General-Purpose CMOS Rail-to-Rail Amplifiers AD8541/AD8542/AD8544 APPLICATIONS ASIC input or output amplifiers Sensor interfaces Piezoelectric transducer amplifiers Medical instrumentations Mobile communications Audio outputs Portable systems PIN CONFIGURATIONS OUT A 1 AD8541 5 V+ V– 2 +IN A 3 4 –IN A 00935-001 Single-supply operation: 2.7 V to 5.5 V Low supply current: 45 μA/amplifier Wide bandwidth: 1 MHz No phase reversal Low input currents: 4 pA Unity gain stable Rail-to-rail input and output Figure 1. 5-Lead SC70 and 5-Lead SOT-23 (KS and RJ Suffixes) 8 NC 2 7 V+ +IN A 3 6 OUT A 4 5 NC NC 1 –IN A V– AD8541 00935-002 FEATURES NC = NO CONNECT Figure 2. 8-Lead SOIC (R Suffix) Very low input bias currents enable the AD8541/AD8542/AD8544 to be used for integrators, photodiode amplifiers, piezoelectric sensors, and other applications with high source impedance. The supply current is only 45 μA per amplifier, ideal for battery operation. Rail-to-rail inputs and outputs are useful to designers buffering ASICs in single-supply systems. The AD8541/AD8542/AD8544 are optimized to maintain high gains at lower supply voltages, making them useful for active filters and gain stages. The AD8541/AD8542/AD8544 are specified over the extended industrial temperature range (–40°C to +125°C). The AD8541 is available in 8-lead SOIC, 5-lead SC70, and 5-lead SOT-23 packages. The AD8542 is available in 8-lead SOIC, 8-lead MSOP, and 8-lead TSSOP surface-mount packages. The AD8544 is available in 14-lead narrow SOIC and 14-lead TSSOP surface-mount packages. All MSOP, SC70, and SOT versions are available in tape and reel only. OUT A 1 –IN A AD8542 8 V+ 2 7 OUT B +IN A 3 6 –IN B V– 4 5 +IN B Figure 3. 8-Lead SOIC, 8-Lead MSOP, and 8-Lead TSSOP (R, RM, and RU Suffixes) OUT A 1 14 OUT D –IN A 2 13 –IN D +IN A 3 12 +IN D V+ 4 +IN B 5 –IN B 6 9 –IN C OUT B 7 8 OUT C AD8544 11 V– 10 +IN C 00935-004 The AD8541/AD8542/AD8544 are single, dual, and quad railto-rail input and output single-supply amplifiers featuring very low supply current and 1 MHz bandwidth. All are guaranteed to operate from a 2.7 V single supply as well as a 5 V supply. These parts provide 1 MHz bandwidth at a low current consumption of 45 μA per amplifier. 00935-003 GENERAL DESCRIPTION Figure 4. 14-Lead SOIC and 14-Lead TSSOP (R and RU Suffixes) Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved. AD8541/AD8542/AD8544 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................7 Applications....................................................................................... 1 Theory of Operation ...................................................................... 12 General Description ......................................................................... 1 Notes on the AD854x Amplifiers............................................. 12 Pin Configurations ........................................................................... 1 Applications..................................................................................... 13 Revision History ............................................................................... 