SGM8631 SGM8632 SGM8633 SGM8634 PRODUCT DESCRIPTION The SGM8631(single), SGM8632(dual), SGM8633(single with shutdown) and SGM8634 (quad) are low noise, low voltage, and low power operational amplifiers, that can be designed into a wide range of applications. The SGM8631/2/3/4 have a high gain-bandwidth product of 6MHz, a slew rate of 3.7V/μs, and a quiescent current of 470μA/amplifier at 5V. The SGM8633 has a power-down disable feature that reduces the supply current to 90nA. The SGM8631/2/3/4 are designed to provide optimal performance in low voltage and low noise systems. They provide rail-to-rail output swing into heavy loads. The input common-mode voltage range includes ground, and the maximum input offset voltage are 3.5mV for SGM8631/2/3/4. They are specified over the extended industrial temperature range (−40°C to +125°C). The operating range is from 2.5V to 5.5V. The single version, SGM8631/8633, is available in SC70-5, SO-8 and SOT23-5(6) packages. The dual version SGM8632 is available in SO-8 and MSOP-8 packages. The quad 470µA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifier FEATURES y Low Cost y Rail-to-Rail Input and Output y y y y y y y y y 0.8mV Typical VOS High Gain-Bandwidth Product: 6MHz High Slew Rate: 3.7V/µs Settling Time to 0.1% with 2V Step: 2.1µs Overload Recovery Time: 0.9µs Low Noise : 12 nV/ Hz Operates on 2.5 V to 5.5V Supplies Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V Low Power 470μA/Amplifier Typical Supply Current SGM8633 90nA when Disabled Small Packaging SGM8631 Available in SC70-5, SOT23-5 and SO-8 SGM8632 Available in MSOP-8 and SO-8 SGM8633 Available in SOT23-6 and SO-8 SGM8634 Available in TSSOP-16 and SO-16 PIN CONFIGURATIONS (Top View) version SGM8634 is available in SO-16 and TSSOP-16 packages. APPLICATIONS OUT 1 -VS 2 +IN 3 SGM8631/8633 5 +VS 4 -IN NC SOT23-5 / SC70-5 OUT 1 -VS 2 -IN 2 7 +VS 3 6 OUT -VS 4 5 NC NC = NO CONNECT SO-8 6 +VS 5 DISABLE 4 SGM8634 -IN SOT23-6 SGM8632 OUT A 1 -IN A 2 8 +VS 7 OUT B 6 +IN A 3 -VS 4 DISABLE (SGM8633 ONLY) +IN OUT A 3 +IN 8 1 SGM8633 8633 Sensors Audio Active Filters A/D Converters Communications Test Equipment Cellular and Cordless Phones Laptops and PDAs Photodiode Amplification Battery-Powered Instrumentation SGM8631 5 -IN B +IN B 16 OUT D 1 -IN A 2 15 -IND +IN A 3 14 +IND +VS 4 13 -VS +INB 5 12 +INC -INB 6 11 OUT B 7 10 NC 8 9 NC = NO CONNECT -INC OUT C NC TSSOP-16 / SO-16 SO-8 / MSOP-8 Shengbang Microelectronics Co, Ltd Tel: 86/451/84348461 www.sg-micro.com REV. B ELECTRICAL CHARACTERISTICS :VS = +5V (At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted) SGM8631/2/3/4 PARAMETER TYP CONDITION MIN/MAX OVER TEMPERATURE +25℃ +25℃ 0℃ to 70℃ -40℃ to 85℃ 0.8 3.5 3.9 4.3 -40℃ to 125℃ UNITS MIN/ MAX INPUT CHARACTERISTICS Input Offset Voltage (VOS) 4.6 mV MAX Input Bias Current (IB) 1 pA TYP Input Offset Current (IOS) 1 pA TYP -0.1 to +5.6 V TYP dB MIN dB MIN dB MIN Common-Mode Voltage Range (VCM) VS = 5.5V Common-Mode Rejection Ratio(CMRR) VS = 5.5V, VCM = - 0.1V to 4 