MAXIM MAX2045

19-2728; Rev 0; 1/03
High-Gain Vector Multipliers
Features
♦ Multiple RF Frequency Bands of Operation
2040MHz to 2240MHz (MAX2045)
1740MHz to 2060MHz (MAX2046)
790MHz to 1005MHz (MAX2047)
The MAX2045/MAX2046/MAX2047 provide vector
adjustment through the differential I/Q amplifiers. The
I/Q amplifiers can interface with voltage and/or current
digital-to-analog converters (DACs). The voltage inputs
are designed to interface to a voltage-mode DAC, while
the current inputs are designed to interface to a currentmode DAC. An internal 2.5V reference voltage is provided for applications using single-ended voltage DACs.
♦ ±1° Phase Flatness
The MAX2045/MAX2046/MAX2047 operate from a 4.75V
to 5.25V single supply. All devices are offered in a compact 5mm ✕ 5mm, 32-lead thin QFN exposed-paddle
packages.
The MAX2045/MAX2046/MAX2047 evaluation kits are
available, contact factory for availability.
♦ ±0.2dB Gain Flatness
♦ 3dB Control Bandwidth: 260MHz
♦ 15dBm Input IP3
♦ 15dB Gain Control Range
♦ Continuous 360° Phase Control Range
♦ 6.5dB Maximum Gain for Continuous Phase
♦ On-Chip Reference for Single-Ended
Voltage-Mode Operation
♦ 800mW Power Consumption
♦ Space-Saving 5mm x 5mm Thin QFN Package
♦ Single 5V supply
RF Cancellation Loops
VI1
1
VI2
2
VQ1
3
GND
GND
RFIN2
RFIN1
GND
GND
GND
30
29
28
27
26
25
RF Magnitude and Phase Adjustment
31
UMTS/PCS/DCS/Cellular/GSM Base Station
Feed-Forward and Predistortion Power Amplifiers
GND
Pin Configuration/Block Diagram
32
Applications
Beam-Forming Applications
8
16
IQ2
GND
7
15
IQ1
OUTPUT
STAGE
2.5V
REFERENCE
GND
6
14
II2
GND
32 Thin QFN-EP*
13
32 Thin QFN-EP*
CONTROL
AMPLIFIER Q
RFOUT2
-40°C to +85°C
MAX2047ETJ-T
-40°C to +85°C
*EP = Exposed paddle.
5
12
MAX2046ETJ-T
II1
RFOUT1
32 Thin QFN-EP*
VECTOR
MULTIPLIER
11
-40°C to +85°C
4
GND
MAX2045ETJ-T
VQ2
10
PIN-PACKAGE
GND
TEMP RANGE
MAX2045
MAX2046
MAX2047
9
PART
90°
PHASE
SHIFTER
REFOUT
Ordering Information
CONTROL
AMPLIFIER I
24
GND
23
GND
22
RBIAS
21
GND
20
GND
19
GND
18
VCC
17
VCC
QFN
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX2045/MAX2046/MAX2047
General Description
The MAX2045/MAX2046/MAX2047 low-cost, fully integrated vector multipliers alter the magnitude and phase
of an RF signal. Each device is optimized for the UMTS
(MAX2045), DCS/PCS (MAX2046), or cellular/GSM
(MAX2047) frequency bands. These devices feature
differential RF inputs and outputs.
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
ABSOLUTE MAXIMUM RATINGS
VCC to GND .............................................................-0.3V to +6V
VI1, V12, VQ1, VQ2, RFIN1, RFIN2,
RFOUT1, RFOUT2 ....................................-0.3V to VCC + 0.3V
RFOUT1, RFOUT2 Sink Current..........................................35mA
REFOUT Source Current.......................................................4mA
II1, II2, IQ1, IQ2 ........................................................-0.3V to +1V
II1, II2, IQ1, IQ2 Sink Current ...........................................+10mA
Continuous RF Input Power (CW)...................................+15dBm
Continuous Power Dissipation (TA = +70°C)
32-Pin Thin QFN (derate 21.3mW/°C above +70°C) .......1.7W
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-40°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, no RF inputs applied, RF
input and output ports are terminated with 50Ω. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.)
PARAMETER
Supply Voltage Range
Operating Supply Current
SYMBOL
VCC
ICC
Differential Input Resistance,
VI1 to VI2, VQ1 to VQ2
Common-Mode Input Voltage,
VI1, VI2, VQ1, VQ2
MIN
VREFOUT
TYP
MAX
UNITS
V
4.75
5
5.25
MAX2045
120
160
200
MAX2046
120
160
200
MAX2047
120
160
200
Input resistance between VI1 and VI2 or
VQ1 and VQ2
6.5
9
11.5
2.5
VCM
Input Resistance, II1, II2, IQ1,
IQ2
Reference Voltage
CONDITIONS
mA
kΩ
V
Single-ended resistance to ground
150
200
250
Ω
REFOUT unloaded
2.3
2.45
2.6
V
AC ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz
(MAX2045), fIN = 1.9GHz (MAX2046), fIN = 915MHz (MAX2047), input current range = 0 to 4mA (if using a current-mode DAC), and
differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs
are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA =
+25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
RF Differential Input Impedance
50
Ω
RF Differential Output Impedance
300
Ω
RF Differential Load Impedance
200
Continuous Phase Range
2
0
_______________________________________________________________________________________
Ω
360
Degrees
High-Gain Vector Multipliers
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs
are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
CONDITIONS
Frequency Range
MIN
TYP
2040
RF Input Return Loss
RF Output Return Loss
MAX
UNITS
2240
MHz
-14
dB
-16.4
dB
VOLTAGE MODE
VI = VQ = 0.707V (radius = 1V)
Power Gain
7
VI = VQ = 0.5V (radius = 0.707V)
3.4
VI = VQ = 0.25V (radius = 0.35V)
-3
dB
VI = VQ = 0.125V (radius = 0.175V)
-8.7
Power-Gain Range
Difference in gain between VI = VQ = 0.707V and
VI = VQ = 0.125V
15.7
dB
Reverse Isolation
Over entire control range
-74
dB
Maximum Power Gain for
Continuous Coverage of Phase
Change
0 to 360° (radius = 1V)
6.1
dB
Maximum Power Gain with
Reduced Phase Coverage
0 to 360° (radius = 1V)
7
dB
Group Delay
VI = VQ = 0.707V (radius = 1V)
1.38
ns
Gain Drift Over Temperature
VI = VQ = 0.707V (radius = 1V)
-0.027
dB/°C
Gain Flatness Over Frequency
VI = VQ = 0.707V (radius = 1V); UMTS,
fIN = 2140MHz ±100MHz
±0.21
dB
Phase Flatness Over Frequency
Electrical delay removed, VI = VQ = 0.707V
(radius = 1V), UMTS, fIN = 2140MHz ±100MHz
±0.2
Degrees
Output Noise Power
IP1dB
IIP3
VI = VQ = 0.707V (radius = 1V)
-147.7
VI = VQ = 0.5V (radius = 0.707V)
-148.3
VI = VQ = 0.25V (radius = 0.35V)
-148.2
VI = VQ = 0.125V (radius = 0.175V)
-148.1
VI = VQ = 0.707V (radius = 1V)
6.7
VI = VQ = 0.125V (radius = 0.175V)
9.3
VI = VQ = 0.707V (radius = 1V)
15.2
VI = VQ = 0.125V (radius = 0.175V)
14.7
dBm/Hz
dBm
dBm
_______________________________________________________________________________________
3
MAX2045/MAX2046/MAX2047
MAX2045 ELECTRICAL CHARACTERISTICS
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