2 Notch Filter ................................................................................. 13 Specifications..................................................................................... 3 Comparator Function ................................................................ 13 Electrical Characteristics............................................................. 3 Photodiode Application ............................................................ 14 Absolute Maximum Ratings............................................................ 6 Outline Dimensions ....................................................................... 15 Thermal Resistance ...................................................................... 6 Ordering Guide .......................................................................... 17 ESD Caution.................................................................................. 6 REVISION HISTORY 1/07—Rev. D to Rev. E Updated Format..................................................................Universal Changes to Photodiode Application Section .............................. 14 Changes to Ordering Guide .......................................................... 17 8/04—Rev. C to Rev. D Changes to Ordering Guide ............................................................ 5 Changes to Figure 3........................................................................ 10 Updated Outline Dimensions ....................................................... 12 1/03—Rev. B to Rev. C Updated Format..................................................................Universal Changes to General Description .................................................... 1 Changes to Ordering Guide ............................................................ 5 Changes to Outline Dimensions................................................... 12 Rev. E | Page 2 of 20 AD8541/AD8542/AD8544 SPECIFICATIONS ELECTRICAL CHARACTERISTICS VS = 2.7 V, VCM = 1.35 V, TA = 25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Typ Max Unit 1 6 7 60 100 1000 30 50 500 2.7 mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV μV/°C fA/°C fA/°C fA/°C –40°C ≤ TA ≤ +125°C Input Bias Current IB 4 –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C Input Offset Current IOS 0.1 –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Bias Current Drift ΔVOS/ΔT ΔIB/ΔT Offset Current Drift ΔIOS/ΔT VCM = 0 V to 2.7 V –40°C ≤ TA ≤ +125°C RL = 100 kΩ , VO = 0.5 V to 2.2 V –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C 0 40 38 100 50 2 45 500 4 100 2000 25 OUTPUT CHARACTERISTICS Output Voltage High VOH Output Voltage Low VOL Output Current IOUT ±ISC ZOUT Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin PSRR IL = 1 mA –40°C ≤ TA ≤ +125°C IL = 1 mA –40°C ≤ TA ≤ +125°C VOUT = VS – 1 V 2.575 2.550 35 100 125 15 ±20 50 f = 200 kHz, AV = 1 VS = 2.5 V to 6 V –40°C ≤ TA ≤ +125°C VO = 0 V –40°C ≤ TA ≤ +125°C 65 60 SR tS GBP Φo RL = 100 kΩ To 0.1% (1 V step) 0.4 en en in f = 1 kHz f = 10 kHz ISY 2.65 76 38 55 75 V V mV mV mA mA Ω dB dB μA μA 0.75 5 980 63 V/μs μs kHz Degrees 40 38 <0.1 nV/√Hz nV/√Hz pA/√Hz NOISE PERFORMANCE Voltage Noise Density Current Noise