ETC MAX19997A

19-4288; Rev 1; 9/10
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
___________________________________ ᄂቶ
NBY2:::8Bၷᄰࡸሆ‫ܤ‬ຫ૘ຫ໭ဵᄰ፿ࡼ঱ૹ߅ࣞĂࣶ
৖ถሆ‫ܤ‬ຫ໭Ljభᆐ2911NI{ᒗ3:11NI{૥ᐶ።፿ᄋ৙঱
ሣቶࣞਜ਼ࢅᐅဉᇹၫăNBY2:::8Bᅲཝᑽߒ3411NI{ᒗ
3:11NI{ࡼXjNBYUNĂMUFĂXDTጲૺNNETᇄሣ૥߻࿸
ဗ።፿ᒦࡼࢅ࣡ਜ਼঱࣡MPᓖྜྷଦ৩Ljࢅ࣡๼ᒙሆభᄋ৙
9/8eC ᐐፄĂ,35eCnၒྜྷJQ4ਜ਼21/4eC! OGLj঱࣡๼ᒙሆభ
ᄋ৙9/8eCᐐፄĂ,35eCnၒྜྷJQ4ਜ਼21/5eC! OGăඛৈSG࣡
ాᅪଝጙৈࢯቕᏄୈ)݀ೊ࢟ঢ*Ljభ୓঱࣡MPᓖྜྷଦ৩ࡼ
पᆍ஠ጙ‫ݛ‬ሶሆ౫ᐱᒗ2911NI{ă
♦ 2911NI{ᒗ3:11NI{! SGຫൈपᆍ
ক໭ୈᏴSGਜ਼MP࣡ాૹ߅ᎌऻຳੰ‫ܤ‬ኹ໭Ljࠥᅪ໭ୈથ
۞਺ጙৈMPદߡ໭Ăೝৈၷຳੰ૘ຫ໭ਜ਼ጙ࣪‫ތ‬ॊJGၒ߲
हࡍ໭ăNBY2:::8Bኊገጙৈ࢜ቯᒋᆐ1eCnࡼMPདࣅLj
࢟Ꮞ࢟ഗۣᑺࢅ᎖531nBLjጲࡉࡵᎾ໐ࡼሣቶࣞᒎ‫ܪ‬ă
♦ 2:61NI{ᒗ4511NI{! MPຫൈपᆍ
♦ 61NI{ᒗ611NI{! JGຫൈपᆍ
♦ ᑽߒࢅ࣡ਜ਼঱࣡MPᓖྜྷ
♦ 9/8eCᓞધᐐፄ
♦ ,35eCnၒྜྷJQ4
♦ 21/4eCᐅဉᇹၫ
♦ ,22/4eCnၒྜྷ2eCኹჁ࢛
♦ QSG >! .21eCnဟLj௥ᎌ81eCd! )࢜ቯᒋ*ࡼ3! y! 3Ꮽྲ
ጴᒜ
♦ ၷᄰࡸಯሯ፿᎖ॊૹ୻၃໭።፿
NBY2:::8B‫ݧ‬፿ஜ࠯ࡼ7nn y 7nnĂ47፛୭ĂۡቯRGO
ᇄ໺ॖᓤLjࡒᎌൡ੆๤ăᏴUD >! .51°Dᒗ,96°Dࡼ౫ᐱ଀
ᆨࣞपᆍดLjభۣᑺ࢟໮ቶถă
♦ ૹ߅MPદߡ໭
___________________________________ ።፿
♦ ፛୭ରྏ᎖NBY2::::! 4111NI{ᒗ5111NI{૘ຫ໭
♦ ด‫ݝ‬MPਜ਼SGऻຳੰ‫ܤ‬ኹ໭ᑽߒ࡝࣡ၒྜྷ
♦ .4eCnᒗ,4eCnࡼࢅMPདࣅ
3/8HI{! NNET૥ᐶ
♦ ፛୭ሤ႒᎖NBY:::60NBY:::6Bਜ਼NBY2:::60
NBY2:::6B! 2811NI{ᒗ3311NI{૘ຫ໭ጲૺ
NBY::960NBY::96Bਜ਼NBY2::960NBY2::96B
811NI{ᒗ2111NI{૘ຫ໭
VNUT0XDENBਜ਼denb3111® 4H૥ᐶ
♦ 53eCᄰࡸମ৆ಭ
QDT2:11ਜ਼FEHF૥ᐶ
♦ ‫ݧ‬፿,6/1W૞,4/4W࡝࢟Ꮞ৙࢟
QIT0QBT૥ᐶ
♦ ᅪ‫࢟ݝ‬ഗ࿸ᒙ࢟ᔜᏤ኏ᑓᒦኡᐋ૘ຫ໭ࡼࢅ৖੒0
ࢅቶถ৔ᔫෝါ
3/4HI{! XDT૥ᐶ
3/6HI{! XjNBYਜ਼MUF૥ᐶ
ৼࢾ౑ࡒᇄሣ୻ྜྷ
ᇄሣ‫࢐۾‬ણവ
ৈཽጤࣅᇄሣᓤᒙ
ం፿ᇹᄻ
_______________________________ ࢾ৪ቧᇦ
PART
TEMP RANGE
PIN-PACKAGE
MAX19997AETX+
-40°C to +85°C
36 Thin QFN-EP*
MAX19997AETX+T
-40°C to +85°C
36 Thin QFN-EP*
+‫ܭ‬ာᇄ໺)Qc*0९੝SpIT‫ܪ‬ᓰࡼॖᓤă
*FQ! >! ൡ੆๤ă
U! >! ௳ࡒ۞ᓤă
XjNBYဵXjNBY൙ოࡼ࿜‫ܪ‬ă
denb3111ဵ࢟ቧ৔ጓ቏્ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
፛୭๼ᒙ0৖ถౖᅄᏴၫ௣ᓾ೯ࡼᔢઁ৊߲ă
________________________________________________________________ Maxim Integrated Products
1
‫۾‬ᆪဵ፞ᆪၫ௣ᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉ࿟ࡼ‫ݙ‬ᓰཀྵ૞ࡇᇙăྙኊ஠ጙ‫ݛ‬ཀྵཱྀLj༿Ᏼิࡼ࿸ଐᒦ‫ݬ‬ఠ፞ᆪᓾ೯ă
ᎌਈଥৃĂ৙ૡૺࢿ৪ቧᇦLj༿ೊ൥Nbyjn዇ᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*Lj
૞षᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă
NBY2:::8B
___________________________________ গၤ
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
RF_, LO to GND.....................................................-0.3V to +0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,
LO_ADJ_D to GND.................................-0.3V to (VCC + 0.3V)
RF_, LO Input Power ......................................................+15dBm
RF_, LO Current (RF_ and LO is DC
shorted to GND through balun)................................... ...50mA
Continuous Power Dissipation (Note 1) ..............................8.7W
θJA (Notes 2, 3)..............................................................+38°C/W
θJC (Notes 1, 3)...............................................................7.4°C/W
Operating Case Temperature Range
(Note 4) ...................................................TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to china.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +4.75V to
+5.25V, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, TC = +25°C, unless otherwise noted. R1, R4 = 750Ω, R2, R5 =
698Ω.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
4.75
5.00
5.25
V
388
420
mA
Total supply current
UNITS
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +3.0V to
+3.6V, TC = -40°C to +85°C. Typical values are at VCC = +3.3V, TC = +25°C, unless otherwise noted. R1, R4 = 1.1kΩ, R2, R5 =
845Ω.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
2
CONDITIONS
MIN
3.0
Total supply current, VCC = +3.3V
TYP
MAX
UNITS
3.3
3.6
V
279
310
mA
_______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
PARAMETER
RF Frequency Without External
Tuning
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
fRF
(Note 5)
2400
2900
MHz
RF Frequency with External
Tuning
fRF
See Table 2 for an outline of tuning elements
optimized for 1950MHz operation;
optimization at other frequencies within the
1800MHz to 2400MHz range can be
achieved with different component values;
contact the factory for details
1800
2400
MHz
LO Frequency
fLO
(Notes 5, 6)
1950
3400
MHz
Using Mini-Circuits TC4-1W-17 4:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Notes 5, 6)
100
500
Using alternative Mini-Circuits TC4-1W-7A
4:1 transformer, IF matching components
affect the IF frequency range (Notes 5, 6)
50
250
-3
+3
IF Frequency
fIF
LO Drive Level
PLO
MHz
dBm
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
SYMBOL
GC
Conversion Gain Flatness
CONDITIONS
MIN
TYP
MAX
UNITS
fRF = 2400MHz to 2900MHz,
TC = +25°C (Notes 8, 9, 10)
8.1
8.7
9.3
dB
fRF = 2305MHz to 2360MHz
0.15
fRF = 2500MHz to 2570MHz
0.15
0.1
fRF = 2500MHz to 2690MHz
0.15
fRF = 2700MHz to 2900MHz
0.15
-0.01
dB/°C
dBm
Gain Variation Over Temperature
TCCG
fRF = 2300MHz to 2900MHz,
TC = -40°C to +85°C
Input Compression Point
IP1dB
(Notes 8, 9, 11)
9.6
11.3
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
(Notes 8, 9)
22.0
24
fRF = 2600MHz, fRF1 - fRF2 = 1MHz,
PRF = -5dBm per tone, TC = +25°C
(Notes 8, 9)
22.5
24
Third-Order Input Intercept Point
Third-Order Input Intercept Point
Variation Over Temperature
IIP3
dB
fRF = 2570MHz to 2620MHz
fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C
dBm
±0.3
dBm
_______________________________________________________________________________________
3
NBY2:::8B
RECOMMENDED AC OPERATING CONDITIONS
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Noise Figure
SYMBOL
NFSSB
CONDITIONS
MIN
TYP
MAX
Single sideband, no blockers present
fRF = 2400MHz to 2900MHz (Notes 6, 8, 10)
10.4
12.5
Single sideband, no blockers present,
fRF = 2400MHz to 2900MHz , TC = +25°C
(Note 6, 8, 10)
10.4
11.4
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
Noise Figure Under Blocking
Conditions
NFB
fBLOCKER = 2412MHz, PBLOCKER = 8dBm,
fRF = 2600MHz, fLO = 2950MHz, PLO =
0dBm, VCC = +5.0V, TC = +25°C (Notes 8, 12)
22.5
fRF = 2600MHz, fLO = 2950MHz,
PRF = -10dBm, fSPUR = fLO - 175MHz
(Note 8)
2LO - 2RF Spur
3LO - 3RF Spur
UNITS
62
dB/°C
25
dB
69
dBc
2x2
fRF = 2600MHz, fLO = 2950MHz,
PRF = -5dBm, fSPUR = fLO - 175MHz
(Notes 8, 9)
57
64
fRF = 2600MHz, fLO = 2950MHz,
PRF = -10dBm, fSPUR = fLO - 116.67MHz,
TC = +25°C (Note 8)
73
84
3x3
dBc
fRF = 2600MHz, fLO = 2950MHz,
PRF = -5dBm, fSPUR = fLO - 116.67MHz,
TC = +25°C (Notes 8, 9)
63
74
RF Input Return Loss
LO on and IF terminated into a matched
impedance
14
dB
LO Input Return Loss
RF and IF terminated into a matched
impedance
13
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω using
external components shown in the Typical
Application Circuit
21
dB
IF Output Impedance
IF Output Return Loss
4
ZIF
_______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
RF-to-IF Isolation
LO Leakage at RF Port
(Notes 8, 9)
2LO Leakage at RF Port
LO Leakage at IF Port
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50Ω
Channel Isolation
38.5
TYP
MAX
UNITS
25
dB
-28
dBm
-33
dBm
-18.5
dBm
43
dB
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
SYMBOL
GC
Conversion Gain Flatness
CONDITIONS
MIN
TYP
MAX
UNITS
fRF = 2400MHz to 2900MHz,
TC = +25°C (Notes 8, 9, 10)
8.1
8.7
9.3
dB
fRF = 2305MHz to 2360MHz
0.2
fRF = 2500MHz to 2570MHz
0.15
dB
fRF = 2570MHz to 2620MHz
0.2
fRF = 2500MHz to 2690MHz
0.25
fRF = 2700MHz to 2900MHz
0.25
-0.01
dB/°C
Gain Variation Over Temperature
TCCG
fRF = 2300MHz to 2900MHz, TC = -40°C to
+85°C
Input Compression Point
IP1dB
(Notes 6, 8, 11)
9.6
11.3
dBm
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
(Notes 8, 9)
21.6
23
dBm
22
23.8
dBm
±0.3
dBm
Third-Order Input Intercept Point
Third-Order Input Intercept Point
Variation Over Temperature
IIP3
fRF = 2600MHz, fRF1 - fRF2 = 1MHz,
PRF = -5dBm per tone, TC = +25°C
(Notes 8, 9)
fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C
_______________________________________________________________________________________
5
NBY2:::8B
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Noise Figure
Noise Figure Temperature
Coefficient
Noise Figure Under Blocking
Conditions
SYMBOL
TYP
MAX
Single sideband, no blockers present
fRF = 2400MHz to 2900MHz (Notes 6, 8)
10.3
13.0
Single sideband, no blockers present,
fRF = 2400MHz to 2900MHz, TC = +25°C
(Notes 6, 8)
10.3
11.3
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
NFB
fBLOCKER = 2793MHz, PBLOCKER = 8dBm,
fRF = 2600MHz, fLO = 2250MHz,
PLO = 0dBm, VCC = +5. 0V, TC = +25°C
(Notes 6, 8, 12)
NFSSB
CONDITIONS
fRF = 2600MHz, fLO = 2250MHz,
PRF = -10dBm, fSPUR = fLO + 175MHz,
TC = +25°C (Note 8)
2RF - 2LO Spur
3RF - 3LO Spur
dB/°C
25
dB
67
dBc
57
62
fRF = 2600MHz, fLO = 2250MHz,
PRF = -10dBm, fSPUR = fLO + 116.67MHz,
TC = +25°C (Note 8)
78
83
dBc
LO on and IF terminated into a matched
impedance
LO Input Return Loss
6
62
fRF = 2600MHz, fLO = 2250MHz,
PRF = -5dBm, fSPUR = fLO + 175MHz,
TC = +25°C (Notes 8, 9)
RF Input Return Loss
IF Output Return Loss
22
3x3
ZIF
UNITS
dB
2x2
fRF = 2600MHz, fLO = 2250MHz,
PRF = -5dBm, fSPUR = fLO + 116.67MHz,
TC = +25°C (Notes 8, 9)
IF Output Impedance
MIN
68
73
16
dB
RF and IF terminated into a matched
impedance
11.5
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω using
external components shown in the Typical
Application Circuit
20
dB
_______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
RF-to-IF Isolation
TYP
MAX
UNITS
-24
dBm
23.5
LO Leakage at RF Port
(Notes 8, 9)
-31
dB
2LO Leakage at RF Port
-27
dBm
LO Leakage at IF Port
-9.6
dBm
42
dB
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50Ω (Notes 8, 9)
Channel Isolation
38.5
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
SYMBOL
GC
Conversion Gain Flatness
Gain Variation Over Temperature
TCCG
Input Compression Point
IP1dB
Third-Order Input Intercept Point
IIP3
Third-Order Input Intercept
Variation Over Temperature
CONDITIONS
MIN
TYP
(Note 9)
8.5
fRF = 2305MHz to 2360MHz
0.2
fRF = 2500MHz to 2570MHz
0.15
fRF = 2570MHz to 2620MHz
0.15
MAX
UNITS
dB
dB
fRF = 2500MHz to 2690MHz
0.25
fRF = 2700MHz to 2900MHz
0.15
fRF = 2300MHz to 2900MHz,
TC = -40°C to +85°C
-0.01
7.7
dBm
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
19.7
dBm
fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C
±0.5
dBm
dB/°C
Noise Figure
NFSSB
Single sideband, no blockers present
9.7
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
dB/°C
_______________________________________________________________________________________
7
NBY2:::8B
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
PRF = -10dBm, fSPUR = fLO + 175MHz
74
PRF = -5dBm, fSPUR = fLO + 175MHz
69
PRF = -10dBm, fSPUR = fLO + 116.67MHz
74
PRF = -5dBm, fSPUR = fLO + 116.67MHz
64
RF Input Return Loss
LO on and IF terminated into a matched
impedance
16
dB
LO Input Return Loss
RF and IF terminated into a matched
impedance
11
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω using
external components shown in the Typical
Application Circuit
26
dB
2RF - 2LO Spur
2x2
3RF - 3LO Spur
3x3
IF Output Impedance
IF Output Return Loss
ZIF
dBc
dBc
RF-to-IF Isolation
25
dB
LO Leakage at RF Port
-36
dBm
2LO Leakage at RF Port
LO Leakage at IF Port
Channel Isolation
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50Ω
-31
dBm
-13.5
dBm
42
dB
Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: Not production tested.
Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 350MHz due to the 4:1 impedance transformer. Output measurements taken at the IF outputs of Typical Application Circuit.
Note 8: Guaranteed by design and characterization.
Note 9: 100% production tested for functional performance.
Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2.
Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source.
Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 5:
8
_______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
8
TC = +25°C
7
11
10
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
9
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc02
TC = -30°C
10
CONVERSION GAIN (dB)
11
MAX19997A toc01
11
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc03
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
7
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = +85°C
6
2400
2600
2800
3000
2600
2800
3000
2200
2600
2800
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
26
24
23
24
23
22
PRF = -5dBm/TONE
25
3000
2200
2200
3000
11
10
9
13
11
10
PLO = -3dBm, 0dBm, +3dBm
9
12
NOISE FIGURE (dB)
12
2400
2600
2800
RF FREQUENCY (MHz)
3000
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc08
13
NOISE FIGURE (dB)
12
2400
2600
2800
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc07
TC = +85°C
VCC = 4.75V
MAX19997A toc09
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
24
22
22
2400
2600
2800
RF FREQUENCY (MHz)
VCC = 5.25V
VCC = 5.0V
23
PLO = -3dBm, 0dBm, +3dBm
TC = -30°C
3000
26
INPUT IP3 (dBm)
25
INPUT IP3 (dBm)
TC = +25°C
PRF = -5dBm/TONE
MAX19997A toc05
TC = +85°C
25
2200
2400
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
NOISE FIGURE (dB)
2400
RF FREQUENCY (MHz)
26
INPUT IP3 (dBm)
6
2200
MAX19997A toc04
2200
MAX19997A toc06
6
11
10
9
VCC = 4.75V, 5.0V, 5.25V
TC = +25°C
TC = -30°C
8
8
7
8
7
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
7
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
_______________________________________________________________________________________
3000
9
NBY2:::8B
________________________________________________________________________________ ࢜ቯ৔ᔫᄂቶ
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
TC = +85°C
60
TC = +25°C
70
60
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
50
TC = -30°C
75
65
3000
2200
95
PRF = -5dBm
85
75
65
TC = +25°C, +85°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
95
PRF = -5dBm
55
3000
2400
2600
2800
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
65
3000
2200
TC = +25°C
13
11
PLO = -3dBm, 0dBm, +3dBm
10
VCC = 5.0V
VCC = 5.25V
12
INPUT P1dB (dBm)
12
2400
2600
2800
RF FREQUENCY (MHz)
3000
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc17
13
INPUT P1dB (dBm)
11
10
75
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc16
TC = +85°C
12
85
55
2200
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
3000
PLO = -3dBm, 0dBm, +3dBm
55
2400
2600
2800
RF FREQUENCY (MHz)
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc18
85
2400
2600
2800
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
3LO - 3RF RESPONSE (dBc)
PRF = -5dBm
MAX19997A toc13
95
50
2200
MAX19997A toc15
3000
3LO - 3RF RESPONSE (dBc)
2400
2600
2800
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2200
60
PLO = 0dBm
50
2200
70
PLO = -3dBm
TC = -30°C
3LO - 3RF RESPONSE (dBc)
80
MAX19997A toc12
PLO = +3dBm
MAX19997A toc11
PRF = -5dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO - 2RF RESPONSE (dBc)
70
80
MAX19997A toc14
2LO - 2RF RESPONSE (dBc)
PRF = -5dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO - 2RF RESPONSE (dBc)
80
MAX19997A toc10
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
INPUT P1dB (dBm)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
11
VCC = 4.75V
10
TC = -30°C
9
9
2200
10
2400
2600
2800
RF FREQUENCY (MHz)
3000
9
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
50
45
40
TC = -30°C, +25°C, +85°C
35
45
40
PLO = -3dBm, 0dBm, +3dBm
2400
2600
2800
RF FREQUENCY (MHz)
3000
MAX19997A toc21
60
55
50
45
40
VCC = 4.75V, 5.0V, 5.25V
35
30
2200
30
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
0
0
TC = -30°C
-20
-30
TC = +25°C, +85°C
-40
PLO = -3dBm, 0dBm, +3dBm
-10
-20
-30
3350
2550
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
TC = +85°C
30
20
TC = -30°C
2550
3350
40
PLO = -3dBm, 0dBm, +3dBm
30
20
2750
2950
3150
LO FREQUENCY (MHz)
3350
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
40
VCC = 4.75V, 5.0V, 5.25V
30
20
TC = +25°C
10
10
2200
VCC = 4.75V, 5.0V, 5.25V
-30
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
RF-TO-IF ISOLATION (dB)
MAX19997A toc25
40
2750
2950
3150
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
2750
2950
3150
LO FREQUENCY (MHz)
-20
-40
-40
2550
-10
MAX19997A toc27
-10
MAX19997A toc24
0
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc23
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc22
LO LEAKAGE AT IF PORT (dBm)
50
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
35
30
RF-TO-IF ISOLATION (dB)
MAX19997A toc20
55
MAX19997A toc26
CHANNEL ISOLATION (dB)
55
60
CHANNEL ISOLATION (dB)
MAX19997A toc19
60
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2400
2600
2800
RF FREQUENCY (MHz)
3000
10
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
11
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
-30
-40
-50
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-10
2520
2740
2960
3180
3400
MAX19997A toc30
-20
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-50
2300
-20
-30
VCC = 4.75V, 5.0V, 5.25V
-40
-50
2300
2520
2740
2960
3180
3400
2300
2520
2740
2960
3180
3400
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-30
-40
-50
PLO = -3dBm, 0dBm, +3dBm
-30
-40
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-40
-50
-50
2300
MAX19997A toc33
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
TC = -30°C, +25°C, +85°C
MAX19997A toc32
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc31
-10
12
MAX19997A toc29
TC = -30°C, +25°C, +85°C
-20
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc28
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
2300
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
2300
2520
2740
2960
LO FREQUENCY (MHz)
______________________________________________________________________________________
3180
3400
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
15
20
PLO = -3dBm, 0dBm, +3dBm
5
10
0
MAX19997A toc36
fLO = 2600MHz
5
IF PORT RETURN LOSS (dB)
10
VCC = 4.75V, 5.0V, 5.25V
15
20
fLO = 2350MHz
10
15
20
25
25
25
30
30
30
fLO = 2600MHz
3000
50
140
230
320
50
500
140
0
10
15
PLO = 0dBm
PLO = -3dBm
20
400
VCC = 5.25V
390
410
500
380
370
VCC = 5.0V
VCC = 4.75V
360
25
320
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, STANDARD RF BAND)
SUPPLY CURRENT (mA)
PLO = +3dBm
230
IF FREQUENCY (MHz)
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
5
410
fLO = 2950MHz
MAX19997A toc38
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc37
2200
LO PORT RETURN LOSS (dB)
RF PORT RETURN LOSS (dB)
5
0
MAX19997A toc35
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc34
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
350
1900
2150
2400
2650
2900
LO FREQUENCY (MHz)
3150
3400
-35
-15
5
25
45
65
85
TEMPERATURE (°C)
______________________________________________________________________________________
13
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
TC = +85°C
PLO = -3dBm, 0dBm, +3dBm
7
TC = +25°C
1900
2000
2100
2200
1900
2000
2100
2200
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
PRF = -5dBm/TONE
TC = +25°C
24
23
24
PRF = -5dBm/TONE
25
2100
2200
VCC = 5.0V
VCC = 4.75V
22
22
2000
24
PLO = -3dBm, 0dBm, +3dBm
TC = -30°C
1900
VCC = 5.25V
23
23
22
2300
1800
1900
2000
2100
2200
1800
2300
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
12
NOISE FIGURE (dB)
12
11
10
9
TC = +25°C
13
12
NOISE FIGURE (dB)
TC = +85°C
MAX19997A toc46
13
MAX19997A toc45
13
2300
26
INPUT IP3 (dBm)
25
INPUT IP3 (dBm)
TC = +85°C
25
26
MAX19997A toc43
PRF = -5dBm/TONE
8
MAX19997A toc41
1800
2300
RF FREQUENCY (MHz)
26
1800
VCC = 4.75V, 5.0V, 5.25V
6
1800
2300
MAX19997A toc42
1800
8
7
6
6
INPUT IP3 (dBm)
8
9
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
2300
MAX19997A toc47
7
9
MAX19997A toc44
8
10
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
9
11
MAX19997A toc40
TC = -30°C
10
11
MAX19997A toc39
11
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
NOISE FIGURE (dB)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
11
10
9
VCC = 4.75V, 5.0V, 5.25V
8
TC = -30°C
7
7
1800
1900
2000
2100
RF FREQUENCY (MHz)
14
2200
2300
7
1800
1900
2000
2100
RF FREQUENCY (MHz)
2200
2300
1800
1900
2000
2100
RF FREQUENCY (MHz)
______________________________________________________________________________________
2200
2300
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
TC = -30°C
50
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm
1800
1900
2000
2100
2200
60
50
VCC = 4.75V, 5.0V, 5.25V
40
1800
2300
MAX19997A toc50
70
40
40
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
2300
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = -30°C
75
65
PRF = -5dBm
85
75
65
PLO = -3dBm, 0dBm, +3dBm
95
PRF = -5dBm
3LO - 3RF RESPONSE (dBc)
85
95
3LO - 3RF RESPONSE (dBc)
PRF = -5dBm
85
MAX19997A toc53
RF FREQUENCY (MHz)
MAX19997A toc51
RF FREQUENCY (MHz)
95
3LO - 3RF RESPONSE (dBc)
60
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
2LO - 2RF RESPONSE (dBc)
TC = +25°C
50
PRF = -5dBm
MAX19997A toc52
2LO - 2RF RESPONSE (dBc)
60
70
2LO - 2RF RESPONSE (dBc)
PRF = -5dBm
TC = +85°C
MAX19997A toc48
70
MAX19997A toc49
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
75
65
VCC = 4.75V, 5.0V, 5.25V
TC = +25°C, +85°C
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
12
10
PLO = -3dBm, 0dBm, +3dBm
11
10
TC = -30°C
2100
RF FREQUENCY (MHz)
2200
2300
11
10
VCC = 4.75V
9
2000
VCC = 5.25V
VCC = 5.0V
TC = +25°C
9
1900
12
INPUT P1dB (dBm)
INPUT P1dB (dBm)
11
13
MAX19997A toc55
13
MAX19997A toc54
TC = +85°C
12
1800
1800
2300
RF FREQUENCY (MHz)
13
INPUT P1dB (dBm)
55
55
1800
MAX19997A toc56
55
2300
9
1800
1900
2000
2100
RF FREQUENCY (MHz)
2200
2300
1800
1900
2000
2100
2200
2300
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
50
45
40
TC = -30°C, +25°C, +85°C
45
40
PLO = -3dBm, 0dBm, +3dBm
1800
1900
2000
2100
2200
50
45
40
VCC = 4.75V, 5.0V, 5.25V
35
30
1800
2300
MAX19997A toc59
55
30
30
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
2300
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
0
0
-10
-20
TC = -30°C, +25°C, +85°C
-30
-10
-20
PLO = -3dBm, 0dBm, +3dBm
-30
2150
2250
2350
2450
2550
2650
MAX19997A toc62
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc61
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc60
-10
-20
VCC = 4.75V, 5.0V, 5.25V
-30
2150
2250
2350
2450
2550
2650
2150
2250
2350
2450
2550
2650
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = +85°C
20
TC = +25°C
30
RF-TO-IF ISOLATION (dB)
MAX19997A toc63
30
PLO = -3dBm, 0dBm, +3dBm
20
10
1900
VCC = 4.75V, 5.0V, 5.25V
20
TC = -30°C
10
1800
30
MAX19997A toc65
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT (dBm)
50
60
35
35
16
MAX19997A toc58
55
MAX19997A toc64
CHANNEL ISOLATION (dB)
55
60
CHANNEL ISOLATION (dB)
MAX19997A toc57
60
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF-TO-IF ISOLATION (dB)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
2000
2100
2200
RF FREQUENCY (MHz)
2300
10
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
2300
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
______________________________________________________________________________________
2300
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = -30°C, +25°C, +85°C
-40
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
-50
2740
2960
3180
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-20
TC = -30°C, +25°C, +85°C
-30
-40
-50
2520
2740
2960
3180
LO FREQUENCY (MHz)
-10
-20
PLO = -3dBm, 0dBm, +3dBm
-30
-40
-50
2300
2520
2740
2960
3180
