19-2728; Rev 0; 1/03 High-Gain Vector Multipliers Features ♦ Multiple RF Frequency Bands of Operation 2040MHz to 2240MHz (MAX2045) 1740MHz to 2060MHz (MAX2046) 790MHz to 1005MHz (MAX2047) The MAX2045/MAX2046/MAX2047 provide vector adjustment through the differential I/Q amplifiers. The I/Q amplifiers can interface with voltage and/or current digital-to-analog converters (DACs). The voltage inputs are designed to interface to a voltage-mode DAC, while the current inputs are designed to interface to a currentmode DAC. An internal 2.5V reference voltage is provided for applications using single-ended voltage DACs. ♦ ±1° Phase Flatness The MAX2045/MAX2046/MAX2047 operate from a 4.75V to 5.25V single supply. All devices are offered in a compact 5mm ✕ 5mm, 32-lead thin QFN exposed-paddle packages. The MAX2045/MAX2046/MAX2047 evaluation kits are available, contact factory for availability. ♦ ±0.2dB Gain Flatness ♦ 3dB Control Bandwidth: 260MHz ♦ 15dBm Input IP3 ♦ 15dB Gain Control Range ♦ Continuous 360° Phase Control Range ♦ 6.5dB Maximum Gain for Continuous Phase ♦ On-Chip Reference for Single-Ended Voltage-Mode Operation ♦ 800mW Power Consumption ♦ Space-Saving 5mm x 5mm Thin QFN Package ♦ Single 5V supply RF Cancellation Loops VI1 1 VI2 2 VQ1 3 GND GND RFIN2 RFIN1 GND GND GND 30 29 28 27 26 25 RF Magnitude and Phase Adjustment 31 UMTS/PCS/DCS/Cellular/GSM Base Station Feed-Forward and Predistortion Power Amplifiers GND Pin Configuration/Block Diagram 32 Applications Beam-Forming Applications 8 16 IQ2 GND 7 15 IQ1 OUTPUT STAGE 2.5V REFERENCE GND 6 14 II2 GND 32 Thin QFN-EP* 13 32 Thin QFN-EP* CONTROL AMPLIFIER Q RFOUT2 -40°C to +85°C MAX2047ETJ-T -40°C to +85°C *EP = Exposed paddle. 5 12 MAX2046ETJ-T II1 RFOUT1 32 Thin QFN-EP* VECTOR MULTIPLIER 11 -40°C to +85°C 4 GND MAX2045ETJ-T VQ2 10 PIN-PACKAGE GND TEMP RANGE MAX2045 MAX2046 MAX2047 9 PART 90° PHASE SHIFTER REFOUT Ordering Information CONTROL AMPLIFIER I 24 GND 23 GND 22 RBIAS 21 GND 20 GND 19 GND 18 VCC 17 VCC QFN ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX2045/MAX2046/MAX2047 General Description The MAX2045/MAX2046/MAX2047 low-cost, fully integrated vector multipliers alter the magnitude and phase of an RF signal. Each device is optimized for the UMTS (MAX2045), DCS/PCS (MAX2046), or cellular/GSM (MAX2047) frequency bands. These devices feature differential RF inputs and outputs. MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers ABSOLUTE MAXIMUM RATINGS VCC to GND .............................................................-0.3V to +6V VI1, V12, VQ1, VQ2, RFIN1, RFIN2, RFOUT1, RFOUT2 ....................................-0.3V to VCC + 0.3V RFOUT1, RFOUT2 Sink Current..........................................35mA REFOUT Source Current.......................................................4mA II1, II2, IQ1, IQ2 ........................................................-0.3V to +1V II1, II2, IQ1, IQ2 Sink Current ...........................................+10mA Continuous RF Input Power (CW)...................................+15dBm Continuous Power Dissipation (TA = +70°C) 32-Pin Thin QFN (derate 21.3mW/°C above +70°C) .......1.7W Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-40°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, no RF inputs applied, RF input and output ports are terminated with 50Ω. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) PARAMETER Supply Voltage Range Operating Supply Current SYMBOL VCC ICC Differential Input Resistance, VI1 to VI2, VQ1 to VQ2 Common-Mode Input Voltage, VI1, VI2, VQ1, VQ2 MIN VREFOUT TYP MAX UNITS V 4.75 5 5.25 MAX2045 120 160 200 MAX2046 120 160 200 MAX2047 120 160 200 Input resistance between VI1 and VI2 or VQ1 and VQ2 6.5 9 11.5 2.5 VCM Input Resistance, II1, II2, IQ1, IQ2 Reference Voltage CONDITIONS mA kΩ V Single-ended resistance to ground 150 200 250 Ω REFOUT unloaded 2.3 2.45 2.6 V AC ELECTRICAL CHARACTERISTICS (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz (MAX2045), fIN = 1.9GHz (MAX2046), fIN = 915MHz (MAX2047), input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER CONDITIONS MIN TYP MAX UNITS RF Differential Input Impedance 50 Ω RF Differential Output Impedance 300 Ω RF Differential Load Impedance 200 Continuous Phase Range 2 0 _______________________________________________________________________________________ Ω 360 Degrees High-Gain Vector Multipliers (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER CONDITIONS Frequency Range MIN TYP 2040 RF Input Return Loss RF Output Return Loss MAX UNITS 2240 MHz -14 dB -16.4 dB VOLTAGE MODE VI = VQ = 0.707V (radius = 1V) Power Gain 7 VI = VQ = 0.5V (radius = 0.707V) 3.4 VI = VQ = 0.25V (radius = 0.35V) -3 dB VI = VQ = 0.125V (radius = 0.175V) -8.7 Power-Gain Range Difference in gain between VI = VQ = 0.707V and VI = VQ = 0.125V 15.7 dB Reverse Isolation Over entire control range -74 dB Maximum Power Gain for Continuous Coverage of Phase Change 0 to 360° (radius = 1V) 6.1 dB Maximum Power Gain with Reduced Phase Coverage 0 to 360° (radius = 1V) 7 dB Group Delay VI = VQ = 0.707V (radius = 1V) 1.38 ns Gain Drift Over Temperature VI = VQ = 0.707V (radius = 1V) -0.027 dB/°C Gain Flatness Over Frequency VI = VQ = 0.707V (radius = 1V); UMTS, fIN = 2140MHz ±100MHz ±0.21 dB Phase Flatness Over Frequency Electrical delay removed, VI = VQ = 0.707V (radius = 1V), UMTS, fIN = 2140MHz ±100MHz ±0.2 Degrees Output Noise Power IP1dB IIP3 VI = VQ = 0.707V (radius = 1V) -147.7 VI = VQ = 0.5V (radius = 0.707V) -148.3 VI = VQ = 0.25V (radius = 0.35V) -148.2 VI = VQ = 0.125V (radius = 0.175V) -148.1 VI = VQ = 0.707V (radius = 1V) 6.7 VI = VQ = 0.125V (radius = 0.175V) 9.3 VI = VQ = 0.707V (radius = 1V) 15.2 VI = VQ = 0.125V (radius = 0.175V) 14.7 dBm/Hz dBm dBm _______________________________________________________________________________________ 3 MAX2045/MAX2046/MAX2047 MAX2045 ELECTRICAL CHARACTERISTICS MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers MAX2045 ELECTRICAL CHARACTERISTICS (continued) (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 2.14GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER CONDITIONS MIN TYP MAX UNITS CURRENT MODE II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.2 II1 = IQ1 = 1mA, II2 = IQ2 = 0mA -8.7 Power-Gain Range Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 = 0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA 14.9 dB Gain Flatness Over Frequency II1 = IQ1 = 4mA, II2 = IQ2 = 0mA; UMTS, fIN = 2140MHz ±100MHz ±0.27 dB Phase Flatness Over Frequency Electrical delay removed, II1 = IQ1 = 4mA, II2 = IQ2 = 0mA ±0.8 Degrees Power Gain (Note 4) dB MAX2046 ELECTRICAL CHARACTERISTICS (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 1.9GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER CONDITIONS Frequency Range MIN TYP 1740 MAX UNITS 2060 MHz RF Input Return Loss -21.1 dB RF Output Return Loss -21.7 dB VOLTAGE MODE VI = VQ = 0.707V (radius = 1V) 7.4 VI = VQ = 0.5V (radius = 0.707V) 3.8 VI = VQ = 0.25V (radius = 0.35V) -2.5 VI = VQ = 0.125V (radius = 0.175V) -8.2 Power-Gain Range Difference in gain between VI = VQ = 0.707V and VI = VQ = 0.125V 15.6 dB Reverse Isolation Over entire control range -76 dB Maximum Power Gain for Continuous Coverage of Phase Change 0 to 360° (radius = 1V) 6.5 dB 0 to 360° (radius = 1V) 7.4 dB Power Gain Maximum Power Gain with Reduced Phase Coverage Group Delay dB VI = VQ = 0.707V (radius = 1V) 1.54 ns Gain Drift Over Temperature VI = VQ = 0.707V (radius = 1V) -0.026 dB/°C Gain Flatness Over Frequency VI = VQ = 0.707V (radius = 1V) 4 PCS, fIN = 1960MHz ±100MHz ±0.14 DCS, fIN = 1842.5MHz ±100MHz ±0.3 dB _______________________________________________________________________________________ High-Gain Vector Multipliers (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 1.9GHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER Phase Flatness Over Frequency Output Noise Power CONDITIONS PCS, fIN = 1960MHz ±100MHz Electrical delay removed, VI = VQ = 0.707V (radius = 1V) DCS, fIN = 1842.5MHz ±100MHz MIN TYP Degrees ±1.2 VI = VQ = 0.707V (radius = 1V) -146.8 VI = VQ = 0.5V (radius = 0.707V) -147.4 VI = VQ = 0.25V (radius = 0.35V) -147.4 VI = VQ = 0.125V (radius = 0.175V) -147.3 6.5 VI = VQ = 0.125V (radius = 0.175V) 9.1 VI = VQ = 0.707V (radius = 1V) 15.2 VI = VQ = 0.125V (radius = 0.175V) 14.8 II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 6.6 II1 = IQ1 = 1mA, II2 = IQ2 = 0mA -8.2 Power-Gain Range Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 = 0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA 14.8 Gain Flatness Over Frequency II1 = IQ1 = 4mA, II2 = IQ2 = 0mA IIP3 UNITS ±1.3 VI = VQ = 0.707V (radius = 1V) IP1dB MAX dBm/Hz dBm dBm CURRENT MODE Power Gain (Note 4) Phase Flatness Over Frequency Electrical delay removed, II1 = IQ1 = 4mA, II2 = IQ2 = 0mA PCS, fIN = 1960MHz ±100MHz ±0.14 DCS, fIN = 1842.5MHz ±100MHz ±0.33 PCS, fIN = 1960MHz ±100MHz ±0.8 DCS, fIN = 1842.5MHz ±100MHz ±1.6 dB dB dB Degrees _______________________________________________________________________________________ 5 MAX2045/MAX2046/MAX2047 MAX2046 ELECTRICAL CHARACTERISTICS (continued) MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers MAX2047 ELECTRICAL CHARACTERISTICS (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 915MHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER CONDITIONS Frequency Range MIN TYP 790 MAX UNITS 1005 MHz RF Input Return Loss -21.8 dB RF Output Return Loss -11.7 dB VOLTAGE MODE VI = VQ = 0.707V (radius = 1V) 8.4 VI = VQ = 0.5V (radius = 0.707V) 5.1 VI = VQ = 0.25V (radius = 0.35V) -0.9 VI = VQ = 0.125V (radius = 0.175V) -6.3 Power-Gain Range Difference in gain between VI = VQ = 0.707V and VI = VQ = 0.125V 14.7 dB Reverse Isolation Over entire control range -75 dB Maximum Power Gain for Continuous Coverage of Phase Change 0 to 360° (radius = 1V) 7.1 dB Maximum Power Gain with Reduced Phase Coverage 0 to 360° (radius = 1V) 8.4 dB Group Delay VI = VQ = 0.707V (radius = 1V) 2.02 ns Gain Drift Over Temperature VI = VQ = 0.707V (radius = 1V) -0.024 dB/°C Power Gain Gain Flatness Over Frequency Phase Flatness Over Frequency 6 VI = VQ = 0.707V (radius = 1V) Electrical delay removed , VI = VQ = 0.707V (radius = 1V) GSM, fIN = 942.5MHz ±62.5MHz ±0.25 US cell, fIN = 881.5MHz ±62.5MHz ±0.13 JCDMA, fIN = 850MHz ±60MHz ±0.1 KDI/JDC/PDC, fIN = 820MHz ±30MHz ±0.1 GSM, fIN = 942.5MHz ±62.5MHz ±0.9 US cell, fIN = 881.5MHz ±62.5MHz ±1.1 JCDMA, fIN = 850MHz ±60MHz ±1.2 KDI/JDC/PDC, fIN = 820MHz ±30MHz ±0.3 dB dB Degrees _______________________________________________________________________________________ High-Gain Vector Multipliers (Typical Operating Circuit as shown in Figure 1; VCC = 4.75V to 5.25V, TA = -40°C to +85°C, RBIAS = 280Ω, fIN = 915MHz, input current range = 0 to 4mA (if using a current-mode DAC), and differential input voltage range = 0 to 0.707V (if using a voltage-mode DAC). If using a current-mode DAC, voltage mode I/Q inputs are left open. If using a voltage-mode DAC, all current-mode I/Q inputs are left open. Typical values are at VCC = 5V and TA = +25°C, unless otherwise noted.) (Notes 1, 2, 3) PARAMETER Output Noise Power IP1dB IIP3 CONDITIONS MIN TYP VI = VQ = 0.707V (radius = 1V) -147.5 VI = VQ = 0.5V (radius = 0.707V) -148.4 VI = VQ = 0.25V (radius = 0.35V) -148.6 VI = VQ = 0.125V (radius = 0.175V) -148.6 VI = VQ = 0.707V (radius = 1V) 6.1 VI = VQ = 0.125V (radius = 0.175V) 6.9 VI = VQ = 0.707V (radius = 1V) 15.6 VI = VQ = 0.125V (radius = 0.175V) 14.1 MAX UNITS dBm/Hz dBm dBm CURRENT MODE Power Gain (Note 4) Power-Gain Range Gain Flatness Over Frequency Phase Flatness Over Frequency II1 = IQ1 = 4mA, II2 = IQ2 = 0mA 8.1 II1 = IQ1 = 1mA, II2 = IQ2 = 0mA -6.2 Difference in gain between II1 = IQ1 = 4mA, II2 = IQ2 = 0mA and II1 = IQ1 = 1mA, II2 = IQ2 = 0mA 14.3 II1 = IQ1 = 4mA, II2 = IQ2 = 0mA GSM, fIN = 942.5MHz ±62.5MHz ±0.25 US cell, fIN = 881.5MHz ±62.5MHz ±0.12 JCDMA, fIN = 850MHz ±60MHz ±0.1 KDI/JDC/PDC, fIN = 820MHz ±30MHz ±0.1 GSM, fIN = 942.5MHz ±62.5MHz ±0.8 US cell, fIN = 881.5MHz Electrical delay removed, ±62.5MHz II1 = IQ1 = 4mA, JCDMA, fIN = 850MHz II2 = IQ2 = 0mA ±60MHz KDI/JDC/PDC, fIN = 820MHz ±30MHz dB dB dB ±1.1 Degrees ±1.3 ±0.4 Note 1: Guaranteed by design and characterization. Note 2: All specifications reflect losses and delays of external components (matching components, baluns, and PC board traces). Output measurements taken at the RF OUTPUT of the Typical Operating Circuit. Note 3: Radius is defined as (VI2 + VQ2)0.5. VI denotes the difference between VI1 and VI2. VQ denotes the difference between VQ1 and VQ2. For differential operation: VI1 = VREF + 0.5 ✕ VI, VI2 = VREF - 0.5 ✕ VI, VQ1 = VREF + 0.5 ✕ VQ, VQ2 = VREF - 0.5 ✕ VQ. For single-ended operation: VI1 = VREF + VI, VI2 = VREF, VQ1 = VREF + VQ, VQ2 = VREF. Note 4: When using the I/Q current inputs, maximum gain occurs when one differential input current is zero and the other corresponding differential input is 5mA. Minimum gain occurs when both differential inputs are equal. _______________________________________________________________________________________ 7 MAX2045/MAX2046/MAX2047 MAX2047 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (MAX2045) (VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) 200 2.49 VCC = 5.0V 180 2.48 VCC = 5.25V 2.47 VCC = 4.75V 170 2.46 160 150 -40 -15 10 35 60 14 15 16 17 2.44 21 2.43 20 22 2000 85 2050 2100 I_1 = 5mA 2250 2000 2300 5 I_1 = 3mA -10 -25 -25 V_1 = 2.55V 2250 2050 FREQUENCY (MHz) 2100 2150 2200 2250 TA = +85°C V_1 = 2.55V TO 3.5V 40 50 ISOLATION (dB) TA = +25°C 60 70 80 100 110 3.25 3.50 3.75 CONTROL VOLTAGE VI1, VQ1 (V) 4.00 3.25 3.50 3.75 4.00 -144.0 -144.5 V_1 = 3.5V -145.0 -145.5 -146.0 V_1 = 2.55V -146.5 V_1 = 2.625V -147.0 -147.5 -148.0 V_1 = 2.75V V_1 = 3V -148.5 120 3.00 3.00 OUTPUT NOISE POWER vs. FREQUENCY 90 2.75 2.75 CONTROL VOLTAGE VI1, VQ1 (V) REVERSE ISOLATION vs. FREQUENCY 30 MAX2045 toc07 TA = -40°C 2.50 2.50 2300 FREQUENCY (MHz) GAIN vs. CONTROL VOLTAGE (VI1 = VQ1) 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -10 -30 2000 2300 -5 -25 I_1 = 0 OUTPUT NOISE POWER (dBm/Hz) 2200 VCC = 4.75V TO 5.25V -20 I_1 = 1mA MAX2045 toc08 2150 2300 -15 -30 -30 2250 5 I_1 = 2mA -15 -20 2200 0 -5 -20 2150 10 GAIN (dB) -5 -10 2100 GAIN vs. CONTROL VOLTAGE (VI1 = VQ1) 15 0 V_1 = 2.625V 2100 2050 FREQUENCY (MHz) I_1 = 4mA 10 GAIN (dB) GAIN (dB) 2200 15 -15 8 2150 V_1 = 2.75V 2050 19 20 MAX2045 toc04 10 2000 18 GAIN vs. FREQUENCY V_1 = 3.0V 0 17 19 GAIN vs. FREQUENCY 5 16 FREQUENCY (MHz) 20 V_1 = 3.5V 15 18 TEMPERATURE (°C) 15 14 2.45 SUPPLY CURRENT 140 13 MAX2045 toc05 190 12 MAX2045 toc06 2.50 V_1 = 2.55V TO 3.5V 13 MAX2045 toc09 210 V_1 = 2.55V TO 3.5V 12 OUTPUT RETURN LOSS (dB) 11 MAX2045 toc02 2.51 INPUT RETURN LOSS (dB) 220 REFOUT LOADED WITH V_2 OUTPUT RETURN LOSS vs. FREQUENCY INPUT RETURN LOSS vs. FREQUENCY 10 REFOUT (V) SUPPLY CURRENT (mA) MAX2045 toc01 2.52 230 MAX2045 toc03 REFOUT AND SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE GAIN (dB) MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers -149.0 2000 2050 2100 2150 2200 FREQUENCY (MHz) 2250 2300 2000 2050 2100 2150 2200 FREQUENCY (MHz) _______________________________________________________________________________________ 2250 2300 High-Gain Vector Multipliers OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1) -145.5 -146.0 -146.5 TA = +-40°C -147.0 -147.5 -148.0 -148.5 3.00 3.25 3.50 -147.5 6.0 -148.0 VCC = 4.75V 2.50 2.75 3.25 3.50 3.75 5.0 4.00 2000 2050 2100 2150 2200 2250 15 12 11 10 9 VCC = 5.0V 8 TA = -40°C 5.5 15 14 VCC = 4.75V 2150 2200 2250 2300 2.50 2.75 3.00 3.25 3.50 3.75 V_1 = 3.2V TA = +85°C 15.5 IIP3 (dBm) VCC = 5.0V VCC = 4.75V 14.5 TA = -40°C 14.0 13.5 TA = +25°C 13.5 13.0 13.0 2150 2200 