MAX2045 ELECTRICAL CHARACTERISTICS (continued)
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs
are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
CURRENT MODE
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA
6.2
II1 = IQ1 = 1mA, II2 = IQ2 = 0mA
-8.7
Power-Gain Range
Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =
0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA
14.9
dB
Gain Flatness Over Frequency
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA; UMTS,
fIN = 2140MHz ±100MHz
±0.27
dB
Phase Flatness Over Frequency
Electrical delay removed, II1 = IQ1 = 4mA,
II2 = IQ2 = 0mA
±0.8
Degrees
Power Gain (Note 4)
dB
MAX2046 ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 1.9GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs
are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
CONDITIONS
Frequency Range
MIN
TYP
1740
MAX
UNITS
2060
MHz
RF Input Return Loss
-21.1
dB
RF Output Return Loss
-21.7
dB
VOLTAGE MODE
VI = VQ = 0.707V (radius = 1V)
7.4
VI = VQ = 0.5V (radius = 0.707V)
3.8
VI = VQ = 0.25V (radius = 0.35V)
-2.5
VI = VQ = 0.125V (radius = 0.175V)
-8.2
Power-Gain Range
Difference in gain between VI = VQ = 0.707V and
VI = VQ = 0.125V
15.6
dB
Reverse Isolation
Over entire control range
-76
dB
Maximum Power Gain for
Continuous Coverage of Phase
Change
0 to 360° (radius = 1V)
6.5
dB
0 to 360° (radius = 1V)
7.4
dB
Power Gain
Maximum Power Gain with
Reduced Phase Coverage
Group Delay
dB
VI = VQ = 0.707V (radius = 1V)
1.54
ns
Gain Drift Over Temperature
VI = VQ = 0.707V (radius = 1V)
-0.026
dB/°C
Gain Flatness Over Frequency
VI = VQ = 0.707V
(radius = 1V)
4
PCS, fIN = 1960MHz
±100MHz
±0.14
DCS, fIN = 1842.5MHz
±100MHz
±0.3
dB
_______________________________________________________________________________________
High-Gain Vector Multipliers
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 1.9GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs
are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
Phase Flatness Over Frequency
Output Noise Power
CONDITIONS
PCS, fIN = 1960MHz
±100MHz
Electrical delay removed,
VI = VQ = 0.707V (radius = 1V) DCS, fIN = 1842.5MHz
±100MHz
MIN
TYP
Degrees
±1.2
VI = VQ = 0.707V (radius = 1V)
-146.8
VI = VQ = 0.5V (radius = 0.707V)
-147.4
VI = VQ = 0.25V (radius = 0.35V)
-147.4
VI = VQ = 0.125V (radius = 0.175V)
-147.3
6.5
VI = VQ = 0.125V (radius = 0.175V)
9.1
VI = VQ = 0.707V (radius = 1V)
15.2
VI = VQ = 0.125V (radius = 0.175V)
14.8
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA
6.6
II1 = IQ1 = 1mA, II2 = IQ2 = 0mA
-8.2
Power-Gain Range
Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =
0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA
14.8
Gain Flatness Over Frequency
II1 = IQ1 = 4mA, II2 = IQ2 =
0mA
IIP3
UNITS
±1.3
VI = VQ = 0.707V (radius = 1V)
IP1dB
MAX
dBm/Hz
dBm
dBm
CURRENT MODE
Power Gain (Note 4)
Phase Flatness Over Frequency
Electrical delay removed,
II1 = IQ1 = 4mA,
II2 = IQ2 = 0mA
PCS, fIN = 1960MHz
±100MHz
±0.14
DCS, fIN = 1842.5MHz
±100MHz
±0.33
PCS, fIN = 1960MHz
±100MHz
±0.8
DCS, fIN = 1842.5MHz
±100MHz
±1.6
dB
dB
dB
Degrees
_______________________________________________________________________________________
5
MAX2045/MAX2046/MAX2047
MAX2046 ELECTRICAL CHARACTERISTICS (continued)
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
MAX2047 ELECTRICAL CHARACTERISTICS
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 915MHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs
are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
CONDITIONS
Frequency Range
MIN
TYP
790
MAX
UNITS
1005
MHz
RF Input Return Loss
-21.8
dB
RF Output Return Loss
-11.7
dB
VOLTAGE MODE
VI = VQ = 0.707V (radius = 1V)
8.4
VI = VQ = 0.5V (radius = 0.707V)
5.1
VI = VQ = 0.25V (radius = 0.35V)
-0.9
VI = VQ = 0.125V (radius = 0.175V)
-6.3
Power-Gain Range
Difference in gain between VI = VQ = 0.707V and
VI = VQ = 0.125V
14.7
dB
Reverse Isolation
Over entire control range
-75
dB
Maximum Power Gain for
Continuous Coverage of Phase
Change
0 to 360° (radius = 1V)
7.1
dB
Maximum Power Gain with
Reduced Phase Coverage
0 to 360° (radius = 1V)
8.4
dB
Group Delay
VI = VQ = 0.707V (radius = 1V)
2.02
ns
Gain Drift Over Temperature
VI = VQ = 0.707V (radius = 1V)
-0.024
dB/°C
Power Gain
Gain Flatness Over Frequency
Phase Flatness Over Frequency
6
VI = VQ = 0.707V
(radius = 1V)
Electrical delay removed ,
VI = VQ = 0.707V (radius
= 1V)
GSM, fIN = 942.5MHz
±62.5MHz
±0.25
US cell, fIN = 881.5MHz
±62.5MHz
±0.13
JCDMA, fIN = 850MHz
±60MHz
±0.1
KDI/JDC/PDC, fIN = 820MHz
±30MHz
±0.1
GSM, fIN = 942.5MHz
±62.5MHz
±0.9
US cell, fIN = 881.5MHz
±62.5MHz
±1.1
JCDMA, fIN = 850MHz
±60MHz
±1.2
KDI/JDC/PDC, fIN = 820MHz
±30MHz
±0.3
dB
dB
Degrees
_______________________________________________________________________________________
High-Gain Vector Multipliers
(Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 915MHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode
DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs
are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3)
PARAMETER
Output Noise Power
IP1dB
IIP3
CONDITIONS
MIN
TYP
VI = VQ = 0.707V (radius = 1V)
-147.5
VI = VQ = 0.5V (radius = 0.707V)
-148.4
VI = VQ = 0.25V (radius = 0.35V)
-148.6
VI = VQ = 0.125V (radius = 0.175V)
-148.6
VI = VQ = 0.707V (radius = 1V)
6.1
VI = VQ = 0.125V (radius = 0.175V)
6.9
VI = VQ = 0.707V (radius = 1V)
15.6
VI = VQ = 0.125V (radius = 0.175V)
14.1
MAX
UNITS
dBm/Hz
dBm
dBm
CURRENT MODE
Power Gain (Note 4)
Power-Gain Range
Gain Flatness Over Frequency
Phase Flatness Over Frequency
II1 = IQ1 = 4mA, II2 = IQ2 = 0mA
8.1
II1 = IQ1 = 1mA, II2 = IQ2 = 0mA
-6.2
Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 =
0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA
14.3
II1 = IQ1 = 4mA,
II2 = IQ2 = 0mA
GSM, fIN = 942.5MHz
±62.5MHz
±0.25
US cell, fIN = 881.5MHz
±62.5MHz
±0.12
JCDMA, fIN = 850MHz
±60MHz
±0.1
KDI/JDC/PDC, fIN = 820MHz
±30MHz
±0.1
GSM, fIN = 942.5MHz
±62.5MHz
±0.8
US cell, fIN = 881.5MHz
Electrical delay removed, ±62.5MHz
II1 = IQ1 = 4mA,
JCDMA, fIN = 850MHz
II2 = IQ2 = 0mA
±60MHz
KDI/JDC/PDC, fIN = 820MHz
±30MHz
dB
dB
dB
±1.1
Degrees
±1.3
±0.4
Note 1: Guaranteed by design and characterization.