Density Rev. E | Page 3 of 20 AD8541/AD8542/AD8544 VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Typ Max Unit 1 6 7 60 100 1000 30 50 500 3 mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV μV/°C fA/°C fA/°C fA/°C –40°C ≤ TA ≤ +125°C Input Bias Current IB 4 –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C Input Offset Current IOS 0.1 –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Bias Current Drift ΔVOS/ΔT ΔIB/ΔT Offset Current Drift OUTPUT CHARACTERISTICS Output Voltage High ΔIOS/ΔT VOH Output Voltage Low VOL Output Current IOUT ±ISC ZOUT Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density PSRR VCM = 0 V to 3 V –40°C ≤ TA ≤ +125°C RL = 100 kΩ , VO = 0.5 V to 2.2 V –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C IL = 1 mA –40°C ≤ TA ≤ +125°C IL = 1 mA –40°C ≤ TA ≤ +125°C VOUT = VS – 1 V 0 40 38 100 50 2 2.875 2.850 2.955 32 100 125 18 ±25 50 f = 200 kHz, AV = 1 65 60 SR tS GBP Φo RL = 100 kΩ To 0.01% (1 V step) 0.4 en en in f = 1 kHz f = 10 kHz Rev. E | Page 4 of 20 500 4 100 2000 25 VS = 2.5 V to 6 V –40°C ≤ TA ≤ +125°C VO = 0 V –40°C ≤ TA ≤ +125°C ISY 45 76 40 60 75 V V mV mV mA mA Ω dB dB μA μA 0.8 5 980 64 V/μs μs kHz Degrees 42 38 <0.1 nV/√Hz nV/√Hz pA/√Hz AD8541/AD8542/AD8544 VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Offset Voltage Symbol Conditions Min VOS Typ Max Unit 1 6 7 60 100 1000 30 50 500 5 mV mV pA pA pA pA pA pA V dB dB V/mV V/mV V/mV μV/°C fA/°C fA/°C fA/°C –40°C ≤ TA ≤ +125°C Input Bias Current IB 4 –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C Input Offset Current IOS 0.1 –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C Input Voltage Range Common-Mode Rejection Ratio CMRR Large Signal Voltage Gain AVO Offset Voltage Drift Bias Current Drift ΔVOS/ΔT ΔIB/ΔT Offset Current Drift ΔIOS/ΔT VCM = 0 V to 5 V –40°C ≤ TA ≤ +125°C RL = 100 kΩ , VO = 0.5 V to 2.2 V –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +85°C –40°C ≤ TA ≤ +125°C –40°C ≤ TA ≤ +125°C 0 40 38 20 10 2 48 40 4 100 2000 25 OUTPUT CHARACTERISTICS Output Voltage High VOH Output Voltage Low VOL Output Current IOUT ±ISC ZOUT Closed-Loop Output Impedance POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin NOISE PERFORMANCE Voltage Noise Density Current Noise Density PSRR IL = 1 mA –40°C ≤ TA ≤ +125°C IL = 1 mA –40°C ≤ TA ≤ +125°C VOUT = VS – 1 V 4.9 4.875 25 f = 200 kHz, AV = 1 65 60 SR BWP tS GBP Φo RL = 100 kΩ, CL = 200 pF 1% distortion To 0.1% (1 V step) 0.45 en en in f = 1 kHz f = 10 kHz Rev. E | Page 5 of 20 100 125 30 ±60 45 VS = 2.5 V to 6 V –40°C ≤ TA ≤ +125°C VO = 0 V –40°C ≤ TA ≤ +125°C ISY 4.965 76 45 65 85 V V mV mV mA mA Ω dB dB μA μA 0.92 70 6 1000 67 V/μs kHz μs kHz Degrees 42 38 <0.1 nV/√Hz nV/√Hz pA/√Hz AD8541/AD8542/AD8544 ABSOLUTE MAXIMUM RATINGS THERMAL RESISTANCE Table 4. Parameter Supply Voltage (VS) Input Voltage Differential Input Voltage1 Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) 1 Rating 6V GND to VS ±6 V −65°C to +150°C −40°C to +125°C −65°C to +150°C 300°C For supplies less than 6 V, the differential input voltage is equal to ±VS. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Table 5. Package Type 5-Lead SC70 (KS) 5-Lead SOT-23 (RJ) 8-Lead SOIC (R) 8-Lead MSOP (RM) 8-Lead TSSOP (RU) 14-Lead SOIC (R) 14-Lead TSSOP (RU) ESD CAUTION Rev. E | Page 6 of 20 θJA 376 230 158 210 240 120 240 θJC 126 146 43 45 43 36 43 Unit °C/W °C/W °C/W °C/W °C/W °C/W °C/W AD8541/AD8542/AD8544 TYPICAL PERFORMANCE CHARACTERISTICS 180 160 VS = 2.7V AND 5V VCM = VS/2 350 140 300 INPUT BIAS CURRENT (pA) 120 100 80 60 40 250 200 150 100 –3.5 –2.5 –1.5 –0.5 0.5 1.5 2.5 INPUT OFFSET VOLTAGE (mV) 3.5 0 –40 00935-005 0 –4.5 4.5 Figure 5. Input Offset Voltage Distribution 100 120 140 VS = 2.7V AND 5V VCM = VS/2 6 0 INPUT OFFSET CURRENT (pA) –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 5 4 3 2 1 0 –3.5 –35 5 –15 25 45 65 85 TEMPERATURE (°C) 105 145 125 –1 –55 00935-006 –4.0 –55 Figure 6. Input Offset Voltage vs. Temperature –35 –15 5 25 45 65 85 TEMPERATURE (°C) 105 125 145 00935-009 INPUT OFFSET VOLTAGE (mV) 20 40 60 80 TEMPERATURE (°C) 7 VS = 2.7V AND 5V VCM = VS/2 0.5 Figure 9. Input Offset Current vs. Temperature 9 160 VS = 2.7V AND 5V VCM = VS/2 VS = 2.7V TA = 25°C POWER SUPPLY REJECTION (dB) 140 7 6 5 4 3 2 1 120 100 80 –PSRR 60 +PSRR 40 20 0 –20 0 –0.5 0.5 1.5 2.5 3.5 COMMON-MODE VOLTAGE (V) 4.5 5.5 –40 100 00935-007 INPUT BIAS CURRENT (pA) 0 Figure 8. Input Bias Current vs. Temperature 1.0 8 –20 00935-008 50 20 Figure 7. Input Bias Current vs. Common-Mode Voltage 1k 10k 100k FREQUENCY (Hz) 1M Figure 10. Power Supply Rejection Ratio vs. Frequency Rev. E | Page 7 of 20 10M 00935-010 NUMBER OF AMPLIFIERS 400 VS = 5V VCM = 2.5V TA = 25°C AD8541/AD8542/AD8544 60 SMALL SIGNAL OVERSHOOT (%) 100 SOURCE 10 SINK 1 0.1 0.01 0.1 1 LOAD CURRENT (mA) 10 100 +OS 40 –OS 30 20 10 0 00935-011 0.01 0.001 50 10 Figure 11. Output Voltage to Supply Rail vs. Load Current 3.0 SMALL SIGNAL OVERSHOOT (%) 1.5 1.0 0.5 10k 100k FREQUENCY (Hz) 1M 10M 50 40 +OS 30 –OS 20 10 0 00935-012 1k VS = 2.7V RL = 2kΩ TA = 25°C 10 VS = 2.7V RL = 100kΩ CL = 300pF AV = 1 TA = 25°C VS = 2.7V RL = ∞ TA = 25°C +OS 1.35V 30 –OS 20 10 50mV 0 10 100 1k CAPACITANCE (pF) 10k 10µs 00935-013 SMALL SIGNAL OVERSHOOT (%) 60 40 10k Figure 15. Small Signal Overshoot vs. Load Capacitance Figure 12. Closed-Loop Output Voltage Swing vs. Frequency 50 100 1k CAPACITANCE (pF) Figure 16. Small Signal Transient Response Figure 13. Small Signal Overshoot vs. Load Capacitance Rev. E | Page 8 of 20 00935-016 OUTPUT SWING (V p-p) 60 2.0 0 10k Figure 14. Small Signal Overshoot vs. Load Capacitance VS = 2.7V VIN = 2.5V p-p RL = 2kΩ TA = 25°C 2.5 100 1k CAPACITANCE (pF) 00935-015 1k Δ OUTPUT VOLTAGE (mV) VS = 2.7V RL = 10kΩ TA = 25°C VS = 2.7V TA = 25°C 00935-014 10k AD8541/AD8542/AD8544 90 VS = 2.7V RL = 2kΩ AV = 1 TA = 25°C COMMON-MODE REJECTION (dB) 10µs 70 60 50 40 30 20 10 0 –10 1k 10k 100k FREQUENCY (Hz) 1M 10M 00935-020 500mV 00935-017 1.35V Figure 20. Common-Mode Rejection Ratio vs. Frequency Figure 17. Large Signal Transient Response 10k VS = 2.7V RL = NO LOAD TA = 25°C VS = 5V TA = 25°C 60 90 40 135 20 180 0 Δ OUTPUT VOLTAGE (mV) 45 PHASE SHIFT (Degrees) 1k 80 100 SOURCE 10 SINK 1 10k 100k FREQUENCY (Hz) 1M 10M 0.01 0.001 0.01 0.1 1 LOAD CURRENT (mA) 10 100 00935-021 1k 00935-018 0.1 Figure 21. Output Voltage