SGMICRO SGM8631

SGM8631
SGM8632
SGM8633
SGM8634
PRODUCT DESCRIPTION
The SGM8631(single), SGM8632(dual), SGM8633(single
with shutdown) and SGM8634 (quad) are low noise, low
voltage, and low power operational amplifiers, that can be
designed into a wide range of applications. The
SGM8631/2/3/4 have a high gain-bandwidth product of
6MHz, a slew rate of 3.7V/μs, and a quiescent current of
470μA/amplifier at 5V. The SGM8633 has a power-down
disable feature that reduces the supply current to 90nA.
The SGM8631/2/3/4 are designed to provide optimal
performance in low voltage and low noise systems. They
provide rail-to-rail output swing into heavy loads. The
input common-mode voltage range includes ground, and
the maximum input offset voltage are 3.5mV for
SGM8631/2/3/4. They are specified over the extended
industrial temperature range (−40°C to +125°C). The
operating range is from 2.5V to 5.5V.
The single version, SGM8631/8633, is available in SC70-5,
SO-8 and SOT23-5(6) packages. The dual version SGM8632
is available in SO-8 and MSOP-8 packages. The quad
470µA, 6MHz, Rail-to-Rail I/O
CMOS Operational Amplifier
FEATURES
y Low Cost
y Rail-to-Rail Input and Output
y
y
y
y
y
y
y
y
y
0.8mV Typical VOS
High Gain-Bandwidth Product: 6MHz
High Slew Rate: 3.7V/µs
Settling Time to 0.1% with 2V Step: 2.1µs
Overload Recovery Time: 0.9µs
Low Noise : 12 nV/ Hz
Operates on 2.5 V to 5.5V Supplies
Input Voltage Range = - 0.1 V to +5.6 V with VS = 5.5 V
Low Power
470μA/Amplifier Typical Supply Current
SGM8633 90nA when Disabled
Small Packaging
SGM8631 Available in SC70-5, SOT23-5 and SO-8
SGM8632 Available in MSOP-8 and SO-8
SGM8633 Available in SOT23-6 and SO-8
SGM8634 Available in TSSOP-16 and SO-16
PIN CONFIGURATIONS (Top View)
version SGM8634 is available in SO-16 and TSSOP-16
packages.
APPLICATIONS
OUT
1
-VS
2
+IN 3
SGM8631/8633
5
+VS
4
-IN
NC
SOT23-5 / SC70-5
OUT
1
-VS
2
-IN
2
7
+VS
3
6
OUT
-VS
4
5
NC
NC = NO CONNECT
SO-8
6
+VS
5
DISABLE
4
SGM8634
-IN
SOT23-6
SGM8632
OUT A 1
-IN A
2
8
+VS
7
OUT B
6
+IN A 3
-VS 4
DISABLE
(SGM8633 ONLY)
+IN
OUT A
3
+IN
8
1
SGM8633
8633
Sensors
Audio
Active Filters
A/D Converters
Communications
Test Equipment
Cellular and Cordless Phones
Laptops and PDAs
Photodiode Amplification
Battery-Powered Instrumentation
SGM8631
5
-IN B
+IN B
16 OUT D
1
-IN A
2
15 -IND
+IN A
3
14 +IND
+VS
4
13 -VS
+INB
5
12 +INC
-INB
6
11
OUT B
7
10
NC
8
9
NC = NO CONNECT
-INC
OUT C
NC
TSSOP-16 / SO-16
SO-8 / MSOP-8
Shengbang Microelectronics Co, Ltd
Tel: 86/451/84348461
www.sg-micro.com
REV. B
ELECTRICAL CHARACTERISTICS :VS = +5V
(At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted)
SGM8631/2/3/4
PARAMETER
TYP
CONDITION
MIN/MAX OVER TEMPERATURE
+25℃
+25℃
0℃ to
70℃
-40℃
to 85℃
0.8
3.5
3.9
4.3
-40℃ to
125℃
UNITS
MIN/
MAX
INPUT CHARACTERISTICS
Input Offset Voltage (VOS)
4.6
mV
MAX
Input Bias Current (IB)
1
pA
TYP
Input Offset Current (IOS)
1
pA
TYP
-0.1 to +5.6
V
TYP
dB
MIN
dB
MIN
dB
MIN
Common-Mode Voltage Range (VCM)
VS = 5.5V
Common-Mode Rejection Ratio(CMRR)
VS = 5.5V, VCM = - 0.1V to 4 V
90
VS = 5.5V, VCM = - 0.1V to 5.6 V
83
Open-Loop Voltage Gain( AOL)
75
74
74
73
RL = 600Ω ,Vo = 0.15V to 4.85V
97