Note 2: All specifications reflect losses and delays of external components (matching components, baluns, and PC board traces).
Output measurements taken at the RF OUTPUT of the Typical Operating Circuit.
Note 3: Radius is defined as (VI2 + VQ2)0.5. VI denotes the difference between VI1 and VI2. VQ denotes the difference between VQ1
and VQ2. For differential operation: VI1 = VREF + 0.5 ✕ VI, VI2 = VREF - 0.5 ✕ VI, VQ1 = VREF + 0.5 ✕ VQ, VQ2 = VREF - 0.5 ✕
VQ. For single-ended operation: VI1 = VREF + VI, VI2 = VREF, VQ1 = VREF + VQ, VQ2 = VREF.
Note 4: When using the I/Q current inputs, maximum gain occurs when one differential input current is zero and the other corresponding differential input is 5mA. Minimum gain occurs when both differential inputs are equal.
_______________________________________________________________________________________
7
MAX2045/MAX2046/MAX2047
MAX2047 ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics (MAX2045)
(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =
VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
200
2.49
VCC = 5.0V
180
2.48
VCC = 5.25V
2.47
VCC = 4.75V
170
2.46
160
150
-40
-15
10
35
60
14
15
16
17
2.44
21
2.43
20
22
2000
85
2050
2100
I_1 = 5mA
2250
2000
2300
5
I_1 = 3mA
-10
-25
-25
V_1 = 2.55V
2250
2050
FREQUENCY (MHz)
2100
2150
2200
2250
TA = +85°C
V_1 = 2.55V TO 3.5V
40
50
ISOLATION (dB)
TA = +25°C
60
70
80
100
110
3.25
3.50
3.75
CONTROL VOLTAGE VI1, VQ1 (V)
4.00
3.25
3.50
3.75
4.00
-144.0
-144.5
V_1 = 3.5V
-145.0
-145.5
-146.0
V_1 = 2.55V
-146.5
V_1 = 2.625V
-147.0
-147.5
-148.0
V_1 = 2.75V
V_1 = 3V
-148.5
120
3.00
3.00
OUTPUT NOISE POWER vs. FREQUENCY
90
2.75
2.75
CONTROL VOLTAGE VI1, VQ1 (V)
REVERSE ISOLATION vs. FREQUENCY
30
MAX2045 toc07
TA = -40°C
2.50
2.50
2300
FREQUENCY (MHz)
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-10
-30
2000
2300
-5
-25
I_1 = 0
OUTPUT NOISE POWER (dBm/Hz)
2200
VCC = 4.75V TO 5.25V
-20
I_1 = 1mA
MAX2045 toc08
2150
2300
-15
-30
-30
2250
5
I_1 = 2mA
-15
-20
2200
0
-5
-20
2150
10
GAIN (dB)
-5
-10
2100
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
15
0
V_1 = 2.625V
2100
2050
FREQUENCY (MHz)
I_1 = 4mA
10
GAIN (dB)
GAIN (dB)
2200
15
-15
8
2150
V_1 = 2.75V
2050
19
20
MAX2045 toc04
10
2000
18
GAIN vs. FREQUENCY
V_1 = 3.0V
0
17
19
GAIN vs. FREQUENCY
5
16
FREQUENCY (MHz)
20
V_1 = 3.5V
15
18
TEMPERATURE (°C)
15
14
2.45
SUPPLY CURRENT
140
13
MAX2045 toc05
190
12
MAX2045 toc06
2.50
V_1 = 2.55V TO 3.5V
13
MAX2045 toc09
210
V_1 = 2.55V TO 3.5V
12
OUTPUT RETURN LOSS (dB)
11
MAX2045 toc02
2.51
INPUT RETURN LOSS (dB)
220
REFOUT LOADED WITH V_2
OUTPUT RETURN LOSS vs. FREQUENCY
INPUT RETURN LOSS vs. FREQUENCY
10
REFOUT (V)
SUPPLY CURRENT (mA)
MAX2045 toc01
2.52
230
MAX2045 toc03
REFOUT AND SUPPLY CURRENT
vs. TEMPERATURE AND SUPPLY VOLTAGE
GAIN (dB)
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
-149.0
2000
2050
2100
2150
2200
FREQUENCY (MHz)
2250
2300
2000
2050
2100
2150
2200
FREQUENCY (MHz)
_______________________________________________________________________________________
2250
2300
High-Gain Vector Multipliers
OUTPUT NOISE POWER
vs. CONTROL VOLTAGE (VI1 = VQ1)
-145.5
-146.0
-146.5
TA = +-40°C
-147.0
-147.5
-148.0
-148.5
3.00
3.25
3.50
-147.5
6.0
-148.0
VCC = 4.75V
2.50
2.75
3.25
3.50
3.75
5.0
4.00
2000
2050
2100
2150
2200
2250
15
12
11
10
9
VCC = 5.0V
8
TA = -40°C
5.5
15
14
VCC = 4.75V
2150
2200
2250
2300
2.50
2.75
3.00
3.25
3.50
3.75
V_1 = 3.2V
TA = +85°C
15.5
IIP3 (dBm)
VCC = 5.0V
VCC = 4.75V
14.5
TA = -40°C
14.0
13.5
TA = +25°C
13.5
13.0
13.0
2150
2200
FREQUENCY (MHz)
2250
2300
2000
2050
2100
2150
2200
FREQUENCY (MHz)
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1, VQ1 (V)
15.0
IIP3 (dBm)
15.0
2.75
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
16.0
MAX2045 toc16
VCC = 5.25V
2100
TA = -40°C
2.50
4.00
IIP3 vs. FREQUENCY
V_1 = 3.2V
2050
TA = +25°C
CONTROL VOLTAGE VI1, VQ1 (V)
IIP3 vs. FREQUENCY
14.5
TA = +85°C
9
5
FREQUENCY (MHz)
15.5
10
6
5
2100
11
7
6
2050
12
8
7
5.0
13
2250
2300
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
MAX2045 toc18
6.5
VCC = 5.25V
13
16
INPUT P1-dB (dBm)
INPUT P1-dB (dBm)
14
2300
MAX2045 toc15
16
6.0
IIP3 (dBm)
3.00
INPUT P1-dB COMPRESSION
vs. CONTROL VOLTAGE (VI1 = VQ1)
7.0
2000
VCC = 4.75V
5.5
INPUT P1-dB COMPRESSION
vs. CONTROL VOLTAGE (VI1 = VQ1)
TA = +25°C
14.0
6.5
INPUT P1-dB COMPRESSION
vs. FREQUENCY
TA = +85°C
2000
7.0
FREQUENCY (MHz)
8.0
16.0
MAX2045 toc11
-147.0
CONTROL VOLTAGE VI1, VQ1 (V)
8.5
INPUT P1-dB (dBm)
VCC = 5.0V
-146.5
VCC = 5.25V
VCC = 5.0V
7.5
CONTROL VOLTAGE VI1, VQ1 (V)
V_1 = 3.2V
7.5
-146.0
4.00
V_1 = 3.2V
8.5
8.0
-149.0
3.75
9.0
MAX2045 toc14
9.0
2.75
VCC = 5.25V