to Supply Rail vs. Frequency Figure 18. Open-Loop Gain and Phase vs. Frequency 5.0 VS = 5V TA = 25°C 140 VS = 5V VIN = 4.9V p-p RL = NO LOAD TA = 25°C 4.5 4.0 OUTPUT SWING (V p-p) 120 100 80 –PSRR 60 +PSRR 40 20 3.5 3.0 2.5 2.0 1.5 0 1.0 –20 0.5 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 00935-019 –40 100 Figure 19. Power Supply Rejection Ratio vs. Frequency 1k 10k 100k FREQUENCY (Hz) 1M 10M Figure 22. Closed-Loop Output Voltage Swing vs. Frequency Rev. E | Page 9 of 20 00935-022 160 POWER SUPPLY REJECTION RATIO (dB) GAIN (dB) VS = 5V TA = 25°C 80 AD8541/AD8542/AD8544 5.0 4.0 SMALL SIGNAL OVERSHOOT (%) 4.5 OUTPUT SWING (V p-p) 60 VS = 5V VIN = 4.9V p-p RL = 2kΩ TA = 25°C 3.5 3.0 2.5 2.0 1.5 1.0 VS = 5V RL = ∞ TA = 25°C 50 40 +OS 30 –OS 20 10 1k 10k 100k FREQUENCY (Hz) 1M 10M 0 10 00935-023 0 Figure 23. Closed-Loop Output Voltage Swing vs. Frequency +OS 2.5V 30 –OS 10 10 100 1k CAPACITANCE (pF) 10k Figure 27. Small Signal Transient Response Figure 24. Small Signal Overshoot vs. Load Capacitance 60 VS = 5V RL = 2kΩ AV = 1 TA = 25°C VS = 5V RL = 2kΩ TA = 25°C 50 10µs 00935-024 50mV 00935-027 20 40 +OS 2.5V 30 –OS 20 10 10 100 1k CAPACITANCE (pF) 10k 10µs 00935-025 1V 0 Figure 25. Small Signal Overshoot vs. Load Capacitance Figure 28. Large Signal Transient Response Rev. E | Page 10 of 20 00935-028 SMALL SIGNAL OVERSHOOT (%) VS = 5V RL = 100kΩ CL = 300pF AV = 1 TA = 25°C VS = 5V RL = 10kΩ TA = 25°C 40 0 SMALL SIGNAL OVERSHOOT (%) 10k Figure 26. Small Signal Overshoot vs. Load Capacitance 60 50 100 1k CAPACITANCE (pF) 00935-026 0.5 AD8541/AD8542/AD8544 55 90 40 135 20 180 1k 10k 100k FREQUENCY (Hz) 1M 00935-029 0 10M 50 VS = 5V 45 40 VS = 2.7V 35 30 25 20 –55 –15 5 25 45 65 85 TEMPERATURE (°C) 105 125 145 Figure 32. Supply Current per Amplifier vs. Temperature Figure 29. Open-Loop Gain and Phase vs. Frequency 1000 VS = 5V RL = 10kΩ AV = 1 TA = 25°C VIN –35 00935-032 60 SUPPLY CURRENT/AMPLIFIER (µA) 45 PHASE SHIFT (Degrees) 80 900 800 VOUT VS = 2.7V AND 5V AV = 1 TA = 25°C IMPEDANCE (Ω) 700 2.5V 600 500 400 300 20µs 100 0 1k 10k 100k 1M FREQUENCY (Hz) 10M 100M Figure 33. Closed-Loop Output Impedance vs. Frequency Figure 30. No Phase Reversal 60 VS = 5V MARKER SET @ 10kHz MARKER READING: 37.6nV/ Hz TA = 25°C TA = 25°C 50 15nV/DIV 40 30 20 0 1 2 3 4 SUPPLY VOLTAGE (V) 5 6 0 5 10 15 FREQUENCY (kHz) Figure 34. Voltage Noise Figure 31. Supply Current per Amplifier vs. Supply Voltage Rev. E | Page 11 of 20 20 25 00935-034 0 00935-031 10 00935-033 1V 00935-030 200 SUPPLY CURRENT/AMPLIFIER (µA) GAIN (dB) VS = 5V RL = NO LOAD TA = 25°C AD8541/AD8542/AD8544 THEORY OF OPERATION Sourcing and sinking are strong at lower voltages, with 15 mA available at 2.7 V and 18 mA at 3.0 V. For even higher output currents, see the Analog Devices, Inc. AD8531/AD8532/AD8534 parts, with output currents to 250 mA. Information on these parts is available from your Analog Devices representative, and data sheets are available at www.analog.com. NOTES ON THE AD854x AMPLIFIERS The AD8541/AD8542/AD8544 amplifiers are improved performance, general-purpose operational amplifiers. Performance has been improved over previous amplifiers in several