RL =10KΩ ,Vo = 0.05V to 4.95V
108
dB
MIN
2.4
µV/℃
TYP
RL = 600Ω
0.1
V
TYP
RL = 10KΩ
0.015
V
Input Offset Voltage Drift (∆VOS/∆T)
90
87
86
79
OUTPUT CHARACTERISTICS
Output Voltage Swing from Rail
53
49
45
40
35
mA
MIN
3
Ω
TYP
Turn-On Time
4
µs
TYP
Turn-Off Time
1.2
µs
TYP
Output Current (IOUT)
Closed-Loop Output Impedance
POWER-DOWN
DISABLE
DISABLE
F = 200KHz, G = 1
DISABLE
Voltage-Off
0.8
V
MAX
Voltage-On
2
V
MIN
POWER SUPPLY
Operating Voltage Range
Power Supply Rejection Ratio (PSRR)
Quiescent Current/ Amplifier (IQ)
2.5
2.5
2.5
2.5
V
MIN
5.5
5.5
5.5
5.5
V
MAX
Vs = +2.5 V to + 5.5 V
VCM = (-VS) + 0.5V
91
80
78
78
77
dB
MIN
IOUT = 0
470
590
660
680
740
µA
MAX
nA
MAX
MHz
TYP
Supply Current when Disabled
90
(SGM8633 only)
DYNAMIC PERFORMANCE
Gain-Bandwidth Product (GBP)
RL = 10KΩ
6
60
Phase Margin(φO)
degrees TYP
Full Power Bandwidth(BWP)
<1% distortion, RL = 600Ω
250
KHz
TYP
Slew Rate (SR)
G = +1 , 2V Step, RL = 10KΩ
3.7
V/µs
TYP
Settling Time to 0.1%( tS)
G = +1, 2 V Step, RL = 600Ω
2.1
µs
TYP
Overload Recovery Time
VIN ·Gain = Vs, RL = 600Ω
0.9
µs
TYP
Voltage Noise Density (en)
f = 1kHz
12
nV/
Hz
TYP
Current Noise Density( in)
f = 1kHz
3
fA/
Hz
TYP
NOISE PERFORMANCE
Specifications subject to change without notice.
2
SGM8631/2/3/4
PACKAGE/ORDERING INFORMATION
MODEL
SGM8631
SGM8632
SGM8633
SGM8634
ORDER NUMBER
PACKAGE
DESCRIPTION
PACKAGE
OPTION
SGM8631XC5/TR
SC70-5
SGM8631XN5/TR
SOT23-5
Tape and Reel, 3000
SGM8631XS/TR
SO-8
Tape and Reel, 2500
SGM8631XS
SGM8632XMS/TR
MSOP-8
Tape and Reel, 3000
SGM8632XMS
Tape and Reel, 3000
MARKING
INFORMATION
8631
8631
SGM8632XS/TR
SO-8
Tape and Reel, 2500
SGM8632XS
SGM8633XN6/TR
SOT23-6
Tape and Reel, 3000
8633
SGM8633XS/TR
SO-8
Tape and Reel, 2500
SGM8633XS
SGM8634XS/TR
SO-16
Tape and Reel, 2500
SGM8634XS
SGM8634XTS
TSSOP-16
Tape and Reel, 3000
SGM8634XTS
ABSOLUTE MAXIMUM RATINGS
CAUTION
Supply Voltage, V+ to V- ............................................ 7.5 V
Common-Mode Input Voltage
.................................... (–VS) – 0.5 V to (+VS) +0.5V
Storage Temperature Range..................... –65℃ to +150℃
Junction Temperature.................................................160℃
Operating Temperature Range.................–55℃ to +150℃
Package Thermal Resistance @ TA = 25℃
SC70-5, θJA................................................................ 333℃/W
SOT23-5, θJA.............................................................. 190℃/W
SOT23-6, θJA.............................................................. 190℃/W
SO-8, θJA......................................................................125℃/W
MSOP-8, θJA.............................................................. 216℃/W
SO-16, θJA..................................................................... 82℃/W
TSSOP-16, θJA............................................................ 105℃/W
Lead Temperature Range (Soldering 10 sec)
.....................................................260℃
ESD Susceptibility
HBM................................................................................1500V
MM....................................................................................400V
This integrated circuit can be damaged by ESD.