-145.5
MAX2045 toc13
2.50
-145.0
-148.5
TA = +25°C
-149.0
-144.5
INPUT P1-dB (dBm)
TA = +85°C
-145.0
-144.0
MAX2045 toc17
OUTPUT NOISE POWER (dBm/Hz)
-144.5
OUTPUT NOISE POWER (dBm/Hz)
MAX2045 toc10
-144.0
INPUT P1-dB COMPRESSION
vs. FREQUENCY
MAX2045 toc12
OUTPUT NOISE POWER
vs. CONTROL VOLTAGE (VI1 = VQ1)
VCC = 5.25V
VCC = 5.0V
VCC = 4.75V
2.50
2.75
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1 , VQ1, (V)
_______________________________________________________________________________________
9
MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2045) (continued)
(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =
VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (MAX2045) (continued)
(VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =
VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
3.50
3.75
RADIUS = 0.375
RADIUS = 0.25
RADIUS = 0.125
0
4.00
45
S21 PHASE vs. FREQUENCY
78.0
77.5
77.0
76.5
76.0
VCC = 5V
V_1 = 3.2V
ONE ELECTRICAL DELAY
REMOVED AT +25°C
95
PHASE (DEGREES)
VCC = 5.25V
TA = -40°C
85
TA = +25°C
70
90
85
74.0
MAX2045 toc21
2250
2300
V_1 = 2.65V
ONE ELECTRICAL DELAY
REMOVED AT +25°C
TA = -40°C
80
75
TA = +25°C
70
TA = +85°C
60
65
2150
2200
2250
2300
2000
2050
FREQUENCY (MHz)
2100
2150
2200
2250
2050
2000
2050
2100
2150
2200
2250
2100
2300
DIFFERENTIAL CONTROL
SIGNAL
2150
2200
FREQUENCY (MHz)
SWITCHING SPEED
MAX2045 toc25
V_1 = 2.55V TO 3.5V
GAIN
GROUP DELAY (ns)
1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
1.35
1.30
1.25
1.20
1.15
1.10
1.05
1.00
2000
2300
FREQUENCY (MHz)
GROUP DELAY vs. FREQUENCY
SEE SWITCHING SPEED SECTION IN THE
APPLICATIONS INFORMATION
-0.7V
+0.7V
MIN GAIN,
ORIGIN
MAX GAIN, Q3
MAX GAIN, Q1
SWITCHING SPEED (1ns/div)
FREQUENCY (MHz)
10
2200
65
TA = +85°C
74.5
2100
2150
S21 PHASE vs. FREQUENCY
90
80
2100
FREQUENCY (MHz)
VCC = 4.75V
2050
2050
75
75.5
75.0
2000
VCC = 4.75V
2000
135 180 225 270 315 360
90
VCC = 5.V
S21 PHASE vs. FREQUENCY
100
MAX2045 toc22
79.0
78.5
V_1 = 2.65V
ONE ELECTRICAL DELAY
REMOVED AT 5V
82.5
82.0
81.5
81.0
80.5
80.0
PHASE (DEGREES)
CONTROL VOLTAGE VI1 , VQ1, (V)
80.0
79.5
RADIUS = 0.625
RADIUS = 0.5
MAX2045 toc24
3.25
RADIUS = 0.75
VCC = 5.25V
84.0
83.5
83.0
MAX2045 toc26
3.00
V_1 = 3.2V
ONE ELECTRICAL DELAY
REMOVED AT 5V
84.5
PHASE (DEGREES)
2.75
85.5
85.0
MAX2045 toc23
2.50
RADIUS = 0.875
RADIUS = 1
86.0
PHASE (DEGREES)
TA = +25°C
TA = -40°C
10
8
6
4
2
0
-2
-4
-6
-8
-10
-12
-14
-16
MAX2045 toc20
MAX2045 toc19
TA = +85°C
GAIN (dB)
IIP3 (dBm)
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
S21 PHASE vs. FREQUENCY
GAIN vs. PHASE
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
PHASE (DEGREES)
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
______________________________________________________________________________________
2250
2300
High-Gain Vector Multipliers
INPUT RETURN LOSS vs. FREQUENCY
210
2.51
12
200
2.50
190
2.49
2.48
VCC = 4.75V
2.47
160
-40
-15
10
35
60
22
2.44
24
85
1700 1750 1800 1850 1900 1950 2000 2050 2100
FREQUENCY (MHz)
FREQUENCY (MHz)
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
20
-5
-10
10
5
-5
I_1 = 3mA
-10
I_1 = 2mA
-15
V_1 = 2.55V
-25
I_1 = 0
-30
-30
1700 1750 1800 1850 1900 1950 2000 2050 2100
1700 1750 1800 1850 1900 1950 2000 2050 2100
FREQUENCY (MHz)
FREQUENCY (MHz)
50
ISOLATION (dB)
TA = +25°C
TA = +85°C
V_1 = 2.55V TO 3.5V
40
60
70
80
100
110
3.00
3.25
3.50
3.75
CONTROL VOLTAGE VI1, VQ1 (V)
4.00
3.25
3.50
3.75
4.00
-144.0
-144.5
-145.0
V_1 = 3.5V
-145.5
-146.0
V_1 = 2.55V
-146.5
V_1 = 2.625V
-147.0
-147.5
-148.0
V_1 = 3V
V_1 = 2.75V
-148.5
120
2.75
3.00
OUTPUT NOISE POWER vs. FREQUENCY
90
2.50
2.75
CONTROL VOLTAGE VI1, VQ1 (V)
OUTPUT NOISE POWER (dBm/Hz)
30
MAX2046 toc33
TA = -40°C
2.50
REVERSE ISOLATION vs. FREQUENCY
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-10
-20
I_1 = 1mA
-25
-30
0
-5
-15
-20
-20
VCC = 4.75V TO 5.25V
15
0
V_1 = 2.625V
-15
GAIN (dB)
I_1 = 4mA
5
GAIN (dB)
GAIN (dB)
I_1 = 5mA
10
V_1 = 2.75V
-25
19
22
15
MAX2046 toc30
V_1 = 3.0V
0
18
GAIN vs. FREQUENCY
10
5
17
1700 1750 1800 1850 1900 1950 2000 2050 2100
GAIN vs. FREQUENCY
20
V_1 = 3.5V
16
21
TEMPERATURE (°C)
15
15
20
2.45
SUPPLY CURRENT
140
20
MAX2046 toc34
150
2.46
18
GAIN (dB)
170
16
14
MAX2046 toc32
VCC = 5.0V
VCC = 5.25V
14
V_1 = 2.55V TO 3.5V
13
MAX2046 toc31
180
V_1 = 2.55V TO 3.5V
MAX2046 toc35
REFOUT LOADED WITH V_2
OUTPUT RETURN LOSS vs. FREQUENCY
12
OUTPUT RETURN LOSS (dB)
10
REFOUT (V)
2.52
MAX2046 toc28
MAX2046 toc27
INPUT RETURN LOSS (dB)
SUPPLY CURRENT (mA)
220
MAX2046 toc29
REFOUT AND SUPPLY CURRENT
vs. TEMPERATURE AND SUPPLY VOLTAGE
-149.0
1700 1750 1800 1850 1900 1950 2000 2050 2100