LO FREQUENCY (MHz)
3400
MAX19997A toc68
-30
VCC = 4.75V, 5.0V, 5.25V
-40
2300
3400
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc69
-10
-20
-50
2300
3400
2520
2740
2960
3180
LO FREQUENCY (MHz)
3400
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-10
2LO LEAKAGE AT RF PORT (dBm)
2520
MAX19997A toc70
2300
2LO LEAKAGE AT RF PORT (dBm)
-20
-10
MAX19997A toc71
-30
MAX19997A toc67
-20
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc66
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-40
-50
2300
2520
2740
2960
3180
LO FREQUENCY (MHz)
3400
2300
2520
2740
2960
3180
LO FREQUENCY (MHz)
______________________________________________________________________________________
3400
17
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
10
15
20
PLO = -3dBm, 0dBm, +3dBm
5
VCC = 4.75V, 5.0V, 5.25V
10
15
20
0
MAX19997A toc74
fLO = 2600MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
5
IF PORT RETURN LOSS (dB)
5
0
MAX19997A toc73
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc72
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF PORT RETURN LOSS (dB)
fLO = 2350MHz
10
15
20
25
25
25
30
30
30
fLO = 2600MHz
fLO = 2950MHz
1900
2000
2100
2200
RF FREQUENCY (MHz)
2300
50
140
230
320
410
IF FREQUENCY (MHz)
15
PLO = -3dBm
PLO = 0dBm
230
320
410
IF FREQUENCY (MHz)
380
370
VCC = 5.0V
VCC = 4.75V
360
20
350
25
1900
18
VCC = 5.25V
390
SUPPLY CURRENT (mA)
10
140
400
MAX19997A toc75
PLO = +3dBm
5
50
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, EXTENDED RF BAND)
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
500
MAX19997A toc76
1800
LO PORT RETURN LOSS (dB)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
2150
2400 2650 2900
LO FREQUENCY (MHz)
3150
3400
-35
-15
5
25
45
TEMPERATURE (°C)
65
85
______________________________________________________________________________________
500
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
8
TC = +25°C
7
10
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
9
11
MAX19997A toc78
TC = -30°C
10
CONVERSION GAIN (dB)
11
MAX19997A toc77
11
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
9
8
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc79
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
7
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = +85°C
6
2400
2600
2800
RF FREQUENCY (MHz)
6
2200
3000
TC = +25°C
24
23
26
25
PLO = -3dBm, 0dBm, +3dBm
24
24
23
23
VCC = 4.75V, 5.0V, 5.25V
22
22
22
2200
3000
10
9
TC = +25°C
8
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
TC = -30°C
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
12
3000
11
10
9
VCC = 4.75V, 5.0V, 5.25V
8
7
7
7
13
NOISE FIGURE (dB)
11
2400
2600
2800
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc84
12
NOISE FIGURE (dB)
NOISE FIGURE (dB)
13
MAX19997A toc83
TC = +85°C
12
2200
3000
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc85
2400
2600
2800
RF FREQUENCY (MHz)
3000
PRF = -5dBm/TONE
TC = -30°C
2200
2400
2600
2800
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
PRF = -5dBm/TONE
25
INPUT IP3 (dBm)
INPUT IP3 (dBm)
2200
INPUT IP3 (dBm)
TC = +85°C
26
MAX19997A toc80
PRF = -5dBm/TONE
25
3000
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
26
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc81
2200
MAX19997A toc82
6
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
19
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
70
PLO = +3dBm
60
TC = -30°C
50
75
65
3000
2200
PRF = -5dBm
85
75
65
PLO = -3dBm, 0dBm, +3dBm
55
95
3000
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
2400
2600
2800
RF FREQUENCY (MHz)
13
10
PLO = -3dBm, 0dBm, +3dBm
12
INPUT P1dB (dBm)
11
VCC = 4.75V, 5.0V, 5.25V
2200
11
3000
VCC = 5.25V
12
VCC = 5.0V
11
10
VCC = 4.75V
9
2400
2600
2800
RF FREQUENCY (MHz)
2400
2600
2800
RF FREQUENCY (MHz)
13
TC = +25°C
9
2200
65
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
10
TC = -30°C
75
3000
INPUT P1dB (dBm)
TC = +85°C
12
85
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc92
13
PRF = -5dBm
55
2200
MAX19997A toc93
2400
2600
2800
RF FREQUENCY (MHz)
3000
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
55
2200
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc91
95
TC = -30°C, +25°C, +85°C
20
2400
2600
2800
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF - 3LO RESPONSE (dBc)
MAX19997A toc89
3RF - 3LO RESPONSE (dBc)
PRF = -5dBm
85
60
50
2200
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
95
VCC = 4.75V, 5.0V, 5.25V
MAX19997A toc94
3000
MAX19997A toc90
2400
2600
2800
RF FREQUENCY (MHz)
70
PLO = -3dBm
TC = +25°C
50
2200
PRF = -5dBm
MAX19997A toc88
PLO = 0dBm
80
2RF - 2LO RESPONSE (dBc)
60
PRF = -5dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF - 3LO RESPONSE (dBc)
2RF - 2LO RESPONSE (dBc)
70
80
MAX19997A toc87
PRF = -5dBm
TC = +85°C
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
2RF - 2LO RESPONSE (dBc)
80
MAX19997A toc86
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT P1dB (dBm)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
3000
9
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
45
40
TC = -30°C, +25°C, +85°C
35
45
40
PLO = -3dBm, 0dBm, +3dBm
2400
2600
2800
RF FREQUENCY (MHz)
3000
50
45
40
VCC = 4.75V, 5.0V, 5.25V
35
30
2200
30
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
0
TC = -30°C, +25°C, +85°C
-20
-10
PLO = -3dBm, 0dBm, +3dBm
-20
2650
1850
TC = +25°C
20
PLO = -3dBm, 0dBm, +3dBm
2050
2250
2450
LO FREQUENCY (MHz)
2650
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
RF-TO-IF ISOLATION (dB)
20
30
RF-TO-IF ISOLATION (dB)
MAX19997A toc101
TC = +85°C
1850
2650
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
2050
2250
2450
LO FREQUENCY (MHz)
MAX19997A toc102
2050
2250
2450
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
-20
-30
-30
1850
-10
MAX19997A toc103
-10
MAX19997A toc100
0
LO LEAKAGE AT IF PORT (dBm)
0
MAX19997A toc99
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc98
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-30
RF-TO-IF ISOLATION (dB)
55
MAX19997A toc97
50
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
35
30
LO LEAKAGE AT IF PORT (dBm)
MAX19997A toc96
50
55
CHANNEL ISOLATION (dB)
MAX19997A toc95
CHANNEL ISOLATION (dB)
55
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
20
VCC = 4.75V, 5.0V, 5.25V
TC = -30°C
10
10
10
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
21
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
-40
TC = -30°C, +25°C, +85°C
-50
-30
-40
PLO = -3dBm, 0dBm, +3dBm
2900
1900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-20
-30
-40
TC = -30°C, +25°C, +85°C
-50
2300
2500
2700
LO FREQUENCY (MHz)
-10
-20
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
1900
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
MAX19997A toc106
-30
-40
VCC = 4.75V, 5.0V, 5.25V
1900
2900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc107
-10
2100
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
2LO LEAKAGE AT RF PORT (dBm)
2300
2500
2700
LO FREQUENCY (MHz)
MAX19997A toc108
2100
-20
-50
-50
1900
22
-20
-10
MAX19997A toc109
-30
MAX19997A toc105
-20
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc104
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
-20
-30
VCC = 4.75V, 5.0V, 5.25V
-40
-50
1900
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
1900
2100
2300
2500
2700
LO FREQUENCY (MHz)
______________________________________________________________________________________
2900
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
20
PLO = -3dBm, 0dBm, +3dBm
25
VCC = 4.75V, 5.0V, 5.25V
10
15
20
5
3000
2400
2600
2800
RF FREQUENCY (MHz)
50
140
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
PLO = +3dBm
10
15
PLO = -3dBm
20
fLO = 1850MHz
PLO = 0dBm
20
400
VCC = 5.25V
390
140
230
320
410
IF FREQUENCY (MHz)
500
380
370
VCC = 4.75V
360
25
50
500
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
SUPPLY CURRENT (mA)
MAX19997A toc113
0
5
fLO = 2650MHz
15
30
30
2200
10
25
25
30
fLO = 2250MHz
MAX19997A toc112
5
0
MAX19997A toc114
15
fLO = 2250MHz
IF PORT RETURN LOSS (dB)
10
LO PORT RETURN LOSS (dB)
RF PORT RETURN LOSS (dB)
5
0
MAX19997A toc111
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc110
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 5.0V
350
1900
2150
2400 2650 2900
LO FREQUENCY (MHz)
3150
3400
-35
-15
5
25
45
TEMPERATURE (°C)
65
85
______________________________________________________________________________________
23
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
8
7
TC = +85°C
6
PLO = -3dBm, 0dBm, +3dBm
7
2400
2600
2800
3000
MAX19997A toc117
5
2200
2400
2600
2800
2200
3000
2400
2600
2800
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
21
PLO = -3dBm, 0dBm, +3dBm
20
19
PRF = -5dBm/TONE
21
18
TC = -30°C
17
2600
2800
3000
20
19
VCC = 3.0V, 3.3V, 3.6V
18
17
2400
17
2200
2400
2600
2800
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
12
NOISE FIGURE (dB)
11
10
9
TC = +25°C
VCC = 3.3V
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
TC = -30°C
7
2600
2800
RF FREQUENCY (MHz)
3000
12
11
10
9
VCC = 3.0V, 3.3V, 3.6V
8
7
2400
13
3000
MAX19997A toc123
TC = +85°C
12
13
NOISE FIGURE (dB)
VCC = 3.3V
MAX19997A toc121
13
3000
22
INPUT IP3 (dBm)
19
PRF = -5dBm/TONE
MAX19997A toc119
VCC = 3.3V
INPUT IP3 (dBm)
20
18
22
MAX19997A toc118
PRF = -5dBm/TONE
TC = +25°C
2200
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
TC = +85°C
8
7
RF FREQUENCY (MHz)
VCC = 3.3V
2200
8
RF FREQUENCY (MHz)
22
21
9
6
5
2200
INPUT IP3 (dBm)
8
6
5
24
9
10
MAX19997A toc120
9
10
11
CONVERSION GAIN (dB)
TC = +25°C
VCC = 3.3V
MAX19997A toc122
CONVERSION GAIN (dB)
10
11
MAX19997A toc116
VCC = 3.3V
TC = -30°C
CONVERSION GAIN (dB)
11
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc115
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE (dB)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
7
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
70
60
TC = +85°C
TC = +25°C
70
PLO = 0dBm
60
2400
VCC = 3.6V
80
70
VCC = 3.3V
60
VCC = 3.0V
50
2200
PRF = -5dBm
PLO = -3dBm
50
2600
2800
3000
50
2200
2400
2600
2800
3000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF - 3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
75
65
PRF = -5dBm
VCC = 3.3V
55
85
PLO = -3dBm, 0dBm, +3dBm
75
65
95
3RF - 3LO RESPONSE (dBc)
85
95
3RF - 3LO RESPONSE (dBc)
PRF = -5dBm
VCC = 3.3V
55
PRF = -5dBm
85
MAX19997A toc129
RF FREQUENCY (MHz)
MAX19997A toc127
RF FREQUENCY (MHz)
95
3RF - 3LO RESPONSE (dBc)
80
90
MAX19997A toc126
PLO = +3dBm
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
2RF - 2LO RESPONSE (dBc)
80
PRF = -5dBm
VCC = 3.3V
MAX19997A toc128
2RF - 2LO RESPONSE (dBc)
TC = -30°C
90
MAX19997A toc125
PRF = -5dBm
VCC = 3.3V
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
2RF - 2LO RESPONSE (dBc)
90
MAX19997A toc124
2RF - 2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.0V, 3.3V, 3.6V
75
65
55
TC = -30°C, +25°C, +85°C
45
2400
2600
2800
3000
2600
2800
3000
2400
2600
2800
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
10
VCC = 3.3V
8
7
TC = +25°C
TC = -30°C
PLO = -3dBm, 0dBm, +3dBm
8
7
6
5
2600
2800
RF FREQUENCY (MHz)
3000
VCC = 3.6V
3000
8
7
VCC = 3.0V
6
5
2400
VCC = 3.3V
9
INPUT P1dB (dBm)
INPUT P1dB (dBm)
9
10
MAX19997A toc131
TC = +85°C
9
2200
2200
RF FREQUENCY (MHz)
VCC = 3.3V
INPUT P1dB (dBm)
2400
RF FREQUENCY (MHz)
10
6
45
2200
MAX19997A toc130
2200
MAX19997A toc132
45
5
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
25
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
45
40
TC = -30°C, +25°C, +85°C
35
45
40
PLO = -3dBm, 0dBm, +3dBm
35
2400
2600
2800
3000
50
45
40
VCC = 3.0V, 3.3V, 3.6V
35
30
