19-4195; Rev 2; 9/10 ৰۇ భᄋຶ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ``````````````````````````````````` ᄂቶ NBY2:626ၷᄰࡸĂෝ0ၫᓞધ)BED*ᎌ21ᆡॊܦൈLj ᑽߒ76NtqtᔢࡍݧዹႥൈă ♦ ᔫᓨზሆᎌࢅ)76Ntqtဟ54nX0ᄰࡸ* NBY2:626ࡼෝผၒྜྷభ၊1/5Wᒗ2/5W୷ࡼၒྜྷৢෝ ࢟ኹपᆍLjᏤࡒSGĂJGጲૺࡒ༄࣡ᒇഗẮࡵၒྜྷ ࣡ăᏴࡒᒗ511NI{ጲࡼၒྜྷຫൈपᆍดLjNBY2:626 ᎌᎁፊࡼࣅზቶถLjऻޟးഃᒦຫ)[JG*ਜ਼୷ᒦຫ)JG* ࡼݧዹᇹᄻăgJO > 81NI{ĂgDML > 76NI{ဟLj࢜ቯቧᐅ܈ )TOS*ᆐ71/2eCGTLj࢜ቯᇄᏭྲࣅზपᆍ)TGES*ᆐ93eCdă ♦ ᎁፊࡼࣅზቶถ 81NI{ဟLjTOSᆐ71/2eCGT 81NI{ဟLjTGESᆐ93eCd NBY2:626ᔫᏴ2/9W࢟ᏎăࠥᅪLjดݝᔈଶ࢟ހኹࢯஂ భᔫᏴ3/6Wᒗ4/4W࢟ኹ)BWEE*ăၫᔊၒ߲དࣅ ᔫᏴ2/9Wᒗ4/6Wࣖೂ࢟Ꮞ)PWEE*ăW BWEE > 2/9WဟLjඛ ᄰࡸෝผ࢟വஞᆐ54nXă߹೫ᎌ୷ࢅࡼᅪLj NBY2:626Ᏼਈࣥෝါሆభଢ଼ᒗ2nXLjࡗ૦ෝါሆ ஞᆐ26nXă ᄰਭ4ሣࠈቲాषᆰభ߈ܠࡀLjถ৫ဣሚᒬࢯஂ ਜ਼ถኡᐋăࠥᅪLjથభጲணࠈాLjᄋྯৈၒྜྷ୭ ᎖ኡᐋၒ߲ෝါĂၫৃါਜ਼ဟᒩॊຫăၫၒ߲ݧ ၷവ݀ቲᔐሣLjၒ߲ၫରྏ᎖DNPT࢟ຳLjጐభጲᒙ ᆐവআ݀ቲDNPTᔐሣă NBY2:626ݧቃߛࡁĂ8nn y 8nnĂ59୭ۡቯRGOॖ ᓤLjᔫᏴ.51°Dᒗ,96°D౫ᐱᆨࣞपᆍă ୭ૺถରྏࡼ9ᆡ76NtqtĂ211Ntqtጲૺ241Ntqtޘອ ༿ॊܰݬఠNBY2:616ĂNBY2:617ጲૺNBY2:618ၫᓾ ೯Ǘ୭ૺถରྏࡼ21ᆡ211Ntqtਜ਼241Ntqtޘອ༿ॊ ܰݬఠNBY2:627ਜ਼NBY2:628ၫᓾ೯ă ``````````````````````````````````` ። JGਜ਼ࡒᄰቧLj۞౪क़ᆷᐶૺ࢛࢛࣪ᆈ݆၃૦ ♦ 2/9W3/6Wᒗ4/4Wෝผ࢟࢟ኹ ♦ ᄰਭTQJUN ాဣሚઓభஂࢯ߈ܠਜ਼ถኡᐋ ♦ భኡᐋࡼၫᔐሣ)ၷവDNPTവআDNPT* ♦ EDMLၒ߲ਜ਼భ߈ܠၫၒ߲ࢾဟLj଼છ೫Ⴅၫᔊ ా ♦ ୷ࡼၒྜྷৢෝ࢟ኹपᆍ)1/5Wᒗ2/5W* ♦ ࡒෝผၒྜྷ)?! 961NI{* ♦ ࣡ތॊෝผၒྜྷ ♦ ࣡ތॊဟᒩၒྜྷ ♦ 2ॊຫ)EJW2*Ă3ॊຫ)EJW3*ጲૺ5ॊຫ)EJW5*ဟᒩෝါ ♦ औᒜݗ൩Ăৃಙ൩ጲૺມጤऔᒜၒ߲ၫৃါ ♦ ިሢᒎာ)EPS* ♦ DNPTၒ߲ด࣡ݝኡሲ)భ*߈ܠ ♦ ᆡၿኔభनሶ)భᒙ* ♦ ၫၒ߲ހ၂ෝۇ ♦ ቃߛࡁĂ8nn! y! 8nnĂ59୭ۡቯRGOॖᓤLjࡒᎌ ൡ ``````````````````````````````` ࢾ৪ቧᇦ PART TEMP RANGE PIN-PACKAGE -40°C to +85°C 48 TQFN-EP* ިဉਜ਼ጛኧ߅ስ MAX19515ETM+ ܣቑါጥܭਜ਼ࢅၫૹݧ +ܭာᇄ)Qc*0९SpITܪᓰࡼॖᓤă *FQ! >! ൡă ၫᔊ૦ࢻਫ਼ ୭ᒙᏴၫᓾ೯ࡼᔢઁ߲ă TQJဵNpupspmb-! Jod/ࡼܪă ________________________________________________________________ Maxim Integrated Products 1 ۾ᆪဵ፞ᆪၫᓾ೯ࡼፉᆪLjᆪᒦభถࡀᏴडፉࡼݙᓰཀྵࡇᇙăྙኊጙݛཀྵཱྀLj༿Ᏼิࡼଐᒦݬఠ፞ᆪᓾ೯ă ᎌਈଥৃĂૡૺࢿ৪ቧᇦLj༿ೊNbyjnᒴሾ၉ᒦቦǖ21911!963!235:!)۱ᒦਪཌ*Lj21911!263!235:!)ฉᒦਪཌ*Lj षᆰNbyjnࡼᒦᆪᆀᐶǖdijob/nbyjn.jd/dpnă NBY2:626 ``````````````````````````````````` গၤ NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ABSOLUTE MAXIMUM RATINGS OVDD, AVDD to GND............................................-0.3V to +3.6V CMA, CMB, REFIO, INA+, INA-, INB+, INB- to GND ......................................................-0.3V to +2.1V CLK+, CLK-, SYNC, SPEN, CS, SCLK, SDIN to GND ..........-0.3V to the lower of (VAVDD + 0.3V) and +3.6V DCLKA, DCLKB, D9A–D0A, D9B–D0B, DORA, DORB to GND..........