 1.16 0.99 232 26 DIAS ODS 0.41 mm 0.86 mm INSS 0.23 mm Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) Secondary Minimum Bare Conductor Diameter Secondary Maximum Outside Diameter for Triple Insulated Wire Maximum Secondary Insulation Wall Thickness VOLTAGE STRESS PARAMETERS VDRAIN 603 Volts LP_TOLERANCE NP ALG 12.00 BM BAC ur LG BWE OD INS DIA AWG CM CMA PIVS Primary inductance tolerance Primary Winding Number of Turns Gapped Core Effective Inductance Maximum Operating Flux Density, BM<1500 is recommended 600 Gauss AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) 1654 Relative Permeability of Ungapped Core 0.27 mm Gap Length (Lg > 0.1 mm) 25.8 mm Effective Bobbin Width 0.169 mm Maximum Primary Wire Diameter including insulation 0.04 mm Estimated Total Insulation Thickness (= 2 * film thickness) 0.132 mm Bare conductor diameter 36 AWG Primary Wire Gauge (Rounded to next smaller standard AWG value) 25 Cmils Bare conductor effective area in circular mils 286 Cmils/ Primary Winding Current Capacity (200 < CMA < 500) Amp Amps Amps Amps Cmils AWG 30 Volts Maximum Drain Voltage Estimate (Includes Effect of Leakage Inductance) Output Rectifier Maximum Peak Inverse Voltage TRANSFORMER SECONDARY DESIGN PARAMETERS (MULTIPLE OUTPUTS) 1st output VO1 5.50 5.5 Volts Main Output Voltage (if unused, defaults to single output design) IO1 0.60 0.600 Amps Output DC Current PO1 3.30 Watts Output Power VD1 0.500 Volts Output Diode Forward Voltage Drop NS1 10.91 Output Winding Number of Turns ISRMS1 1.160 Amps Output Winding RMS Current IRIPPLE1 0.99 Amps Output Capacitor RMS Ripple Current PIVS1 32 Volts Output Rectifier Maximum Peak Inverse Voltage CMS1 AWGS1 DIAS1 ODS1 Page 10 of 24 232 Cmils Output Winding Bare Conductor minimum circular mils 26 AWG Wire Gauge (Rounded up to next larger standard AWG value) 0.41 mm Minimum Bare Conductor Diameter 0.79 mm Maximum Outside Diameter for Triple Insulated Wire Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 8 Performance Data All measurements performed at room temperature, 60 Hz input frequency. The data were taken at the end of a 6 feet long output cable. The DC resistance of the cable is about 0.2 ohm. 8.1 Efficiency vs CEC 8.1.1 With RCD Clamp, no bias winding Efficiency vs CEC 70% 68% Efficiency (%) 65% 63% 60% 58% 55% 53% 50% 25% 115 VAC CEC 50% 230 VAC 75% 100% Load percentage (%) Figure 7 – Efficiency vs load, RCD clamp. Note the CEC requirement is 58.9%, Tested average efficiency: 115VAC, 62.4%; 230VAC, 61.2% Page 11 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 8.1.2 With Zener Clamp and Bias winding Efficiency vs CEC 70% 68% Efficiency (%) 65% 63% 60% 58% 55% 115 VAC CEC 53% 50% 25% 230 VAC 50% 75% 100% Load percentage (%) Figure 8 - Efficiency vs output current with Zener clamp and bias winding. Note the CEC requirement is 58.9%, Tested average efficiency: 115VAC, 62.9%; 230VAC, 60.4% 8.2 Efficiency vs Input Voltage 8.2.1 With RCD clamp, no bias winding Efficiency vs Input Voltage 65% Efficiency (%) 63% 60% 58% 55% 53% 50% 85 115 145 175 205 235 265 Input Voltage (VAC) Figure 9 - Efficiency vs input voltage, RCD clamp , no bias winding. Tested at 3.03W output. Page 12 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 8.2.2 With zener clamp and bias winding Efficiency vs Input Voltage 65% Efficiency (%) 63% 60% 58% 55% 53% 50% 85 115 145 175 205 235 265 Input Voltage (VAC) Figure 10 - Full load efficiency vs input voltage, zener clamp and bias winding. 8.3 No-Load Input Power 8.3.1 RCD clamp, no bias winding No Load Consumption 125 Input Power (mW) 100 75 50 25 0 85 115 145 175 205 235 265 Input Voltage (VAC) Figure 11 - No load consumption RCD clamp, no bias winding. Note the CEC requirement is < 500mW Page 13 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 8.3.2 Zener clamp clamp and bias winding No Load Consum ption 50 Input Power (mW) 40 30 20 10 0 85 115 145 175 205 235 265 Input Voltage (VAC) Figure 12 - No load consumption, zener clamp with bias winding. 8.4 Output Regulation Output characteristic was tested at the end of a 6 feet long output cable. The DC resistance of the cable is about 0.2 ohm. VI Curve 6 Output Voltage (VDC) 5 4 115 VAC 3 230 VAC Low Limit 2 High Limit 1 0 0 100 200 300 400 500 600 700 Output Current (mA) Figure 13 – Output characteristic Page 14 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 8.5 Thermal Performance Thermal performance was measured inside an enclosure, full load, with no airflow. The ambient thermal probe was about 1 inch away from the device. 