30
2200
2200
2400
2600
2800
2200
3000
2400
2600
2800
3000
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
0
0
0
VCC = 3.3V
TC = -30°C
-10
-20
TC = +85°C
TC = +25°C
-30
VCC = 3.3V
-10
-20
PLO = -3dBm, 0dBm, +3dBm
-30
1850
2050
2250
2450
2650
MAX19997A toc138
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc137
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc136
-10
-20
VCC = 3.0V, 3.3V, 3.6V
-30
1850
2050
2250
2450
2650
1850
2050
2250
2450
2650
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
25
20
TC = +25°C
15
TC = -30°C
10
30
VCC = 3.3V
25
20
PLO = -3dBm, 0dBm, +3dBm
15
10
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
30
MAX19997A toc141
VCC = 3.3V
TC = +85°C
RF-TO-IF ISOLATION (dB)
30
MAX19997A toc139
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT (dBm)
50
55
MAX19997A toc135
VCC = 3.3V
30
26
MAX19997A toc134
50
55
MAX19997A toc140
CHANNEL ISOLATION (dB)
VCC = 3.3V
CHANNEL ISOLATION (dB)
MAX19997A toc133
55
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION (dB)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
25
VCC = 3.0V, 3.3V, 3.6V
20
15
10
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
TC = -30°C, +25°C, +85°C
-30
-40
-20
-30
-40
-10
MAX19997A toc144
VCC = 3.3V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT (dBm)
-20
-10
MAX19997A toc143
VCC = 3.3V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT (dBm)
-10
MAX19997A toc142
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-20
-30
-40
PLO = -3dBm, 0dBm, +3dBm
-50
-50
1900
2100
2300
2500
2700
2900
-50
1900
2100
2300
2500
2700
2900
1900
2100
2300
2500
2700
2900
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-30
-40
TC = -30°C, +25°C, +85°C
-50
-20
-30
-40
PLO = -3dBm, 0dBm, +3dBm
-50
1900
2100
2300
2500
LO FREQUENCY (MHz)
2700
2900
-10
MAX19997A toc147
VCC = 3.3V
2LO LEAKAGE AT RF PORT (dBm)
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
MAX19997A toc146
LO FREQUENCY (MHz)
MAX19997A toc145
LO FREQUENCY (MHz)
-10
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.0V, 3.3V, 3.6V
-20
-30
-40
VCC = 3.0V, 3.3V, 3.6V
-50
1900
2100
2300
2500
LO FREQUENCY (MHz)
2700
2900
1900
2100
2300
2500
2700
2900
LO FREQUENCY (MHz)
______________________________________________________________________________________
27
NBY2:::8B
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
______________________________________________________________________ ࢜ቯ৔ᔫᄂቶ)ኚ*
(Typical Application Circuit, standard RF band (see Table 1), VCC = +3.3V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
10
15
20
fLO = 2250MHz
10
20
VCC = 3.0V, 3.3V, 3.6V
30
0
VCC = 3.3V
fLO = 2650MHz
10
MAX19997A toc150
PLO = -3dBm, 0dBm, +3dBm
0
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS (dB)
5
fIF = 350MHz
MAX19997A toc149
VCC = 3.3V
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc148
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF PORT RETURN LOSS (dB)
20
fLO = 1850MHz
30
25
fLO = 2250MHz
30
40
2400
2600
2800
3000
40
50
140
230
RF FREQUENCY (MHz)
320
500
50
140
VCC = 3.3V
PLO = +3dBm
5
10
15
PLO = -3dBm
PLO = 0dBm
300
VCC = 3.6V
290
280
VCC = 3.3V
270
260
20
230
VCC = 3.0V
250
25
1900
2150
2400
2650
2900
LO FREQUENCY (MHz)
3150
3400
-35
320
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
SUPPLY CURRENT (mA)
0
MAX19997A toc151
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
28
410
IF FREQUENCY (MHz)
MAX19997A toc152
2200
LO PORT RETURN LOSS (dB)
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
-15
5
25
45
65
85
TEMPERATURE (°C)
______________________________________________________________________________________
410
500
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
፛୭
෗߂
1
RFMAIN
2, 5, 6, 8, 12, 15,
18, 23, 28, 31, 34
GND
࢐Ljด‫ݝ‬඗ᎌೌ୻Ljభጲ୓ᑚቋ፛୭୻࢐૞ॳహă
3, 7, 20, 22, 24–27
GND
࢐Ljด‫୻ೌݝ‬ᒗൡ੆๤Lj୓Ⴥᎌ࢐፛୭Ꭷൡ੆๤)FQ*ೌ୻Ᏼጙ໦ă
4, 10, 16, 21, 30,
36
VCC
࢟ᏎLj๬വ࢟ྏ።஧భถణதক፛୭हᒙ)‫ݬ‬୅࢜ቯ።፿࢟വ*ă
9
RFDIV
11
IFD_SET
13, 14
IFD+, IFD-
ॊૹ૘ຫ໭‫ތ‬ॊJGၒ߲ă৉፛୭௿ኊᄰਭ࿟౯࢟ঢೌ୻ᒗWDD )‫ݬ‬୅࢜ቯ።፿࢟വ*ă
17
LO_ADJ_D
MPॊૹहࡍ໭ࡼມᒙ఼ᒜăᏴক፛୭Ꭷ࢐ᒄମೌ୻ጙৈ࢟ᔜ࿸ᒙॊૹMPहࡍ໭ࡼມᒙ࢟ഗă
19
LO
29
LO_ADJ_M
MPᓍहࡍ໭ࡼມᒙ఼ᒜăᏴক፛୭Ꭷ࢐ᒄମೌ୻ጙৈ࢟ᔜ౶࿸ᒙMPᓍहࡍ໭ࡼມᒙ࢟ഗă
32, 33
IFM-, IFM+
ᓍ૘ຫ໭‫ތ‬ॊJGၒ߲ă৉፛୭௿ኊᄰਭ࿟౯࢟ঢೌ୻ᒗWDD )‫ݬ‬୅࢜ቯ።፿࢟വ*ă
35
IFM_SET
—
EP
৖ถ
ᓍᄰࡸSGၒྜྷăด‫ݝ‬ປ๼ᆐ61ΩLjኊገጙৈၒྜྷ৆ᒇ࢟ྏă
ॊૹᄰࡸSGၒྜྷăด‫ݝ‬ປ๼ᆐ61ΩLjኊገጙৈၒྜྷ৆ᒇ࢟ྏă
JGॊૹहࡍ໭ࡼມᒙ఼ᒜăᏴক፛୭Ꭷ࢐ᒄମೌ୻ጙৈ࢟ᔜ౶࿸ᒙॊૹJGहࡍ໭ࡼມᒙ࢟ഗă
‫۾‬ᑩၒྜྷLjকၒྜྷ࣡Ᏼด‫ݝ‬ປ๼ᆐ61ΩLjኊገጙৈၒྜྷ৆ᒇ࢟ྏă
JGᓍहࡍ໭ࡼມᒙ఼ᒜăᏴক፛୭Ꭷ࢐ᒄମೌ୻ጙৈ࢟ᔜ࿸ᒙJGᓍहࡍ໭ࡼມᒙ࢟ഗă
ൡ੆๤Ljด‫୻ೌݝ‬ᒗHOELjဧ፿ࣶৈ୻࢐ਭ఻୓ক੆๤੆୻ࡵጙৈQDC๤Ljᆐ໭ୈᎧQDC
࢐‫ށ‬ᒄମᄋ৙ੑࡼྲེᄰࡸăࣶৈ୻࢐ਭ఻થᎌᓐ᎖খ࿖SGቶถă
_______________________________ ሮᇼႁී
NBY2:::8Bၷᄰࡸሆ‫ܤ‬ຫ૘ຫ໭ถ৫ᆐࣶᒬ2911NI{ᒗ
3:11NI{૥ᐶ።፿ᄋ৙঱ሣቶࣞਜ਼ࢅᐅဉᇹၫă໭ୈᅲ
ཝᑽߒ3411NI{ᒗ3:11NI{ࡼXjNBYĂMUFĂXDTጲૺ
NNETᇄሣ૥߻࿸ဗ።፿ᒦࡼࢅ࣡ਜ਼঱࣡MPᓖྜྷଦ৩ă
ᏴඛৈSG࣡ాᐐଝጙৈࢯቕᏄୈ)݀ೊ࢟ঢ*Lj໚঱࣡MP
ᓖྜྷଦ৩થభጲᑽߒXDENBĂdenb3111ਜ਼QDT2:11።፿ă
NBY2:::8B ถ৫৔ᔫᏴ2:61NI{ᒗ4511NI{! MPपᆍጲૺ
61NI{ᒗ 611NI{! JGपᆍăૹ߅ऻຳੰ‫ܤ‬ኹ໭ਜ਼ປ๼࢟വ
Ꮴ኏61Ω࡝࣡୻ాᎧSGਜ਼MP࣡ాೌ୻ăૹ߅MPદߡ໭భ
ጲᆐ૘ຫ໭ਖ਼ᄋ৙୷༓ࡼདࣅถೆLj୓NBY2:::8Bၒྜྷ
࣡ჅኊࡼMPདࣅିቃࡵ.4eCnᒗ,4eCnăJG࣡ా๼੝‫ތ‬ॊ
ၒ߲Ljᎌ቉খ࿖೫3SG! .! 3MP! )ࢅ࣡ᓖྜྷ*ਜ਼3MP! .! 3SG! )঱࣡
ᓖྜྷ*ቶถă
SGၒྜྷਜ਼ऻຳੰ‫ܤ‬ኹ໭
NBY2:::8BࡼೝৈSGၒྜྷ)SGNBJOਜ਼SGEJW*உ੝ࠈೊ৆
ᒇഗ࢟ྏLj௿ປ๼Ᏼ61Ωăၒྜྷ࣡ᄰਭඛৈᄰࡸࡼຢ࿟ऻ
ຳੰ‫ܤ‬ኹ໭ด‫ݝ‬ᒇഗ࣢୻ࡵ࢐Ljፐࠥኊገ৆ᒇ࢟ྏăဧ
፿33qG৆ᒇഗ࢟ྏဟLjᏴᑳৈ3711NI{ᒗ3:11NI{ࡼSG
ຫൈपᆍดLjSG࣡ాࡼၒྜྷૄ݆Ⴜ੒࢜ቯᒋᆐ26eCă
______________________________________________________________________________________
29
NBY2:::8B
______________________________________________________________________________ ፛୭ႁී
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
ᏴඛৈSG࣡ాᐐଝጙৈࢯቕᏄୈLjNBY2:::8BࡼSGຫൈ
पᆍથభጲሶሆᅠᐱࡵ2911NI{ă࣪᎖2:61NI{ࡼSG።፿Lj
భጲॊܰᏴ࢒2፛୭ਜ਼࢒:፛୭Ꭷ࢐ᒄମೌ୻ጙৈ23oIࡼ
݀ೊ࢟ঢLj഍ᅪLjથኊገ୓৆ᒇഗ࢟ྏ)D2ਜ਼D9*࠭33qGৎ
ધᆐ2qGLjሮᇼቧᇦ༿‫ݬ‬ఠ࢜ቯ።፿࢟വă
MPၒྜྷĂદߡ໭ਜ਼ऻຳੰ‫ܤ‬ኹ໭
ೝ଀ด‫ ݝ‬MP દߡ໭Ꮴ኏୷౑पᆍࡼၒྜྷ৖ൈདࣅ MPă
Ᏼ .4eCnᒗ,4eCn! MPቧ੓৖ൈपᆍดLjཀྵۣ৉ሲᒎ‫ܪ‬Ᏼ
ਖࢾࡼपᆍดăຢ࿟ࢅႼ੒ऻຳੰ‫ܤ‬ኹ໭ਜ਼MPદߡ໭๼
੝ဧ፿Ljདࣅၷຳੰ૘ຫ໭ăMPၒྜྷ࣡ᎧJGၒ߲࣡ᒄମ
ࡼჅᎌ୻ాਜ਼ປ๼Ꮔୈ௿ጯૹ߅Ᏼበຢ࿟ă
_______________________________ ።፿ቧᇦ
ၒྜྷਜ਼ၒ߲ປ๼
SGਜ਼MPၒྜྷ࣡Ᏼด‫ݝ‬ປ๼ᆐ61ΩLjᏴ3511NI{ᒗ3:11NI{
ࡼSGຫൈपᆍดᇄኊປ๼ᏄୈăSGਜ਼MPၒྜྷ࣡ᒑኊᄰਭ
৆ᒇ࢟ྏೌ୻ă
‫ܘ‬ገဟLjඛৈSG࣡ాᐐଝೝৈᅪ‫ݝ‬ປ๼ᏄୈLjSG৔ᔫຫ
ࣤถ৫౫ᐱᒗ2911NI{Ljሮᇼቧᇦ༿‫ݬ‬ఠ࢜ቯ።፿࢟വਜ਼
‫ܭ‬3ă
JG ၒ߲ᔜఝᆐ311Ω )‫ތ‬ॊ*ăᆐऱ‫ຶܣ‬ৰLjᄰਭᅪ‫ࢅݝ‬Ⴜ
੒ 5;2! )ᔜఝ‫ऻ*܈‬ຳੰ‫ܤ‬ኹ໭୓কᔜఝᓞછ߅61Ω࡝࣡ၒ
߲)‫ݬ‬୅࢜ቯ።፿࢟വ*ă
঱ሣቶࣞ૘ຫ໭
NBY2:::8Bࡼਖ਼ቦ࢟വᎅೝৈၷຳੰĂ঱ቶถᇄᏎ૘ຫ
໭ᔝ߅ăຢ࿟MPદߡ໭௥ᎌ୷ࡍࡼMP‫ڼ‬७Ljభᄋ৙ᎁፊ
ࡼሣቶࣞᒎ‫ܪ‬ă࣪᎖঄ঙ3411NI{ᒗ3:11NI{ຫࣤࡼࢅ࣡
MPᓖྜྷଦ৩LjᎧૹ߅JGहࡍ໭๼੝ဧ፿ဟLj଀ೊઁࡼJJQ4Ă
3SG! .! 3MPጴᒜਜ਼OGࡼ࢜ቯᒋॊܰᆐ,35eCn! )JJQ4*Ă.78eCd
ਜ਼21/4eCă࣪᎖঱࣡MPᓖྜྷଦ৩)঄ঙຫൈᆐ3411NI{ᒗ
3:11NI{*భጲ૝ࡻᄴࢀࡼ଀ೊᄂቶLjJJQ4Ă3MP . 3SGጴ
ᒜਜ਼OG࢜ቯᒋॊܰᆐ ,35eCn! )JJQ4*Ă.84eCdਜ਼21/5eCă
‫ތ‬ॊJGၒ߲हࡍ໭
NBY2:::8B૘ຫ໭௥ᎌ61NI{ᒗ611NI{ࡼJGຫൈपᆍLj
‫ތ‬ॊĂૹ࢟૵ఎവJGၒ߲࣡ాኊገᄰਭᅪ‫࢟ݝ‬ঢ࿟౯ᒗ
WDDăᑚቋ࢟ঢᎧJDࡼ݀ೊ࢟ྏĂQDC࿟ࡼᏄୈጲૺQDC
‫۾‬࿽ࡼ଎ည࢟ྏ‫ޘ‬ညቕᑩLjဧJGປ๼࢟വᎁછᏴჅገཇࡼ
ຫൈăᒋࡻᓖፀࡼဵǖᑚቋ‫ތ‬ॊJGၒ߲ถ৫খ࿖3SG! .! 3MP
ਜ਼3MP . 3SGጴᒜᒎ‫ܪ‬Lj࡝࣡JG።፿ኊገጙৈ5;2ࡼऻຳੰ
‫ܤ‬ኹ໭Lj୓311Ωࡼ‫ތ‬ॊ࢟ᔜᓞધ߅61Ω࡝࣡ၒ߲ăᏴऻ
ຳੰ‫ܤ‬ኹ໭ᒄઁLj࢟ኹᓘ݆‫)܈‬WTXS*ᆐ2/3;2ă
30
ଢ଼ࢅ৖੒ෝါ
NBY2:::8Bࡼඛৈᄰࡸ௿௥ᎌೝৈ፛୭ )MP`BEK` `Lj
JG` `TFU*LjᏤ኏ᄰਭᅪ‫࢟ݝ‬ᔜ࿸ᒙด‫ݝ‬ມᒙ࢟ഗă࢟ᔜࡼ
‫߂ܪ‬ᒋྙ‫ܭ‬2ਜ਼‫ܭ‬3Ⴥာăᐐࡍ࢟ᔜᒋభଢ଼ࢅ৖੒Ljࡣࡔଥ
ဵቶถᎌჅሆଢ଼ăྙਫ඗ᎌ±2&றࣞࡼ࢟ᔜLjభጲ‫ݧ‬፿
±6&ࡼ࢟ᔜᄐࡔă
ኡᐋ,4/4Wᆐ૘ຫ໭৙࢟ጐభጲመᓎଢ଼ࢅ৖੒Ljᑚᒬऱါభ
ጲ୓ᑳᄏ৖੒ଢ଼ࢅ64&Lj৖੒Ꭷቶถࡼ࣪።ਈᇹ༿‫ݬ‬ఠ,4/4W
Tvqqmz-! Mpx.Tjef! MP! Jokfdujpo! BD! Fmfdusjdbm! Dibsbdufsjtujdt
ਜ਼࢜ቯ৔ᔫᄂቶᒦᎧ,4/4W৙࢟ሤਈࡼᄂቶཎሣă
‫ݚ‬௜ఠ൅
੝ಯࡼQDC࿸ଐဵྀੜSG0ᆈ݆࢟വࡼጙৈᒮገ‫ݝ‬ॊăSG
ቧ੓ሣ።஧భถ࣢LjጲିቃႼ੒Ă६࿴ਜ਼࢟ঢăᆐ૝ࡻ
ᔢଛቶถLj୻࢐፛୭ኍᒇ୻Ꭷॖᓤ࢏‫ࡼݝ‬ൡ੆๤ೌ୻ă
QDC࿟ࡼൡ੆๤‫ܘ‬ኍೌ୻ᒗQDCࡼ࢐‫ށ‬ă୐ፇ‫ݧ‬፿ࣶৈਭ
఻୓ক੆๤ೌ୻ᒗ࢐‫ށ‬ăᑚᒬऱजถᆐ໭ୈᄋ৙ጙৈ೜
ੑࡼSG0ྲེവ஼ă୓໭ୈॖᓤ࢏‫ࡼݝ‬ൡ੆๤੆୻ᒗQDCă
࢟വ‫ݚۇ‬௜༿‫ݬ‬ఠNBY2:::8Bຶৰ‫ۇ‬LjHfscfsᆪୈభ࠭
dijob/nbyjn.jd/dpn࿺༿ă
______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
੝ಯࡼ࢟Ꮞ๬വ࣪঱ຫ࢟വࡼᆮࢾቶᒗਈᒮገăྙ ࢜ቯ
።፿࢟വჅာLj࣪৉WDD ፛୭ဧ፿࢟ྏ๬വă
ൡ੆๤ࡼSG0ྲེఠ൅
NBY2:::8B‫ݧ‬፿47፛୭ĂۡቯRGO.FQॖᓤLj໚ൡ੆๤)FQ*
ᄋ৙೫ጙৈᎧ਌በᒄମࡼࢅེᔜᄰവăᏴ‫ڔ‬ᓤNBY2:::8B
ࡼQDCᎧFQᒄମۣߒ೜ੑࡼེࠅ࢕ᄰࡸऻ‫ޟ‬ᒮገăࠥᅪLj
FQ።ᄰਭጙৈࢅ࢟ঢവ஼୻࢐ăFQ‫ܘ‬ኍᒇ୻૞ᄰਭጙᇹ
೰࢟ࣜਭ఻੆୻ᒗQDCࡼ࢐‫ށ‬ă
‫ܭ‬2/! ‫ܪ‬ᓰSGຫࣤ።፿࢟വࡼᏄୈᒋ)ᎁછ᎖3511NI{ᒗ3:11NI{ຫൈपᆍ*
DESIGNATION
QTY
DESCRIPTION
COMPONENT SUPPLIER
C1, C8
2
22pF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C14
1
1.5pF microwave capacitor (0402)
Murata Electronics North
America, Inc.
C4, C9, C13, C15,
C17, C18
6
0.01μF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C10, C11, C12,
C19, C20, C21
6
82pF microwave capacitors (0603)
Murata Electronics North
America, Inc.
L1, L2, L3, L4
4
120nH wire-wound high-Q inductors* (0805)
Coilcraft, Inc.
L7, L8
0
Not used
—
750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
1.1kΩ ±1% resistors (0402). Use for VCC = +3.3V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
845Ω ±1% resistors (0402). Use for VCC = +3.3V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R1, R4
R2, R5
2
2
R3, R6
2
0Ω resistors (1206). These resistors can be increased in value to reduce
power dissipation in the device, but reduces the compression point. Full
P1dB performance achieved using 0Ω.
Digi-Key Corp.
T1, T2
2
4:1 IF baluns (TC4-1W-17+)
Mini-Circuits
U1
1
MAX19997A IC (36 TQFN-EP)
Maxim Integrated Products,
Inc.
*࣪᎖311NI{! JGຫൈLjဧ፿4:1oI! )1916*࢟ঢăሮᇼቧᇦ༿Ꭷ৔‫ޣ‬ೊᇹă
______________________________________________________________________________________
31
NBY2:::8B
࢟Ꮞ๬വ
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
‫ܭ‬3/! ౫ᐱSGຫࣤ።፿࢟വࡼᏄୈᒋ)ᎁછ᎖2:61NI{*!
DESIGNATION
QTY
DESCRIPTION
COMPONENT SUPPLIER
C1, C8
2
1pF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C14
1
1.5pF microwave capacitor (0402)
Murata Electronics North
America, Inc.
C4, C9, C13, C15,
C17, C18
6
0.01μF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C10, C11, C12,
C19, C20, C21
6
82pF microwave capacitors (0603)
Murata Electronics North
America, Inc.
L1, L2, L3, L4
4
120nH wire-wound high-Q inductors* (0805)
Coilcraft, Inc.
L7, L8
2
12nH inductors (0402). Use to improve RF match from 1800MHz to 2400MHz.
Connect L7 and L8 from pins 1 and 9, respectively, to ground.
Coilcraft, Inc.
R1, R4
2
750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R2, R5
2
698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R3, R6
2
0Ω resistors (1206). These resistors can be increased in value to reduce
power dissipation in the device, but reduces the compression point. Full
P1dB performance achieved using 0Ω.
Digi-Key Corp.
T1, T2
2
4:1 IF baluns (TC4-1W-17+)
Mini-Circuits
U1
1
MAX19997A IC (36 TQFN-EP)
Maxim Integrated Products,
Inc.
*࣪᎖311NI{! JGຫൈLjဧ፿4:1oI! )1916*࢟ঢăሮᇼቧᇦ༿Ꭷ৔‫ޣ‬ೊᇹă
32
______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
C19
T1
L1*
VCC
IF MAIN OUTPUT
C21
R3
L2*
4:1
R1
VCC
C20
VCC
RF MAIN INPUT
GND
C17
28
29
30
31
VCC
GND
IFM32
IFM+
33
IFM_SET
GND
34
36
L7**
C1
35
VCC
C18
LO_ADJ_M
R2
+
RFMAIN
GND
GND
VCC
VCC
C4
GND
GND
GND
GND
RFDIV
RF DIV INPUT
27
1
MAX19997A
2
26
3
25
4
24
5
23
6
22
7
21
EXPOSED
PAD
8
20
19
9
GND
GND
GND
GND
GND
GND
VCC
VCC
C15
GND
LO
LO
C14
18
16
17
GND
GND
VCC
15
14
IFD-
13
IFD+
12
GND
R4
LO_ADJ_D
C9
IFD_SET
VCC
VCC
10
L8**
11
C8
R5
VCC
C13
C11
*USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz.
CONTACT FACTORY FOR DETAILS.
**CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO
2400MHz. SEE TABLE 2 FOR DETAILS.
T2
L4*
VCC
R6
C12
IF DIV OUTPUT
L3*
4:1
C10
______________________________________________________________________________________
33
NBY2:::8B
_______________________________________________________________________ ࢜ቯ።፿࢟വ
``````````````````````` ፛୭๼ᒙ0৖ถౖᅄ
_______________________________ በຢቧᇦ
28 GND
29 LO_ADJ_M
30 VCC
31 GND
32 IFM-
33 IFM+
34 GND
36 VCC
TOP VIEW
35 IFM_SET
PROCESS: SiGe BiCMOS
``````````````````````````````` ॖᓤቧᇦ
+
ྙኊᔢதࡼॖᓤᅪተቧᇦਜ਼੆๤‫ݚ‬௜Lj༿‫އ‬ኯ china.maxim-ic.
com/packagesă༿ᓖፀLjॖᓤ‫ܠ‬൩ᒦࡼĐ,đĂĐ$đ૞Đ.đஞ‫ܭ‬ာ
SpITᓨზăॖᓤᅄᒦభถ۞਺‫ݙ‬ᄴࡼᆘᓮᔊ९LjࡣॖᓤᅄᒑᎧॖ
ᓤᎌਈLjᎧSpITᓨზᇄਈă
27
GND
26
GND
3
25
GND
4
24
GND
ॖᓤಢቯ
ॖᓤ‫ܠ‬൩
ᅪተ‫ܠ‬੓
੆๤‫ݚ‬௜‫ܠ‬੓
GND
5
23
GND
36 ፛୭ۡቯ QFN-EP
T3666+2
21-0141
90-0049
GND
6
22
GND
GND
7
21
VCC
GND
8
20
GND
RFDIV
9
19
LO
13
14
15
16
17
18
IFD-
GND
VCC
LO_ADJ_D
GND
EXPOSED
PAD
IFD+
VCC
12
GND
MAX19997A
GND
2
11
GND
IFD_SET
1
10
RFMAIN
VCC
NBY2:::8B
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
6mm x 6mm THIN QFN (EXPOSED PAD)
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.
