MC100LVEL29 3.3VECL Dual Differential Data and Clock D Flip−Flop With Set and Reset Description The MC100LVEL29 is a dual master−slave flip flop. The device features fully differential Data and Clock inputs as well as outputs. The MC100LVEL29 is pin and functionally equivalent to the MC100EL29. Data enters the master latch when the clock is LOW and transfers to the slave upon a positive transition on the clock input. The differential inputs have special circuitry which ensures device stability under open input conditions. When both differential inputs are left open the D input will pull down to VEE and the D input will bias around VCC/2. The outputs will go to a defined state, however the state will be random based on how the flip flop powers up. Both flip flops feature asynchronous, overriding Set and Reset inputs. Note that the Set and Reset inputs cannot both be HIGH simultaneously. The VBB pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to VBB as a switching reference voltage. VBB may also rebias AC coupled inputs. When used, decouple VBB and VCC via a 0.01 mF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, VBB should be left open. Features • • • • • • • • • • http://onsemi.com SO−20 WB DW SUFFIX CASE 751D MARKING DIAGRAM* 20 100LVEL29 AWLYYWWG 1 1100 MHz Flip−Flop Toggle Frequency ESD Protection: >2 kV Human Body Model 580 ps Typical Propagation Delays The 100 Series Contains Temperature Compensation PECL Mode Operating Range: VCC = 3.0 V to 3.8 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −3.0 V to −3.8 V Internal Input Pulldown Resistors Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test Moisture Sensitivity Level 1 For Additional Information, see Application Note AND8003/D Flammability Rating: UL 94 V−0 @ 0.125 in, Oxygen Index: 28 to 34 Transistor Count = 313 devices A WL YY WW G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet. • • Pb−Free Packages are Available* *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 November, 2006 − Rev. 5 1 Publication Order Number: MC100LVEL29/D MC100LVEL29 R0 VCC Q0 Q0 S0 S1 VCC Q1 Q1 VEE 20 19 18 17 16 15 14 13 12 11 Q Q R S D 1 D0 CLK 2 3 Q Q D CLK S 4 5 6 D0 CLK0 CLK0 VBB D1 R 7 8 9 10 D1 CLK1 CLK1 R1 Warning: All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. Figure 1. Logic Diagram and Pinout: 20-Lead SOIC (Top View) Table 1. PIN DESCRIPTION Table 2. TRUTH TABLE PIN FUNCTION D0, D0; D1, D1 R0, R1 CLK0, CLK0 CLK1, CLK1 S0, S1 Q0, Q0; Q1, Q1 VBB VCC VEE ECL Differential Data Inputs ECL Reset Inputs ECL Differential Clock Inputs ECL Differential Clock Inputs ECL Set Inputs ECL Differential Data Outputs Reference Voltage Output Positive Supply Negative Supply R S D CLK Q Q L L H L H L L L H H L H X X X Z Z X X X L H L H Undef H L H L Undef Z = LOW to HIGH Transition X = Don’t Care Table 3. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Unit VCC PECL Mode Power Supply VEE = 0 V 8 to 0 V VEE NECL Mode Power Supply VCC = 0 V −8 to 0 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 to 0 −6 to 0 V V Iout Output Current Continuous Surge 50 100 mA mA IBB VBB Sink/Source ± 0.5 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction to Ambient) 0 lfpm 500 lfpm 20 SOIC 20 SOIC 90 60 °C/W °C/W qJC Thermal Resistance (Junction to Case) Standard Board 20 SOIC 30 to 35 °C/W Tsol Wave Solder <2 to 3 sec @ 248°C <2 to 3 sec @ 260°C 265 265 °C Pb Pb−Free VI VCC VI VEE Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. http://onsemi.com 2 MC100LVEL29 Table 4. LVPECL DC CHARACTERISTICS VCC = 3.3 V; VEE = 0.0 V (Note 1) −40°C Symbol Characteristic Min 25°C Typ Max 35 50 Min 85°C Typ Max 35 50 Min Typ Max Unit 35 50 