Design Example Report Title Low Cost, 3 W Output Isolated LED Driver Using LinkSwitchTM-II LNK604DG Specification 90 VAC – 265 VAC Input; 9 VTYP, 330 mA Output Application GU10 LED Lamp Author Applications Engineering Department Document Number DER-351 Date November 14, 2012 Revision 2.1 Summary and Features Accurate (primary-side control) constant current (CC) Accurate CC, less than ±5% variation over load and line Low part-count solution (17 electrical components) Over-temperature protection with hysteretic recovery Output short-circuit and open-loop protection with auto-restart No-load consumption <200 mW at 265 VAC Easily meets EN55015 and CISPR-22 Class B EMI standards PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at <http://www.powerint.com/ip.htm>. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 Table of Contents 1 2 3 Introduction ................................................................................................................. 3 Power Supply Specification ........................................................................................ 5 Schematic ................................................................................................................... 6 3.1 Schematic - No Clamp Circuit ............................................................................. 6 3.2 Schematic - Clamp Circuit ................................................................................... 6 4 Circuit Description ...................................................................................................... 7 5 PCB Layout ................................................................................................................ 8 6 Bill of Materials ........................................................................................................... 9 6.1 No Primary Clamp Design Bill of Materials (Figure 3A) ....................................... 9 6.2 Clamp Design Bill of Materials (Figure 3B) .......................................................... 9 7 PIXls Design Spreadsheet ........................................................................................ 10 9 Performance Data .................................................................................................... 15 9.1 Efficiency ........................................................................................................... 15 9.2 Line and Load Regulation.................................................................................. 16 9.3 Test Data ........................................................................................................... 17 9.3.1 Test Data, 7 V Output................................................................................. 17 9.3.2 Test Data, 9 V Output................................................................................. 17 9.3.3 Test Data, 11 V Output............................................................................... 17 10 Thermal Performance ........................................................................................... 18 10.1 VIN = 115 VAC ................................................................................................... 18 10.2 VIN = 230 VAC ................................................................................................... 18 11 Waveforms ............................................................................................................ 19 11.1 Input Voltage and Input Current at Normal Operation ....................................... 19 11.2 Output Current and Output Voltage at Normal Operation .................................. 20 11.3 Output Current / Voltage Rise and Fall .............................................................. 21 11.4 Input Voltage and Output Current Waveform at Start-up ................................... 