IRF IRF7490PBF

PD - 95284
IRF7490PbF
HEXFET® Power MOSFET
Applications
High frequency DC-DC converters
l Lead-Free
l
Benefits
l Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
VDSS
RDS(on) max
Qg
100V
39mW@VGS=10V
37nC
1
8
S
2
7
S
3
6
4
5
S
G
A
A
D
D
D
D
SO-8
Top View
Absolute Maximum Ratings
Symbol
VDS
VGS
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
TJ
TSTG
Parameter
Drain-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Maximum Power Dissipation
Maximum Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
Units
100
± 20
5.4
4.3
43
2.5
1.6
20
-55 to + 150
V
A
W
mW/°C
°C
300 (1.6mm from case )
Thermal Resistance
Symbol
RθJL
RθJA
Parameter
Junction-to-Drain Lead
Junction-to-Ambient „
Typ.
Max.
Units
–––
–––
20
50
°C/W
Notes  through „ are on page 9
www.irf.com
1
09/15/04
IRF7490PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
100
–––
–––
2.0
–––
–––
–––
–––
Typ.
–––
0.11
33
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA ƒ
39
mΩ VGS = 10V, ID = 3.2A ƒ
4.0
V
VDS = VGS, ID = 250µA
20
VDS = 100V, VGS = 0V
µA
250
VDS = 80V, VGS = 0V, TJ = 125°C
200
VGS = 20V
nA
-200
VGS = -20V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
8.0
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
37
8.0
10
13
4.2
51
11
1720
220
25
1650
130
250
Max. Units
Conditions
–––
S
VDS = 50V, ID = 3.2A
56
ID = 3.2A
nC
VDS = 50V
VGS = 10V,
–––
VDD = 100V
–––
ID = 3.2A
ns
–––
RG = 9.1Ω
–––
VGS = 10V ƒ
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 80V …
Avalanche Characteristics
Parameter
EAS
IAR
Single Pulse Avalanche Energy‚
Avalanche Current
Typ.
Max.
Units
–––
–––
91
3.2
mJ
A
Diode Characteristics
IS
ISM
VSD
trr
Qrr
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Min. Typ. Max. Units
–––
–––
2.3
–––
–––
43
–––
–––
–––
–––
67
220
1.3
100
330
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 3.2A, VGS = 0V
TJ = 25°C, IF = 3.2A
di/dt = 100A/µs ƒ
D
S
ƒ
www.irf.com
IRF7490PbF
100
100
VGS
1
15V
10V
7.0V
5.0V
4.5V
4.3V
4.0V
BOTTOM 3.7V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10
0.1
3.7V
0.01
20µs PULSE WIDTH
Tj = 25°C
0.001
0.1
1
10
10
3.7V
1
20µs PULSE WIDTH
Tj = 150°C
0.1
0.1
100
1
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100.00
10.00
1.00
T J = 25°C
0.10
VDS = 50V
20µs PULSE WIDTH
0.01
ID = 5.4A
VGS = 10V
2.0
(Normalized)
RDS(on) , Drain-to-Source On Resistance
2.5
T J = 150°C
ID, Drain-to-Source Current (Α)
VGS
15V
10V
7.0V
5.0V
4.5V
4.3V
4.0V
BOTTOM 3.7V
TOP
TOP
1.5
1.0
0.5
3.0
4.0
5.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
6.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF7490PbF
20
100000
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
C, Capacitance (pF)
VGS , Gate-to-Source Voltage (V)
Coss
10000
ID = 3.2A
= Cds + Cgd
Ciss
1000
Coss
Crss
100
VDS= 80V
VDS= 50V
VDS= 20V
16
12
8
4
0
10
0
1
10
100
30
40
50
60
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
100.0
ISD, Reverse Drain Current (A)
20
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100
T J = 150°C
10.0
1.0
T J = 25°C
10
100µsec
0.1
0.1
0.2
0.4
0.6
0.8
1.0
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
1.2
1msec
1
VGS = 0V
4
10
Tc = 25°C
Tj = 150°C
Single Pulse
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7490PbF
6
VDS
ID , Drain Current (A)
5
VGS
D.U.T.