34
______________________________________________________________________________________
ၷᄰࡸĂTjHfĂ঱ሣቶࣞĂ2911NI{ᒗ3:11NI{
ሆ‫ܤ‬ຫ૘ຫ໭LjࡒᎌMPદߡ໭
ኀࢿ੓
ኀࢿ྇໐
0
10/08
1
9/10
ႁී
ᔢ߱‫۾ۈ‬ă
࣪ৃါ஠ቲ೫ᇼᆈࡼኀখă
ኀখ጑
—
2, 3, 4, 10,
15, 29, 30, 34
Nbyjn ۱ய‫ࠀူێ‬
۱ய 9439ቧረ ᎆᑶ‫ܠ‬൩ 211194
඾ॅ࢟જǖ911!921!1421
࢟જǖ121.7322 62::
ࠅᑞǖ121.7322 63::
Nbyjn‫࣪ݙ‬Nbyjn‫ޘ‬ອጲᅪࡼྀੜ࢟വဧ፿ঌᐊLjጐ‫ݙ‬ᄋ৙໚ᓜಽ኏భăNbyjnۣഔᏴྀੜဟମĂ඗ᎌྀੜᄰۨࡼ༄ᄋሆኀখ‫ޘ‬ອᓾ೯ਜ਼ਖৃࡼཚಽă
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________ 35
© 2010 Maxim Integrated Products
Nbyjn ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖ‫ݿ‬࿜‫ܪ‬ă
NBY2:::8B
```````````````````````````````````````````````````````````````````````````` ኀࢿ಼ဥ
MAX19997A 双通道、SiGe、高线性度、高增益、1800MHz至2900MHz下变频混频器,带有LO缓冲器/开关 - 概述
ENGLISH • 简体中文 • 日本語 • 한국어 • РУССКИЙ Login | Register
最新内容
产品
方案
设计
应用
技术支持
销售联络
公司简介
我的Maxim
Maxim > 产品 > 无线与射频(RF) > MAX19997A
MAX19997A
双通道、SiGe、高线性度、高增益、1800MHz至2900MHz下变频混频器,带有LO缓冲器/开关
噪声最低、线性度最高的1800MHz至2900MHz、双通道SiGe混频器,用于WCS、LTE、WiMAX、WCDMA和MMDS基站,具有优异的IIP3、NF和2 x 2杂散特性
概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况
状况:生产中。
概述
数据资料
MAX19997A双通道下变频混频器是通用、高集成度、多功能下变频器,可为1800MHz至2900MHz基站应用提 供高线性度性能和低噪声系数。MAX19997A完全支持2300MHz至2900MHz的WiMAX™、LTE、WCS以
及MMDS无线基础设施应用中的低端和高端LO注入架构,低端配置下可提供8.7dB增益、+24dBm输
入IP3和10.3dB NF,高端配置下可提供8.7dB增益、+24dBm输入IP3和10.4dB NF。每个RF端口外加一个调谐
元件(旁路电感),可将高端LO注入架构的范围进一步向下扩展至1800MHz。
完整的数据资料
提供更新的英文版数据资料
英文
下载 Rev. 2 (PDF, 588kB)
中文
下载 Rev. 1 (PDF, 912kB)
该器件在RF和LO端口集成有非平衡变压器,此外器件还包含一个LO缓冲器、两个双平衡混频器和一对差
分IF输出放大器。MAX19997A需要一个典型值为0dBm的LO驱动,电源电流保证低于420mA,以达到预期的线
性度指标。
MAX19997A采用紧凑的6mm x 6mm、36引脚、薄型QFN无铅封装,带有裸焊盘。在TC = -40°C至+85°C的扩
展级温度范围内,可保证电气性能。
关键特性
应用/使用
1800MHz至2900MHz RF频率范围
1950MHz至3400MHz LO频率范围
50MHz至500MHz IF频率范围
支持低端和高端LO注入
8.7dB转换增益
+24dBm输入IP3
10.3dB噪声系数
+11.3dBm输入1dB压缩点
PRF = -10dBm时,具有70dBc (典型值)的2 x 2杂散抑制
双通道理想用于分集接收器应用
集成LO缓冲器
内部LO和RF非平衡变压器支持单端输入
-3dBm至+3dBm的低LO驱动
引脚兼容于MAX19999 3000MHz至4000MHz混频器
引脚相似于MAX9995/MAX9995A和MAX19995/MAX19995A 1700MHz至2200MHz混频器以
及MAX9985/MAX9985A和MAX19985/MAX19985A 700MHz至1000MHz混频器
42dB通道间隔离
采用+5.0V或+3.3V单电源供电
外部电流设置电阻允许折中选择混频器的低功耗/低性能工作模式
2.3GHz WCS基站
2.5GHz WiMAX和LTE基站
2.7GHz MMDS基站
固定宽带无线接入
军用系统
PCS 1900和EDGE基站
PHS/PAS基站
个人移动无线装置
UMTS/WCDMA和cdma2000® 3G基站
无线本地环路
Key Specifications: Downconverter Mixers
RF
RF
LO
LO
IF
IF
2RF3.3V
5V
Freq. Freq. Freq. Freq. Freq. Freq.
Price
Input Noise 2LO/
Footprint
V
Gain
Supply Supply
Part Number Channels (MHz) (MHz) (MHz) (MHz) (MHz) (MHz)
IP3 Figure 2LO- CC
(mm x Package/Pins
(dB)
(V) Current Current
(dBm) (dB) 2RF
mm)
See
(mA)
(mA)
min max min max min max
(dBc)
Notes
MAX19997A 2
1800
2900
1950
3400
50
500
8.7
24
10.3
70
3.0
to
5.25
279
388
6.0 x 6.0
查看所有Downconverter Mixers (33)
Pricing Notes:
This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may
differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized
distributor.
图表
http://china.maxim-ic.com/datasheet/index.mvp/id/5586[2011-02-23 10:21:42]
TQFN/36
$9.96
@1k
MAX19997A 双通道、SiGe、高线性度、高增益、1800MHz至2900MHz下变频混频器,带有LO缓冲器/开关 - 概述
典型应用电路
注释、注解
关于Maxim的完整无线基础结构,请访问china.maxim-ic.com/bts。
更多信息
新品发布
[ 2009-02-26 ]
没有找到你需要的产品吗?
应用工程师帮助选型,下个工作日回复
参数搜索
应用帮助
概述
技术文档
定购信息
相关产品
概述
关键特性
应用/ 使用
关键指标
图表
注释、注解
数据资料
应用笔记
评估板
设计指南
可靠性报告
软件/ 模型
价格与供货
样品
在线订购
封装信息
无铅信息
类似功能器件
类似应用器件
评估板
类似型号器件
配合该器件使用的产品
http://china.maxim-ic.com/datasheet/index.mvp/id/5586[2011-02-23 10:21:42]
MAX19997A 双通道、SiGe、高线性度、高增益、1800MHz至2900MHz下变频混频器,带有LO缓冲器/开关 - 概述
参考文献: 19- 4288 Rev. 2; 2011- 02- 21
本页最后一次更新: 2011- 02- 21
联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明
© 2011 Maxim Integrated Products版权所有
http://china.maxim-ic.com/datasheet/index.mvp/id/5586[2011-02-23 10:21:42]
19-4288; Rev 2; 2/11
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
The MAX19997A dual downconversion mixer is a versatile, highly integrated diversity downconverter that provides high linearity and low noise figure for a multitude of
1800MHz to 2900MHz base-station applications. The
MAX19997A fully supports both low- and high-side LO
injection architectures for the 2300MHz to 2900MHz
WiMAX™, LTE, WCS, and MMDS bands, providing
8.7dB gain, +24dBm input IP3, and 10.3dB NF in the
low-side configuration, and 8.7dB gain, +24dBm input
IP3, and 10.4dB NF in the high-side configuration. Highside LO injection architectures can be further extended
down to 1800MHz with the addition of one tuning element (a shunt inductor) on each RF port.
The device integrates baluns in the RF and LO ports,
an LO buffer, two double-balanced mixers, and a pair
of differential IF output amplifiers. The MAX19997A
requires a typical LO drive of 0dBm and a supply current guaranteed below 420mA to achieve the targeted
linearity performance.
The MAX19997A is available in a compact 6mm x 6mm,
36-pin thin QFN lead-free package with an exposed
pad. Electrical performance is guaranteed over the
extended temperature range, from TC = -40°C to +85°C.
Applications
2.3GHz WCS Base Stations
2.5GHz WiMAX and LTE Base Stations
2.7GHz MMDS Base Stations
UMTS/WCDMA and cdma2000® 3G Base
Stations
Features
♦ 1800MHz to 2900MHz RF Frequency Range
♦ 1950MHz to 3400MHz LO Frequency Range
♦ 50MHz to 550MHz IF Frequency Range
♦ Supports Both Low-Side and High-Side LO
Injection
♦ 8.7dB Conversion Gain
♦ +24dBm Input IP3
♦ 10.3dB Noise Figure
♦ +11.3dBm Input 1dB Compression Point
♦ 70dBc Typical 2 x 2 Spurious Rejection at
PRF = -10dBm
♦ Dual Channels Ideal for Diversity Receiver
Applications
♦ Integrated LO Buffer
♦ Integrated LO and RF Baluns for Single-Ended
Inputs
♦ Low -3dBm to +3dBm LO Drive
♦ Pin Compatible with the MAX19999 3000MHz to
4000MHz Mixer
♦ Pin Similar to the MAX9995/MAX9995A and
MAX19995/MAX19995A 1700MHz to 2200MHz
Mixers and the MAX9985/MAX9985A and
MAX19985/MAX19985A 700MHz to 1000MHz
Mixers
♦ 42dB Channel-to-Channel Isolation
PCS1900 and EDGE Base Stations
♦ Single +5.0V or +3.3V Supply
PHS/PAS Base Stations
♦ External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/ReducedPerformance Mode
Fixed Broadband Wireless Access
Wireless Local Loop
Private Mobile Radios
Ordering Information
Military Systems
TEMP RANGE
PIN-PACKAGE
MAX19997AETX+
PART
-40°C to +85°C
36 Thin QFN-EP*
MAX19997AETX+T
-40°C to +85°C
36 Thin QFN-EP*
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.
T = Tape and reel.
WiMAX is a trademark of WiMAX Forum.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
Pin Configuration/Functional Block Diagram appears at
end of data sheet.
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX19997A
General Description
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
ABSOLUTE MAXIMUM RATINGS
VCC to GND ...........................................................-0.3V to +5.5V
RF_, LO to GND.....................................................-0.3V to +0.3V
IFM_, IFD_, IFM_SET, IFD_SET, LO_ADJ_M,
LO_ADJ_D to GND.................................-0.3V to (VCC + 0.3V)
RF_, LO Input Power ......................................................+15dBm
RF_, LO Current (RF and LO is DC
shorted to GND through balun)................................... ...50mA
Continuous Power Dissipation (Note 1) ..............................8.7W
Operating Case Temperature Range
(Note 4) ...................................................TC = -40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Soldering Temperature (reflow) .......................................+260°C
PACKAGE THERMAL CHARACTERISTICS
Junction-to-Ambient Thermal Resistance (θJA)
(Notes 2, 3)...................................................................38°C/W
Junction-to-Case Thermal Resistance (θJC)
(Notes 1, 3)..................................................................7.4°C/W
Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a PCB. See the Applications Information section for details. The junction
temperature must not exceed +150°C.
Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
+5.0V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +4.75V to
+5.25V, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, TC = +25°C, unless otherwise noted. R1, R4 = 750Ω, R2, R5 = 698Ω.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5.00
5.25
V
388
420
mA
Total supply current
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), no input RF or LO signals applied, VCC = +3.0V to
+3.6V, TC = -40°C to +85°C. Typical values are at VCC = +3.3V, TC = +25°C, unless otherwise noted. R1, R4 = 1.1kΩ, R2, R5 = 845Ω.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
2
CONDITIONS
Total supply current, VCC = +3.3V
MIN
TYP
MAX
UNITS
3.0
3.3
3.6
V
279
310
mA
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
PARAMETER
RF Frequency Without External
Tuning
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
fRF
(Note 5)
2400
2900
MHz
RF Frequency with External
Tuning
fRF
See Table 2 for an outline of tuning elements
optimized for 1950MHz operation;
optimization at other frequencies within the
1800MHz to 2400MHz range can be
achieved with different component values;
contact the factory for details
1800
2400
MHz
LO Frequency
fLO
(Notes 5, 6)
1950
3400
MHz
Using Mini-Circuits TC4-1W-17 4:1
transformer as defined in the Typical
Application Circuit, IF matching
components affect the IF frequency range
(Notes 5, 6)
100
550
Using alternative Mini-Circuits TC4-1W-7A
4:1 transformer, IF matching components
affect the IF frequency range (Notes 5, 6)
50
250
-3
+3
IF Frequency
fIF
LO Drive Level
PLO
MHz
dBm
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
SYMBOL
GC
Conversion Gain Flatness
CONDITIONS
MIN
TYP
MAX
UNITS
fRF = 2400MHz to 2900MHz,
TC = +25°C (Notes 8, 9, 10)
8.1
8.7
9.3
dB
fRF = 2305MHz to 2360MHz
0.15
fRF = 2500MHz to 2570MHz
0.15
0.1
fRF = 2500MHz to 2690MHz
0.15
fRF = 2700MHz to 2900MHz
0.15
-0.01
dB/°C
dBm
Gain Variation Over Temperature
TCCG
fRF = 2300MHz to 2900MHz,
TC = -40°C to +85°C
Input Compression Point
IP1dB
(Notes 8, 9, 11)
9.6
11.3
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
(Notes 8, 9)
22.0
24
Third-Order Input Intercept Point
Third-Order Input Intercept Point
Variation Over Temperature
IIP3
dB
fRF = 2570MHz to 2620MHz
fRF = 2600MHz, fRF1 - fRF2 = 1MHz,
PRF = -5dBm per tone, TC = +25°C
(Notes 8, 9)
fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C
dBm
22.5
24
±0.3
dBm
_______________________________________________________________________________________
3
MAX19997A
RECOMMENDED AC OPERATING CONDITIONS
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
Single sideband, no blockers present
fRF = 2400MHz to 2900MHz (Note 6, 8, 10)
Noise Figure
NFSSB
TYP
MAX
10.4
12.5
dB
Single sideband, no blockers present,
fRF = 2400MHz to 2900MHz , TC = +25°C
(Note 6, 8, 10)
10.4
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
Noise Figure Under Blocking
Conditions
NFB
fBLOCKER = 2412MHz, PBLOCKER = 8dBm,
fRF = 2600MHz, fLO = 2950MHz, PLO =
0dBm, VCC = +5.0V, TC = +25°C (Notes 8, 12)
22.5
fRF = 2600MHz, fLO = 2950MHz,
PRF = -10dBm, fSPUR = fLO - 175MHz
(Note 8)
2LO - 2RF Spur
3LO - 3RF Spur
UNITS
62
11.4
dB/°C
25
dB
69
dBc
2x2
fRF = 2600MHz, fLO = 2950MHz,
PRF = -5dBm, fSPUR = fLO - 175MHz
(Notes 8, 9)
57
64
fRF = 2600MHz, fLO = 2950MHz,
PRF = -10dBm, fSPUR = fLO - 116.67MHz,
TC = +25°C (Note 8)
73
84
dBc
3x3
fRF = 2600MHz, fLO = 2950MHz,
PRF = -5dBm, fSPUR = fLO - 116.67MHz,
TC = +25°C (Notes 8, 9)
63
74
RF Input Return Loss
LO on and IF terminated into a matched
impedance
14
dB
LO Input Return Loss
RF and IF terminated into a matched
impedance
13
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω using
external components shown in the Typical
Application Circuit
21
dB
IF Output Impedance
IF Output Return Loss
4
ZIF
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 2650MHz to 3250MHz, fIF = 350MHz,
fRF < fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2950MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
RF-to-IF Isolation
LO Leakage at RF Port
(Notes 8, 9)
2LO Leakage at RF Port
LO Leakage at IF Port
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50Ω
Channel Isolation
38.5
TYP
MAX
UNITS
25
dB
-28
dBm
-33
dBm
-18.5
dBm
43
dB
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
SYMBOL
GC
Conversion Gain Flatness
CONDITIONS
MIN
TYP
MAX
UNITS
fRF = 2400MHz to 2900MHz,
TC = +25°C (Notes 8, 9, 10)
8.1
8.7
9.3
dB
fRF = 2305MHz to 2360MHz
0.2
fRF = 2500MHz to 2570MHz
0.15
fRF = 2570MHz to 2620MHz
0.2
fRF = 2500MHz to 2690MHz
0.25
fRF = 2700MHz to 2900MHz
0.25
-0.01
dB/°C
dB
Gain Variation Over Temperature
TCCG
fRF = 2300MHz to 2900MHz, TC = -40°C to
+85°C
Input Compression Point
IP1dB
(Notes 6, 8, 11)
9.6
11.3
dBm
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
(Notes 8, 9)
21.6
23
dBm
22
23.8
dBm
±0.3
dBm
Third-Order Input Intercept Point
Third-Order Input Intercept Point
Variation Over Temperature
IIP3
fRF = 2600MHz, fRF1 - fRF2 = 1MHz,
PRF = -5dBm per tone, TC = +25°C
(Notes 8, 9)
fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C
_______________________________________________________________________________________
5
MAX19997A
+5.0V SUPPLY, HIGH-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
Single sideband, no blockers present
fRF = 2400MHz to 2900MHz (Notes 6, 8)
Noise Figure
Noise Figure Temperature
Coefficient
Noise Figure Under Blocking
Conditions
NFSSB
3RF-3LO Spur
0.018
NFB
fBLOCKER = 2793MHz, PBLOCKER = 8dBm,
fRF = 2600MHz, fLO = 2250MHz,
PLO = 0dBm, Vcc = +5.0V, TC = +25°C
(Notes 6, 8, 12)
22
62
11.3
dB/°C
25
dB
67
dBc
2x2
fRF = 2600MHz, fLO = 2250MHz,
PRF = -5dBm, fSPUR = fLO + 175MHz,
TC = +25°C (Notes 8, 9)
57
62
fRF = 2600MHz, fLO = 2250MHz,
PRF = -10dBm, fSPUR = fLO + 116.67MHz,
TC = +25°C (Note 8)
78
83
dBc
3x3
LO Input Return Loss
ZIF
UNITS
dB
Single sideband, no blockers present,
TC = -40°C to +85°C
LO on and IF terminated into a matched
impedance
6
13.0
TCNF
RF Input Return Loss
IF Output Return Loss
10.3
10.3
fRF = 2600MHz, fLO = 2250MHz,
PRF = -5dBm, fSPUR = fLO + 116.67MHz,
TC = +25°C (Notes 8, 9)
IF Output Impedance
MAX
Single sideband, no blockers present,
fRF = 2400MHz to 2900MHz, TC = +25°C
(Notes 6, 8)
fRF = 2600MHz, fLO = 2250MHz,
PRF = -10dBm, fSPUR = fLO + 175MHz,
TC = +25°C (Note 8)
2RF-2LO Spur
TYP
68
73
16
dB
RF and IF terminated into a matched
impedance
11.5
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω using
external components shown in the Typical
Application Circuit
20
dB
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
(Typical Application Circuit optimized for the standard RF band (see Table 1), VCC = +4.75V to +5.25V, RF and LO ports are driven
from 50Ω sources, PLO = -3dBm to +3dBm, PRF = -5dBm, fRF = 2300MHz to 2900MHz, fLO = 1950MHz to 2550MHz, fIF = 350MHz,
fRF > fLO, TC = -40°C to +85°C. Typical values are at VCC = +5.0V, PRF = -5dBm, PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz,
fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
RF-to-IF Isolation
TYP
MAX
23.5
LO Leakage at RF Port
(Notes 8, 9)
-31
UNITS
dB
-24
dBm
2LO Leakage at RF Port
-27
dBm
LO Leakage at IF Port
-9.6
dBm
42
dB
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50Ω (Notes 8, 9)
Channel Isolation
38.5
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
Conversion Gain
SYMBOL
GC
Conversion Gain Flatness
Gain Variation Over Temperature
TCCG
Input Compression Point
IP1dB
Third-Order Input Intercept Point
IIP3
Third-Order Input Intercept
Variation Over Temperature
CONDITIONS
MIN
TYP
(Note 9)
8.5
fRF = 2305MHz to 2360MHz
0.2
fRF = 2500MHz to 2570MHz
0.15
fRF = 2570MHz to 2620MHz
0.15
fRF = 2500MHz to 2690MHz
0.25
MAX
UNITS
dB
dB
fRF = 2700MHz to 2900MHz
0.15
fRF = 2300MHz to 2900MHz,
TC = -40°C to +85°C
-0.01
7.7
dBm
fRF1 - fRF2 = 1MHz, PRF = -5dBm per tone
19.7
dBm
fRF1 - fRF2 = 1MHz, TC = -40°C to +85°C
±0.5
dBm
dB/°C
Noise Figure
NFSSB
Single sideband, no blockers present
9.7
dB
Noise Figure Temperature
Coefficient
TCNF
Single sideband, no blockers present,
TC = -40°C to +85°C
0.018
dB/°C
_______________________________________________________________________________________
7
MAX19997A
+5.0V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
+3.3V SUPPLY, LOW-SIDE LO INJECTION AC ELECTRICAL CHARACTERISTICS
(continued)
(Typical Application Circuit optimized for the standard RF band (see Table 1). Typical values are at VCC = +3.3V, PRF = -5dBm,
PLO = 0dBm, fRF = 2600MHz, fLO = 2250MHz, fIF = 350MHz, TC = +25°C, unless otherwise noted.) (Note 7)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
PRF = -10dBm, fSPUR = fLO + 175MHz
74
PRF = -5dBm, fSPUR = fLO + 175MHz
69
PRF = -10dBm, fSPUR = fLO + 116.67MHz
74
PRF = -5dBm, fSPUR = fLO + 116.67MHz
64
RF Input Return Loss
LO on and IF terminated into a matched
impedance
16
dB
LO Input Return Loss
RF and IF terminated into a matched
impedance
11
dB
Nominal differential impedance at the IC’s
IF outputs
200
Ω
RF terminated into 50Ω, LO driven by 50Ω
source, IF transformed to 50Ω using
external components shown in the Typical
Application Circuit
26
dB
RF-to-IF Isolation
25
dB
LO Leakage at RF Port
-36
dBm
2LO Leakage at RF Port
-31
dBm
-13.5
dBm
42
dB
2RF-2LO Spur
2x2
3RF-3LO Spur
3x3
IF Output Impedance
IF Output Return Loss
ZIF
LO Leakage at IF Port
Channel Isolation
RFMAIN (RFDIV) converted power
measured at IFDIV (IFMAIN) relative to
IFMAIN (IFDIV), all unused ports terminated
to 50Ω
dBc
dBc
Operation outside this range is possible, but with degraded performance of some parameters. See the Typical Operating
Characteristics.