Shengbang Micro-electronics recommends that all
integrated circuits be handled with appropriate
precautions. Failure to observe proper handling and
installation procedures can cause damage.
ESD damage can range from subtle performance
degradation to complete device failure. Precision
integrated circuits may be more susceptible to
damage because very small parametric changes could
cause the device not to meet its published
specifications.
NOTES
1. Stresses above those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is
a stress rating only; functional operation of the device at
these or any other conditions above those indicated in the
operational section of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
3
SGM8631/2/3/4
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted.
Closed-Loop Output Voltage Swing
Output Impedance vs.Frequency
6
Vs = 5V
VIN = 4.9VP-P
TA = 25℃
RL = 10KΩ
G=1
4
Vs = 5V
120
Output Impedance(Ω)
5
3
2
1
100
80
60
40
G = 100
G = 10
20
G =1
0
0
10
100
1000
Frequency(kHz)
1
10000
10
Positive Overload Recovery
Vs = ±2.5V
VIN = 50mV
RL = 10KΩ
G = 100
100
Frequency(kHz)
1000
10000
Negative Overload Recovery
2.5V
2.5V
0V
0V
0V
0V
-50mV
Vs = ±2.5V
VIN = 50mV
RL = 10KΩ
G = 100
-50mV
Time(2µs/div)
Time(500ns/div)
Large-Signal Step Response
Small-Signal Step Response
Vs = 5V
G = +1
CL = 100pF
RL = 10KΩ
Voltage(50mV/div)
Vs = 5V
G = +1
CL = 100pF
RL = 10KΩ
Voltage(1V/div)
Output Voltage(Vp-p)
140
Time(1µs/div)
Time(1µs/div)
4
SGM8631/2/3/4
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted.
CMRR vs.Frequency
PSRR vs.Frequency
120
120
Vs = 5V
Vs = 5V
100
100
CMRR(dB)
PSRR(dB)
80
80
60
60
40
40
20
20
0.01
0.1
1
10
Frequency(kHz)
100
0
0.01
1000
Small-Signal Overshoot vs.Load Capacitance
1
10
Frequency(kHz)
1000
Vs = 5V
RL = 10kΩ
TA = 25℃
G=1
60
50
Channel Separation(dB)
140
+OS
40
-OS
30
20
10
0
VS = 5V
RL = 620Ω
TA = 25℃
G=1
130
120
110
100
90
1
10
100
Load Capacitance(pF)
1000
0.1
1
10
Frequency(kHz)
100
1000
PSRR vs.Temperature
CMRR vs.Temperature
130
120
VS = 5.5V
110
VS = 2.5V to 5.5V
120
VCM = - 0.1V to 4 V
110
PSRR(dB)
100
CMRR(dB)
100
Channel Separation vs.Frequency
70
Small-Signal Overshoot(%)
0.1
90
100
90
80
VCM = - 0.1V to 5.6V
70
80
60
70
-50 -30 -10
10 30 50 70
Temperature(℃)
90
110 130
-50 -30 -10
5
10 30 50 70
Temperature(℃)
90
110 130
SGM8631/2/3/4
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted.