V 90 VS = 5.5V, VCM = - 0.1V to 5.6 V 83 Open-Loop Voltage Gain( AOL) 75 74 74 73 RL = 600Ω ,Vo = 0.15V to 4.85V 97 RL =10KΩ ,Vo = 0.05V to 4.95V 108 dB MIN 2.4 µV/℃ TYP RL = 600Ω 0.1 V TYP RL = 10KΩ 0.015 V Input Offset Voltage Drift (∆VOS/∆T) 90 87 86 79 OUTPUT CHARACTERISTICS Output Voltage Swing from Rail 53 49 45 40 35 mA MIN 3 Ω TYP Turn-On Time 4 µs TYP Turn-Off Time 1.2 µs TYP Output Current (IOUT) Closed-Loop Output Impedance POWER-DOWN DISABLE DISABLE F = 200KHz, G = 1 DISABLE Voltage-Off 0.8 V MAX Voltage-On 2 V MIN POWER SUPPLY Operating Voltage Range Power Supply Rejection Ratio (PSRR) Quiescent Current/ Amplifier (IQ) 2.5 2.5 2.5 2.5 V MIN 5.5 5.5 5.5 5.5 V MAX Vs = +2.5 V to + 5.5 V VCM = (-VS) + 0.5V 91 80 78 78 77 dB MIN IOUT = 0 470 590 660 680 740 µA MAX nA MAX MHz TYP Supply Current when Disabled 90 (SGM8633 only) DYNAMIC PERFORMANCE Gain-Bandwidth Product (GBP) RL = 10KΩ 6 60 Phase Margin(φO) degrees TYP Full Power Bandwidth(BWP) <1% distortion, RL = 600Ω 250 KHz TYP Slew Rate (SR) G = +1 , 2V Step, RL = 10KΩ 3.7 V/µs TYP Settling Time to 0.1%( tS) G = +1, 2 V Step, RL = 600Ω 2.1 µs TYP Overload Recovery Time VIN ·Gain = Vs, RL = 600Ω 0.9 µs TYP Voltage Noise Density (en) f = 1kHz 12 nV/ Hz TYP Current Noise Density( in) f = 1kHz 3 fA/ Hz TYP NOISE PERFORMANCE Specifications subject to change without notice. 2 SGM8631/2/3/4 PACKAGE/ORDERING INFORMATION MODEL SGM8631 SGM8632 SGM8633 SGM8634 ORDER NUMBER PACKAGE DESCRIPTION PACKAGE OPTION SGM8631XC5/TR SC70-5 SGM8631XN5/TR SOT23-5 Tape and Reel, 3000 SGM8631XS/TR SO-8 Tape and Reel, 2500 SGM8631XS SGM8632XMS/TR MSOP-8 Tape and Reel, 3000 SGM8632XMS Tape and Reel, 3000 MARKING INFORMATION 8631 8631 SGM8632XS/TR SO-8 Tape and Reel, 2500 SGM8632XS SGM8633XN6/TR SOT23-6 Tape and Reel, 3000 8633 SGM8633XS/TR SO-8 Tape and Reel, 2500 SGM8633XS SGM8634XS/TR SO-16 Tape and Reel, 2500 SGM8634XS SGM8634XTS TSSOP-16 Tape and Reel, 3000 SGM8634XTS ABSOLUTE MAXIMUM RATINGS CAUTION Supply Voltage, V+ to V- ............................................ 7.5 V Common-Mode Input Voltage .................................... (–VS) – 0.5 V to (+VS) +0.5V Storage Temperature Range..................... –65℃ to +150℃ Junction Temperature.................................................160℃ Operating Temperature Range.................–55℃ to +150℃ Package Thermal Resistance @ TA = 25℃ SC70-5, θJA................................................................ 333℃/W SOT23-5, θJA.............................................................. 190℃/W SOT23-6, θJA.............................................................. 190℃/W SO-8, θJA......................................................................125℃/W MSOP-8, θJA.............................................................. 216℃/W SO-16, θJA..................................................................... 82℃/W TSSOP-16, θJA............................................................ 105℃/W Lead Temperature Range (Soldering 10 sec) .....................................................260℃ ESD Susceptibility HBM................................................................................1500V MM....................................................................................400V This integrated circuit can be damaged by ESD. Shengbang Micro-electronics recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. NOTES 1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 3 SGM8631/2/3/4 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Closed-Loop Output Voltage Swing Output Impedance vs.Frequency 6 Vs = 5V VIN = 4.9VP-P TA = 25℃ RL = 10KΩ G=1 4 Vs = 5V 120 Output Impedance(Ω) 5 3 2 1 100 80 60 40 G = 100 G = 10 20 G =1 0 0 10 100 1000 Frequency(kHz) 1 10000 10 Positive Overload Recovery Vs = ±2.5V VIN = 50mV RL = 10KΩ G = 100 100 Frequency(kHz) 1000 10000 Negative Overload Recovery 2.5V 2.5V 0V 0V 0V 0V -50mV Vs = ±2.5V VIN = 50mV RL = 10KΩ G = 100 -50mV Time(2µs/div) Time(500ns/div) Large-Signal Step Response Small-Signal Step Response Vs = 5V G = +1 CL = 100pF RL = 10KΩ Voltage(50mV/div) Vs = 5V G = +1 CL = 100pF RL = 10KΩ Voltage(1V/div) Output Voltage(Vp-p) 140 Time(1µs/div) Time(1µs/div) 4 SGM8631/2/3/4 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. CMRR vs.Frequency PSRR vs.Frequency 120 120 Vs = 5V Vs = 5V 100 100 CMRR(dB) PSRR(dB) 80 80 60 60 40 40 20 20 0.01 0.1 1 10 Frequency(kHz) 100 0 0.01 1000 Small-Signal Overshoot vs.Load Capacitance 1 10 Frequency(kHz) 1000 Vs = 5V RL = 10kΩ TA = 25℃ G=1 60 50 Channel Separation(dB) 140 +OS 40 -OS 30 20 10 0 VS = 5V RL = 620Ω TA = 25℃ G=1 130 120 110 100 90 1 10 100 Load Capacitance(pF) 1000 0.1 1 10 Frequency(kHz) 100 1000 PSRR vs.Temperature CMRR vs.Temperature 130 120 VS = 5.5V 110 VS = 2.5V to 5.5V 120 VCM = - 0.1V to 4 V 110 PSRR(dB) 100 CMRR(dB) 100 Channel Separation vs.Frequency 70 Small-Signal Overshoot(%) 0.1 90 100 90 80 VCM = - 0.1V to 5.6V 70 80 60 70 -50 -30 -10 10 30 50 70 Temperature(℃) 90 110 130 -50 -30 -10 5 10 30 50 70 Temperature(℃) 90 110 130 SGM8631/2/3/4 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Shutdown Current vs.Temperature 210 600 180 Shutdown Current(nA) Supply Current(μA) Supply Current vs.Temperature 650 550 500 450 VS = 2.5V 400 VS = 3V 350 VS = 5V VS = 5V 150 VS = 3V VS = 2.5V 120 90 60 30 300 250 0 -50 -30 -10 10 30 50 70 Temperature(℃) 90 110 130 -50 -30 -10 Open-Loop Gain vs.Temperature 90 110 130 Output Voltage Swing vs.Output Current 120 5 Sourcing Current RL = 10KΩ 110 Output Voltage(V) Open–Loop Gain(dB) 10 30 50 70 Temperature(℃) 100 RL = 600Ω 90 80 4 135℃ VS = 5V 3 25℃ 2 -50℃ 25℃ 135℃ -50℃ 1 Sinking Current 0 70 -50 -30 -10 10 30 50 70 Temperature(℃) 90 0 110 130 10 30 40 50 60 70 80 Output Current(mA) Small-Signal Overshoot vs.Load Capacitance Output Voltage Swing vs.Output Current 3 70 Small-Signal Overshoot(%) Sourcing Current Output Voltage(V) 20 VS = 3V 2 25℃ 135℃ -50℃ 1 Sinking Current 0 0 10 20 30 40 50 Vs = 2.7V RL = 10kΩ TA = 25℃ G=1 60 50 40 +OS 30 -OS 20 10 0 60 1 Output Current(mA) 6 10 100 Load