Note 6: Not production tested.
Note 7: All limits reflect losses of external components, including a 0.8dB loss at fIF = 350MHz due to the 4:1 impedance transformer. Output measurements taken at the IF outputs of Typical Application Circuit.
Note 8: Guaranteed by design and characterization.
Note 9: 100% production tested for functional performance.
Note 10: RF frequencies below 2400MHz require external RF tuning similar to components listed in Table 2.
Note 11: Maximum reliable continuous input power applied to the RF or IF port of this device is +12dBm from a 50Ω source.
Note 12: Measured with external LO source noise filtered so the noise floor is -174dBm/Hz. This specification reflects the effects of
all SNR degradations in the mixer, including the LO noise as defined in Application Note 2021: Specifications and
Measurement of Local Oscillator Noise in Integrated Circuit Base Station Mixers.
Note 5:
8
_______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
8
TC = +25°C
7
10
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
9
11
MAX19997A toc02
TC = -30°C
10
CONVERSION GAIN (dB)
11
MAX19997A toc01
11
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc03
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
9
8
VCC = 4.75V, 5.0V, 5.25V
7
7
TC = +85°C
2400
2600
2800
3000
2200
2600
2800
2200
3000
2600
2800
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
24
23
24
23
22
PRF = -5dBm/TONE
25
3000
2200
2200
3000
11
10
9
13
11
10
PLO = -3dBm, 0dBm, +3dBm
9
12
NOISE FIGURE (dB)
12
2400
2600
2800
RF FREQUENCY (MHz)
3000
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc08
13
NOISE FIGURE (dB)
12
2400
2600
2800
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc07
TC = +85°C
VCC = 4.75V
MAX19997A toc09
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
13
24
22
22
2400
2600
2800
RF FREQUENCY (MHz)
VCC = 5.25V
VCC = 5.0V
23
PLO = -3dBm, 0dBm, +3dBm
TC = -30°C
3000
26
INPUT IP3 (dBm)
25
INPUT IP3 (dBm)
TC = +25°C
PRF = -5dBm/TONE
MAX19997A toc05
26
MAX19997A toc04
TC = +85°C
25
2200
2400
RF FREQUENCY (MHz)
PRF = -5dBm/TONE
NOISE FIGURE (dB)
2400
RF FREQUENCY (MHz)
26
INPUT IP3 (dBm)
6
6
2200
MAX19997A toc06
6
11
10
9
VCC = 4.75V, 5.0V, 5.25V
TC = +25°C
TC = -30°C
8
8
8
7
7
7
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
_______________________________________________________________________________________
3000
9
MAX19997A
Typical Operating Characteristics
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
TC = +85°C
60
TC = +25°C
70
60
PRF = -5dBm
VCC = 4.75V, 5.0V, 5.25V
50
50
2200
TC = -30°C
75
65
95
PRF = -5dBm
85
75
65
TC = +25°C, +85°C
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
95
PRF = -5dBm
3000
2200
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2400
2600
2800
RF FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
65
2200
3000
TC = +25°C
13
11
PLO = -3dBm, 0dBm, +3dBm
3000
11
VCC = 4.75V
10
10
VCC = 5.0V
VCC = 5.25V
12
INPUT P1dB (dBm)
12
2400
2600
2800
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc17
13
INPUT P1dB (dBm)
11
10
75
INPUT P1dB vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc16
TC = +85°C
12
85
55
55
13
3000
PLO = -3dBm, 0dBm, +3dBm
55
2400
2600
2800
RF FREQUENCY (MHz)
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc18
85
2200
3000
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
3LO - 3RF RESPONSE (dBc)
PRF = -5dBm
MAX19997A toc13
95
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc15
3000
3LO - 3RF RESPONSE (dBc)
2400
2600
2800
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2200
60
PLO = 0dBm
50
2200
70
PLO = -3dBm
TC = -30°C
3LO - 3RF RESPONSE (dBc)
80
MAX19997A toc12
PLO = +3dBm
MAX19997A toc11
PRF = -5dBm
2LO - 2RF RESPONSE (dBc)
70
80
MAX19997A toc14
2LO - 2RF RESPONSE (dBc)
PRF = -5dBm
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO - 2RF RESPONSE (dBc)
80
MAX19997A toc10
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
INPUT P1dB (dBm)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
TC = -30°C
9
10
9
9
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
50
45
40
TC = -30°C, +25°C, +85°C
35
45
40
PLO = -3dBm, 0dBm, +3dBm
2400
2600
2800
RF FREQUENCY (MHz)
3000
MAX19997A toc21
55
50
45
40
VCC = 4.75V, 5.0V, 5.25V
35
30
30
2200
2200
2400
2600
2800
RF FREQUENCY (MHz)
2200
3000
2400
2600
2800
RF FREQUENCY (MHz)
3000
0
0
TC = -30°C
-20
-30
TC = +25°C, +85°C
-40
PLO = -3dBm, 0dBm, +3dBm
-10
-20
-30
3350
2550
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
TC = +85°C
30
20
TC = -30°C
2550
3350
40
PLO = -3dBm, 0dBm, +3dBm
30
20
2750
2950
3150
LO FREQUENCY (MHz)
3350
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
40
VCC = 4.75V, 5.0V, 5.25V
30
20
TC = +25°C
10
10
10
2200
VCC = 4.75V, 5.0V, 5.25V
-30
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
RF-TO-IF ISOLATION (dB)
MAX19997A toc25
40
2750
2950
3150
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
2750
2950
3150
LO FREQUENCY (MHz)
-20
-40
-40
2550
-10
MAX19997A toc27
-10
MAX19997A toc24
0
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc23
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc22
LO LEAKAGE AT IF PORT (dBm)
50
60
35
30
RF-TO-IF ISOLATION (dB)
MAX19997A toc20
55
MAX19997A toc26
CHANNEL ISOLATION (dB)
55
60
CHANNEL ISOLATION (dB)
MAX19997A toc19
60
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
11
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
-30
-40
-50
-30
PLO = -3dBm, 0dBm, +3dBm
-40
2520
2740
2960
3180
3400
-20
-30
VCC = 4.75V, 5.0V, 5.25V
-40
-50
-50
2300
2300
2520
2740
2960
3180
2300
3400
2520
2740
2960
3180
3400
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
-30
-40
-50
PLO = -3dBm, 0dBm, +3dBm
-30
-40
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-40
-50
-50
2300
MAX19997A toc33
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
TC = -30°C, +25°C, +85°C
MAX19997A toc32
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc31
-10
12
-20
-10
MAX19997A toc30
-20
MAX19997A toc29
TC = -30°C, +25°C, +85°C
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc28
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
2300
2520
2740
2960
LO FREQUENCY (MHz)
3180
3400
2300
2520
2740
2960
LO FREQUENCY (MHz)
______________________________________________________________________________________
3180
3400
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
15
20
PLO = -3dBm, 0dBm, +3dBm
5
10
0
5
VCC = 4.75V, 5.0V, 5.25V
15
20
fLO = 2350MHz
10
15
20
25
25
MAX19997A toc36
fLO = 2600MHz
IF PORT RETURN LOSS (dB)
10
25
fLO = 2600MHz
30
30
3000
30
50
140
230
320
500
410
50
140
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, STANDARD RF BAND)
0
PLO = +3dBm
10
15
PLO = 0dBm
PLO = -3dBm
20
400
VCC = 5.25V
390
320
410
500
380
370
VCC = 5.0V
VCC = 4.75V
360
25
230
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, STANDARD RF BAND)
SUPPLY CURRENT (mA)
5
fLO = 2950MHz
MAX19997A toc38
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc37
2200
LO PORT RETURN LOSS (dB)
RF PORT RETURN LOSS (dB)
5
0
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, STANDARD RF BAND)
MAX19997A toc35
fIF = 350MHz
IF PORT RETURN LOSS (dB)
0
MAX19997A toc34
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, STANDARD RF BAND)
350
1900
2150
2400
2650
2900
LO FREQUENCY (MHz)
3150
3400
-35
-15
5
25
45
65
85
TEMPERATURE (°C)
______________________________________________________________________________________
13
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
TC = +85°C
PLO = -3dBm, 0dBm, +3dBm
7
TC = +25°C
1900
2000
2100
2200
1900
2000
2100
2200
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT IP3 vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
PRF = -5dBm/TONE
TC = +25°C
24
23
24
PRF = -5dBm/TONE
25
2100
2200
VCC = 5.0V
VCC = 4.75V
22
22
2000
24
PLO = -3dBm, 0dBm, +3dBm
TC = -30°C
1900
VCC = 5.25V
23
23
22
2300
1800
1900
2000
2100
2200
1800
2300
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
12
NOISE FIGURE (dB)
12
11
10
9
TC = +25°C
13
12
NOISE FIGURE (dB)
TC = +85°C
MAX19997A toc46
13
MAX19997A toc45
13
2300
26
INPUT IP3 (dBm)
25
INPUT IP3 (dBm)
TC = +85°C
25
26
MAX19997A toc43
PRF = -5dBm/TONE
8
MAX19997A toc41
1800
2300
RF FREQUENCY (MHz)
26
1800
VCC = 4.75V, 5.0V, 5.25V
6
1800
2300
MAX19997A toc42
1800
8
7
6
6
INPUT IP3 (dBm)
8
9
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
2300
MAX19997A toc47
7
9
MAX19997A toc44
8
10
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
CONVERSION GAIN (dB)
9
11
MAX19997A toc40
TC = -30°C
10
11
MAX19997A toc39
11
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
NOISE FIGURE (dB)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
11
10
9
VCC = 4.75V, 5.0V, 5.25V
8
TC = -30°C
7
7
1800
1900
2000
2100
RF FREQUENCY (MHz)
14
2200
2300
7
1800
1900
2000
2100
RF FREQUENCY (MHz)
2200
2300
1800
1900
2000
2100
RF FREQUENCY (MHz)
______________________________________________________________________________________
2200
2300
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
TC = +25°C
50
TC = -30°C
50
PLO = -3dBm, 0dBm, +3dBm
PRF = -5dBm
1800
1900
2000
2100
2200
60
50
VCC = 4.75V, 5.0V, 5.25V
40
1800
2300
MAX19997A toc50
70
40
40
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
2300
RF FREQUENCY (MHz)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
3LO - 3RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = -30°C
75
65
PRF = -5dBm
85
75
65
PLO = -3dBm, 0dBm, +3dBm
95
PRF = -5dBm
3LO - 3RF RESPONSE (dBc)
85
95
3LO - 3RF RESPONSE (dBc)
PRF = -5dBm
85
MAX19997A toc53
RF FREQUENCY (MHz)
MAX19997A toc51
RF FREQUENCY (MHz)
95
3LO - 3RF RESPONSE (dBc)
60
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
2LO - 2RF RESPONSE (dBc)
60
PRF = -5dBm
MAX19997A toc52
2LO - 2RF RESPONSE (dBc)
TC = +85°C
70
2LO - 2RF RESPONSE (dBc)
PRF = -5dBm
MAX19997A toc48
70
MAX19997A toc49
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
2LO - 2RF RESPONSE vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
75
65
VCC = 4.75V, 5.0V, 5.25V
TC = +25°C, +85°C
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
1900
2000
2100
2200
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
INPUT P1dB vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
12
10
PLO = -3dBm, 0dBm, +3dBm
11
10
TC = -30°C
2100
RF FREQUENCY (MHz)
2200
2300
11
10
VCC = 4.75V
9
2000
VCC = 5.25V
VCC = 5.0V
TC = +25°C
9
1900
12
INPUT P1dB (dBm)
INPUT P1dB (dBm)
11
13
MAX19997A toc55
13
MAX19997A toc54
TC = +85°C
12
1800
1800
2300
RF FREQUENCY (MHz)
13
INPUT P1dB (dBm)
55
55
1800
MAX19997A toc56
55
2300
9
1800
1900
2000
2100
RF FREQUENCY (MHz)
2200
2300
1800
1900
2000
2100
2200
2300
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
50
45
40
TC = -30°C, +25°C, +85°C
45
40
PLO = -3dBm, 0dBm, +3dBm
1800
1900
2000
2100
2200
50
45
40
VCC = 4.75V, 5.0V, 5.25V
35
30
1800
2300
MAX19997A toc59
55
30
30
1900
2000
2100
2200
2300
1800
1900
2000
2100
2200
2300
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
0
0
-10
-20
TC = -30°C, +25°C, +85°C
-30
-10
-20
PLO = -3dBm, 0dBm, +3dBm
-30
2150
2250
2350
2450
2550
2650
MAX19997A toc62
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc61
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc60
-10
-20
VCC = 4.75V, 5.0V, 5.25V
-30
2150
2250
2350
2450
2550
2650
2150
2250
2350
2450
2550
2650
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = +85°C
20
TC = +25°C
30
RF-TO-IF ISOLATION (dB)
MAX19997A toc63
30
PLO = -3dBm, 0dBm, +3dBm
20
10
1900
VCC = 4.75V, 5.0V, 5.25V
20
TC = -30°C
10
1800
30
MAX19997A toc65
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT (dBm)
50
60
35
35
16
MAX19997A toc58
55
MAX19997A toc64
CHANNEL ISOLATION (dB)
55
60
CHANNEL ISOLATION (dB)
MAX19997A toc57
60
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF-TO-IF ISOLATION (dB)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
2000
2100
2200
RF FREQUENCY (MHz)
2300
10
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
2300
1800
1900
2000
2100
2200
RF FREQUENCY (MHz)
______________________________________________________________________________________
2300
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
TC = -30°C, +25°C, +85°C
-40
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
-50
2740
2960
3180
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-20
TC = -30°C, +25°C, +85°C
-30
-40
-50
2520
2740
2960
3180
LO FREQUENCY (MHz)
-10
-20
PLO = -3dBm, 0dBm, +3dBm
-30
-40
-50
2300
2520
2740
2960
3180
LO FREQUENCY (MHz)
3400
MAX19997A toc68
-30
VCC = 4.75V, 5.0V, 5.25V
-40
2300
3400
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc69
-10
-20
-50
2300
3400
2520
2740
2960
3180
LO FREQUENCY (MHz)
3400
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-10
2LO LEAKAGE AT RF PORT (dBm)
2520
MAX19997A toc70
2300
2LO LEAKAGE AT RF PORT (dBm)
-20
-10
MAX19997A toc71
-30
MAX19997A toc67
-20
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc66
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
-20
VCC = 4.75V, 5.0V, 5.25V
-30
-40
-50
2300
2520
2740
2960
3180
LO FREQUENCY (MHz)
3400
2300
2520
2740
2960
3180
LO FREQUENCY (MHz)
______________________________________________________________________________________
3400
17
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, extended RF band (see Table 2), VCC = +5.0V, LO is high-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
10
15
20
PLO = -3dBm, 0dBm, +3dBm
5
VCC = 4.75V, 5.0V, 5.25V
10
15
20
0
MAX19997A toc74
fLO = 2600MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
5
IF PORT RETURN LOSS (dB)
5
0
MAX19997A toc73
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(LO > RF, EXTENDED RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc72
RF PORT RETURN LOSS vs. RF FREQUENCY