FREQUENCY (MHz) 2250 2300 2000 2050 2100 2150 2200 FREQUENCY (MHz) 3.00 3.25 3.50 3.75 4.00 CONTROL VOLTAGE VI1, VQ1 (V) 15.0 IIP3 (dBm) 15.0 2.75 IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1) 16.0 MAX2045 toc16 VCC = 5.25V 2100 TA = -40°C 2.50 4.00 IIP3 vs. FREQUENCY V_1 = 3.2V 2050 TA = +25°C CONTROL VOLTAGE VI1, VQ1 (V) IIP3 vs. FREQUENCY 14.5 TA = +85°C 9 5 FREQUENCY (MHz) 15.5 10 6 5 2100 11 7 6 2050 12 8 7 5.0 13 2250 2300 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 MAX2045 toc18 6.5 VCC = 5.25V 13 16 INPUT P1-dB (dBm) INPUT P1-dB (dBm) 14 2300 MAX2045 toc15 16 6.0 IIP3 (dBm) 3.00 INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1) 7.0 2000 VCC = 4.75V 5.5 INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1) TA = +25°C 14.0 6.5 INPUT P1-dB COMPRESSION vs. FREQUENCY TA = +85°C 2000 7.0 FREQUENCY (MHz) 8.0 16.0 MAX2045 toc11 -147.0 CONTROL VOLTAGE VI1, VQ1 (V) 8.5 INPUT P1-dB (dBm) VCC = 5.0V -146.5 VCC = 5.25V VCC = 5.0V 7.5 CONTROL VOLTAGE VI1, VQ1 (V) V_1 = 3.2V 7.5 -146.0 4.00 V_1 = 3.2V 8.5 8.0 -149.0 3.75 9.0 MAX2045 toc14 9.0 2.75 VCC = 5.25V -145.5 MAX2045 toc13 2.50 -145.0 -148.5 TA = +25°C -149.0 -144.5 INPUT P1-dB (dBm) TA = +85°C -145.0 -144.0 MAX2045 toc17 OUTPUT NOISE POWER (dBm/Hz) -144.5 OUTPUT NOISE POWER (dBm/Hz) MAX2045 toc10 -144.0 INPUT P1-dB COMPRESSION vs. FREQUENCY MAX2045 toc12 OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1) VCC = 5.25V VCC = 5.0V VCC = 4.75V 2.50 2.75 3.00 3.25 3.50 3.75 4.00 CONTROL VOLTAGE VI1 , VQ1, (V) _______________________________________________________________________________________ 9 MAX2045/MAX2046/MAX2047 Typical Operating Characteristics (MAX2045) (continued) (VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (MAX2045) (continued) (VCC = 5V, fIN = 2140MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) 3.50 3.75 RADIUS = 0.375 RADIUS = 0.25 RADIUS = 0.125 0 4.00 45 S21 PHASE vs. FREQUENCY 78.0 77.5 77.0 76.5 76.0 VCC = 5V V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT +25°C 95 PHASE (DEGREES) VCC = 5.25V TA = -40°C 85 TA = +25°C 70 90 85 74.0 MAX2045 toc21 2250 2300 V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT +25°C TA = -40°C 80 75 TA = +25°C 70 TA = +85°C 60 65 2150 2200 2250 2300 2000 2050 FREQUENCY (MHz) 2100 2150 2200 2250 2050 2000 2050 2100 2150 2200 2250 2100 2300 DIFFERENTIAL CONTROL SIGNAL 2150 2200 FREQUENCY (MHz) SWITCHING SPEED MAX2045 toc25 V_1 = 2.55V TO 3.5V GAIN GROUP DELAY (ns) 1.90 1.85 1.80 1.75 1.70 1.65 1.60 1.55 1.50 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10 1.05 1.00 2000 2300 FREQUENCY (MHz) GROUP DELAY vs. FREQUENCY SEE SWITCHING SPEED SECTION IN THE APPLICATIONS INFORMATION -0.7V +0.7V MIN GAIN, ORIGIN MAX GAIN, Q3 MAX GAIN, Q1 SWITCHING SPEED (1ns/div) FREQUENCY (MHz) 10 2200 65 TA = +85°C 74.5 2100 2150 S21 PHASE vs. FREQUENCY 90 80 2100 FREQUENCY (MHz) VCC = 4.75V 2050 2050 75 75.5 75.0 2000 VCC = 4.75V 2000 135 180 225 270 315 360 90 VCC = 5.V S21 PHASE vs. FREQUENCY 100 MAX2045 toc22 79.0 78.5 V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT 5V 82.5 82.0 81.5 81.0 80.5 80.0 PHASE (DEGREES) CONTROL VOLTAGE VI1 , VQ1, (V) 80.0 79.5 RADIUS = 0.625 RADIUS = 0.5 MAX2045 toc24 3.25 RADIUS = 0.75 VCC = 5.25V 84.0 83.5 83.0 MAX2045 toc26 3.00 V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT 5V 84.5 PHASE (DEGREES) 2.75 85.5 85.0 MAX2045 toc23 2.50 RADIUS = 0.875 RADIUS = 1 86.0 PHASE (DEGREES) TA = +25°C TA = -40°C 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 MAX2045 toc20 MAX2045 toc19 TA = +85°C GAIN (dB) IIP3 (dBm) 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 S21 PHASE vs. FREQUENCY GAIN vs. PHASE IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1) PHASE (DEGREES) MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers ______________________________________________________________________________________ 2250 2300 High-Gain Vector Multipliers INPUT RETURN LOSS vs. FREQUENCY 210 2.51 12 200 2.50 190 2.49 2.48 VCC = 4.75V 2.47 160 -40 -15 10 35 60 22 2.44 24 85 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) FREQUENCY (MHz) GAIN vs. CONTROL VOLTAGE (VI1 = VQ1) 20 -5 -10 10 5 -5 I_1 = 3mA -10 I_1 = 2mA -15 V_1 = 2.55V -25 I_1 = 0 -30 -30 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) FREQUENCY (MHz) 50 ISOLATION (dB) TA = +25°C TA = +85°C V_1 = 2.55V TO 3.5V 40 60 70 80 100 110 3.00 3.25 3.50 3.75 CONTROL VOLTAGE VI1, VQ1 (V) 4.00 3.25 3.50 3.75 4.00 -144.0 -144.5 -145.0 V_1 = 3.5V -145.5 -146.0 V_1 = 2.55V -146.5 V_1 = 2.625V -147.0 -147.5 -148.0 V_1 = 3V V_1 = 2.75V -148.5 120 2.75 3.00 OUTPUT NOISE POWER vs. FREQUENCY 90 2.50 2.75 CONTROL VOLTAGE VI1, VQ1 (V) OUTPUT NOISE POWER (dBm/Hz) 30 MAX2046 toc33 TA = -40°C 2.50 REVERSE ISOLATION vs. FREQUENCY GAIN vs. CONTROL VOLTAGE (VI1 = VQ1) 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -10 -20 I_1 = 1mA -25 -30 0 -5 -15 -20 -20 VCC = 4.75V TO 5.25V 15 0 V_1 = 2.625V -15 GAIN (dB) I_1 = 4mA 5 GAIN (dB) GAIN (dB) I_1 = 5mA 10 V_1 = 2.75V -25 19 22 15 MAX2046 toc30 V_1 = 3.0V 0 18 GAIN vs. FREQUENCY 10 5 17 1700 1750 1800 1850 1900 1950 2000 2050 2100 GAIN vs. FREQUENCY 20 V_1 = 3.5V 16 21 TEMPERATURE (°C) 15 15 20 2.45 SUPPLY CURRENT 140 20 MAX2046 toc34 150 2.46 18 GAIN (dB) 170 16 14 MAX2046 toc32 VCC = 5.0V VCC = 5.25V 14 V_1 = 2.55V TO 3.5V 13 MAX2046 toc31 180 V_1 = 2.55V TO 3.5V MAX2046 toc35 REFOUT LOADED WITH V_2 OUTPUT RETURN LOSS vs. FREQUENCY 12 OUTPUT RETURN LOSS (dB) 10 REFOUT (V) 2.52 MAX2046 toc28 MAX2046 toc27 INPUT RETURN LOSS (dB) SUPPLY CURRENT (mA) 220 MAX2046 toc29 REFOUT AND SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE -149.