22 11.5 Drain Waveforms at Normal Operation.............................................................. 23 11.6 Output diode Waveforms at Normal Operation.................................................. 24 11.7 Start-up Drain Voltage and Current ................................................................... 25 11.8 Drain Current and Drain Voltage During Output Short-Circuit ........................... 26 11.9 No-Load Output Voltage .................................................................................... 27 12 Conducted EMI ..................................................................................................... 28 13 Line Surge............................................................................................................. 30 13.1 500 V Surge (No Clamp Circuit) ........................................................................ 30 13.2 1 kV Surge (With Clamp Circuit) ........................................................................ 30 14 Revision History .................................................................................................... 31 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 2 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 1 Introduction This engineering report describes the design for a universal input, 9 V, 330 mA LED driver. This power supply utilizes the LNK604DG device from the Power Integrations LinkSwitch-II family. This document contains the power supply and transformer specifications, schematics, bill of materials, and typical performance characteristics pertaining to this power supply. Figure 1 – Populated Circuit Board, Top (1.02” [26 mm] x .63” [16 mm]). Page 3 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 Figure 2 – Populated Circuit Board, Bottom. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 4 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 2 Power Supply Specification The table below represents the minimum acceptable performance for the design. Actual performance is listed in the results section. Description Input Voltage Frequency Output Output Voltage Output Current Total Output Power Continuous Output Power Efficiency Full Load Symbol Min VIN fLINE 90 VOUT IOUT 7 Max Units Comment 265 VAC Hz 2 Wire – no P.E. 11 V mA 50/60 9 330 3 POUT Typ W 75 % Measured at 115 / 230 VAC input Environmental Conducted EMI CISPR 15B / EN55015B Differential Surge (1.2 / 50 s) Ambient Temperature Page 5 of 32 500 V / 1 kV TAMB 40 0 C Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 3 Schematic 3.1 Schematic - No Clamp Circuit Figure 3A – Schematic (No Clamp Circuit). 3.2 Schematic - Clamp Circuit Figure 3B – Schematic (With Optional Clamp Circuit, for 1 kV Surge). Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 6 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 4 Circuit Description 4.1 Input Filter Bridge BR1 rectifies the AC input voltage. The rectified DC is filtered by the bulk storage capacitor C1. Inductor L1 with capacitor C1 attenuates differential-mode EMI noise. This configuration, along with Power Integrations’ transformer E-shield technology, allows this design to meet the EN55015 class B EMI standard. Resistor R6 damps excessive ringing and reduces EMI emissions. Fusible, flameproof resistor RF1 limits inrush current when AC is first applied, in addition to acting as a fuse. 4.2 Primary Power Circuit The rectified and filtered input voltage is applied to one side of the primary winding of T1. The other side of the transformer’s primary winding is driven by U1. A small drain to source capacitor C6 limits drain-voltage spikes caused by transformer leakage inductance. The external bias supply, D2, R7 and C5, improves the power efficiency. A slow recovery diode was selected for D2 to improve EMI. Capacitor C3 provides local decoupling for the BYPASS (BP) pin of U1 which is the supply pin for the internal controller. The clamp circuits, C2, R1, R2, D1 in Figure 3B, reduce the maximum drain voltage to be less than 700 V when 1 kV fast differential surge is applied. 