PD-96931A RADIATION HARDENED POWER MOSFET SURFACE-MOUNT (SMD-0.5) IRHNJ67134 150V, N-CHANNEL TECHNOLOGY Product Summary Part Number Radiation Level IRHNJ67134 100K Rads (Si) RDS(on) 0.088Ω ID 19A IRHNJ63134 0.088Ω 19A 300K Rads (Si) SMD-0.5 International Rectifier’s R6TM technology provides superior power MOSFETs for space applications. These devices have improved immunity to Single Event Effect (SEE) and have been characterized for useful performance with Linear Energy Transfer (LET) up to 90MeV/(mg/cm2). Their combination of very low RDS(on) and faster switching times reduces power loss and increases power density in today’s high speed switching applications such as DC-DC converters and motor controllers. These devices retain all of the well established advantages of MOSFETs such as voltage control, ease of paralleling and temperature stability of electrical parameters. Features: n n n n n n n n n n Low RDS(on) Fast Switching Single Event Effect (SEE) Hardened Low Total Gate Charge Simple Drive Requirements Ease of Paralleling Hermetically Sealed Surface Mount Ceramic Package Light Weight Absolute Maximum Ratings Pre-Irradiation Parameter ID @ VGS = 12V, TC = 25°C ID @ VGS = 12V, TC = 100°C IDM PD @ TC = 25°C VGS EAS IAR EAR dv/dt TJ T STG Continuous Drain Current Continuous Drain Current Pulsed Drain Current À Max. Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Á Avalanche Current À Repetitive Avalanche Energy À Peak Diode Recovery dv/dt  Operating Junction Storage Temperature Range Pckg. Mounting Surface Temp. Weight Units 19 12 76 75 0.6 ±20 60 19 7.5 8.6 -55 to 150 A W W/°C V mJ A mJ V/ns o C 300 (for 5s) 1.0 (Typical) g For footnotes refer to the last page www.irf.com 1 02/03/05 IRHNJ67134 Pre-Irradiation Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) Min Drain-to-Source Breakdown Voltage 150 — — V — 0.18 — V/°C — — 0.088 Ω 2.0 13 — — — — — — 4.0 — 10 25 V S( ) ∆BV DSS /∆T J Temperature Coefficient of Breakdown Voltage RDS(on) Static Drain-to-Source On-State Resistance VGS(th) Gate Threshold Voltage g fs Forward Transconductance IDSS Zero Gate Voltage Drain Current Typ Max Units µA IGSS IGSS Qg Q gs Q gd td(on) tr td(off) tf LS + LD Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Total Gate Charge Gate-to-Source Charge Gate-to-Drain (‘Miller’) Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Inductance — — — — — — — — — — — — — — — — — — — 4.0 100 -100 50 15 18 20 30 35 25 — Ciss C oss C rss Rg Input Capacitance Output Capacitance Reverse Transfer Capacitance Internal Gate Resistance — — — — 1570 240 5.2 1.08 — — — — Test Conditions VGS = 0V, ID = 1.0mA Reference to 25°C, ID = 1.0mA VGS = 12V, ID = 12A Ã Ω BVDSS Parameter nA nC VDS = VGS, ID = 1.0mA VDS = 15V, IDS = 12A à VDS = 120V ,VGS=0V VDS = 120V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VGS = 12V, ID = 19A VDS = 75V VDD = 75V, ID = 19A, VGS = 12V, RG = 7.5Ω ns nH Measured from the center of drain pad to center of source pad pF VGS = 0V, VDS = 25V f = 1.0MHz Ω f = 1.0MHz, open drain Source-Drain Diode Ratings and Characteristics Parameter Min Typ Max Units IS ISM VSD trr Q RR Continuous Source Current (Body Diode) Pulse Source Current (Body Diode) À Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge ton Forward Turn-On Time — — — — — — — — — — 19 76 1.2 300 2.6 Test Conditions A V ns µC Tj = 25°C, IS = 19A, VGS = 0V à Tj = 25°C, IF = 19A, di/dt ≤ 100A/µs VDD ≤ 25V à Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. Thermal Resistance Parameter RthJC Junction-to-Case Min Typ Max Units — — 1.67 Test Conditions °C/W Note: Corresponding Spice and Saber models are available on International Rectifier Web site. For footnotes refer to the last page 2 www.irf.com Radiation Characteristics Pre-Irradiation IRHNJ67134 International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ Parameter BVDSS VGS(th) IGSS IGSS IDSS RDS(on) RDS(on) VSD Up to 300K Rads (Si) Drain-to-Source Breakdown Voltage Gate Threshold Voltage Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse Zero Gate Voltage Drain Current