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX2045/MAX2046/MAX2047 Typical Operating Characteristics (MAX2046) (VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (MAX2046) (continued) (VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) -146.0 -146.5 TA = -40°C -147.0 -147.5 -148.0 -148.5 2.75 3.00 3.25 3.50 3.75 -146.5 -147.0 -147.5 6.5 VCC = 4.75V VCC = 5.0V 5.5 5.0 2.50 2.75 3.00 3.25 3.50 3.75 4.00 1700 1750 1800 1850 1900 1950 2000 2050 2100 CONTROL VOLTAGE VI1, VQ1 (V) FREQUENCY (MHz) INPUT P1-dB COMPRESSION vs. FREQUENCY INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1) INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1) TA = +85°C 14 7.5 7.0 6.5 6.0 TA = -40°C 5.5 13 VCC = 5.25V 12 11 10 VCC = 5.0V 9 15 14 TA = +85°C 9 TA = +25°C 6 VCC = 4.75V TA = -40°C 5 2.50 2.75 3.00 3.25 3.50 3.75 2.50 4.00 MAX2046 toc43 MAX2046 toc42 V_1 = 3.2V 16.5 16.0 16.0 VCC = 5.25V TA = +85°C 14.5 15.5 IIP3 (dBm) IIP3 (dBm) 15.0 15.0 14.5 VCC = 5.0V 13.5 14.0 13.5 13.0 3.00 3.25 3.50 3.75 4.00 IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1) IIP3 vs. FREQUENCY 17.0 2.75 CONTROL VOLTAGE VI1, VQ1 (V) CONTROL VOLTAGE VI1, VQ1 (V) IIP3 vs. FREQUENCY VCC = 4.75V 10 7 FREQUENCY (MHz) 15.5 11 7 1700 1750 1800 1850 1900 1950 2000 2050 2100 V_1 = 3.2V 12 8 5 16.5 13 8 6 5.0 MAX2046 toc41 15 INPUT P1-dB (dBm) TA = +25°C 16 TA = -40°C TA = +25°C 13.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) FREQUENCY (MHz) 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 MAX2046 toc44 16 MAX2046 toc40 V_1 = 3.2V INPUT P1-dB (dBm) 8.0 VCC = 5.25V 7.0 6.0 -148.0 4.00 VCC = 5.0V 7.5 CONTROL VOLTAGE VI1, VQ1 (V) 8.5 12 VCC = 5.25V -146.0 MAX2046 toc39 9.0 14.0 8.0 -145.5 -149.0 2.50 INPUT P1-dB (dBm) -145.0 V_1 = 3.2V 8.5 -148.5 TA = +25°C -149.0 17.0 9.0 INPUT P1-dB (dBm) -145.5 VCC = 4.75V -144.5 INPUT P1-dB COMPRESSION vs. FREQUENCY MAX2046 toc37 -145.0 -144.0 OUTPUT NOISE POWER (dBm/Hz) TA = +85°C -144.5 OUTPUT NOISE POWER (dBm/Hz) MAX2046 toc36 -144.0 OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1) MAX2046 toc38 OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1) IIP3 (dBm) MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers VCC = 5.25V VCC = 4.75V 2.50 2.75 3.00 3.25 VCC = 5.0V 3.50 3.75 CONTROL VOLTAGE VI1 , VQ1, (V) ______________________________________________________________________________________ 4.00 High-Gain Vector Multipliers 3.50 3.75 RADIUS = 0.625 RADIUS = 0.5 RADIUS = 0.375 RADIUS = 0.25 RADIUS = 0.125 0 4.00 45 MAX2046 toc48 PHASE (DEGREES) VCC = 5.25V VCC = 5.V VCC = 4.75V -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 MAX2046 toc47 VCC = 5.V VCC = 4.75V 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) S21 PHASE vs. FREQUENCY V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT +25°C TA = -40°C TA = +25°C TA = +85°C -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT +25°C TA = -40°C TA = +25°C TA = +85°C 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 1700 1750 1800 1850 1900 1950 2000 2050 2100 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) 1.45 1.40 1.35 DIFFERENTIAL CONTROL SIGNAL 1.70 1.65 1.60 1.55 1.50 SEE SWITCHING SPEED SECTION IN THE APPLICATIONS INFORMATION GAIN V_1 = 2.55V TO 3.5V MAX2046 toc51 1.85 1.80 1.75 MAX GAIN, Q3 -0.7V MAX2045 toc52 SWITCHING SPEED GROUP DELAY vs. FREQUENCY 1.90 GROUP DELAY (ns) PHASE (DEGREES) VCC = 5.25V S21 PHASE vs. FREQUENCY S21 PHASE vs. FREQUENCY V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT 5V 135 180 225 270 315 360 V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT 5V PHASE (DEGREES) CONTROL VOLTAGE VI1 , VQ1, (V) -155 -156 -157 -158 -159 -160 -161 -162 -163 -164 -165 -166 -167 -168 -169 -170 90 -140 -141 -142 -143 -144 -145 -146 -147 -148 -149 -150 -151 -152 -153 -154 -155 MAX2046 toc50 3.25 RADIUS = 0.75 PHASE (DEGREES) 3.00 RADIUS = 0.875 RADIUS = 1 MAX2046 toc49 2.75 S21 PHASE vs. FREQUENCY PHASE (DEGREES) MAX2046 toc45 TA = +25°C TA = -40°C 2.50 GAIN (dB) IIP3 (dBm) TA = +85°C 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 MAX2046 toc46 GAIN vs. PHASE IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1) 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 +0.7V MIN GAIN, ORIGIN MAX GAIN, Q1 1.30 1700 1750 1800 1850 1900 1950 2000 2050 2100 SWITCHING SPEED (1ns/div) FREQUENCY (MHz) ______________________________________________________________________________________ 13 MAX2045/MAX2046/MAX2047 Typical Operating Characteristics (MAX2046) (continued) (VCC = 5V, fIN = 1900MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (MAX2047) (VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) 180 2.49 VCC = 5.25V VCC = 5.0V 2.48 VCC = 4.75V 160 2.47 150 2.46 2.45 22 24 26 35 60 V_1 = 3.0V 15 MAX2047 toc56 V_1 = 3.5V 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) GAIN (dB) 5 GAIN (dB) I_1 = 5mA I_1 = 4mA GAIN