Capacitance(pF) 1000 SGM8631/2/3/4 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Closed-Loop Output Voltage Swing Output Impedance vs.Frequency 3 140 Vs = 2.7V 2.5 Output Voltage(Vp-p) Output Impedance(Ω) 120 100 80 60 40 G = 100 G = 10 G =1 20 2 1.5 1 0.5 0 1 10 100 1000 Frequency(kHz) Vs = 2.7V VIN = 2.6VP-P TA = 25℃ RL = 10KΩ G=1 0 10000 10 Large-Signal Step Response Voltage(50mV/div) Vs = 2.7V G = +1 CL = 100pF RL = 10KΩ Time(1µs/div) Time(1µs/div) Input Voltage Noise Spectral Density vs.Frequency Channel Separation vs.Frequency 1000 VS = 2.7V RL = 620Ω TA = 25℃ G=1 Voltage Noise(nV/√Hz) Channel Separation(dB) 140 130 10000 Small-Signal Step Response Vs = 2.7V G = +1 CL = 100pF RL = 10KΩ Voltage(500mV/div) 100 1000 Frequency(kHz) 120 110 100 Vs = 5V 100 10 1 90 0.1 1 10 100 10 1000 100 1000 10000 Frequency(Hz) Frequency(kHz) 7 SGM8631/2/3/4 TYPICAL PERFORMANCE CHARACTERISTICS At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted. Offset Voltage Production Distribution 45 40 Typical production distribution of packaged units. 35 30 25 20 15 10 5 3 2 2.5 1 1.5 0.5 0 -1 -0.5 -2 -1.5 -3 0 -2.5 Percent of Amplifiers(%) 50 Offset Voltage(mV) 8 SGM8631/2/3/4 Power-Supply Bypassing and Layout APPLICATION NOTES The SGM863x family operates from either a single +2.5V to +5.5V supply or dual ±1.25V to ±2.75V supplies. For single-supply operation, bypass the power supply VDD with a 0.1µF ceramic capacitor which should be placed close to the VDD pin. For dual-supply operation, both the VDD and the VSS supplies should be bypassed to ground with separate 0.1µF ceramic capacitors. 2.2µF tantalum capacitor can be added for better performance. Driving Capacitive Loads The SGM863x can directly drive 1000pF in unity-gain without oscillation. The unity-gain follower (buffer) is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers and this results in ringing or even oscillation. Applications that require greater capacitive drive capability should use an isolation resistor between the output and the capacitive load like the circuit in Figure 1. The isolation resistor RISO and the load capacitor CL form a zero to increase stability. The bigger the RISO resistor value, the more stable VOUT will be. Note that this method results in a loss of gain accuracy because RISO forms a voltage divider with the RLOAD. Good PC board layout techniques optimize performance by decreasing the amount of stray capacitance at the op amp’s inputs and output. To decrease stray capacitance, minimize trace lengths and widths by placing external components as close to the device as possible. Use surface-mount components whenever possible. For the operational amplifier, soldering the part to the board directly is strongly recommended. Try to keep the high frequency big current loop area small to minimize the EMI (electromagnetic interfacing). RISO VOUT SGM8631 VIN CL VDD VDD Figure 1. Indirectly Driving Heavy Capacitive Load 10µF 10µF 0.1µF 0.1µF An improvement circuit is shown in Figure 2. It provides