Static Drain-to-Source On-State Resistance (TO-3) Static Drain-to-Sourcee On-State Resistance (SMD-0.5) Diode Forward Voltage Units Test Conditions Min Max 150 2.0 — — — — 4.0 100 -100 10 µA VGS = 0V, ID = 1.0mA VGS = VDS , ID = 1.0mA VGS = 20V VGS = -20V VDS = 120V, VGS= 0V — 0.092 Ω VGS = 12V, ID = 12A — 0.088 Ω VGS = 12V, ID = 12A — 1.2 V VGS = 0V, ID = 19A V nA Part numbers IRHNJ67134 and IRHNJ63134 International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Tables. Tables for Single Event Effect Safe Operating Area Ion Kr Ion Xe Ion Au LET = 39 MeV/(mg/cm2) Energy = 312 MeV Range = 39 µm VGS Bias VDS Bias (Volts) (Volts) 0 150 -5 150 -10 150 -15 150 -20 150 LET = 59 MeV/(mg/cm2) Energy = 825 MeV Range = 66 µm VGS Bias VDS Bias (Volts) (Volts) 0 150 -5 150 -9 150 -10 140 -11 50 -15 40 LET = 90 MeV/(mg/cm2) Energy = 1480 MeV Range = 80 µm VGS Bias VDS Bias (Volts) (Volts) 0 50 -5 50 -10 30 180 150 VDS 120 Kr 90 Xe Au 60 30 0 0 -5 -10 -15 -20 VGS Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page www.irf.com 3 IRHNJ67134 1000 VGS TOP 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V 100 10 1 5.0V 60µs PULSE WIDTH Tj = 25°C 100 10 5.0V 1 60µs PULSE WIDTH Tj = 150°C 0.1 0.1 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 100 ID, Drain-to-Source Current (A) 1 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) T J = 150°C T J = 25°C 10 VDS = 50V 60µs PULSE 15 WIDTH ID = 19A 2.5 2.0 1.5 1.0 0.5 VGS = 12V 0.0 1.0 5 6 7 8 9 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 4 VGS 15V 12V 10V 9.0V 8.0V 7.0V 6.0V BOTTOM 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 1000 Pre-Irradiation -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature www.irf.com Pre-Irradiation 2800 20 VGS = 0V, f = 1 MHz C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd 2000 Ciss 1600 Coss 1200 800 Crss 400 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 10 100 0 10 20 30 40 50 60 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 100 ISD, Reverse Drain Current (A) VDS = 120V VDS = 75V VDS = 30V ID = 19A VGS, Gate-to-Source Voltage (V) 2400 C, Capacitance (pF) IRHNJ67134 TJ = 150°C 10 T J = 25°C 1 VGS = 0V 0.4 0.6 0.8 1.0 1.2 VSD , Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 100 10 100µs 1ms 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 1.4 1 10ms 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area 5 IRHNJ67134 Pre-Irradiation 20 VGS 16 ID, Drain Current (A) RD VDS D.U.T. RG 12 + -V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 8 Fig 10a. Switching Time Test Circuit 4 VDS 90% 0 25 50 75 100 125 150 T C , Case Temperature (°C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 PDM 0.05 0.1 0.02 0.01 0.01 0.00001 SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com Pre-Irradiation IRHNJ67134 15V L VDS D.U.T. RG VGS 20V IAS DRIVER + - VDD 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit A EAS , Single Pulse Avalanche Energy (mJ) 100 TOP 80 BOTTOM ID 19A 12A 8.5A 60 40 20 0 25 V(BR)DSS 50 75 100 125 150 Starting T J , Junction Temperature (°C) tp Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Current Regulator Same Type as D.U.T. Fig 12b. Unclamped Inductive Waveforms 50KΩ QG 12 V QGS .3µF D.U.T. QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform www.irf.com 12V .2µF IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 7 IRHNJ67134 Pre-Irradiation Footnotes: À Repetitive Rating; Pulse width limited by maximum junction temperature. Á VDD = 25V, starting TJ = 25°C, L= 0.33 mH Peak IL =19A, VGS = 12V  ISD ≤ 19A, di/dt ≤ 673A/µs, VDD ≤ 150V, TJ ≤ 150°C à Pulse width ≤ 300 µs; Duty Cycle ≤ 2% Ä Total Dose Irradiation with VGS Bias. 12 volt VGS applied and V DS = 0 during irradiation per MIL-STD-750, method 1019, condition A. Å Total Dose Irradiation with VDS Bias. 120 volt VDS applied and VGS = 0 during irradiation per MlL-STD-750, method 1019, condition A. Case Outline and Dimensions — SMD-0.5 PAD ASSIGNMENTS 1 = DRAIN 2 = GATE 3 = SOURCE IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 02/2005 8 www.irf.com