-0.3V to the lower of (VOVDD + 0.3V) and +3.6V Continuous Power Dissipation (TA = +70°C) 48-Pin Thin QFN, 7mm x 7mm x 0.8mm (derate 40mW/°C above +70°C).............................................................3200mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC ACCURACY Resolution 10 Bits Integral Nonlinearity INL fIN = 3MHz -0.8 ±0.25 +0.8 LSB Differential Nonlinearity DNL fIN = 3MHz -0.7 ±0.2 +0.7 LSB Offset Error OE Internal reference -0.4 ±0.1 +0.4 %FS Gain Error GE External reference = 1.25V -1.5 ±0.3 +1.5 %FS ANALOG INPUTS (INA+, INA-, INB+, INB-) (Figure 3) Differential Input-Voltage Range VDIFF Differential or single-ended inputs Common-Mode Input-Voltage Range VCM (Note 2) 1.5 0.4 Fixed resistance Input Resistance RIN Input Current Input Capacitance 1.4 V > 100 Differential input resistance, common mode connected to inputs 4 IIN Switched capacitance input current, each input 35 CPAR Fixed capacitance to ground, each input 0.7 Switched capacitance, each input 1.2 CSAMPLE VP-P kΩ μA pF CONVERSION RATE Maximum Clock Frequency fCLK Minimum Clock Frequency fCLK Data Latency 2 65 MHz 30 Figures 9, 10 9 _______________________________________________________________________________________ MHz Cycles ၷᄰࡸĂ21ᆡĂ76Ntqt! BED (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DYNAMIC PERFORMANCE Small-Signal Noise Floor Signal-to-Noise Ratio SSNF SNR fIN = 70MHz, < -35dBFS -60.4 fIN = 3MHz 60.2 fIN = 70MHz 59.3 fIN = 175MHz Signal-to-Noise Plus Distortion Ratio fIN = 70MHz Spurious-Free Dynamic Range (4th and Higher Harmonics) Second Harmonic SFDR2 HD2 Third Harmonic HD3 Total Harmonic Distortion Third-Order Intermodulation Full-Power Bandwidth THD IM3 fIN = 70MHz 85 73 81 fIN = 3MHz 82 74.4 dBc 84 fIN = 175MHz fIN = 70MHz dB 59.6 59.3 fIN = 3MHz SFDR1 dBFS 59.7 58.8 fIN = 175MHz Spurious-Free Dynamic Range (2nd and 3rd Harmonic) 60.1 59.8 fIN = 3MHz SINAD dBFS dBc 82 fIN = 175MHz 82 fIN = 3MHz -86 fIN = 70MHz -86 fIN = 175MHz -82 fIN = 3MHz -86 fIN = 70MHz -86 fIN = 175MHz -82 fIN = 3MHz -80 fIN = 70MHz -79 fIN = 175MHz -77 fIN = 70MHz ±1.5MHz, -7dBFS -90 fIN = 175MHz ±2.5MHz, -7dBFS -80 -73 dBc -74 dBc -71.8 dBc dBc FPBW 850 Aperture Delay tAD 850 ps Aperture Jitter tAJ 0.3 psRMS 1 Cycles Overdrive Recovery Time ±10% beyond full scale MHz _______________________________________________________________________________________ 3 