DC accuracy as well as AC stability. RF provides the DC accuracy by connecting the inverting signal with the output. CF and RIso serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier’s inverting input, thereby preserving phase margin in the overall feedback loop. Vn Vn SGM8631 VOUT Vp 10µF Vp CF 0.1µF VSS(GND) RF VOUT SGM8631 RISO SGM8631 VIN VOUT CL VSS RL Figure 3. Amplifier with Bypass Capacitors Grounding Figure 2. Indirectly Driving Heavy Capacitive Load with DC Accuracy A ground plane layer is important for SGM863x circuit design. The length of the current path speed currents in an inductive ground return will create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. For no-buffer configuration, there are two others ways to increase the phase margin: (a) by increasing the amplifier’s gain or (b) by placing a capacitor in parallel with the feedback resistor to counteract the parasitic capacitance associated with inverting node. Input-to-Output Coupling To minimize capacitive coupling, the input and output signal traces should not be parallel. This helps reduce unwanted positive feedback. 9 SGM8631/2/3/4 Typical Application Circuits C Differential Amplifier R2 The circuit shown in Figure 4 performs the difference function. If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then VOUT = ( Vp – Vn ) × R2 / R1 + Vref. R1 VIN SGM8631 R2 Vn VOUT R1 SGM8631 R3=R1//R2 VOUT Vp R3 Figure 6. Low Pass Active Filter R4 Vref Figure 4. Differential Amplifier Instrumentation Amplifier The circuit in Figure 5 performs the same function as that in Figure 4 but with the high input impedance. R2 R1 SGM8631 Vn VOUT SGM8631 Vp SGM8631 R3 R4 Vref Figure 5. Instrumentation Amplifier Low Pass Active Filter The low pass filter shown in Figure 6 has a DC gain of (-R2/R1) and the –3dB corner frequency is 1/2πR2C. Make sure the filter is within the bandwidth of the amplifier. The Large values of feedback resistors can couple with parasitic capacitance and cause undesired effects such as ringing or oscillation in high-speed amplifiers. Keep resistors value as low as possible and consistent with output loading consideration. 10 SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS SC70-5 D θ e1 Symbol L1 E E1 L e b A1 C 0.20 Dimensions In Millimeters Min Max Min Max A 0.900 1.100 0.035 0.043 A1 0.000 0.100 0.000 0.004 A2 0.900 1.000 0.035 0.039 b 0.150 0.350 0.006 0.014 c 0.080 0.150 0.003 0.006 D 2.000 2.200 0.079 0.087 E 1.150 1.350 0.045 0.053 E1 2.150 2.450 0.085 0.096 e A A2 e1 0.650TYP 1.200 L 11 Dimensions In Inches 1.400 0.026TYP 0.047 0.525REF 0.055 0.021REF L1 0.260 0.460 0.010 0.018 θ 0° 8° 0° 8° SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS SOT23-5 D θ b 0.20 Symbol L E E1 e C A1 e1 Min Max Min Max 1.250 0.041 0.049 A1 0.000 0.100 0.000 0.004 A2 1.050 1.150 0.041 0.045 b 0.300 0.400 0.012 0.016 c 0.100 0.200 0.004 0.008 D 2.820 3.020 0.111 0.119 E 1.500 1.700 0.059 0.067 E1 2.650 2.950 0.104 0.116 e1 L A A2 Dimensions In Inches 1.050 e 12 Dimensions In