ways. Lower Supply Current for 1 MHz Gain Bandwidth The AD854x series typically uses 45 μA of current per amplifier. This is much less than the 200 μA to 700 μA used in earlier generation parts with similar performance. This makes the AD854x series a good choice for upgrading portable designs for longer battery life. Alternatively, additional functions and performance can be added at the same current drain. Better Performance at Lower Voltages The AD854x family of parts was designed to provide better ac performance at 3.0 V and 2.7 V than previously available parts. Typical gain-bandwidth product is close to 1 MHz at 2.7 V. Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin is typically over 60°C, making the part easy to use. Higher Output Current At 5 V single supply, the short-circuit current is typically 60 μA. Even 1 V from the supply rail, the AD854x amplifiers can provide a 30 mA output current, sourcing or sinking. Rev. E | Page 12 of 20 AD8541/AD8542/AD8544 APPLICATIONS The AD854x have very high open-loop gain (especially with a supply voltage below 4 V), which makes it useful for active filters of all types. For example, Figure 35 illustrates the AD8542 in the classic twin-T notch filter design. The twin-T notch is desired for simplicity, low output impedance, and minimal use of op amps. In fact, this notch filter can be designed with only one op amp if Q adjustment is not required. Simply remove U2 as illustrated in Figure 36. However, a major drawback to this circuit topology is ensuring that all the Rs and Cs closely match. The components must closely match or notch frequency offset and drift causes the circuit to no longer attenuate at the ideal notch frequency. To achieve desired performance, 1% or better component tolerances or special component screens are usually required. One method to desensitize the circuit-to-component mismatch is to increase R2 with respect to R1, which lowers Q. A lower Q increases attenuation over a wider frequency range but reduces attenuation at the peak notch frequency. Figure 37 is an example of the AD8544 in a notch filter circuit. The frequency dependent negative resistance (FNDR) notch filter has fewer critical matching requirements than the twin-T notch and for the FNDR Q is directly proportional to a single resistor R1. While matching component values is still important, it is also much easier and/or less expensive to accomplish in the FNDR circuit. For example, the twin-T notch uses three capacitors with two unique values, whereas the FNDR circuit uses only two capacitors, which may be of the same value. U3 is simply a buffer that is added to lower the output impedance of the circuit. R1 Q ADJUST 200Ω 2 C2 53.6µF 2.5VREF 2.5VREF 8 1/2 AD8542 U1 4 1 1/4 AD8544 1 C 26.7nF f= 1/2 AD8542 7 U2 6 4 1– R1 R1 + R2 2.5VREF VIN 3 2 2C 7 6 VOUT 2.5VREF C 00935-036 R/2 C 14 NC COMPARATOR FUNCTION AD8541 4 12 1/4 AD8544 U4 Figure 37. FNDR 60 Hz Notch Filter with Output Buffer 5.0V R 13 2.5VREF Figure 35. 