1700 1750 1800 1850 1900 1950 2000 2050 2100
FREQUENCY (MHz)
FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2046)
(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =
VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (MAX2046) (continued)
(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =
VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
-146.0
-146.5
TA = -40°C
-147.0
-147.5
-148.0
-148.5
2.75
3.00
3.25
3.50
3.75
-146.5
-147.0
-147.5
6.5
VCC = 4.75V
VCC = 5.0V
5.5
5.0
2.50
2.75
3.00
3.25
3.50
3.75
4.00
1700 1750 1800 1850 1900 1950 2000 2050 2100
CONTROL VOLTAGE VI1, VQ1 (V)
FREQUENCY (MHz)
INPUT P1-dB COMPRESSION
vs. FREQUENCY
INPUT P1-dB COMPRESSION
vs. CONTROL VOLTAGE (VI1 = VQ1)
INPUT P1-dB COMPRESSION
vs. CONTROL VOLTAGE (VI1 = VQ1)
TA = +85°C
14
7.5
7.0
6.5
6.0
TA = -40°C
5.5
13
VCC = 5.25V
12
11
10
VCC = 5.0V
9
15
14
TA = +85°C
9
TA = +25°C
6
VCC = 4.75V
TA = -40°C
5
2.50
2.75
3.00
3.25
3.50
3.75
2.50
4.00
MAX2046 toc43
MAX2046 toc42
V_1 = 3.2V
16.5
16.0
16.0
VCC = 5.25V
TA = +85°C
14.5
15.5
IIP3 (dBm)
IIP3 (dBm)
15.0
15.0
14.5
VCC = 5.0V
13.5
14.0
13.5
13.0
3.00
3.25
3.50
3.75
4.00
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
IIP3 vs. FREQUENCY
17.0
2.75
CONTROL VOLTAGE VI1, VQ1 (V)
CONTROL VOLTAGE VI1, VQ1 (V)
IIP3 vs. FREQUENCY
VCC = 4.75V
10
7
FREQUENCY (MHz)
15.5
11
7
1700 1750 1800 1850 1900 1950 2000 2050 2100
V_1 = 3.2V
12
8
5
16.5
13
8
6
5.0
MAX2046 toc41
15
INPUT P1-dB (dBm)
TA = +25°C
16
TA = -40°C
TA = +25°C
13.0
1700 1750 1800 1850 1900 1950 2000 2050 2100
1700 1750 1800 1850 1900 1950 2000 2050 2100
FREQUENCY (MHz)
FREQUENCY (MHz)
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
MAX2046 toc44
16
MAX2046 toc40
V_1 = 3.2V
INPUT P1-dB (dBm)
8.0
VCC = 5.25V
7.0
6.0
-148.0
4.00
VCC = 5.0V
7.5
CONTROL VOLTAGE VI1, VQ1 (V)
8.5
12
VCC = 5.25V
-146.0
MAX2046 toc39
9.0
14.0
8.0
-145.5
-149.0
2.50
INPUT P1-dB (dBm)
-145.0
V_1 = 3.2V
8.5
-148.5
TA = +25°C
-149.0
17.0
9.0
INPUT P1-dB (dBm)
-145.5
VCC = 4.75V
-144.5
INPUT P1-dB COMPRESSION
vs. FREQUENCY
MAX2046 toc37
-145.0
-144.0
OUTPUT NOISE POWER (dBm/Hz)
TA = +85°C
-144.5
OUTPUT NOISE POWER (dBm/Hz)
MAX2046 toc36
-144.0
OUTPUT NOISE POWER
vs. CONTROL VOLTAGE (VI1 = VQ1)
MAX2046 toc38
OUTPUT NOISE POWER
vs. CONTROL VOLTAGE (VI1 = VQ1)
IIP3 (dBm)
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
VCC = 5.25V
VCC = 4.75V
2.50
2.75
3.00
3.25
VCC = 5.0V
3.50
3.75
CONTROL VOLTAGE VI1 , VQ1, (V)
______________________________________________________________________________________
4.00
High-Gain Vector Multipliers
3.50
3.75
RADIUS = 0.625
RADIUS = 0.5
RADIUS = 0.375
RADIUS = 0.25
RADIUS = 0.125
0
4.00
45
MAX2046 toc48
PHASE (DEGREES)
VCC = 5.25V
VCC = 5.V
VCC = 4.75V
-130
-135
-140
-145
-150
-155
-160
-165
-170
-175
-180
-185
-190
MAX2046 toc47
VCC = 5.V
VCC = 4.75V
1700 1750 1800 1850 1900 1950 2000 2050 2100
FREQUENCY (MHz)
S21 PHASE vs. FREQUENCY
V_1 = 3.2V
ONE ELECTRICAL DELAY
REMOVED AT +25°C
TA = -40°C
TA = +25°C
TA = +85°C
-130
-135
-140
-145
-150
-155
-160
-165
-170
-175
-180
-185
-190
V_1 = 2.65V
ONE ELECTRICAL DELAY
REMOVED AT +25°C
TA = -40°C
TA = +25°C
TA = +85°C
1700 1750 1800 1850 1900 1950 2000 2050 2100
1700 1750 1800 1850 1900 1950 2000 2050 2100
1700 1750 1800 1850 1900 1950 2000 2050 2100
FREQUENCY (MHz)
FREQUENCY (MHz)
FREQUENCY (MHz)
1.45
1.40
1.35
DIFFERENTIAL CONTROL
SIGNAL
1.70
1.65
1.60
1.55
1.50
SEE SWITCHING SPEED SECTION IN THE
APPLICATIONS INFORMATION
GAIN
V_1 = 2.55V TO 3.5V
MAX2046 toc51
1.85
1.80
1.75
MAX GAIN, Q3
-0.7V
MAX2045 toc52
SWITCHING SPEED
GROUP DELAY vs. FREQUENCY
1.90
GROUP DELAY (ns)
PHASE (DEGREES)
VCC = 5.25V
S21 PHASE vs. FREQUENCY
S21 PHASE vs. FREQUENCY
V_1 = 2.65V
ONE ELECTRICAL DELAY
REMOVED AT 5V
135 180 225 270 315 360
V_1 = 3.2V
ONE ELECTRICAL DELAY
REMOVED AT 5V
PHASE (DEGREES)
CONTROL VOLTAGE VI1 , VQ1, (V)
-155
-156
-157
-158
-159
-160
-161
-162
-163
-164
-165
-166
-167
-168
-169
-170
90
-140
-141
-142
-143
-144
-145
-146
-147
-148
-149
-150
-151
-152
-153
-154
-155
MAX2046 toc50
3.25
RADIUS = 0.75
PHASE (DEGREES)
3.00
RADIUS = 0.875
RADIUS = 1
MAX2046 toc49
2.75
S21 PHASE vs. FREQUENCY
PHASE (DEGREES)
MAX2046 toc45
TA = +25°C
TA = -40°C
2.50
GAIN (dB)
IIP3 (dBm)
TA = +85°C
10
8
6
4
2
0
-2
-4
-6
-8
-10
-12
-14
-16
MAX2046 toc46
GAIN vs. PHASE
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
+0.7V
MIN GAIN,
ORIGIN
MAX GAIN, Q1
1.30
1700 1750 1800 1850 1900 1950 2000 2050 2100
SWITCHING SPEED (1ns/div)
FREQUENCY (MHz)
______________________________________________________________________________________
13
MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2046) (continued)
(VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 =
VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (MAX2047)
(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2
= REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
180
2.49
VCC = 5.25V
VCC = 5.0V
2.48
VCC = 4.75V
160
2.47
150
2.46
2.45
22
24
26
35
60
V_1 = 3.0V
15
MAX2047 toc56
V_1 = 3.5V
700 750 800 850 900 950 1000 1050 1100
FREQUENCY (MHz)
GAIN (dB)
5
GAIN (dB)
I_1 = 5mA
I_1 = 4mA
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
20
15
0
5
0
I_1 = 3mA
I_1 = 2mA
-5
-5
-15
V_1 = 2.625V
V_1 = 2.55V
-20
-30
700 750 800 850 900 950 1000 1050 1100
FREQUENCY (MHz)
FREQUENCY (MHz)
TA = +25°C
-5
-10
TA = +85°C
-15
60
70
80
100
-25
-35
2.75
3.00
3.25
3.50
3.75
CONTROL VOLTAGE VI1, VQ1 (V)
4.00
3.75
4.00
-145
V_1 = 3.5V
-146
-147
V_1 = 2.55V
V_1 = 2.625V
-148
-149
V_1 = 3V
V_1 = 2.75V
-151
120
2.50
3.50
-150
110
-30
3.25
OUTPUT NOISE POWER vs. FREQUENCY
90
-20
3.00
-144
OUTPUT NOISE POWER (dBm/Hz)
ISOLATION (dB)
5
2.75
CONTROL VOLTAGE VI1, VQ1 (V)
MAX2047 toc60
V_1 = 2.55V TO 3.5V
40
50
0
2.50
REVERSE ISOLATION vs. FREQUENCY
30
MAX2047 toc59
TA = -40°C
10
14
-25
I_1 = 0
700 750 800 850 900 950 1000 1050 1100
GAIN vs. CONTROL VOLTAGE (VI1 = VQ1)
-10
-20
I_1 =1mA
-20
20
0
-5
-15
-10
-10
VCC = 4.75V TO 5.25V
10
5
V_1 = 2.75V
15
14
FREQUENCY (MHz)
10
10
-15
13
GAIN vs. FREQUENCY
20
15
12
700 750 800 850 900 950 1000 1050 1100
TEMPERATURE (°C)
GAIN vs. FREQUENCY
11
16
32
85
10
15
GAIN (dB)
10
20
30
140
-15
18
28
SUPPLY CURRENT
-40
16
V_1 = 2.55V TO 3.5V
9
MAX2047 toc57
170
14
MAX2047 toc55
2.50
V_1 = 2.55V TO 3.5V
MAX2047 toc58
190
12
8
OUTPUT RETURN LOSS (dB)
2.51
REFOUT (V)
200
10
INPUT RETURN LOSS (dB)
SUPPLY CURRENT (mA)
REFOUT LOADED WITH V_2
OUTPUT RETURN LOSS vs. FREQUENCY
INPUT RETURN LOSS vs. FREQUENCY
2.52
MAX2047 toc54
MAX2047 toc53
210
MAX2047 toc61
REFOUT AND SUPPLY CURRENT
vs. TEMPERATURE AND SUPPLY VOLTAGE
GAIN (dB)
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
700 750 800 850 900 950 1000 1050 1100
700 750 800 850 900 950 1000 1050 1100
FREQUENCY (MHz)
FREQUENCY (MHz)
______________________________________________________________________________________
High-Gain Vector Multipliers
OUTPUT NOISE POWER
vs. CONTROL VOLTAGE (VI1 = VQ1)
-146.5
-147.0
-147.5
-148.0
TA = -40°C
-148.5
-149.0
TA = +25°C
2.75
3.00
3.25
3.50
3.75
-147.0
-148.0
-148.5
VCC = 4.75V
5.5
5.0
2.50
2.75
3.00
3.25
3.50
3.75
4.00
700 750 800 850 900 950 1000 1050 1100
INPUT P1-dB COMPRESSION
vs. FREQUENCY
INPUT P1-dB COMPRESSION
vs. CONTROL VOLTAGE (VI1 = VQ1)
INPUT P1-dB COMPRESSION
vs. CONTROL VOLTAGE (VI1 = VQ1)
7.0
6.5
TA = -40°C
5.5
5.0
IIP3 vs. FREQUENCY
18.0
MAX2047 toc67
MAX2047 toc66
VCC = 5.25V
8.0
TA = +85°C
7.5
7.0
TA = +25°C
6.5
6.0
5.5
TA = -40°C
5.0
VCC = 4.75V
4.5
4.0
2.75
3.00
3.25
3.50
3.75
2.50
4.00
V_1 = 3.2V
18.0
17.5
IIP3 (dBm)
17.0
16.5
16.0
TA = -40°C
17.0
16.5
16.0
15.5
TA = +25°C
15.5
VCC = 4.75V
VCC = 5.0V
15.0
TA = +85°C
14.0
3.00
3.25
3.50
3.75
4.00
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
IIP3 (dBm)
VCC = 5.25V
2.75
CONTROL VOLTAGE VI1, VQ1 (V)
IIP3 vs. FREQUENCY
18.5
MAX2047 toc68
V_1 = 3.2V
8.5
CONTROL VOLTAGE VI1, VQ1 (V)
FREQUENCY (MHz)
18.5
VCC = 5.0V
2.50
700 750 800 850 900 950 1000 1050 1100
9.0
INPUT P1-dB (dBm)
TA = +85°C
INPUT P1-dB (dBm)
TA = +25°C
10.0
9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
MAX2047 toc69
V_1 = 3.2V
6.0
IIP3 (dBm)
VCC = 4.75V
FREQUENCY (MHz)
7.5
14.5
6.5
6.0
-149.0
4.00
7.0
CONTROL VOLTAGE VI1, VQ1 (V)
8.0
15.0
VCC = 5.0V
-147.5
VCC = 5.25V
VCC = 5.0V
7.5
CONTROL VOLTAGE VI1, VQ1 (V)
8.5
17.5
8.0
-146.5
MAX2047 toc65
2.50
19.0
V_1 = 3.2V
8.5
-150.0
-150.0
INPUT P1-dB (dBm)
-146.0
-149.5
-149.5
9.0
VCC = 5.25V
14.5
700 750 800 850 900 950 1000 1050 1100
700 750 800 850 900 950 1000 1050 1100
FREQUENCY (MHz)
FREQUENCY (MHz)
19
18
17
16
15
14
13
12
11
10
9
8
7
VCC = 5.25V
MAX2047 toc70
-146.0
9.0
INPUT P1-dB (dBm)
TA = +85°C
-145.5
MAX2047 toc63
MAX2047 toc62
OUTPUT NOISE POWER (dBm/Hz)
-145.5
-145.0
OUTPUT NOISE POWER (dBm/Hz)
-145.0
INPUT P1-dB COMPRESSION
vs. FREQUENCY
MAX2047 toc64
OUTPUT NOISE POWER
vs. CONTROL VOLTAGE (VI1 = VQ1)
VCC = 4.75V
VCC = 5.0V
2.50
2.75
3.00
3.25
3.50
3.75
4.00
CONTROL VOLTAGE VI1 , VQ1 (V)
______________________________________________________________________________________
15
MAX2045/MAX2046/MAX2047
Typical Operating Characteristics (MAX2047) (continued)
(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2
= REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (MAX2047) (continued)
(VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2
= REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.)