Millimeters A L 0 0.950TYP 1.800 0.037TYP 2.000 0.700REF 0.071 0.079 0.028REF L1 0.300 0.600 0.012 0.024 θ 0° 8° 0° 8° SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS SOT23-6 D Symbol θ e1 e L E E1 b A1 C Min Max Min Max 1.050 1.250 0.041 0.049 A1 0.000 0.100 0.000 0.004 A2 1.050 1.150 0.041 0.045 b 0.300 0.400 0.012 0.016 c 0.100 0.200 0.004 0.008 D 2.820 3.020 0.111 0.119 E 1.500 1.700 0.059 0.067 E1 2.650 2.950 0.104 0.116 e e1 A A2 L 13 Dimensions In Inches A 0.20 L 0 Dimensions In Millimeters 0.950TYP 1.800 0.037TYP 2.000 0.700REF 0.071 0.079 0.028REF L1 0.300 0.600 0.012 0.024 θ 0° 8° 0° 8° SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS SO-8 D C E E1 L Symbol θ e Min Max Min Max 1.350 1.750 0.053 0.069 A1 0.100 0.250 0.004 0.010 A2 1.350 1.550 0.053 0.061 B 0.330 0.510 0.013 0.020 C 0.190 0.250 0.007 0.010 D 4.780 5.000 0.188 0.197 E 3.800 4.000 0.150 0.157 E1 5.800 6.300 0.228 0.248 A1 1.270TYP 0.050TYP L 0.400 1.270 0.016 0.050 θ 0° 8° 0° 8° A A2 Dimensions In Inches A e B Dimensions In Millimeters 14 SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS MSOP-8 C E θ e A2 A A1 E1 L b Symbol Dimensions In Millimeters Min Max Dimensions In Inches Min Max A A1 A2 b c D e E E1 L θ 0.800 1.200 0.000 0.200 0.760 0.970 0.30 TYP 0.15 TYP 2.900 3.100 0.65 TYP 2.900 3.100 4.700 5.100 0.410 0.650 0° 6° 0.031 0.047 0.000 0.008 0.030 0.038 0.012 TYP 0.006 TYP 0.114 0.122 0.026 TYP 0.114 0.122 0.185 0.201 0.016 0.026 0° 6° D 15 SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS SO-16 D L C E A A1 A2 b c D E E1 e L θ θ A1 A e A2 E1 Symbol Dimensions In Millimeters Min Max Dimensions In Inches Min Max 1.350 1.750 0.100 0.250 1.350 1.550 0.330 0.510 0.170 0.250 9.800 10.20 3.800 4.000 5.800 6.200 1.270 (BSC) 0.400 1.270 0° 8° 0.053 0.069 0.004 0.010 0.053 0.061 0.013 0.020 0.007 0.010 0.386 0.402 0.150 0.157 0.228 0.244 0.050 (BSC) 0.016 0.050 0° 8° b 16 SGM8631/2/3/4 PACKAGE OUTLINE DIMENSIONS TSSOP-16 A b E E1 Symbol PIN #1 IDENT. A2 A e C L θ D A D E b c E1 A A2 A1 e L H θ Dimensions In Millimeters Min Max 4.900 4.300 0.190 0.090 6.250 5.100 4.500 0.300 0.200 6.550 1.100 0.800 1.000 0.020 0.150 0.65 (BSC) 0.500 0.700 0.25(TYP) 1° 7° Dimensions In Inches Min Max 0.193 0.169 0.007 0.004 0.246 0.201 0.177 0.012 0.008 0.258 0.043 0.031 0.039 0.001 0.006 0.026 (BSC) 0.020 0.028 0.01(TYP) 1° 7° H A1 17 SGM8631/2/3/4 REVISION HISTORY Location Page 11/06— Data Sheet changed from REV.A to REV.B Added SC70-5 PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Changes to PRODUCT DESCRIPTION, FEATURES, and PIN CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Updated PACKAGE/ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Changes to ABSOLUTE MAXIMUM ATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Shengbang Microelectronics Co, Ltd Unit 3, ChuangYe Plaza No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park Harbin Development Zone Harbin, HeiLongJiang 150078 P.R. China Tel.: 86-451-84348461 Fax: 86-451-84308461 www.sg-micro.com 18 SGM8631/2/3/4