Shutdown Current vs.Temperature
210
600
180
Shutdown Current(nA)
Supply Current(μA)
Supply Current vs.Temperature
650
550
500
450
VS = 2.5V
400
VS = 3V
350
VS = 5V
VS = 5V
150
VS = 3V
VS = 2.5V
120
90
60
30
300
250
0
-50 -30 -10
10 30 50 70
Temperature(℃)
90
110 130
-50 -30 -10
Open-Loop Gain vs.Temperature
90
110 130
Output Voltage Swing vs.Output Current
120
5
Sourcing Current
RL = 10KΩ
110
Output Voltage(V)
Open–Loop Gain(dB)
10 30 50 70
Temperature(℃)
100
RL = 600Ω
90
80
4
135℃
VS = 5V
3
25℃
2
-50℃
25℃
135℃
-50℃
1
Sinking Current
0
70
-50 -30 -10
10 30 50 70
Temperature(℃)
90
0
110 130
10
30
40
50
60
70
80
Output Current(mA)
Small-Signal Overshoot vs.Load Capacitance
Output Voltage Swing vs.Output Current
3
70
Small-Signal Overshoot(%)
Sourcing Current
Output Voltage(V)
20
VS = 3V
2
25℃
135℃
-50℃
1
Sinking Current
0
0
10
20
30
40
50
Vs = 2.7V
RL = 10kΩ
TA = 25℃
G=1
60
50
40
+OS
30
-OS
20
10
0
60
1
Output Current(mA)
6
10
100
Load Capacitance(pF)
1000
SGM8631/2/3/4
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted.
Closed-Loop Output Voltage Swing
Output Impedance vs.Frequency
3
140
Vs = 2.7V
2.5
Output Voltage(Vp-p)
Output Impedance(Ω)
120
100
80
60
40
G = 100
G = 10
G =1
20
2
1.5
1
0.5
0
1
10
100
1000
Frequency(kHz)
Vs = 2.7V
VIN = 2.6VP-P
TA = 25℃
RL = 10KΩ
G=1
0
10000
10
Large-Signal Step Response
Voltage(50mV/div)
Vs = 2.7V
G = +1
CL = 100pF
RL = 10KΩ
Time(1µs/div)
Time(1µs/div)
Input Voltage Noise Spectral Density
vs.Frequency
Channel Separation vs.Frequency
1000
VS = 2.7V
RL = 620Ω
TA = 25℃
G=1
Voltage Noise(nV/√Hz)
Channel Separation(dB)
140
130
10000
Small-Signal Step Response
Vs = 2.7V
G = +1
CL = 100pF
RL = 10KΩ
Voltage(500mV/div)
100
1000
Frequency(kHz)
120
110
100
Vs = 5V
100
10
1
90
0.1
1
10
100
10
1000
100
1000
10000
Frequency(Hz)
Frequency(kHz)
7
SGM8631/2/3/4
TYPICAL PERFORMANCE CHARACTERISTICS
At TA = +25℃,VCM = Vs/2, RL = 600Ω, unless otherwise noted.
Offset Voltage Production Distribution
45
40
Typical production
distribution of
packaged units.
35
30
25
20
15
10
5
3
2
2.5
1
1.5
0.5
0
-1
-0.5
-2
-1.5
-3
0
-2.5
Percent of Amplifiers(%)
50
Offset Voltage(mV)
8
SGM8631/2/3/4
Power-Supply Bypassing and Layout
APPLICATION NOTES
The SGM863x family operates from either a single +2.5V to
+5.5V supply or dual ±1.25V to ±2.75V supplies. For
single-supply operation, bypass the power supply VDD with a
0.1µF ceramic capacitor which should be placed close to the
VDD pin. For dual-supply operation, both the VDD and the VSS
supplies should be bypassed to ground with separate 0.1µF
ceramic capacitors. 2.2µF tantalum capacitor can be added for
better performance.
Driving Capacitive Loads
The SGM863x can directly drive 1000pF in unity-gain without
oscillation. The unity-gain follower (buffer) is the most sensitive
configuration to capacitive loading. Direct capacitive loading
reduces the phase margin of amplifiers and this results in
ringing or even oscillation. Applications that require greater
capacitive drive capability should use an isolation resistor
between the output and the capacitive load like the circuit in
Figure 1. The isolation resistor RISO and the load capacitor CL
form a zero to increase stability. The bigger the RISO resistor
value, the more stable VOUT will be. Note that this method
results in a loss of gain accuracy because RISO forms a voltage
divider with the RLOAD.
Good PC board layout techniques optimize performance by
decreasing the amount of stray capacitance at the op amp’s
inputs and output. To decrease stray capacitance, minimize
trace lengths and widths by placing external components as
close to the device as possible. Use surface-mount
components whenever possible.
For the operational amplifier, soldering the part to the board
directly is strongly recommended. Try to keep the high
frequency big current loop area small to minimize the EMI
(electromagnetic interfacing).