vs. CONTROL VOLTAGE (VI1 = VQ1) 20 15 0 5 0 I_1 = 3mA I_1 = 2mA -5 -5 -15 V_1 = 2.625V V_1 = 2.55V -20 -30 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) FREQUENCY (MHz) TA = +25°C -5 -10 TA = +85°C -15 60 70 80 100 -25 -35 2.75 3.00 3.25 3.50 3.75 CONTROL VOLTAGE VI1, VQ1 (V) 4.00 3.75 4.00 -145 V_1 = 3.5V -146 -147 V_1 = 2.55V V_1 = 2.625V -148 -149 V_1 = 3V V_1 = 2.75V -151 120 2.50 3.50 -150 110 -30 3.25 OUTPUT NOISE POWER vs. FREQUENCY 90 -20 3.00 -144 OUTPUT NOISE POWER (dBm/Hz) ISOLATION (dB) 5 2.75 CONTROL VOLTAGE VI1, VQ1 (V) MAX2047 toc60 V_1 = 2.55V TO 3.5V 40 50 0 2.50 REVERSE ISOLATION vs. FREQUENCY 30 MAX2047 toc59 TA = -40°C 10 14 -25 I_1 = 0 700 750 800 850 900 950 1000 1050 1100 GAIN vs. CONTROL VOLTAGE (VI1 = VQ1) -10 -20 I_1 =1mA -20 20 0 -5 -15 -10 -10 VCC = 4.75V TO 5.25V 10 5 V_1 = 2.75V 15 14 FREQUENCY (MHz) 10 10 -15 13 GAIN vs. FREQUENCY 20 15 12 700 750 800 850 900 950 1000 1050 1100 TEMPERATURE (°C) GAIN vs. FREQUENCY 11 16 32 85 10 15 GAIN (dB) 10 20 30 140 -15 18 28 SUPPLY CURRENT -40 16 V_1 = 2.55V TO 3.5V 9 MAX2047 toc57 170 14 MAX2047 toc55 2.50 V_1 = 2.55V TO 3.5V MAX2047 toc58 190 12 8 OUTPUT RETURN LOSS (dB) 2.51 REFOUT (V) 200 10 INPUT RETURN LOSS (dB) SUPPLY CURRENT (mA) REFOUT LOADED WITH V_2 OUTPUT RETURN LOSS vs. FREQUENCY INPUT RETURN LOSS vs. FREQUENCY 2.52 MAX2047 toc54 MAX2047 toc53 210 MAX2047 toc61 REFOUT AND SUPPLY CURRENT vs. TEMPERATURE AND SUPPLY VOLTAGE GAIN (dB) MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) FREQUENCY (MHz) ______________________________________________________________________________________ High-Gain Vector Multipliers OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1) -146.5 -147.0 -147.5 -148.0 TA = -40°C -148.5 -149.0 TA = +25°C 2.75 3.00 3.25 3.50 3.75 -147.0 -148.0 -148.5 VCC = 4.75V 5.5 5.0 2.50 2.75 3.00 3.25 3.50 3.75 4.00 700 750 800 850 900 950 1000 1050 1100 INPUT P1-dB COMPRESSION vs. FREQUENCY INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1) INPUT P1-dB COMPRESSION vs. CONTROL VOLTAGE (VI1 = VQ1) 7.0 6.5 TA = -40°C 5.5 5.0 IIP3 vs. FREQUENCY 18.0 MAX2047 toc67 MAX2047 toc66 VCC = 5.25V 8.0 TA = +85°C 7.5 7.0 TA = +25°C 6.5 6.0 5.5 TA = -40°C 5.0 VCC = 4.75V 4.5 4.0 2.75 3.00 3.25 3.50 3.75 2.50 4.00 V_1 = 3.2V 18.0 17.5 IIP3 (dBm) 17.0 16.5 16.0 TA = -40°C 17.0 16.5 16.0 15.5 TA = +25°C 15.5 VCC = 4.75V VCC = 5.0V 15.0 TA = +85°C 14.0 3.00 3.25 3.50 3.75 4.00 IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1) IIP3 (dBm) VCC = 5.25V 2.75 CONTROL VOLTAGE VI1, VQ1 (V) IIP3 vs. FREQUENCY 18.5 MAX2047 toc68 V_1 = 3.2V 8.5 CONTROL VOLTAGE VI1, VQ1 (V) FREQUENCY (MHz) 18.5 VCC = 5.0V 2.50 700 750 800 850 900 950 1000 1050 1100 9.0 INPUT P1-dB (dBm) TA = +85°C INPUT P1-dB (dBm) TA = +25°C 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 MAX2047 toc69 V_1 = 3.2V 6.0 IIP3 (dBm) VCC = 4.75V FREQUENCY (MHz) 7.5 14.5 6.5 6.0 -149.0 4.00 7.0 CONTROL VOLTAGE VI1, VQ1 (V) 8.0 15.0 VCC = 5.0V -147.5 VCC = 5.25V VCC = 5.0V 7.5 CONTROL VOLTAGE VI1, VQ1 (V) 8.5 17.5 8.0 -146.5 MAX2047 toc65 2.50 19.0 V_1 = 3.2V 8.5 -150.0 -150.0 INPUT P1-dB (dBm) -146.0 -149.5 -149.5 9.0 VCC = 5.25V 14.5 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) FREQUENCY (MHz) 19 18 17 16 15 14 13 12 11 10 9 8 7 VCC = 5.25V MAX2047 toc70 -146.0 9.0 INPUT P1-dB (dBm) TA = +85°C -145.5 MAX2047 toc63 MAX2047 toc62 OUTPUT NOISE POWER (dBm/Hz) -145.5 -145.0 OUTPUT NOISE POWER (dBm/Hz) -145.0 INPUT P1-dB COMPRESSION vs. FREQUENCY MAX2047 toc64 OUTPUT NOISE POWER vs. CONTROL VOLTAGE (VI1 = VQ1) VCC = 4.75V VCC = 5.0V 2.50 2.75 3.00 3.25 3.50 3.75 4.00 CONTROL VOLTAGE VI1 , VQ1 (V) ______________________________________________________________________________________ 15 MAX2045/MAX2046/MAX2047 Typical Operating Characteristics (MAX2047) (continued) (VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (MAX2047) (continued) (VCC = 5V, fIN = 915MHz, V_1 = VI1 and VQ1, V_2 = VI2 and VQ2, I_1 = II1 and IQ1, I_2 = II2 and IQ2, VI1 = VQ1 = 3.2V, VI2 = VQ2 = REFOUT, PIN = -15dBm per tone at 1MHz offset (IIP3), and TA = +25°C, unless otherwise noted.) GAIN vs. PHASE 2.75 3.00 3.25 3.50 3.75 RADIUS = 0.75 RADIUS = 0.625 RADIUS = 0.5 RADIUS = 0.375 0 125 VCC = 5.V 115 160 45 90 135 180 225 270 315 360 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) S21 PHASE vs. FREQUENCY V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT +25°C 150 PHASE (DEGREES) VCC = 5.25V 120 VCC = 4.75V S21 PHASE vs. FREQUENCY 135 130 VCC = 5.V PHASE (DEGREES) MAX2047 toc74 160 140 TA = -40°C 130 TA = +25°C 120 V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT +25°C 150 140 TA = -40°C 130 120 110 TA = +25°C 110 110 105 TA = +85°C VCC = 4.75V 100 100 TA = +85°C 90 100 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 700 750 800 850 900 950 1000 1050 1100 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) SWITCHING SPEED GROUP DELAY (ns) 2.5 2.4 2.3 2.2 DIFFERENTIAL CONTROL SIGNAL V_1 = 2.55V TO 3.5V SEE SWITCHING SPEED SECTION IN THE APPLICATIONS INFORMATION GAIN 2.6 MAX2047 toc77 GROUP DELAY vs. FREQUENCY 2.7 MAX GAIN, Q3 -0.7V +0.7V MIN GAIN, ORIGIN 2.1 2.0 1.9 1.8 MAX GAIN, Q1 1.7 1.6 700 750 800 850 900 950 1000 1050 1100 SWITCHING SPEED (1ns/div) FREQUENCY (MHz) 16 ______________________________________________________________________________________ MAX2045 toc78 140 125 110 4.00 V_1 = 2.65V ONE ELECTRICAL DELAY REMOVED AT 5V VCC = 5.25V 130 115 RADIUS = 0.125 S21 PHASE vs. FREQUENCY 145 135 120 RADIUS = 0.25 CONTROL VOLTAGE VI1 , VQ1 (V) 150 MAX2047 toc73 140 PHASE (DEGREES) 2.50 V_1 = 3.2V ONE ELECTRICAL DELAY REMOVED AT 5V 145 MAX2047 toc76 TA = +85°C RADIUS = 0.875 RADIUS = 1 PHASE (DEGREES) TA = +25°C S21 PHASE vs. FREQUENCY 150 MAX2047 toc75 TA = -40°C 11 9 7 5 3 1 -1 -3 -5 -7 -9 -11 -13 -15 MAX2047 toc72 MAX2047 toc71 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 GAIN (dB) IIP3 (dBm) IIP3 vs. CONTROL VOLTAGE (VI1 = VQ1) PHASE (DEGREES) MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers High-Gain Vector Multipliers PIN NAME FUNCTION 1 VI1 Noninverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ). 2 VI2 Inverting in-phase voltage-control input. Requires common-mode input voltage (2.5V typ). 3 VQ1 Noninverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ). 4 VQ2 5 II1 Noninverting in-phase current-control input. This pin can only sink current. It cannot source current. 6 II2 Inverting in-phase current-control input. This pin can only sink current. It cannot source current. 7 IQ1 Noninverting quadrature current-control input. This pin can only sink current. It cannot source current. 8 IQ2 Inverting quadrature voltage-control input. Requires common-mode input voltage (2.5V typ). Inverting quadrature current-control input. This pin can only sink current. It cannot source current. 2.5V Reference Output. Integrated reference voltage provides a 2.5V output for single-ended voltagecontrol applications. For single-ended operation, connect REFOUT to the inverting voltage inputs (VI2, VQ2). 9 REFOUT 10, 11, 14, 15, 16, 19, 20, 21, 23–27, 30, 31, 32 GND 12 RFOUT1 Noninverting RF Output 13 RFOUT2 Inverting RF Output 17, 18 VCC Ground Supply Voltage 22 RBIAS Bias Setting Resistor. Connect a 280Ω (±1%) resistor from this pin to ground to set the bias current for the IC. 28 RFIN1 Noninverting RF Input 29 RFIN2 Inverting RF Input Exposed Pad — Exposed Pad. Exposed pad on the bottom of the IC should be soldered to the ground plane for proper heat dissipation and RF grounding. Detailed Description The MAX2045/MAX2046/MAX2047 provide vector adjustment through the differential I/Q amplifiers. Each part is optimized for separate frequency ranges: MAX2045 for fIN = 2040MHz to 2240MHz, MAX2046 for fIN = 1740MHz to 2060MHz, and MAX2047 for fIN = 790MHz to 1005MHz. All three devices can be interfaced using current- and/or voltage-mode DACs. The MAX2045/MAX2046/MAX2047 accept differential RF inputs, which are internally phase shifted 90 degrees to produce differential I/Q signals. The phase and magnitude of each signal can then be adjusted using the voltage- and/or current-control inputs. Figure 1 shows a typical operating circuit when using both current- and voltage-mode DACs. When using only one of the two, leave the unused I/Q inputs open. RF Ports The RF input and output ports require external matching for optimal performance. See Figures 1 and 2 for appropriate component values. The output ports require external biasing. In Figures 1 and 2, the outputs are biased through the balun (T2). The RF input ports can be driven differentially or single ended (Figures 1, 2) using a balun. The matching values for the MAX2045/ MAX2046 were set to be the same during characterization. An optimized set of values can be found in the MAX2045/MAX2046/MAX2047 Evaluation Kit data sheet. I/Q Inputs The control amplifiers convert a voltage, current, or voltage and current input to a predistorted voltage that controls the multipliers. The I/Q voltage-mode inputs can be operated differentially (Figure 1) or single ended (Figure 2). A 2.5V reference is provided on-chip for single-ended operation. ______________________________________________________________________________________ 17 MAX2045/MAX2046/MAX2047 Pin Description MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers C1 RF INPUT L1* C4 VOLTAGEMODE DAC VI2 C5 C6 VQ1 VQ2 C7 C8 CURRENTMODE DAC VI1 II1 II2 C9 GND 25 GND 26 GND RFIN1 28 RFIN2 C3 29 GND 30 GND 31 32 GND C2 27 T1 1 24 CONTROL AMPLIFIER I 2 90° PHASE SHIFTER 23 3 22 MAX2045 MAX2046 MAX2047 4 21 VECTOR MULTIPLIER CONTROL AMPLIFIER Q 5 20 6 19 GND GND RBIAS GND R1 GND GND VCC 18 8 VCC C16 C17 16 VCC GND 15 GND 14 GND 13 RFOUT2 12 RFOUT1 GND REFOUT 11 17 10 IQ2 OUTPUT STAGE 2.5V REFERENCE 7 9 C11 IQ1 GND C10 L2 DESIGNATION C14 C1 C2, C3 C4–C16 C17 L1* L2 R1 T1 T2 RF OUTPUT C15 C13 T2 MAX2045 3.3pF 220pF 22pF 0.01µF 1.6pF CAP 10nH 280Ω 1:1 balun 4:1 balun DESCRIPTION MAX2046 MAX2047 3.3pF 47pF 220pF 47pF 47pF 22pF 0.01µF 0.01µF 15nH 1.6pF CAP 39nH 10nH 280Ω 280Ω 1:1 balun 1:1 balun 4:1 balun 4:1 balun *POPULATED WITH AN INDUCTOR OR CAPACITOR, DEPENDING ON THE VERSION. Figure 1. Typical Operating Circuit Using Differential Current- and Voltage-Mode DACs 18 ______________________________________________________________________________________ High-Gain Vector Multipliers MAX2045/MAX2046/MAX2047 C1 RF INPUT L1* VOLTAGEMODE DAC VI1 C4 VI2 VQ1 C6 VQ2 II1 II2 GND 25 GND 26 GND RFIN1 28 RFIN2 C3 29 GND 30 GND 31 32 GND C2 27 T1 1 24 CONTROL