(LO > RF, EXTENDED RF BAND)
RF PORT RETURN LOSS (dB)
fLO = 2350MHz
10
15
20
25
25
25
30
30
30
fLO = 2600MHz
fLO = 2950MHz
1900
2000
2100
2200
RF FREQUENCY (MHz)
2300
50
140
230
320
410
IF FREQUENCY (MHz)
15
PLO = 0dBm
230
320
410
IF FREQUENCY (MHz)
380
370
VCC = 5.0V
VCC = 4.75V
360
20
350
25
1900
18
VCC = 5.25V
390
SUPPLY CURRENT (mA)
10
PLO = -3dBm
400
MAX19997A toc75
PLO = +3dBm
5
140
SUPPLY CURRENT vs. TEMPERATURE (TC)
(LO > RF, EXTENDED RF BAND)
LO PORT RETURN LOSS vs. LO FREQUENCY
(LO > RF, EXTENDED RF BAND)
0
50
500
MAX19997A toc76
1800
LO PORT RETURN LOSS (dB)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
2150
2400 2650 2900
LO FREQUENCY (MHz)
3150
3400
-35
-15
5
25
45
TEMPERATURE (°C)
65
85
______________________________________________________________________________________
500
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
9
8
TC = +25°C
7
10
CONVERSION GAIN (dB)
10
CONVERSION GAIN (dB)
10
11
MAX19997A toc78
TC = -30°C
CONVERSION GAIN (dB)
11
MAX19997A toc77
11
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
9
8
PLO = -3dBm, 0dBm, +3dBm
MAX19997A toc79
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
7
9
8
VCC = 4.75V, 5.0V, 5.25V
7
TC = +85°C
6
2400
2600
2800
RF FREQUENCY (MHz)
6
2200
3000
TC = +25°C
24
23
26
25
PLO = -3dBm, 0dBm, +3dBm
24
24
23
23
VCC = 4.75V, 5.0V, 5.25V
22
22
22
2200
3000
10
9
TC = +25°C
8
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
TC = -30°C
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
12
3000
11
10
9
VCC = 4.75V, 5.0V, 5.25V
8
7
7
7
13
NOISE FIGURE (dB)
11
2400
2600
2800
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc84
12
NOISE FIGURE (dB)
NOISE FIGURE (dB)
13
MAX19997A toc83
TC = +85°C
12
2200
3000
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc85
2400
2600
2800
RF FREQUENCY (MHz)
3000
PRF = -5dBm/TONE
TC = -30°C
2200
2400
2600
2800
RF FREQUENCY (MHz)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
PRF = -5dBm/TONE
25
INPUT IP3 (dBm)
INPUT IP3 (dBm)
2200
INPUT IP3 (dBm)
TC = +85°C
26
MAX19997A toc80
PRF = -5dBm/TONE
25
3000
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
26
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc81
2200
MAX19997A toc82
6
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
19
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
PLO = 0dBm
70
PLO = +3dBm
60
80
2RF-2LO RESPONSE (dBc)
60
PRF = -5dBm
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc87
2RF-2LO RESPONSE (dBc)
70
80
2RF-2LO RESPONSE (dBc)
PRF = -5dBm
TC = +85°C
MAX19997A toc86
80
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
PRF = -5dBm
70
MAX19997A toc88
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 4.75V, 5.0V, 5.25V
60
TC = -30°C
PLO = -3dBm
TC = +25°C
50
50
2200
75
65
95
3RF-3LO RESPONSE (dBc)
85
MAX19997A toc89
PRF = -5dBm
85
65
95
PLO = -3dBm, 0dBm, +3dBm
55
55
2200
2400
2600
2800
RF FREQUENCY (MHz)
2400
2600
2800
RF FREQUENCY (MHz)
13
MAX19997A toc92
PLO = -3dBm, 0dBm, +3dBm
12
INPUT P1dB (dBm)
11
65
VCC = 4.75V, 5.0V, 5.25V
2200
11
3000
VCC = 5.25V
12
VCC = 5.0V
11
10
VCC = 4.75V
9
2400
2600
2800
RF FREQUENCY (MHz)
2400
2600
2800
RF FREQUENCY (MHz)
13
TC = +25°C
9
2200
75
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
10
10
TC = -30°C
85
3000
INPUT P1dB (dBm)
TC = +85°C
12
PRF = -5dBm
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
13
3000
55
2200
3000
2400
2600
2800
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
75
TC = -30°C, +25°C, +85°C
20
2200
MAX19997A toc93
3RF-3LO RESPONSE (dBc)
PRF = -5dBm
3000
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
95
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc91
3000
3RF-3LO RESPONSE (dBc)
2400
2600
2800
RF FREQUENCY (MHz)
MAX19997A toc90
2200
MAX19997A toc94
50
INPUT P1dB (dBm)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
3000
9
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
45
40
TC = -30°C, +25°C, +85°C
35
45
40
PLO = -3dBm, 0dBm, +3dBm
2400
2600
2800
RF FREQUENCY (MHz)
40
VCC = 4.75V, 5.0V, 5.25V
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
0
TC = -30°C, +25°C, +85°C
-20
-10
PLO = -3dBm, 0dBm, +3dBm
-20
1850
2650
TC = +25°C
20
PLO = -3dBm, 0dBm, +3dBm
2050
2250
2450
LO FREQUENCY (MHz)
2650
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
RF-TO-IF ISOLATION (dB)
20
30
RF-TO-IF ISOLATION (dB)
MAX19997A toc101
TC = +85°C
1850
2650
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
30
2050
2250
2450
LO FREQUENCY (MHz)
MAX19997A toc102
2050
2250
2450
LO FREQUENCY (MHz)
VCC = 4.75V, 5.0V, 5.25V
-20
-30
-30
1850
-10
MAX19997A toc103
-10
MAX19997A toc100
0
LO LEAKAGE AT IF PORT (dBm)
0
MAX19997A toc99
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT IF PORT (dBm)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc98
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-30
RF-TO-IF ISOLATION (dB)
45
30
2200
3000
50
35
30
2200
MAX19997A toc97
50
55
35
30
LO LEAKAGE AT IF PORT (dBm)
MAX19997A toc96
50
55
CHANNEL ISOLATION (dB)
MAX19997A toc95
CHANNEL ISOLATION (dB)
55
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
20
VCC = 4.75V, 5.0V, 5.25V
TC = -30°C
10
10
10
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
21
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
TC = -30°C, +25°C, +85°C
-40
PLO = -3dBm, 0dBm, +3dBm
2300
2500
2700
LO FREQUENCY (MHz)
1900
2900
-30
-40
TC = -30°C, +25°C, +85°C
-10
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc107
-20
2300
2500
2700
LO FREQUENCY (MHz)
-20
-30
PLO = -3dBm, 0dBm, +3dBm
-40
-50
-50
1900
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
MAX19997A toc106
-40
VCC = 4.75V, 5.0V, 5.25V
1900
2900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
2100
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-10
2LO LEAKAGE AT RF PORT (dBm)
2100
MAX19997A toc108
1900
-30
-50
-50
-50
22
-30
-20
MAX19997A toc109
-40
-20
-10
LO LEAKAGE AT RF PORT (dBm)
-30
MAX19997A toc105
-20
-10
LO LEAKAGE AT RF PORT (dBm)
MAX19997A toc104
LO LEAKAGE AT RF PORT (dBm)
-10
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT (dBm)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
-20
-30
VCC = 4.75V, 5.0V, 5.25V
-40
-50
1900
2100
2300
2500
2700
LO FREQUENCY (MHz)
2900
1900
2100
2300
2500
2700
LO FREQUENCY (MHz)
______________________________________________________________________________________
2900
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
20
PLO = -3dBm, 0dBm, +3dBm
25
VCC = 4.75V, 5.0V, 5.25V
10
15
20
5
2400
2600
2800
RF FREQUENCY (MHz)
3000
50
140
230
320
410
IF FREQUENCY (MHz)
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
PLO = +3dBm
10
15
PLO = -3dBm
20
fLO = 1850MHz
PLO = 0dBm
20
400
VCC = 5.25V
390
140
230
320
410
IF FREQUENCY (MHz)
500
380
370
VCC = 4.75V
360
25
50
500
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
SUPPLY CURRENT (mA)
MAX19997A toc113
0
5
fLO = 2650MHz
15
30
30
2200
10
25
25
30
fLO = 2250MHz
MAX19997A toc112
5
0
MAX19997A toc114
15
fLO = 2250MHz
IF PORT RETURN LOSS (dB)
10
LO PORT RETURN LOSS (dB)
RF PORT RETURN LOSS (dB)
5
0
MAX19997A toc111
fIF = 350MHz
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc110
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 5.0V
350
1900
2150
2400 2650 2900
LO FREQUENCY (MHz)
3150
3400
-35
-15
5
25
45
TEMPERATURE (°C)
65
85
______________________________________________________________________________________
23
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
8
7
TC = +85°C
6
PLO = -3dBm, 0dBm, +3dBm
7
2400
2600
2800
3000
MAX19997A toc117
5
2200
2400
2600
2800
2200
3000
2400
2600
2800
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT IP3 vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
21
PLO = -3dBm, 0dBm, +3dBm
20
19
PRF = -5dBm/TONE
21
17
2600
2800
3000
19
VCC = 3.0V, 3.3V, 3.6V
17
17
2400
20
18
18
TC = -30°C
2200
2400
2600
2800
2200
3000
2400
2600
2800
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
12
NOISE FIGURE (dB)
11
10
9
TC = +25°C
VCC = 3.3V
11
10
9
PLO = -3dBm, 0dBm, +3dBm
8
TC = -30°C
7
2600
2800
RF FREQUENCY (MHz)
3000
12
11
10
9
VCC = 3.0V, 3.3V, 3.6V
8
7
7
2400
13
3000
MAX19997A toc123
TC = +85°C
12
13
NOISE FIGURE (dB)
VCC = 3.3V
MAX19997A toc121
13
3000
22
INPUT IP3 (dBm)
19
PRF = -5dBm/TONE
MAX19997A toc119
VCC = 3.3V
INPUT IP3 (dBm)
20
18
22
MAX19997A toc118
PRF = -5dBm/TONE
TC = +25°C
2200
VCC = 3.0V, 3.3V, 3.6V
RF FREQUENCY (MHz)
TC = +85°C
8
7
RF FREQUENCY (MHz)
VCC = 3.3V
2200
8
RF FREQUENCY (MHz)
22
21
9
6
5
2200
INPUT IP3 (dBm)
8
6
5
24
9
10
MAX19997A toc120
9
10
11
CONVERSION GAIN (dB)
TC = +25°C
VCC = 3.3V
MAX19997A toc122
CONVERSION GAIN (dB)
10
11
MAX19997A toc116
VCC = 3.3V
TC = -30°C
CONVERSION GAIN (dB)
11
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc115
CONVERSION GAIN vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
NOISE FIGURE (dB)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
60
TC = +85°C
TC = +25°C
70
PLO = 0dBm
60
2400
2600
2800
3000
VCC = 3.3V
60
VCC = 3.0V
2400
2200
2600
2800
2200
3000
2400
2600
2800
3000
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
3RF-3LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
75
65
PRF = -5dBm
VCC = 3.3V
55
85
PLO = -3dBm, 0dBm, +3dBm
75
65
95
3RF-3LO RESPONSE (dBc)
85
95
3RF-3LO RESPONSE (dBc)
PRF = -5dBm
VCC = 3.3V
MAX19997A toc127
RF FREQUENCY (MHz)
95
MAX19997A toc126
70
50
50
2200
VCC = 3.6V
80
PLO = -3dBm
50
3RF-3LO RESPONSE (dBc)
80
PRF = -5dBm
PRF = -5dBm
85
MAX19997A toc129
70
PLO = +3dBm
90
2RF-2LO RESPONSE (dBc)
80
PRF = -5dBm
VCC = 3.3V
MAX19997A toc128
2RF-2LO RESPONSE (dBc)
TC = -30°C
90
MAX19997A toc125
PRF = -5dBm
VCC = 3.3V
2RF-2LO RESPONSE (dBc)
90
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
MAX19997A toc124
2RF-2LO RESPONSE vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.0V, 3.3V, 3.6V
75
65
55
55
TC = -30°C, +25°C, +85°C
2400
2600
2800
3000
2200
2600
2800
2400
2600
2800
RF FREQUENCY (MHz)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
INPUT P1dB vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
VCC = 3.3V
8
7
TC = +25°C
TC = -30°C
PLO = -3dBm, 0dBm, +3dBm
8
7
2600
2800
RF FREQUENCY (MHz)
3000
7
VCC = 3.0V
5
5
2400
VCC = 3.6V
3000
8
6
6
5
VCC = 3.3V
9
INPUT P1dB (dBm)
INPUT P1dB (dBm)
9
10
MAX19997A toc131
10
MAX19997A toc130
TC = +85°C
9
2200
2200
3000
RF FREQUENCY (MHz)
VCC = 3.3V
6
2400
RF FREQUENCY (MHz)
10
INPUT P1dB (dBm)
45
45
2200
MAX19997A toc132
45
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
3000
RF FREQUENCY (MHz)
______________________________________________________________________________________
25
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
45
40
TC = -30°C, +25°C, +85°C
35
45
40
PLO = -3dBm, 0dBm, +3dBm
35
2400
2600
2800
3000
50
45
40
VCC = 3.0V, 3.3V, 3.6V
35
30
30
2200
2200
2400
2600
2800
2200
3000
2400
2600
2800
3000
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
0
0
0
VCC = 3.3V
TC = -30°C
-10
-20
TC = +85°C
TC = +25°C
-30
VCC = 3.3V
-10
-20
PLO = -3dBm, 0dBm, +3dBm
2050
2250
2450
2650
-10
-20
VCC = 3.0V, 3.3V, 3.6V
-30
-30
1850
MAX19997A toc138
LO LEAKAGE AT IF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc137
RF FREQUENCY (MHz)
LO LEAKAGE AT IF PORT (dBm)
RF FREQUENCY (MHz)
MAX19997A toc136
1850
2050
2250
2450
1850
2650
2050
2250
2450
2650
LO FREQUENCY (MHz)
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
25
20
TC = +25°C
15
TC = -30°C
10
30
VCC = 3.3V
25
20
PLO = -3dBm, 0dBm, +3dBm
15
2400
2600
2800
RF FREQUENCY (MHz)
3000
25
VCC = 3.0V, 3.3V, 3.6V
20
15
10
10
2200
30
MAX19997A toc141
VCC = 3.3V
TC = +85°C
RF-TO-IF ISOLATION (dB)
30
MAX19997A toc139
LO FREQUENCY (MHz)
RF-TO-IF ISOLATION (dB)
LO LEAKAGE AT IF PORT (dBm)
50
55
MAX19997A toc135
VCC = 3.3V
30
26
MAX19997A toc134
50
55
MAX19997A toc140
CHANNEL ISOLATION (dB)
VCC = 3.3V
CHANNEL ISOLATION (dB)
MAX19997A toc133
55
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
CHANNEL ISOLATION (dB)
CHANNEL ISOLATION vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF-TO-IF ISOLATION (dB)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
2200
2400
2600
2800
RF FREQUENCY (MHz)
3000
2200
2400
2600
2800
RF FREQUENCY (MHz)
______________________________________________________________________________________
3000
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
TC = -30°C, +25°C, +85°C
-30
-40
-20
-30
-40
-10
MAX19997A toc144
VCC = 3.3V
LO LEAKAGE AT RF PORT (dBm)
-20
-10
MAX19997A toc143
VCC = 3.3V
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
LO LEAKAGE AT RF PORT (dBm)
LO LEAKAGE AT RF PORT (dBm)
-10
MAX19997A toc142
LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-20
-30
-40
PLO = -3dBm, 0dBm, +3dBm
-50
-50
-50
1900
2100
2300
2500
2700
1900
2900
2100
2300
2500
2700
1900
2900
2100
2300
2500
2700
2900
LO FREQUENCY (MHz)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
2LO LEAKAGE AT RF PORT vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
-30
-40
TC = -30°C, +25°C, +85°C
-50
-20
-30
-40
PLO = -3dBm, 0dBm, +3dBm
2100
2300
2500
LO FREQUENCY (MHz)
2700
2900
-20
-30
-40
VCC = 3.0V, 3.3V, 3.6V
-50
-50
1900
-10
MAX19997A toc147
VCC = 3.3V
2LO LEAKAGE AT RF PORT (dBm)
-20
-10
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.3V
MAX19997A toc146
LO FREQUENCY (MHz)
MAX19997A toc145
LO FREQUENCY (MHz)
-10
2LO LEAKAGE AT RF PORT (dBm)
VCC = 3.0V, 3.3V, 3.6V
1900
2100
2300
2500
LO FREQUENCY (MHz)
2700
2900
1900
2100
2300
2500
2700
2900
LO FREQUENCY (MHz)
______________________________________________________________________________________
27
MAX19997A
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(Typical Application Circuit, standard RF band (see Table 1), VCC = +5.0V, LO is low-side injected for a 350MHz IF, PLO = 0dBm,
PRF = -5dBm, TC = +25°C, unless otherwise noted.)