60 Hz Twin-T Notch Filter, Q = 10 R R 2.61kΩ 2.5VREF R1 97.5kΩ 1 1 11 R 2.61kΩ 1 2π LC1 R2 2.5kΩ 5 2 1/4 AD8544 U1 R 2.61kΩ 5 L = R2C2 2πRC f0 = U2 6 4 3 C2 1µF VOUT R/2 50kΩ C 26.7nF VOUT R 2.61kΩ 7 00935-035 f0 = 3 10 A comparator function is a common application for a spare op amp in a quad package. Figure 38 illustrates ¼ of the AD8544 as a comparator in a standard overload detection application. Unlike many op amps, the AD854x family can double as comparators because this op amp family has a rail-to-rail differential input range, rail-to-rail output, and a great speed vs. power ratio. R2 is used to introduce hysteresis. The AD854x, when used as comparators, have 5 μs propagation delay at 5 V and 5 μs overload recovery time. R2 1MΩ Figure 36. 60 Hz Twin-T Notch Filter, Q = ∞ (Ideal) R1 1kΩ VOUT VIN 2.5VREF 2.5VDC 1/4 AD8541 00935-038 R 100kΩ 8 U3 C1 1µF 5.0V R 100kΩ 1/4 AD8544 9 00935-037 NOTCH FILTER Figure 38. AD854x Comparator Application—Overload Detector Rev. E | Page 13 of 20 AD8541/AD8542/AD8544 C 100pF PHOTODIODE APPLICATION The AD854x family has very high impedance with an input bias current typically around 4 pA. This characteristic allows the AD854x op amps to be used in photodiode applications and other applications that require high input impedance. Note that the AD854x has significant voltage offset that can be removed by capacitive coupling or software calibration. • Shielding the circuit. • Cleaning the circuit board. • Putting a trace connected to the noninverting input around the inverting input. • Using separate analog and digital power supplies. V+ OR 2 7 6 3 4 D 2.5VREF 2.5VREF VOUT AD8541 00935-039 Figure 39 illustrates a photodiode or current measurement application. The feedback resistor is limited to 10 MΩ to avoid excessive output offset. Also, note that a resistor is not needed on the noninverting input to cancel bias current offset because the bias current-related output offset is not significant when compared to the voltage offset contribution. For best performance, follow the standard high impedance layout techniques, which include: R 10MΩ Figure 39. High Input Impedance Application—Photodiode Amplifier Rev. E | Page 14 of 20 AD8541/AD8542/AD8544 OUTLINE DIMENSIONS 5.10 5.00 4.90 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 14 PIN 1 6.40 BSC 0.95 BSC 1 1.90 BSC 1.30 1.15 0.90 7 PIN 1 1.45 MAX 0.15 MAX 8 4.50 4.40 4.30 3 0.50 0.30 0.65 BSC 1.05 1.00 0.80 0.22 0.08 10° 5° 0° SEATING PLANE 1.20 MAX 0.15 0.05 0.60 0.45 0.30 0.30 0.19 0.20 0.09 SEATING COPLANARITY PLANE 0.10 0.75 0.60 0.45 8° 0° COMPLIANT TO JEDEC STANDARDS MO-153-AB-1 COMPLIANT TO JEDEC STANDARDS MO-178-AA Figure 40. 5-Lead Small Outline Transistor Package [SOT-23] (RJ-5) Dimensions shown in millimeters Figure 41. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters 8.75 (0.3445) 8.55 (0.3366) 1.35 1.25 1.15 5 1 4 2 3 PIN 1 1.10 0.80 0.30 0.15 SEATING PLANE 8 14 1 7 1.27 (0.0500) BSC 0.65 BSC 1.00 0.90 0.70 0.10 MAX 4.00 (0.1575) 3.80 (0.1496) 2.40 2.10 1.80 0.40 0.10 0.25 (0.0098) 0.10 (0.0039) 0.22 0.08 0.46 0.36 0.26 0.10 COPLANARITY COMPLIANT TO JEDEC STANDARDS MO-203-AA Figure 42. 5-Lead Thin Shrink Small Outline Transistor Package [SC70] (KS-5) Dimensions shown in millimeters COPLANARITY 0.10 0.51 (0.0201) 0.31 (0.0122) 6.20 (0.2441) 5.80 (0.2283) 1.75 (0.0689) 1.35 (0.0531) SEATING PLANE 0.50 (0.0197) 0.25 (0.0098) 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-AB CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 43. 