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 2) 2215 2295 2420 2275 2345 2420 2275 2345 2420 mV VOL Output LOW Voltage (Note 2) 1470 1605 1745 1490 1595 1680 1490 1595 1680 mV VIH Input HIGH Voltage (Single−Ended) 2135 2420 2135 2420 2135 2420 mV VIL Input LOW Voltage (Single−Ended) 1490 1825 1490 1825 1490 1825 mV VBB Output Voltage Reference 1.92 2.04 1.92 2.04 1.92 2.04 V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 6) Vpp < 500 mV 1.3 2.9 1.2 2.9 1.2 2.9 V Vpp y 500 mV 1.5 2.9 1.4 2.9 1.4 2.9 V 150 mA IIH Input HIGH Current IIL Input LOW Current 150 150 Dn 0.5 0.5 0.5 mA Dn −300 −300 −300 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V. 2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. 3. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V. Table 5. LVNECL DC CHARACTERISTICS VCC = 0.0 V; VEE = −3.3 V (Note 4) −40°C Symbol Characteristic Min 25°C Typ Max 35 50 Min 85°C Typ Max 35 50 Min Typ Max Unit 35 50 mA IEE Power Supply Current VOH Output HIGH Voltage (Note 5) −1085 −1005 −880 −1025 −955 −880 −1025 −955 −880 mV VOL Output LOW Voltage (Note 5) −1830 −1695 −1555 −1810 −1705 −1620 −1810 −1705 −1620 mV VIH Input HIGH Voltage (Single−Ended) −1165 −880 −1165 −880 −1165 −880 mV VIL Input LOW Voltage (Single−Ended) −1810 −1475 −1810 −1475 −1810 −1475 mV VBB Output Voltage Reference −1.38 −1.26 −1.38 −1.26 −1.38 −1.26 V VIHCMR Input HIGH Voltage Common Mode Range (Differential) (Note 6) Vpp < 500 mV −2.0 −0.4 −2.1 −0.4 −2.1 −0.4 V Vpp y 500 mV −1.8 −0.4 −1.9 −0.4 −1.9 −0.4 V 150 mA IIH Input HIGH Current IIL Input LOW Current 150 150 Dn 0.5 0.5 0.5 mA Dn −300 −300 −300 mA NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 4. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V. 5. Outputs are terminated through a 50 W resistor to VCC − 2.0 V. 6. VIHCMR min varies 1:1 with VEE, max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin and 1 V. http://onsemi.com 3 MC100LVEL29 Table 6. AC CHARACTERISTICS VCC = 3.3 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.3 V (Note 7) −40°C Symbol Characteristic Min Typ 25°C Max Min 680 700 500 500 1.1 85°C Typ Max Min 580 700 720 520 520 Max Maximum Toggle Frequency tPLH tPHL Propagation Delay to Output tS tH Setup Time Hold Time 0 100 0 100 0 100 ps tRR Set/Reset Recovery 100 100 100 ps tPW Minimum Pulse Width 400 400 400 ps tJITTER Cycle−to−Cycle Jitter VPP Input Swing (Note 8) 150 1000 150 1000 150 1000 mV tr tf Output Rise/Fall Times Q (20% − 80%) 280 550 280 550 280 550 ps CLK, Set, Reset 480 480 TBD 1.1 Unit fmax CLK S, R 1.1 Typ TBD GHz 720 740 TBD ps ps NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 7. VEE can vary ±0.3 V. 8. VPP(min) is the minimum input swing for which AC parameters guaranteed. Q Zo = 50 W D Receiver Device Driver Device Q D Zo = 50 W 50 W 50 W VTT VTT = VCC − 2.0 V Figure 2. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) http://onsemi.com 4 MC100LVEL29 ORDERING INFORMATION Package Shipping† MC100LVEL29DW SO−20 WB 38 Units / Rail MC100LVEL29DWG SO−20 WB (Pb−Free) 38 Units / Rail MC100LVEL29DWR2 SO−20 WB 1000 / Tape & Reel MC100LVEL29DWR2G SO−20 WB (Pb−Free) 1000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices http://onsemi.com 5 MC100LVEL29 PACKAGE DIMENSIONS SO−20 WB DW SUFFIX CASE 751D−05 ISSUE G A 20 q X 45 _ E h H M 10X 0.25 NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 B M D 1 10 20X B B 0.25 M T A S B S L A 18X e A1 SEATING PLANE C T DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 2.35 2.65 0.10 0.25 0.35 0.49 0.23 0.32 12.65 12.95 7.40 7.60 1.27 BSC 10.05 10.55 0.25 0.75 0.50 0.90 0_ 7_ ECLinPS are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC100LVEL29/D