GAIN vs. PHASE
2.75
3.00
3.25
3.50
3.75
RADIUS = 0.75
RADIUS = 0.625
RADIUS = 0.5
RADIUS = 0.375
0
125
VCC = 5.V
115
160
45
90
135 180 225 270 315 360
700 750 800 850 900 950 1000 1050 1100
FREQUENCY (MHz)
S21 PHASE vs. FREQUENCY
V_1 = 3.2V
ONE ELECTRICAL DELAY
REMOVED AT +25°C
150
PHASE (DEGREES)
VCC = 5.25V
120
VCC = 4.75V
S21 PHASE vs. FREQUENCY
135
130
VCC = 5.V
PHASE (DEGREES)
MAX2047 toc74
160
140
TA = -40°C
130
TA = +25°C
120
V_1 = 2.65V
ONE ELECTRICAL DELAY
REMOVED AT +25°C
150
140
TA = -40°C
130
120
110
TA = +25°C
110
110
105
TA = +85°C
VCC = 4.75V
100
100
TA = +85°C
90
100
700 750 800 850 900 950 1000 1050 1100
700 750 800 850 900 950 1000 1050 1100
700 750 800 850 900 950 1000 1050 1100
FREQUENCY (MHz)
FREQUENCY (MHz)
FREQUENCY (MHz)
SWITCHING SPEED
GROUP DELAY (ns)
2.5
2.4
2.3
2.2
DIFFERENTIAL CONTROL
SIGNAL
V_1 = 2.55V TO 3.5V
SEE SWITCHING SPEED SECTION IN THE
APPLICATIONS INFORMATION
GAIN
2.6
MAX2047 toc77
GROUP DELAY vs. FREQUENCY
2.7
MAX GAIN, Q3
-0.7V
+0.7V
MIN GAIN,
ORIGIN
2.1
2.0
1.9
1.8
MAX GAIN, Q1
1.7
1.6
700 750 800 850 900 950 1000 1050 1100
SWITCHING SPEED (1ns/div)
FREQUENCY (MHz)
16
______________________________________________________________________________________
MAX2045 toc78
140
125
110
4.00
V_1 = 2.65V
ONE ELECTRICAL DELAY
REMOVED AT 5V
VCC = 5.25V
130
115
RADIUS = 0.125
S21 PHASE vs. FREQUENCY
145
135
120
RADIUS = 0.25
CONTROL VOLTAGE VI1 , VQ1 (V)
150
MAX2047 toc73
140
PHASE (DEGREES)
2.50
V_1 = 3.2V
ONE ELECTRICAL DELAY
REMOVED AT 5V
145
MAX2047 toc76
TA = +85°C
RADIUS = 0.875
RADIUS = 1
PHASE (DEGREES)
TA = +25°C
S21 PHASE vs. FREQUENCY
150
MAX2047 toc75
TA = -40°C
11
9
7
5
3
1
-1
-3
-5
-7
-9
-11
-13
-15
MAX2047 toc72
MAX2047 toc71
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
GAIN (dB)
IIP3 (dBm)
IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1)
PHASE (DEGREES)
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
High-Gain Vector Multipliers
PIN
NAME
FUNCTION
1
VI1
Noninverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ).
2
VI2
Inverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ).
3
VQ1
Noninverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ).
4
VQ2
5
II1
Noninverting in-phase current-control input. This pin can only sink current. It cannot source current.
6
II2
Inverting in-phase current-control input. This pin can only sink current. It cannot source current.
7
IQ1
Noninverting quadrature current-control input. This pin can only sink current. It cannot source current.
8
IQ2
Inverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ).
Inverting quadrature current-control input. This pin can only sink current. It cannot source current.
2.5V Reference Output. Integrated reference voltage provides a 2.5V output for single-ended voltagecontrol applications. For single-ended operation, connect REFOUT to the inverting voltage inputs (VI2,
VQ2).
9
REFOUT
10, 11, 14,
15, 16, 19,
20, 21,
23–27, 30,
31, 32
GND
12
RFOUT1
Noninverting RF Output
13
RFOUT2
Inverting RF Output
17, 18
VCC
Ground
Supply Voltage
22
RBIAS
Bias Setting Resistor. Connect a 280Ω (±1%) resistor from this pin to ground to set the bias current for
the IC.
28
RFIN1
Noninverting RF Input
29
RFIN2
Inverting RF Input
Exposed
Pad
—
Exposed Pad. Exposed pad on the bottom of the IC should be soldered to the ground plane for proper
heat dissipation and RF grounding.
Detailed Description
The MAX2045/MAX2046/MAX2047 provide vector
adjustment through the differential I/Q amplifiers. Each
part is optimized for separate frequency ranges:
MAX2045 for fIN = 2040MHz to 2240MHz, MAX2046 for
fIN = 1740MHz to 2060MHz, and MAX2047 for fIN =
790MHz to 1005MHz. All three devices can be interfaced using current- and/or voltage-mode DACs.
The MAX2045/MAX2046/MAX2047 accept differential
RF inputs, which are internally phase shifted 90
degrees to produce differential I/Q signals. The phase
and magnitude of each signal can then be adjusted
using the voltage- and/or current-control inputs.
Figure 1 shows a typical operating circuit when using
both current- and voltage-mode DACs. When using
only one of the two, leave the unused I/Q inputs open.
RF Ports
The RF input and output ports require external matching
for optimal performance. See Figures 1 and 2 for appropriate component values. The output ports require
external biasing. In Figures 1 and 2, the outputs are
biased through the balun (T2). The RF input ports can
be driven differentially or single ended (Figures 1, 2)
using a balun. The matching values for the MAX2045/
MAX2046 were set to be the same during characterization. An optimized set of values can be found in the
MAX2045/MAX2046/MAX2047 Evaluation Kit data
sheet.
I/Q Inputs
The control amplifiers convert a voltage, current, or
voltage and current input to a predistorted voltage that
controls the multipliers. The I/Q voltage-mode inputs
can be operated differentially (Figure 1) or single
ended (Figure 2). A 2.5V reference is provided on-chip
for single-ended operation.
______________________________________________________________________________________
17
MAX2045/MAX2046/MAX2047
Pin Description
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
C1
RF INPUT
L1*
C4
VOLTAGEMODE DAC
VI2
C5
C6
VQ1
VQ2
C7
C8
CURRENTMODE DAC
VI1
II1
II2
C9
GND
25
GND
26
GND
RFIN1
28
RFIN2
C3
29
GND
30
GND
31
32
GND
C2
27
T1
1
24
CONTROL
AMPLIFIER I
2
90°
PHASE
SHIFTER
23
3
22
MAX2045
MAX2046
MAX2047
4
21
VECTOR
MULTIPLIER
CONTROL
AMPLIFIER Q
5
20
6
19
GND
GND
RBIAS
GND
R1
GND
GND
VCC
18
8
VCC
C16
C17
16
VCC
GND
15
GND
14
GND
13
RFOUT2
12
RFOUT1
GND
REFOUT
11
17
10
IQ2
OUTPUT
STAGE
2.5V
REFERENCE
7
9
C11
IQ1
GND
C10
L2
DESIGNATION
C14
C1
C2, C3
C4–C16
C17
L1*
L2
R1
T1
T2
RF OUTPUT
C15
C13
T2
MAX2045
3.3pF
220pF
22pF
0.01µF
1.6pF CAP
10nH
280Ω
1:1 balun
4:1 balun
DESCRIPTION
MAX2046
MAX2047
3.3pF
47pF
220pF
47pF
47pF
22pF
0.01µF
0.01µF
15nH
1.6pF CAP
39nH
10nH
280Ω
280Ω
1:1 balun
1:1 balun
4:1 balun
4:1 balun
*POPULATED WITH AN INDUCTOR OR CAPACITOR,
DEPENDING ON THE VERSION.