AMPLIFIER I 2 90° PHASE SHIFTER 23 3 22 MAX2045 MAX2046 MAX2047 4 21 VECTOR MULTIPLIER CONTROL AMPLIFIER Q 5 20 6 19 GND GND RBIAS GND R1 GND GND VCC 18 8 C12 VCC C16 C17 16 VCC GND 15 GND 14 GND 13 RFOUT2 12 RFOUT1 11 GND REFOUT 10 17 9 IQ2 OUTPUT STAGE 2.5V REFERENCE 7 GND IQ1 L2 DESIGNATION C14 RF OUTPUT C15 C13 T2 C1 C2, C3 C4, C6, C12–C16 C17 L1* L2 R1 T1 T2 MAX2045 3.3pF 220pF 22pF 0.01µF 1.6pF CAP 10nH 280Ω 1:1 balun 4:1 balun DESCRIPTION MAX2046 MAX2047 3.3pF 47pF 220pF 47pF 47pF 22pF 0.01µF 0.01µF 15nH 1.6pF CAP 39nH 10nH 280Ω 280Ω 1:1 balun 1:1 balun 4:1 balun 4:1 balun *POPULATED WITH AN INDUCTOR OR CAPACITOR, DEPENDING ON THE VERSION. Figure 2. Typical Operating Circuit Using Single-Ended Voltage Mode DACs ______________________________________________________________________________________ 19 MAX2045/MAX2046/MAX2047 High-Gain Vector Multipliers On-Chip Reference Voltage An on-chip, 2.5V reference voltage is provided for single-ended control mode. Connect REFOUT to VI2 and VQ2 to provide a stable reference voltage. The equivalent output resistance of the REFOUT pin is approximately 80Ω. REFOUT is capable of sourcing 1mA of current, with <10mV drop-in voltage. Applications Information RF Single-Ended Operation The RF input impedance is 50Ω differential into the IC. An external low-loss 1:1 balun can be used for singleended operation. The RF output impedance is 300Ω differential into the IC. An external low-loss 4:1 balun transforms this impedance down to 50Ω single-ended output (Figures 1 and 2). Bias Resistor The bias resistor value (280Ω) was optimized during characterization at the factory. This value should not be adjusted. If the 280Ω (±1%) resistor is not readily available, substitute a standard 280Ω (±5%) resistor, which may result in more current part-to-part variation. As the differential control signal approaches zero, the gain approaches its minimum value. This appears as the null in the Typical Operating Characteristics. The measurement results include rise-time errors from the crystal detector (specified by manufacturing to be approximately 8ns to 12ns), the comparator (approximately 500ps), and the 500MHz BW oscilloscope (used to measure the control and detector signals). Layout Issues A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed pad underneath the package. This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad. The MAX2045/MAX2046/MAX2047 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com. Switching Speed Power-Supply Bypassing The control inputs have a typical 3dB BW of 260MHz. This BW provides the device with the ability to adjust gain/phase at a very rapid rate. The Switching Speed graphs in the Typical Operating Characteristics try to capture the control ability of the vector multipliers. These measurements were done by first removing capacitors C4–C7 to reduce driving capacitance. The test for gathering the curves shown, uses a MAX9602 differential output comparator to drive VI1, VI2, VQ1, and VQ2. One output of the comparator is connected to VI1/VQ1, while the other is connected to VI2/VQ2. The input to the vector multiplier is driven by an RF source and the output is connected to a crystal detector. The switching signal produces a waveform that results in a ±0.7V differential input signal to the vector multiplier. This signal switches the signal from quadrant 3 (-0.7V case), through the origin (maximum attenuation), and into quadrant 1 (+0.7V case). The before-and-after amplitude (S21) stays about the same between the two quadrants but the phase changes by 180°. Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass the VCC pins with 10nF and 22pF (47pF for the MAX2047) capacitors. Connect the high-frequency capacitor as close to the device as possible. Exposed Paddle RF Thermal Considerations The EP of the 32-lead thin QFN package provides a low thermal-resistance path to the die. It is important that the PC board on which the IC is mounted be designed to conduct heat from this contact. In addition, the EP provides a low-inductance RF ground path for the device. It is recommended that the EP be soldered to a ground plane on the PC board, either directly or through an array of plated via holes. Soldering the pad to ground is also critical for proper heat dissipation. Use a solid ground plane wherever possible. Chip Information TRANSISTOR COUNT: 599 20 ______________________________________________________________________________________ High-Gain Vector Multipliers b CL 0.10 M C A B D2/2 D/2 PIN # 1 I.D. QFN THIN.EPS D2 0.15 C A D k 0.15 C B PIN # 1 I.D. 0.35x45 E/2 E2/2 CL (NE-1) X e E E2 k L DETAIL A e (ND-1) X e CL CL L L e e 0.10 C A C 0.08 C A1 A3 PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE 16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm APPROVAL COMMON DIMENSIONS DOCUMENT CONTROL NO. REV. 21-0140 C 1 2 EXPOSED PAD VARIATIONS NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE 16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm APPROVAL DOCUMENT CONTROL NO. REV. 21-0140 C 2 2 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21 © 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. MAX2045/MAX2046/MAX2047 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)