RG
4
RD
+
-V DD
10V
3
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
2
Fig 10a. Switching Time Test Circuit
1
VDS
0
90%
25
50
75
100
125
150
T C , Case Temperature (°C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Ambient Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
100
Thermal Response ( Z thJC )
D = 0.50
0.20
0.10
0.05
10
0.02
1
0.01
0.1
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
R DS(on) , Drain-to -Source On Resistance ( Ω)
IRF7490PbF
RDS (on) , Drain-to-Source On Resistance ( Ω)
0.045
0.040
VGS = 10V
0.035
0.030
0
10
20
30
40
0.06
0.05
0.04
ID = 3.2A
0.03
4.0
50
8.0
12.0
16.0
VGS, Gate -to -Source Voltage (V)
ID , Drain Current (A)
Fig 12. On-Resistance Vs. Drain Current
Fig 13. On-Resistance Vs. Gate Voltage
Current Regulator
Same Type as D.U.T.
QG
VGS
.2µF
QGS
.3µF
D.U.T.
+
V
- DS
QGD
240
VG
EAS, Single Pulse Avalanche Energy (mJ)
50KΩ
12V
VGS
3mA
Charge
IG
ID
Current Sampling Resistors
Fig 14a&b. Basic Gate Charge Test Circuit
and Waveform
15V
V(BR)DSS
tp
L
VDS
DRIVER
ID
1.4A
2.6A
BOTTOM 3.2A
TOP
200
160
120
80
40
0
D.U.T
RG
IAS
20V
I AS
tp
+
V
- DD
0.01Ω
Fig 15a&b. Unclamped Inductive Test circuit
and Waveforms
6
25
50
75
100
125
150
A
Starting TJ , Junction Temperature (°C)
Fig 15c. Maximum Avalanche Energy
Vs. Drain Current
www.irf.com
IRF7490PbF
D.U.T
Driver Gate Drive
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 17. Gate Charge Waveform
www.irf.com
7
IRF7490PbF
SO-8 Package Outline
D
5
A
8
7
6
5
6
H
0.25 [.010]
1
2
3
A
4
MAX
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
e1
6X
e
e1
C
1.27 BAS IC
.025 BAS IC
0.635 BAS IC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
0.25 [.010]
MAX
K x 45°
A
8X b
MILLIMET ERS
MIN
A
E
INCHES
DIM
B
A1
8X L
8X c
7
C A B
FOOT PRINT
NOT ES :
1. DIMENS IONING & T OLE RANCING PER AS ME Y14.5M-1994.
8X 0.72 [.028]
2. CONT ROLLING DIMENS ION: MILLIMET ER
3. DIMENS IONS ARE S HOWN IN MILLIMET E RS [INCHES ].
4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA.
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS .
MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010].
6.46 [.255]
7 DIMENS ION IS T HE LENGT H OF LEAD FOR S OLDERING T O
A S UBS T RAT E.
3X 1.27 [.050]
8X 1.78 [.070]
SO-8 Part Marking
EXAMPLE: T HIS IS AN IRF 7101 (MOS FET )
INTERNAT IONAL
RECT IFIER
LOGO
XXXX
F7101
DAT E CODE (YWW)
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
Y = LAS T DIGIT OF T HE YEAR
WW = WEEK
A = ASS EMBLY SIT E CODE
LOT CODE
PART NUMBER
8
www.irf.com
IRF7490PbF
SO-8 Tape and Reel
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
„ When mounted on 1 inch square copper board
… Coss eff. is a fixed capacitance that gives the same charging time
‚ Starting TJ = 25°C, L = 17mH
as Coss while VDS is rising from 0 to 80% VDSS
RG = 25Ω, IAS = 3.2A.
ƒ Pulse width ≤ 300µs; duty cycle ≤ 2%.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualifications Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/04
www.irf.com
9