4.3 Output Rectification and Regulation The transformer’s secondary output is rectified by D3, a Schottky-barrier diode (chosen for higher efficiency), and filtered by C4. LNK604DG regulates output using ON/OFF control for CV regulation, and frequency control for constant current (CC) regulation. Feedback resistors R3 and R4 have 1% tolerance values to accurately center the output current. The output voltage was set to be higher than the maximum LED voltage, and limits the overvoltage in case of a disconnected load. Want More? Use your smartphone QR Code Reader and you will be connected to related content on our website. Page 7 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 5 PCB Layout Figure 4 – Top Side. Figure 5 – Bottom Side. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 8 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 6 Bill of Materials 6.1 No Primary Clamp Design Bill of Materials (Figure 3A) Item Qty Ref Des 1 1 BR1 2 1 C1 4.7 F, 400 V, Electrolytic, (8 x 11.5) 3 1 C3 1 F, 25 V, Ceramic, X5R, 0805 C2012X5R1E105K TDK 4 1 C4 22 F, 16 V, Ceramic, X5R, 1210 GRM32ER61C226ME20L Murata 5 1 C5 10 F, 25 V, Ceramic, X5R, 1206 C3216X7R1E106K TDK 6 1 C6 10 pF, 1 kV, Ceramic, SL, 0.2" L.S. DEA1X3A100JC1B Murata 7 1 D2 200 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF) DL4003-13-F Diodes, Inc. 8 1 D3 100 V, 2 A, Schottky, SMA STPS2H100AY ST Micro 9 1 L1 3300 H, 62 mA, 59.5 , Axial Ferrite Inductor B78108S1335J Epcos 10 1 R3 43.2 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4322V Panasonic 11 1 R4 5.9 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF5901V Panasonic 12 1 R5 30 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ303V Panasonic 13 1 R6 33 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ333V Panasonic 14 1 R7 6.8 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ682V Panasonic 15 1 RF1 4.7 , 1 W, Fusible/Flame Proof Wire Wound FKN1WSJR-52-4R7 Yago 16 1 T1 Bobbin, EPC13, Horizontal, 10 pins BEPC-13-1110CPH 17 1 U1 LinkSwitch-II, CV/CC, SO-8C TDK Power Integrations 6.2 Description Mfg Part Number 600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC Mfg Micro Commercial Taicon MB6S-TP TAQ2G4R7MK0811MLL3 LNK604DG Clamp Design Bill of Materials (Figure 3B) Item Qty Ref Des Description Mfg Part Number 1 1 BR1 2 1 C1 4.7 F, 400 V, Electrolytic, (8 x 11.5) 3 1 C2 1 nF, 200 V, Ceramic, X7R, 0805 08052C102KAT2A AVX 4 1 C3 1 F, 25 V, Ceramic, X5R, 0805 C2012X5R1E105K TDK 5 1 C4 22 F, 16 V, Ceramic, X5R, 1210 GRM32ER61C226ME20L Murata 6 1 C5 C3216X7R1E106K TDK 7 1 D1 DL4005-13-F Diodes, Inc. 8 1 D2 DL4003-13-F Diodes, Inc. STPS2H100AY ST Micro 600 V, 0.5 A, Bridge Rectifier, SMD, MBS-1, 4-SOIC MB6S-TP TAQ2G4R7MK0811MLL3 9 1 D3 10 F, 25 V, Ceramic, X5R, 1206 600 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF) 200 V, 1 A, Rectifier, Glass Passivated, DO-213AA (MELF) 100 V, 2 A, Schottky, SMA 10 1 L1 2700 H, 75 mA, 40 Ohm, Axial Ferrite Inductor 11 1 R1 12 1 13 14 Mfg Micro Commercial Taicon B78148S1275J Epcos 470 k, 5%, 1/4 W, Thick Film, 1206 ERJ-8GEYJ474V Panasonic R2 470 , 5%, 1/8 W, Thick Film, 0805 ERJ-6GEYJ471V Panasonic 1 R3 43.2 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF4322V Panasonic 1 R4 5.9 k, 1%, 1/16 W, Thick Film, 0603 ERJ-3EKF5901V Panasonic 15 1 R5 30 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ303V Panasonic 16 1 R6 33 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ333V Panasonic 17 1 R7 6.8 k, 5%, 1/10 W, Thick Film, 0603 ERJ-3GEYJ682V Panasonic 18 1 RF1 4.7 , 1 W, Fusible/Flame Proof Wire Wound FKN1WSJR-52-4R7 Yago 19 1 T1 Bobbin, EPC13, Horizontal, 10 pins BEPC-13-1110CPH 20 1 U1 LinkSwitch-II, CV/CC, SO-8C TDK Power Integrations Page 9 of 32 LNK604DG Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 7 PIXls Design Spreadsheet