RISO
VOUT
SGM8631
VIN
CL
VDD
VDD
Figure 1. Indirectly Driving Heavy Capacitive Load
10µF
10µF
0.1µF
0.1µF
An improvement circuit is shown in Figure 2. It provides DC
accuracy as well as AC stability. RF provides the DC accuracy
by connecting the inverting signal with the output. CF and RIso
serve to counteract the loss of phase margin by feeding the
high frequency component of the output signal back to the
amplifier’s inverting input, thereby preserving phase margin in
the overall feedback loop.
Vn
Vn
SGM8631
VOUT
Vp
10µF
Vp
CF
0.1µF
VSS(GND)
RF
VOUT
SGM8631
RISO
SGM8631
VIN
VOUT
CL
VSS
RL
Figure 3. Amplifier with Bypass Capacitors
Grounding
Figure 2. Indirectly Driving Heavy Capacitive Load with DC
Accuracy
A ground plane layer is important for SGM863x circuit design.
The length of the current path speed currents in an inductive
ground return will create an unwanted voltage noise. Broad
ground plane areas will reduce the parasitic inductance.
For no-buffer configuration, there are two others ways to
increase the phase margin: (a) by increasing the amplifier’s
gain or (b) by placing a capacitor in parallel with the feedback
resistor to counteract the parasitic capacitance associated with
inverting node.
Input-to-Output Coupling
To minimize capacitive coupling, the input and output signal
traces should not be parallel. This helps reduce unwanted
positive feedback.
9
SGM8631/2/3/4
Typical Application Circuits
C
Differential Amplifier
R2
The circuit shown in Figure 4 performs the difference function.
If the resistors ratios are equal ( R4 / R3 = R2 / R1 ), then
VOUT = ( Vp – Vn ) × R2 / R1 + Vref.
R1
VIN
SGM8631
R2
Vn
VOUT
R1
SGM8631
R3=R1//R2
VOUT
Vp
R3
Figure 6. Low Pass Active Filter
R4
Vref
Figure 4. Differential Amplifier
Instrumentation Amplifier
The circuit in Figure 5 performs the same function as that in
Figure 4 but with the high input impedance.
R2
R1
SGM8631
Vn
VOUT
SGM8631
Vp
SGM8631
R3
R4
Vref
Figure 5. Instrumentation Amplifier
Low Pass Active Filter
The low pass filter shown in Figure 6 has a DC gain of (-R2/R1)
and the –3dB corner frequency is 1/2πR2C. Make sure the filter
is within the bandwidth of the amplifier. The Large values of
feedback resistors can couple with parasitic capacitance and
cause undesired effects such as ringing or oscillation in
high-speed amplifiers. Keep resistors value as low as possible
and consistent with output loading consideration.
10
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
SC70-5
D
θ
e1
Symbol
L1
E
E1
L
e
b
A1
C
0.20
Dimensions
In Millimeters
Min
Max
Min
Max
A
0.900
1.100
0.035
0.043
A1
0.000
0.100
0.000
0.004
A2
0.900
1.000
0.035
0.039
b
0.150
0.350
0.006
0.014
c
0.080
0.150
0.003
0.006
D
2.000
2.200
0.079
0.087
E
1.150
1.350
0.045
0.053
E1
2.150
2.450
0.085
0.096
e
A
A2
e1
0.650TYP
1.200
L
11
Dimensions
In Inches
1.400
0.026TYP
0.047
0.525REF
0.055
0.021REF
L1
0.260
0.460
0.010
0.018
θ
0°
8°
0°
8°
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
SOT23-5
D
θ
b
0.20
Symbol
L
E
E1
e
C
A1
e1
Min
Max
Min
Max
1.250
0.041
0.049
A1
0.000
0.100
0.000
0.004
A2
1.050
1.150
0.041
0.045
b
0.300
0.400
0.012
0.016
c
0.100
0.200
0.004
0.008
D
2.820