8.5.1 Thermal testing set up 8.5.2 Test results of RCD clamp Item 85 VAC 265 VAC Ambient 50°C 50°C LNK363P 108°C at 2.82 W output (5.22V, 540mA) 103°C at 2.84 W output (5.23V, 542mA). 8.5.3 Thermal performance of Zener clamp and bias winding. Item Page 15 of 24 85 VAC 265 VAC Ambient 50°C 50°C LNK363P 96°C at 2.82 W output (5.22V, 544mA) 89°C at 2.82 W output (5.22V, 544mA). Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 9 Waveforms 9.1 Drain Voltage, Normal Operation Figure 14 – Drain voltage at 85 VAC input, full load. Figure 15 – Drain voltage at 265 VAC, full load. Page 16 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 9.2 3W Charger using LNK363P August 24, 2005 Drain Voltage During Startup Figure 16 – Drain voltage during startup, 264 VAC, full load. 9.3 Output Voltage Start-up Profile Figure 17 – Output voltage overshoot at 85 VAC, full load. Page 17 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 Figure 18 – Output voltage overshoot at 265 VAC, full load. 10 Output Ripple Measurements 10.1.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 19 and Figure 20. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Page 18 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 Probe Ground Probe Tip Figure 19 – Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed) Figure 20 – Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added) Page 19 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 10.1.2 Measurement Results Figure 21 – Output Ripple at 115 VAC, full load. Figure 22 – Output Ripple at 230 VAC input, full load. Page 20 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 11 Conducted EMI Conducted EMI was tested at full load. The worst case results shown below. Figure 23 – 120VAC, Line with artificial hand. RCD clamp. Figure 24 – 230VAC, Line with artificial hand, RCD clamp. Figure 25 – 120VAC, Line with artificial hand. zener clamp. Figure 26 – 230VAC, Line with artificial hand, zener clamp. Page 21 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 12 Transformer construction with bias winding 12.1 Electrical Diagram 4 WD#1 Cancellation 25T #36X2 2 Floating WD#3 Shield Primary WD#4 10T # 26 TIW 8T #29X3 5 WD#2 9 Secondary 8 5 152T #36 3 Figure 27 – Transformer Electrical Diagram 12.2 Transformer Build Diagram 8 9 Secondary Tape WD#3 Shield 5 5 Tape WD#2 Primary 3 Tape WD#1 Cancellation 4 2 Figure 28 – Transformer Build Diagram Page 22 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 13 Revision History Date Author August 24, 2005 YG Page 23 of 24 Revision 1.0 Description & changes Initial release Reviewed AM / VC Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-62 3W Charger using LNK363P August 24, 2005 For the latest updates, visit our Web site: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others. The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. © Copyright 2004, Power Integrations. WORLD HEADQUARTERS Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] CHINA (SHENZHEN) Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: [email protected] ITALY Power Integrations s.r.l. Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE (ASIA PACIFIC HEADQUARTERS) Power Integrations, Singapore 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] AMERICAS Power Integrations, Inc. 4335 South Lee Street, Suite G, Buford, GA 30518, USA Phone: +1-678-714-6033 Fax: +1-678-714-6012 e-mail: [email protected] GERMANY Power Integrations, GmbH Rueckerstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: [email protected] JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN Power Integrations International Holdings, Inc. 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: [email protected] CHINA (SHANGHAI) Power Integrations International Holdings, Inc. Rm 807, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA (TECHNICAL SUPPORT) Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India, 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: [email protected] KOREA Power Integrations International Holdings, Inc. 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail: [email protected] UK (EUROPE & AFRICA HEADQUARTERS) 1st Floor, St. James’s House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44-1252-730-140 Fax: +44-1252-727-689 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 APPLICATIONS FAX World Wide +1-408-414-9760 Page 24 of 24 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com