ACDC_LinkSwitchII_091611; Rev.1.13; INPUT INFO Copyright Power Integrations 2011 ENTER APPLICATION VARIABLES VACMIN VACMAX fL VO 9.00 IO 0.33 Power n 0.75 OUTPUT UNIT 85.00 265.00 50.00 9.00 V V Hz V 0.33 A 2.97 W 0.75 Z 0.50 tC 3.00 Add Bias Winding YES CIN 4.70 ENTER LinkSwitch-II VARIABLES Chosen Device LNK604 Package DG ILIMITMIN ILIMITTYP ILIMITMAX ms YES 4.70 uF LNK604 DG 0.24 0.25 0.28 A A A FS 66.00 kHz VOR 80.16 V VDS 10.00 V VD 0.50 V KP 1.83 FEEDBACK WINDING PARAMETERS NFB 15.00 VFLY 8.91 V VFOR 5.72 V VB 10.00 V NB 3.00 REXT 8.30 k-ohm DESIGN PARAMETERS DCON 4.50 us TON 6.97 ACDC_LinkSwitch-II_091611_Rev1-13; LinkSwitch-II Discontinuous Flyback Transformer Design Spreadsheet Minimum AC Input Voltage Maximum AC Input Voltage AC Mains Frequency Output Voltage (at continuous power) Power Supply Output Current (corresponding to peak power) Continuous Output Power Efficiency Estimate at output terminals. Under 0.7 if no better data available Z Factor. Ratio of secondary side losses to the total losses in the power supply. Use 0.5 if no better data available Bridge Rectifier Conduction Time Estimate Choose Yes to add a Bias winding to power the LinkSwitch-II. Input Capacitance Chosen LinkSwitch-II device Select package (PG, GG or DG) Minimum Current Limit Typical Current Limit Maximum Current Limit Typical Device Switching Frequency at maximum power Reflected Output Voltage (VOR < 135 V Recommended) LinkSwitch-II on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Ensure KDP > 1.3 for discontinuous mode operation Feedback winding turns Flyback Voltage - Voltage on Feedback Winding during switch off time Forward voltage - Voltage on Feedback Winding during switch on time BIAS WINDING PARAMETERS RUPPER 23.19 RLOWER 6.04 ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES Core Type Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com us k-ohm k-ohm Bias Winding Voltage. Ensure that VB > VFLY. Bias winding is assumed to be ACSTACKED on top of Feedback winding Bias Winding number of turns Suggested value of BYPASS pin resistor (use standard 5% resistor) Output diode conduction time LinkSwitch-II On-time (calculated at minimum inductance) Upper resistor in Feedback resistor divider Lower resistor in resistor divider Page 10 of 32 14-Nov-12 Core DER-351 3 W LED Driver Using LNK604DG EPC13 EPC13 Bobbin AE LE AL BW EPC13_BOBBIN 12.50 30.60 870.00 6.88 mm^2 mm nH/turn^2 mm M 0.00 mm L 3.00 NS 16.00 DC INPUT VOLTAGE PARAMETERS VMIN VMAX CURRENT WAVEFORM SHAPE PARAMETERS DMAX IAVG IP IR IRMS TRANSFORMER PRIMARY DESIGN PARAMETERS LPMIN LPTYP LP_TOLERANCE NP 135.00 ALG BM_TARGET 92.18 2500.00 nH/turn^2 Gauss BM 2488.89 Gauss 3011.56 Gauss BAC 1244.44 Gauss ur LG BWE 169.48 0.17 20.64 mm mm OD 0.15 mm INS 0.03 DIA 0.12 AWG 37.00 CM 20.16 Cmils 187.20 Cmils/A BP CMA Warning Warning 51.52 374.77 V V Minimum DC bus voltage Maximum DC bus voltage 0.46 0.10 0.24 0.24 0.11 A A A A Maximum duty cycle measured at VMIN Input Average current Peak primary current Primary ripple current Primary RMS current 1512.00 1680.00 10.00 uH uH % TRANSFORMER SECONDARY DESIGN PARAMETERS Lumped parameters ISP 2.00 ISRMS 0.73 IRIPPLE 0.65 CMS 145.69 Page 11 of 32 Enter Transformer Core. Based on the output power the recommended core sizes are EE13 or EE16 Generic EPC13_BOBBIN Core Effective Cross Sectional Area Core Effective Path Length Ungapped Core Effective Inductance Bobbin Physical Winding Width Safety Margin Width (Half the Primary to Secondary Creepage Distance) Number of Primary Layers Number of Secondary Turns. To adjust Secondary number of turns change DCON mm A A A Cmils Minimum Primary Inductance Typical Primary inductance Tolerance in primary inductance Primary number of turns. To adjust Primary number of turns change BM_TARGET Gapped Core Effective Inductance Target Flux Density Maximum Operating Flux Density (calculated at nominal inductance), BM < 2500 is recommended !!! Warning. Peak Flux density exceeds 3000 Gauss and is not recommended. Reduce BP by increasing NS AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (LG > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness) Bare conductor diameter Primary Wire Gauge (Rounded to next smaller standard AWG value) Bare conductor effective area in circular mils !!! Warning. CMA is less than 200 and may cause overheating of the primary winding. Increase primary winding layers or use larger transformer Peak Secondary Current Secondary RMS Current Output Capacitor RMS Ripple Current Secondary Bare Conductor minimum circular Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG AWGS 14-Nov-12 mils Secondary Wire Gauge (Rounded up to next larger standard AWG value) 28.00 VOLTAGE STRESS PARAMETERS Maximum Drain Voltage Estimate (Assumes 20% clamping voltage tolerance and an additional 10% temperature tolerance) Output Rectifier Maximum Peak Inverse Voltage VDRAIN 563.09 V PIVS 53.42 V RUPPER_ACTUAL 23.19 k-ohm RLOWER_ACTUAL 6.04 k-ohm 9.00 V Measured Output voltage from first prototype 0.33 Amps Measured Output current from first prototype RUPPER_FINE 23.19 k-ohm RLOWER_FINE 6.04 k-ohm FINE TUNING Actual (Measued) Output Voltage (VDC) Actual (Measured) Output Current (ADC) Actual Value of upper resistor (RUPPER) used on PCB Actual Value of lower resistor (RLOWER) used on PCB New value of Upper resistor (RUPPER) in Feedback resistor divider. Nearest standard value is 23.2 k-ohms New value of Lower resistor (RLOWER) in Feedback resistor divider. Nearest standard value is 6.04 k-ohms Note: 1) BP = 3011 gauss is accepted with no saturation observed in drain current waveform. 2) CMA = 187 Cmil/A : Used #36 AWG for primary winding. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 12 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 8 Transformer Specification 8.1 Electrical Diagram Figure 6 – Transformer Electrical Diagram. 8.2 Electrical Specifications Electrical Strength Primary Inductance Resonant Frequency Primary Leakage Inductance 1 second, 60 Hz, from primary to secondary. Pin 5-6, other windings open, measured at 100 kHz, 1 VRMS. Pin 5-6, other windings open. 3000 VAC 1.68 mH, ±7% 500 kHz Pin 5-6, with FL1-FL2 shorted, measured at 100 kHz, 1 VRMS. 60 H 8.3 Materials Item [1] [2] [3] [4] [5] [6] [7] Page 13 of 32 Description Core: EPC13, PC44, gapped for ALG of 84.69 nH/T2. Bobbin: EPC13, Horizontal, 10 pins, (5/5). Magnet Wire: #36 AWG. Magnet Wire: #37 AWG. Magnet Wire: #28 AWG, TIW. Tape: 3M 1298 Polyester film, 2.0 mils thick, 7.0 mm wide. Varnish: Dolph BC-359, or equivalent. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 8.4 Transformer Build Diagram Figure 7 – Transformer Build Diagram. 8.5 Transformer Construction WD#1 Cancellation Winding Insulation WD#2 Primary Winding Insulation WD#3 Feedback Winding Insulation WD#4 Secondary Winding Insulation Core Assemble Varnish Pin 1 - pin 5 side of the bobbin oriented to left hand side. Start at pin 5, wind 24 bifilar turns of item [4] in one layer. Wind with tight tension across bobbin evenly. Cut the end of the wire. 1 layer of tape item [6] for basic insulation. Start at pin 6, wind 45 turns of item [3] from right to left. Apply one layer of tape [5]. Then wind another 45 turns on the next layer from left to right. Apply one layer of tape [5]. Wind the last 45 turns from right to left. Terminate on pin 5. Wind with tight tension and spread turns across bobbin evenly. 1 layer of tape item [6] for basic insulation. Start at pin 3, wind 17 trifilar turns of item [4] from left to right uniformly. Spread the winding across bobbin evenly and terminate at pin 4. 1 layer of tape item [6] for basic insulation. Start at pin 2 temporarily, wind 16 turns of item [5] from left to right in 1 layer and 3 turns on 2nd layer, leave the end lead floating at the right hand side, and mark it as FL2. Bring the start end of the wire across the bobbin to the right side and fly out, mark it as FL1. 