14-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-14) Dimensions shown in millimeters and (inches) Rev. E | Page 15 of 20 45° 060606-A 2.20 2.00 1.80 AD8541/AD8542/AD8544 3.20 3.00 2.80 8 3.20 3.00 2.80 1 3.10 3.00 2.90 5 8 5.15 4.90 4.65 4.50 4.40 4.30 4 1 PIN 1 0.65 BSC 0.95 0.85 0.75 0.38 0.22 COPLANARITY 0.10 6.40 BSC 4 PIN 1 0.65 BSC 1.10 MAX 0.15 0.00 5 0.23 0.08 0.15 0.05 0.80 0.60 0.40 8° 0° 1.20 MAX COPLANARITY 0.10 SEATING PLANE 0.30 0.19 SEATING 0.20 PLANE 0.09 8° 0° 0.75 0.60 0.45 COMPLIANT TO JEDEC STANDARDS MO-153-AA COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 44. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters Figure 45. 8-Lead Thin Shrink Small Outline Package [TSSOP] (RU-8) Dimensions shown in millimeters 5.00 (0.1968) 4.80 (0.1890) 8 1 5 4 1.27 (0.0500) BSC 0.25 (0.0098) 0.10 (0.0040) COPLANARITY 0.10 SEATING PLANE 6.20 (0.2440) 5.80 (0.2284) 1.75 (0.0688) 1.35 (0.0532) 0.51 (0.0201) 0.31 (0.0122) 0.50 (0.0196) 0.25 (0.0099) 45° 8° 0° 0.25 (0.0098) 0.17 (0.0067) 1.27 (0.0500) 0.40 (0.0157) COMPLIANT TO JEDEC STANDARDS MS-012-A A CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 46. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) Rev. E | Page 16 of 20 060506-A 4.00 (0.1574) 3.80 (0.1497) AD8541/AD8542/AD8544 ORDERING GUIDE Model AD8541AKS-R2 AD8541AKS-REEL7 AD8541AKSZ-R21 AD8541AKSZ-REEL71 AD8541AR AD8541AR-REEL AD8541AR-REEL7 AD8541ARZ1 AD8541ARZ-REEL1 AD8541ARZ-REEL71 AD8541ART-R2 AD8541ART-REEL AD8541ART-REEL7 AD8541ARTZ-R21 AD8541ARTZ-REEL1 AD8541ARTZ-REEL71 AD8542AR AD8542AR-REEL AD8542AR-REEL7 AD8542ARZ1 AD8542ARZ-REEL1 AD8542ARZ-REEL71 AD8542ARM-R2 AD8542ARM-REEL AD8542ARMZ-R21 AD8542ARMZ-REEL1 AD8542ARU AD8542ARU-REEL AD8542ARUZ1 AD8542ARUZ-REEL1 AD8544AR AD8544AR-REEL AD8544AR-REEL7 AD8544ARZ1 AD8544ARZ-REEL1 AD8544ARZ-REEL71 AD8544ARU AD8544ARU-REEL AD8544ARUZ1 AD8544ARUZ-REEL1 1 Temperature Range –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C –40°C to +125°C Package Description 5-Lead SC70 5-Lead SC70 5-Lead SC70 5-Lead SC70 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 5-Lead SOT-23 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead SOIC_N 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead MSOP 8-Lead TSSOP 8-Lead TSSOP 8-Lead TSSOP 8-Lead TSSOP 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead SOIC_N 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP 14-Lead TSSOP Z = Pb-free part; # denotes lead-free product, may be top or bottom marked. Rev. E | Page 17 of 20 Package Option KS-5 KS-5 KS-5 KS-5 R-8 R-8 R-8 R-8 R-8 R-8 RJ-5 RJ-5 RJ-5 RJ-5 RJ-5 RJ-5 R-8 R-8 R-8 R-8 R-8 R-8 RM-8 RM-8 RM-8 RM-8 RU-8 RU-8 RU-8 RU-8 R-14 R-14 R-14 R-14 R-14 R-14 RU-14 RU-14 RU-14 RU-14 Branding A4B A4B A12 A12 A4A A4A A4A A4A# A4A# A4A# AVA AVA AVA# AVA# AD8541/AD8542/AD8544 NOTES Rev. E | Page 18 of 20 AD8541/AD8542/AD8544 NOTES Rev. E | Page 19 of 20 AD8541/AD8542/AD8544 NOTES ©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00935-0-1/07(E) Rev. E | Page 20 of 20