10
15
20
fLO = 2250MHz
10
20
VCC = 3.0V, 3.3V, 3.6V
30
0
VCC = 3.3V
fLO = 2650MHz
10
MAX19997A toc150
PLO = -3dBm, 0dBm, +3dBm
0
IF PORT RETURN LOSS (dB)
5
fIF = 350MHz
MAX19997A toc149
VCC = 3.3V
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS vs. IF FREQUENCY
(RF > LO, STANDARD RF BAND)
IF PORT RETURN LOSS (dB)
0
MAX19997A toc148
RF PORT RETURN LOSS vs. RF FREQUENCY
(RF > LO, STANDARD RF BAND)
RF PORT RETURN LOSS (dB)
20
fLO = 1850MHz
30
25
fLO = 2250MHz
30
40
40
2400
2600
2800
3000
50
140
230
RF FREQUENCY (MHz)
320
50
500
140
VCC = 3.3V
PLO = +3dBm
5
10
15
PLO = -3dBm
PLO = 0dBm
300
VCC = 3.6V
290
280
VCC = 3.3V
270
260
20
230
VCC = 3.0V
250
25
1900
2150
2400
2650
2900
LO FREQUENCY (MHz)
3150
3400
-35
320
IF FREQUENCY (MHz)
SUPPLY CURRENT vs. TEMPERATURE (TC)
(RF > LO, STANDARD RF BAND)
SUPPLY CURRENT (mA)
0
MAX19997A toc151
LO PORT RETURN LOSS vs. LO FREQUENCY
(RF > LO, STANDARD RF BAND)
28
410
IF FREQUENCY (MHz)
MAX19997A toc152
2200
LO PORT RETURN LOSS (dB)
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
-15
5
25
45
65
85
TEMPERATURE (°C)
______________________________________________________________________________________
410
500
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
PIN
NAME
FUNCTION
Main Channel RF Input. Internally matched to 50Ω. Requires an input DC-blocking
capacitor.
1
RFMAIN
2, 5, 6, 8, 12, 15,
18, 23, 28, 31, 34
GND
Ground. Not internally connected. Ground these pins or leave unconnected.
3, 7, 20, 22, 24–27
GND
Ground. Internally connected to the exposed pad. Connect all ground pins and the
exposed pad (EP) together.
4, 10, 16, 21, 30,
36
VCC
Power Supply. Connect bypass capacitors as close as possible to the pin (see the
Typical Application Circuit).
9
RFDIV
Diversity Channel RF Input. Internal matched to 50Ω. Requires a DC-blocking capacitor.
11
IFD_SET
IF Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the
bias current for the diversity IF amplifier.
13, 14
IFD+, IFD-
Diversity Mixer Differential IF Output. Connect pullup inductors from each of these pins
to VCC (see the Typical Application Circuit).
17
LO_ADJ_D
LO Diversity Amplifier Bias Control. Connect a resistor from this pin to ground to set the
bias current for the diversity LO amplifier.
19
LO
29
LO_ADJ_M
LO Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias
current for the main LO amplifier.
32, 33
IFM-, IFM+
Main Mixer Differential IF Output. Connect pullup inductors from each of these pins to
VCC (see the Typical Application Circuit).
35
IFM_SET
IF Main Amplifier Bias Control. Connect a resistor from this pin to ground to set the bias
current for the main IF amplifier.
—
EP
Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that
uses multiple ground vias to provide heat transfer out of the device into the PCB ground
planes. These multiple ground vias are also required to achieve the noted RF performance.
Local Oscillator Input. This input is internally matched to 50Ω. Requires an input DCblocking capacitor.
Detailed Description
The MAX19997A dual, downconversion mixer provides
high linearity and low noise figure for a multitude of
1800MHz to 2900MHz base-station applications. The
device fully supports both low-side and high-side LO
injection architectures for the 2300MHz to 2900MHz
WiMAX, LTE, WCS, and MMDS bands. WCDMA,
cdma2000, and PCS1900 applications utilizing highside LO injection architectures are also supported by
adding one additional tuning element (a shunt inductor)
on each RF port.
The MAX19997A operates over an LO range of
1950MHz to 3400MHz and an IF range of 50MHz to
550MHz. Integrated baluns and matching circuitry allow
50Ω single-ended interfaces to the RF and LO ports.
The integrated LO buffer provides a high drive level to
the mixer core, reducing the LO drive required at the
MAX19997A’s input to a range of -3dBm to +3dBm. The
IF port incorporates a differential output, which is ideal
for providing enhanced 2RF - 2LO (low-side injection)
and 2LO - 2RF (high-side injection) performance.
RF Input and Balun
The MAX19997A’s two RF inputs (RFMAIN and RFDIV)
provide a 50Ω match when combined with a series DCblocking capacitor. This DC-blocking capacitor is
required as the input is internally DC shorted to ground
through each channel’s on-chip balun. When using a
22pF DC-blocking capacitor, the RF port input return
loss is typically 15dB over the RF frequency range of
2600MHz to 2900MHz.
______________________________________________________________________________________
29
MAX19997A
Pin Description
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
The MAX19997A’s RF range can be further extended
down to 1800MHz by adding one additional tuning element on each RF port. For 1950MHz RF applications,
connect a 12nH shunt inductor from pins 1 and 9 to
ground. Also, change the value of the DC-blocking
capacitors (C1 and C8) from 22pF to 1pF. See the
Typical Application Circuit for details.
LO Input, Buffer, and Balun
A two-stage internal LO buffer allows a wide input
power range for the LO drive. All guaranteed specifications are for an LO signal power from -3dBm to +3dBm.
The on-chip low-loss balun, along with an LO buffer,
drives the double-balanced mixer. All interfacing and
matching components from the LO input to the IF outputs are integrated on-chip.
Applications Information
Input and Output Matching
The RF and LO inputs are internally matched to 50Ω. No
matching components are required for RF frequencies
ranging from 2400MHz to 2900MHz. RF and LO inputs
require only DC-blocking capacitors for interfacing.
If desired, the RF band can be extended down to
1800MHz by adding two external matching components on each RF port. See the Typical Application
Circuit and Table 2 for details.
The IF output impedance is 200Ω (differential). For
evaluation, an external low-loss 4:1 (impedance ratio)
balun transforms this impedance down to a 50Ω singleended output (see the Typical Application Circuit).
High-Linearity Mixer
Reduced-Power Mode
The core of the MAX19997A is a pair of doublebalanced, high-performance passive mixers.
Exceptional linearity is provided by the large LO swing
from the on-chip LO buffer. When combined with the
integrated IF amplifiers, the cascaded IIP3, 2RF-2LO
rejection, and NF performance are typically +24dBm
IIP3, -67dBc, and 10.3dB, respectively for low-side LO
injection architectures covering the 2300MHz to
2900MHz band. Cascaded performance levels are
comparable for high-side LO injection architectures;
IIP3, 2LO - 2RF rejection, and NF levels are typically
rated at +24dBm IIP3, -73dBc, and 10.4dB, respectively over the same 2300MHz to 2900MHz band.
Each channel of the MAX19997A has two pins
(LO_ADJ_ _, IF_ _SET) that allow external resistors to set
the internal bias currents. Nominal values for these
resistors are shown in Tables 1 and 2. Larger-value
resistors can be used to reduce power dissipation at the
expense of some performance loss. If ±1% resistors are
not readily available, ±5% resistors may be substituted.
Significant reductions in power consumption can be
realized by operating the mixer with an optional supply
voltage of +3.3V. Doing so reduces the overall power
consumption by up to 53%. See the +3.3V Supply,
Low-Side LO Injection AC Electrical Characteristics
table and the relevant +3.3V curves in the Typical
Operating Characteristics section to evaluate the power
vs. performance tradeoffs.
Differential IF Output Amplifier
The MAX19997A mixers have an IF frequency range of
50MHz to 550MHz. The differential, open-collector IF
output ports require external pullup inductors to VCC.
These pullup inductors are also used to resonate out the
parasitic shunt capacitance of the IC, PCB components,
and PCB to provide an optimized IF match at the frequency of interest. Note that differential IF outputs are
ideal for providing enhanced 2RF - 2LO and 2LO - 2RF
rejection performance. Single-ended IF applications
require a 4:1 balun to transform the 200Ω differential
output impedance to a 50Ω single-ended output. After
the balun, voltage standing-wave ratio (VSWR) is typically 1.2:1.
30
Layout Considerations
A properly designed PCB is an essential part of any
RF/microwave circuit. Keep RF signal lines as short as
possible to reduce losses, radiation, and inductance.
For the best performance, route the ground pin traces
directly to the exposed pad under the package.
The PCB exposed pad MUST be connected to the
ground plane of the PCB. It is suggested that multiple
vias be used to connect this pad to the lower-level
ground planes. This method provides a good RF/thermal-conduction path for the device. Solder the exposed
pad on the bottom of the device package to the PCB.
The MAX19997A evaluation kit can be used as a reference for board layout. Gerber files are available upon
request at www.maxim-ic.com.
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
Exposed Pad RF/Thermal Considerations
The exposed pad (EP) of the MAX19997A’s 36-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX19997A is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP MUST be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
Table 1. Standard RF Band Application Circuit Component Values (Optimized for
Frequencies Ranging from 2400MHz to 2900MHz)
DESIGNATION
QTY
C1, C8
2
22pF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C14
1
1.5pF microwave capacitor (0402)
Murata Electronics North
America, Inc.
C4, C9, C13, C15,
C17, C18
6
0.01µF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C10, C11, C12,
C19, C20, C21
6
82pF microwave capacitors (0603)
Murata Electronics North
America, Inc.
L1, L2, L3, L4
4
120nH wire-wound high-Q inductors* (0805)
Coilcraft, Inc.
L7, L8
0
Not used
—
750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
1.1kΩ ±1% resistors (0402). Use for VCC = +3.3V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
845Ω ±1% resistors (0402). Use for VCC = +3.3V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R1, R4
R2, R5
DESCRIPTION
COMPONENT SUPPLIER
2
2
R3, R6
2
0Ω resistors (1206). These resistors can be increased in value to reduce
power dissipation in the device, but reduces the compression point. Full
P1dB performance achieved using 0Ω.
Digi-Key Corp.
T1, T2
2
4:1 IF baluns (TC4-1W-17+)
Mini-Circuits
U1
1
MAX19997A IC (36 TQFN-EP)
Maxim Integrated Products,
Inc.
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
______________________________________________________________________________________
31
MAX19997A
Power-Supply Bypassing
Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with
the capacitors shown in the Typical Application Circuit.
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
Table 2. Extended RF Band Application Circuit Component Values (Optimized for
1950MHz Operation)
DESIGNATION
QTY
DESCRIPTION
COMPONENT SUPPLIER
C1, C8
2
1pF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C14
1
1.5pF microwave capacitor (0402)
Murata Electronics North
America, Inc.
C4, C9, C13, C15,
C17, C18
6
0.01µF microwave capacitors (0402)
Murata Electronics North
America, Inc.
C10, C11, C12,
C19, C20, C21
6
82pF microwave capacitors (0603)
Murata Electronics North
America, Inc.
L1, L2, L3, L4
4
120nH wire-wound high-Q inductors* (0805)
Coilcraft, Inc.
L7, L8
2
12nH inductor (0402). Use to improve RF match from 1800MHz to 2400MHz.
Connect L7 and L8 from pins 1 and 9, respectively, to ground.
Coilcraft, Inc.
R1, R4
2
750Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R2, R5
2
698Ω ±1% resistors (0402). Use for VCC = +5.0V applications. Larger
values can be used to reduce power at the expense of some
performance loss. See the Typical Operating Characteristics section.
Digi-Key Corp.
R3, R6
2
0Ω resistors (1206). These resistors can be increased in value to reduce
power dissipation in the device, but reduces the compression point. Full
P1dB performance achieved using 0Ω.
Digi-Key Corp.
T1, T2
2
4:1 IF balun (TC4-1W-17+)
Mini-Circuits
U1
1
MAX19997A IC (36 TQFN-EP)
Maxim Integrated Products,
Inc.
*Use 390nH (0805) inductors for an IF frequency of 200MHz. Contact the factory for details.
32
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
C19
T1
L1*
VCC
IF MAIN OUTPUT
C21
R3
L2*
4:1
R1
VCC
C20
VCC
RF MAIN INPUT
GND
C17
28
29
30
VCC
GND
31
IFM32
IFM+
33
IFM_SET
GND
34
36
L7**
C1
35
VCC
C18
LO_ADJ_M
R2
+
RFMAIN
GND
GND
VCC
VCC
C4
GND
GND
GND
GND
RFDIV
RF DIV INPUT
27
1
MAX19997A
2
26
3
25
4
24
5
23
6
22
21
7
EXPOSED
PAD
8
20
9
19
GND
GND
GND
GND
GND
GND
VCC
VCC
C15
GND
LO
LO
C14
18
17
GND
VCC
16
15
GND
14
IFD-
13
IFD+
12
GND
R4
LO_ADJ_D
C9
IFD_SET
VCC
VCC
10
L8**
11
C8
R5
VCC
C13
C11
*USE 390nH (0805) INDUCTORS FOR AN IF FREQUENCY OF 200MHz.
CONTACT FACTORY FOR DETAILS.
**CONNECT INDUCTORS TO IMPROVE RF MATCH FROM 1800MHz TO
2400MHz. SEE TABLE 2 FOR DETAILS.
T2
L4*
VCC
R6
C12
IF DIV OUTPUT
L3*
4:1
C10
______________________________________________________________________________________
33
MAX19997A
Typical Application Circuit
28 GND
29 LO_ADJ_M
30 VCC
31 GND
32 IFM-
33 IFM+
34 GND
36 VCC
TOP VIEW
35 IFM_SET
Pin Configuration/
Functional Block Diagram
RFMAIN
1
MAX19997A
27
GND
26
GND
GND
2
GND
3
25
GND
VCC
4
24
GND
GND
5
23
GND
GND
6
22
GND
GND
7
21
VCC
20
GND
19
LO
12
13
14
15
16
17
18
GND
IFD+
IFD-
GND
VCC
LO_ADJ_D
GND
9
11
RFDIV
IFD_SET
8
10
GND
EXPOSED
PAD
Chip Information
PROCESS: SiGe BiCMOS
Package Information
+
VCC
MAX19997A
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
For the latest package outline information and land patterns
(footprints), go to www.maxim-ic.com/packages. Note that a
“+”, “#”, or “-” in the package code indicates RoHS status only.
Package drawings may show a different suffix character, but
the drawing pertains to the package regardless of RoHS status.
PACKAGE
TYPE
PACKAGE
CODE
OUTLINE NO.
LAND
PATTERN NO.
36 Thin QFN-EP
T3666+2
21-0141
90-0049
6mm x 6mm THIN QFN (EXPOSED PAD)
EXPOSED PAD ON THE BOTTOM OF THE PACKAGE.
34
______________________________________________________________________________________
Dual, SiGe High-Linearity, 1800MHz to 2900MHz
Downconversion Mixer with LO Buffer
REVISION
NUMBER
REVISION
DATE
0
10/08
Initial release
1
9/10
Minor style edits
2
2/11
Increased IF frequency range from 50MHz to 550MHz
DESCRIPTION
PAGES
CHANGED
—
2, 3, 4, 10,
15, 29, 30, 34
1, 3, 29, 30
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35
© 2011 Maxim Integrated Products
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX19997A
Revision History