3.020
0.111
0.119
E
1.500
1.700
0.059
0.067
E1
2.650
2.950
0.104
0.116
e1
L
A
A2
Dimensions
In Inches
1.050
e
12
Dimensions
In Millimeters
A
L
0
0.950TYP
1.800
0.037TYP
2.000
0.700REF
0.071
0.079
0.028REF
L1
0.300
0.600
0.012
0.024
θ
0°
8°
0°
8°
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
SOT23-6
D
Symbol
θ
e1
e
L
E
E1
b
A1
C
Min
Max
Min
Max
1.050
1.250
0.041
0.049
A1
0.000
0.100
0.000
0.004
A2
1.050
1.150
0.041
0.045
b
0.300
0.400
0.012
0.016
c
0.100
0.200
0.004
0.008
D
2.820
3.020
0.111
0.119
E
1.500
1.700
0.059
0.067
E1
2.650
2.950
0.104
0.116
e
e1
A
A2
L
13
Dimensions
In Inches
A
0.20
L
0
Dimensions
In Millimeters
0.950TYP
1.800
0.037TYP
2.000
0.700REF
0.071
0.079
0.028REF
L1
0.300
0.600
0.012
0.024
θ
0°
8°
0°
8°
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
SO-8
D
C
E
E1
L
Symbol
θ
e
Min
Max
Min
Max
1.350
1.750
0.053
0.069
A1
0.100
0.250
0.004
0.010
A2
1.350
1.550
0.053
0.061
B
0.330
0.510
0.013
0.020
C
0.190
0.250
0.007
0.010
D
4.780
5.000
0.188
0.197
E
3.800
4.000
0.150
0.157
E1
5.800
6.300
0.228
0.248
A1
1.270TYP
0.050TYP
L
0.400
1.270
0.016
0.050
θ
0°
8°
0°
8°
A
A2
Dimensions
In Inches
A
e
B
Dimensions
In Millimeters
14
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
MSOP-8
C
E
θ
e
A2
A
A1
E1
L
b
Symbol
Dimensions
In Millimeters
Min
Max
Dimensions
In Inches
Min
Max
A
A1
A2
b
c
D
e
E
E1
L
θ
0.800
1.200
0.000
0.200
0.760
0.970
0.30 TYP
0.15 TYP
2.900
3.100
0.65 TYP
2.900
3.100
4.700
5.100
0.410
0.650
0°
6°
0.031
0.047
0.000
0.008
0.030
0.038
0.012 TYP
0.006 TYP
0.114
0.122
0.026 TYP
0.114
0.122
0.185
0.201
0.016
0.026
0°
6°
D
15
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
SO-16
D
L
C
E
A
A1
A2
b
c
D
E
E1
e
L
θ
θ
A1
A
e
A2
E1
Symbol
Dimensions
In Millimeters
Min
Max
Dimensions
In Inches
Min
Max
1.350
1.750
0.100
0.250
1.350
1.550
0.330
0.510
0.170
0.250
9.800
10.20
3.800
4.000
5.800
6.200
1.270 (BSC)
0.400
1.270
0°
8°
0.053
0.069
0.004
0.010
0.053
0.061
0.013
0.020
0.007
0.010
0.386
0.402
0.150
0.157
0.228
0.244
0.050 (BSC)
0.016
0.050
0°
8°
b
16
SGM8631/2/3/4
PACKAGE OUTLINE DIMENSIONS
TSSOP-16
A
b
E
E1
Symbol
PIN #1 IDENT.
A2
A
e
C
L
θ
D
A
D
E
b
c
E1
A
A2
A1
e
L
H
θ
Dimensions
In Millimeters
Min
Max
4.900
4.300
0.190
0.090
6.250
5.100
4.500
0.300
0.200
6.550
1.100
0.800
1.000
0.020
0.150
0.65 (BSC)
0.500
0.700
0.25(TYP)
1°
7°
Dimensions
In Inches
Min
Max
0.193
0.169
0.007
0.004
0.246
0.201
0.177
0.012
0.008
0.258
0.043
0.031
0.039
0.001
0.006
0.026 (BSC)
0.020
0.028
0.01(TYP)
1°
7°
H
A1
17
SGM8631/2/3/4
REVISION HISTORY
Location
Page
11/06— Data Sheet changed from REV.A to REV.B
Added SC70-5 PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal
Changes to PRODUCT DESCRIPTION, FEATURES, and PIN CONFIGURATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Updated PACKAGE/ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Changes to ABSOLUTE MAXIMUM ATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Shengbang Microelectronics Co, Ltd
Unit 3, ChuangYe Plaza
No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park
Harbin Development Zone
Harbin, HeiLongJiang 150078
P.R. China
Tel.: 86-451-84348461
Fax: 86-451-84308461
www.sg-micro.com
18
SGM8631/2/3/4