2 layers of tape item [6] for basic insulation. Gap core and assemble. Secure core halves with tape. Dip varnish assembly with item [7]. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 14 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 9 Performance Data All measurements were taken at room temperature using an LED load. The following data were measured using 3 sets of loads for a load range of 7 V to 11 V. Refer to the table on Section 9.3 for the complete set of test data values. 9.1 Efficiency 81 7V 9V 11 V 80 79 Efficiency (%) 78 77 76 75 74 73 72 71 80 100 120 140 160 180 200 220 240 260 Input Voltage (VAC) Figure 8 – Efficiency vs. Line and Load. Page 15 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 280 DER 351 3 W LED Driver using LNK604DG 9.2 14-Nov-12 Line and Load Regulation 2.5 7V 9V 11 V 2.0 1.5 % Regulation 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 80 100 120 140 160 180 200 220 240 260 280 Input Voltage (VAC) Figure 9 – Regulation vs. Line and Load. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 16 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 9.3 Test Data All measurements were taken with the board at open frame, 25 ºC ambient. 9.3.1 Test Data, 7 V Output Input VAC Freq (VRMS) (Hz) 90 60 100 60 115 60 135 60 195 50 210 50 230 50 245 50 265 50 Input Measurement VIN IIN PIN (VRMS) (mARMS) (W) 89.93 55.59 3.11 99.97 50.99 3.07 114.98 45.71 3.02 134.97 40.77 2.98 194.99 31.67 2.97 209.94 30.32 2.98 230.02 28.79 3.00 244.95 27.85 3.03 265.03 26.73 3.06 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 6.68 337.60 2.27 6.68 339.00 2.28 6.67 338.60 2.28 6.67 336.80 2.27 6.67 336.70 2.27 6.68 336.80 2.27 6.67 336.60 2.27 6.67 338.50 2.28 6.68 337.10 2.28 PCAL (W) 2.26 2.26 2.26 2.25 2.25 2.25 2.25 2.26 2.25 Calculation Efficiency (%) 73.03 74.23 75.41 75.94 76.22 76.12 75.48 75.40 74.42 Loss (W) 0.84 0.79 0.74 0.72 0.71 0.71 0.74 0.74 0.78 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 8.74 341.30 3.00 8.74 344.60 3.02 8.73 344.80 3.03 8.74 342.40 3.01 8.73 344.20 3.02 8.72 342.90 3.01 8.72 343.60 3.02 8.73 344.50 3.03 8.73 345.00 3.03 PCAL (W) 2.98 3.01 3.01 2.99 3.00 2.99 3.00 3.01 3.01 Calculation Efficiency (%) 73.95 75.28 76.63 77.55 78.51 78.26 78.07 77.87 77.32 Loss (W) 1.06 0.99 0.92 0.87 0.83 0.84 0.85 0.86 0.89 PCAL (W) 3.86 3.87 3.89 3.85 3.85 3.86 3.86 3.85 3.86 Calculation Efficiency (%) 73.34 75.19 77.06 78.37 79.61 79.57 78.91 78.81 78.50 Loss (W) 1.41 1.28 1.16 1.07 0.99 1.00 1.03 1.04 1.06 9.3.2 Test Data, 9 V Output Input VAC Freq (VRMS) (Hz) 90 60 100 60 115 60 135 60 195 50 210 50 230 50 245 50 265 50 Input Measurement VIN IIN PIN (VRMS) (mARMS) (W) 89.93 69.89 4.05 99.96 63.95 4.02 114.98 57.10 3.95 134.97 50.49 3.88 194.99 39.02 3.85 209.94 37.27 3.85 230.02 35.31 3.86 244.95 34.13 3.89 265.04 32.71 3.92 9.3.3 Test Data, 11 V Output Input VAC Freq (VRMS) (Hz) 90 60 100 60 115 60 135 60 195 50 210 50 230 50 245 50 265 50 Page 17 of 32 Input Measurement VIN IIN PIN (VRMS) (mARMS) (W) 89.93 89.18 5.28 99.97 79.75 5.17 114.98 70.44 5.06 134.97 61.67 4.93 194.99 47.10 4.85 209.94 45.17 4.87 230.02 42.90 4.90 244.95 41.28 4.90 265.04 39.43 4.93 Load Measurement VOUT IOUT POUT (VDC) (mADC) (W) 11.21 344.60 3.87 11.20 345.80 3.89 11.20 347.30 3.90 11.19 344.40 3.87 11.18 344.20 3.86 11.18 345.30 3.88 11.18 344.90 3.87 11.17 344.70 3.87 11.17 345.30 3.87 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 10 Thermal Performance Images captured after running for >30 minutes at room temperature (25 °C), no airflow, open frame 10.1 VIN = 115 VAC Figure 10 – EMI filter inductor: 60.9 ºC. Figure 11 – LNK604DG: 62.6 ºC. 10.2 VIN = 230 VAC Figure 12 – Transformer: 46.8 ºC. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Figure 13 – LNK604DG 53.6 ºC. Page 18 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 11 Waveforms 11.1 Input Voltage and Input Current at Normal Operation Figure 14 – 90 VAC, 60 Hz Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 15 – 115 VAC, 60 Hz Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 100 V, 10 ms / div. Figure 16 – 230 VAC, 50 Hz Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 200 V, 10 ms / div. Figure 17 – 265 VAC, 50 Hz Full Load. Upper: IIN, 100 mA / div. Lower: VIN, 200 V, 10 ms / div. Page 19 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 11.2 Output Current and Output Voltage at Normal Operation Figure 18 – 90 VAC, 60 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 500 s / div. Figure 19 – 115 VAC, 60 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 500 s / div. Figure 20 – 230 VAC, 50 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 500 s / div. Figure 21 – 265 VAC, 50 Hz Full Load. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 500 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 20 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 11.3 Output Current / Voltage Rise and Fall Figure 22 – 90 VAC, 60 Hz Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 100 ms / div. Figure 23 – 90 VAC, 60 Hz Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V,100 ms / div. Figure 24 – 265 VAC, 50 Hz Output Rise. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 100 ms / div. Figure 25 – 265 VAC, 50 Hz Output Fall. Upper: IOUT, 100 mA / div. Lower: VOUT, 20 V, 100 ms / div. Page 21 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 11.4 Input Voltage and Output Current Waveform at Start-up Figure 26 – 90 VAC, 60 Hz. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 20 ms / div. Figure 27 – 115 VAC, 60 Hz. Upper: IOUT, 100 mA / div. Lower: VIN, 100 V, 20 ms / div. Figure 28 – 230 VAC, 50 Hz. Upper: IOUT, 100 mA / div. Lower: VIN, 200 V, 20 ms / div. Figure 29 – 265 VAC, 50 Hz. Upper: IOUT, 100 mA / div. Lower: VIN, 200 V, 20 ms / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 22 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 11.5 Drain Waveforms at Normal Operation Figure 30 – 90 VAC, 60 Hz. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 31 – 90 VAC, 60 Hz. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 100 V, 10 s / div. Figure 32 – 265 VAC, 50 Hz. Upper: IDRAIN, 100 A / div. Lower: VDRAIN, 200 V, 5 ms / div. Figure 33 – 265 VAC, 50 Hz. Upper: IDRAIN, 100 A / div. Lower: VDRAIN, 200 V, 10 s / div. Page 23 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 11.6 Output diode Waveforms at Normal Operation Figure 34 – 90 VAC, 60 Hz. Upper: IDRAIN, 1A / div. Lower: VDRAIN, 100 V, 5 ms / div. Figure 35 – 90 VAC, 60 Hz. Upper: IDRAIN, 1 A / div. Lower: VDRAIN, 100 V, 10 s / div. Figure 36 – 265 VAC, 50 Hz. Upper: IDRAIN, 2 A / div. Lower: VDRAIN, 200 V, 5 ms / div. Figure 37 – 265 VAC, 50 Hz. Upper: IDRAIN, 2 A / div. Lower: VDRAIN, 200 V, 10 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 24 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 11.7 Start-up Drain Voltage and Current Figure 38 – 90 VAC, 60 Hz. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 100 V, 5 ms / div. Page 25 of 32 Figure 39 – 265 VAC, 50 Hz. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 200 V, 5 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 11.8 Drain Current and Drain Voltage During Output Short-Circuit Figure 40 – 90 VAC, 60 Hz Output Short Condition. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN,100 V, 1 s / div. Figure 41 – 90 VAC, 60 Hz Output Short Condition. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 100 V, 10 s / div. Figure 42 – 265 VAC, 50 Hz Output Short Condition. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 200 V, 1 s / div. Figure 43 – 265 VAC, 50 Hz Output Short Condition. Upper: IDRAIN, 100 mA / div. Lower: VDRAIN, 200 V, 50 s / div. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 26 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 11.9 No-Load Output Voltage Figure 44 – 90 VAC, 60 Hz No-Load Characteristic. Upper: VOUT, 5 V / div. Lower: VDRAIN, 100 V / div., 1 ms / div. Page 27 of 32 Figure 45 – 265 VAC, 50 Hz No-Load Characteristic. Upper: VOUT, 5 V / div. Lower: VDRAIN, 100 V / div., 1 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 12 Conducted EMI The unit was tested using LED load (9 V) with input voltage of 115 VAC, 60 Hz at room temperature. Power Integrations 07.Sep 12 18:10 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 120 EN55015Q 110 1 QP CLRWR 100 kHz LIMIT CHECK 1 MHz PASS 10 MHz SGL 100 90 2 AV CLRWR TDF 80 70 60 50 EN55015A 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz Figure 46 – Conducted EMI 9 V / 330 mA Load, 115 VAC, 60 Hz, and EN55015 Limits. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 28 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG Power Integrations 07.Sep 12 17:34 RBW MT 9 kHz 500 ms Att 10 dB AUTO dBµV 120 EN55015Q 110 1 QP CLRWR 100 kHz LIMIT CHECK 1 MHz PASS 10 MHz SGL 100 90 2 AV CLRWR TDF 80 70 60 50 EN55015A 6DB 40 30 20 10 0 -10 -20 9 kHz 30 MHz Figure 47 – Conducted EMI 9 V / 330 mA Load, 230 VAC, 60 Hz, and EN55015 Limits. Page 29 of 32 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 13 Line Surge Input voltage was set at 230 VAC / 60 Hz. Output was loaded with 9 V LED string. Differential input line 1.2 / 50 s surge testing 13.1 500 V Surge (No Clamp Circuit) Figure 48 – Drain Voltage Waveform at 500 V Fast Surge. 13.2 1 kV Surge (With Clamp Circuit) Figure 49 – Drain Voltage Waveform at 1 kV Fast Surge. Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com Page 30 of 32 14-Nov-12 DER-351 3 W LED Driver Using LNK604DG 14 Revision History Date 22-Oct-12 14-Nov-12 Page 31 of 32 Author DK DK Revision 2.0 2.1 Description and Changes Initial Release Updated Schematic 3A and BOM Reviewed Apps & Mktg Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER 351 3 W LED Driver using LNK604DG 14-Nov-12 For the latest updates, visit our website: www.powerint.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including transformer construction and circuits’ external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.powerint.com/ip.htm. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, StackFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©Copyright 2012 Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations WORLD HEADQUARTERS 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] GERMANY Lindwurmstrasse 114 80337, Munich Germany Phone: +49-895-52739110 Fax: +49-895-527-39200 e-mail: [email protected] JAPAN Kosei Dai-3 Building 2-12-11, Shin-Yokohama, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu District Taipei 114, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: [email protected] CHINA (SHANGHAI) Rm 1601/1610, Tower 1 Kerry Everbright City No. 218 Tianmu Road West Shanghai, P.R.C. 200070 Phone: +86-021-6354-6323 Fax: +86-021-6354-6325 e-mail: [email protected] INDIA #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: [email protected] KOREA RM 602, 6FL Korea City Air Terminal B/D, 159-6 Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610 Fax: +82-2-2016-6630 e-mail: [email protected] EUROPE HQ 1st Floor, St. James’s House East Street, Farnham Surrey GU9 7TJ United Kingdom Phone: +44 (0) 1252-730-141 Fax: +44 (0) 1252-727-689 e-mail: [email protected] CHINA (SHENZHEN) 3rd Floor, Block A, Zhongtou International Business Center, No. 1061, Xiang Mei Road, FuTian District, ShenZhen, China, 518040 Phone: +86-755-8379-3243 Fax: +86-755-8379-5828 e-mail: [email protected] ITALY Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE 51 Newton Road, #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-4149660 Power Integrations, Inc. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com APPLICATIONS FAX World Wide +1-408-4149760 Page 32 of 32