Figure 1. Typical Operating Circuit Using Differential Current- and Voltage-Mode DACs
18
______________________________________________________________________________________
High-Gain Vector Multipliers
MAX2045/MAX2046/MAX2047
C1
RF INPUT
L1*
VOLTAGEMODE DAC
VI1
C4
VI2
VQ1
C6
VQ2
II1
II2
GND
25
GND
26
GND
RFIN1
28
RFIN2
C3
29
GND
30
GND
31
32
GND
C2
27
T1
1
24
CONTROL
AMPLIFIER I
2
90°
PHASE
SHIFTER
23
3
22
MAX2045
MAX2046
MAX2047
4
21
VECTOR
MULTIPLIER
CONTROL
AMPLIFIER Q
5
20
6
19
GND
GND
RBIAS
GND
R1
GND
GND
VCC
18
8
C12
VCC
C16
C17
16
VCC
GND
15
GND
14
GND
13
RFOUT2
12
RFOUT1
11
GND
REFOUT
10
17
9
IQ2
OUTPUT
STAGE
2.5V
REFERENCE
7
GND
IQ1
L2
DESIGNATION
C14
RF OUTPUT
C15
C13
T2
C1
C2, C3
C4, C6, C12–C16
C17
L1*
L2
R1
T1
T2
MAX2045
3.3pF
220pF
22pF
0.01µF
1.6pF CAP
10nH
280Ω
1:1 balun
4:1 balun
DESCRIPTION
MAX2046
MAX2047
3.3pF
47pF
220pF
47pF
47pF
22pF
0.01µF
0.01µF
15nH
1.6pF CAP
39nH
10nH
280Ω
280Ω
1:1 balun
1:1 balun
4:1 balun
4:1 balun
*POPULATED WITH AN INDUCTOR OR CAPACITOR,
DEPENDING ON THE VERSION.
Figure 2. Typical Operating Circuit Using Single-Ended Voltage Mode DACs
______________________________________________________________________________________
19
MAX2045/MAX2046/MAX2047
High-Gain Vector Multipliers
On-Chip Reference Voltage
An on-chip, 2.5V reference voltage is provided for
single-ended control mode. Connect REFOUT to VI2
and VQ2 to provide a stable reference voltage. The
equivalent output resistance of the REFOUT pin is
approximately 80Ω. REFOUT is capable of sourcing
1mA of current, with <10mV drop-in voltage.
Applications Information
RF Single-Ended Operation
The RF input impedance is 50Ω differential into the IC.
An external low-loss 1:1 balun can be used for singleended operation. The RF output impedance is 300Ω
differential into the IC. An external low-loss 4:1 balun
transforms this impedance down to 50Ω single-ended
output (Figures 1 and 2).
Bias Resistor
The bias resistor value (280Ω) was optimized during
characterization at the factory. This value should not be
adjusted. If the 280Ω (±1%) resistor is not readily available, substitute a standard 280Ω (±5%) resistor, which
may result in more current part-to-part variation.
As the differential control signal approaches zero, the
gain approaches its minimum value. This appears as
the null in the Typical Operating Characteristics. The
measurement results include rise-time errors from the
crystal detector (specified by manufacturing to be
approximately 8ns to 12ns), the comparator (approximately 500ps), and the 500MHz BW oscilloscope (used
to measure the control and detector signals).
Layout Issues
A properly designed PC board is an essential part of
any RF/microwave circuit. Keep RF signal lines as short
as possible to reduce losses, radiation, and inductance.
For best performance, route the ground pin traces
directly to the exposed pad underneath the package.
This pad should be connected to the ground plane of
the board by using multiple vias under the device to
provide the best RF/thermal conduction path. Solder the
exposed pad on the bottom of the device package to a
PC board exposed pad.
The MAX2045/MAX2046/MAX2047 Evaluation Kit can
be used as a reference for board layout. Gerber files
are available upon request at www.maxim-ic.com.
Switching Speed
Power-Supply Bypassing
The control inputs have a typical 3dB BW of 260MHz.
This BW provides the device with the ability to adjust
gain/phase at a very rapid rate. The Switching Speed
graphs in the Typical Operating Characteristics try to
capture the control ability of the vector multipliers.
These measurements were done by first removing
capacitors C4–C7 to reduce driving capacitance.
The test for gathering the curves shown, uses a
MAX9602 differential output comparator to drive VI1,
VI2, VQ1, and VQ2. One output of the comparator is
connected to VI1/VQ1, while the other is connected to
VI2/VQ2. The input to the vector multiplier is driven by
an RF source and the output is connected to a crystal
detector. The switching signal produces a waveform
that results in a ±0.7V differential input signal to the
vector multiplier.
This signal switches the signal from quadrant 3 (-0.7V
case), through the origin (maximum attenuation), and
into quadrant 1 (+0.7V case). The before-and-after
amplitude (S21) stays about the same between the two
quadrants but the phase changes by 180°.
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass the VCC pins with
10nF and 22pF (47pF for the MAX2047) capacitors.
Connect the high-frequency capacitor as close to the
device as possible.
Exposed Paddle RF Thermal
Considerations
The EP of the 32-lead thin QFN package provides a low
thermal-resistance path to the die. It is important that the
PC board on which the IC is mounted be designed to
conduct heat from this contact. In addition, the EP
provides a low-inductance RF ground path for the device.
It is recommended that the EP be soldered to a ground
plane on the PC board, either directly or through an
array of plated via holes.
Soldering the pad to ground is also critical for proper heat
dissipation. Use a solid ground plane wherever possible.
Chip Information
TRANSISTOR COUNT: 599
20
______________________________________________________________________________________
High-Gain Vector Multipliers
b
CL
0.10 M C A B
D2/2
D/2
PIN # 1
I.D.
QFN THIN.EPS
D2
0.15 C A
D
k
0.15 C B
PIN # 1 I.D.
0.35x45
E/2
E2/2
CL
(NE-1) X e
E
E2
k
L
DETAIL A
e
(ND-1) X e
CL
CL
L
L
e
e
0.10 C
A
C
0.08 C
A1 A3
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm
APPROVAL
COMMON DIMENSIONS
DOCUMENT CONTROL NO.
REV.
21-0140
C
1
2
EXPOSED PAD VARIATIONS
NOTES:
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. N IS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
FROM TERMINAL TIP.
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220.
10. WARPAGE SHALL NOT EXCEED 0.10 mm.
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm
APPROVAL
DOCUMENT CONTROL NO.
REV.
21-0140
C
2
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.
MAX2045/MAX2046/MAX2047
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)