NBY2:626 ELECTRICAL CHARACTERISTICS (continued) NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS INTERCHANNEL CHARACTERISTICS Crosstalk fINA or fINB = 70MHz at -1dBFS 95 fINA or fINB = 175MHz at -1dBFS 85 dBc Gain Match fIN = 70MHz ±0.05 dB Offset Match fIN = 70MHz ±0.1 %FSR Phase Match fIN = 70MHz ±0.5 Degrees ANALOG OUTPUTS (CMA, CMB) CMA, CMB Output Voltage VCOM Default programmable setting 0.85 0.9 0.95 1.25 1.27 V INTERNAL REFERENCE REFIO Output Voltage REFIO Temperature Coefficient VREFOUT 1.23 V TCREF < ±60 ppm/°C REFIO Input-Voltage Range VREFIN 1.25 +5/ -10% V REFIO Input Resistance RREFIN 10 ±20% kΩ 0.4 to 2.0 VP-P EXTERNAL REFERENCE CLOCK INPUTS (CLK+, CLK-)—DIFFERENTIAL MODE Differential Clock Input Voltage Self-biased Differential Input Common-Mode Voltage 1.2 DC-coupled clock signal Input Resistance RCLK Input Capacitance CCLK V 1.0 to 1.4 Differential, default 10 kΩ Differential, internal termination selected 100 Ω Common mode 9 kΩ To ground, each input 3 pF CLOCK INPUTS (CLK+, CLK-)—SINGLE-ENDED MODE (VCLK- < 0.1V) Single-Ended Mode Selection Threshold (VCLK-) 0.1 Allowable Logic Swing (VCLK+) 0 - VAVDD Single-Ended Clock Input High Threshold (VCLK+) Input Leakage (CLK-) Input Capacitance (CLK+) 4 V 1.5 V Single-Ended Clock Input Low Threshold (VCLK+) Input Leakage (CLK+) 0.3 VCLK+ = VAVDD = 1.8V or 3.3V +0.5 VCLK+ = 0V -0.5 VCLK- = 0V -150 V -50 3 _______________________________________________________________________________________ V μA μA pF ၷᄰࡸĂ21ᆡĂ76Ntqt! BED (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS CLOCK INPUT (SYNC) Allowable Logic Swing 0 - VAVDD Sync Clock Input High Threshold V 1.5 V Sync Clock Input Low Threshold 0.3 VSYNC = VAVDD = 1.8V or 3.3V Input Leakage VSYNC = 0V +0.5 -0.5 Input Capacitance V μA 4.5 pF 0 - VAVDD V DIGITAL INPUTS (SHDN, CS) Allowable Logic Swing Input High Threshold 1.5 V Input Low Threshold 0.3 VSHDN/VSPEN = VAVDD = 1.8V or 3.3V Input Leakage VSHDN/VSPEN = 0V Input Capacitance +0.5 -0.5 CDIN V μA 3 pF 0 - VAVDD V SERIAL-PORT INPUTS (SCLK, SDIN, CS, where SPEN = 0V)—SERIAL-PORT CONTROL MODE Allowable Logic Swing Input High Threshold 1.5 V Input Low Threshold 0.3 VSCLK/VSDIN/VCS = VAVDD = 1.8V or 3.3V Input Leakage VSCLK/VSDIN/VCS = 0V Input Capacitance +0.5 -0.5 CDIN 3 V μA pF SERIAL-PORT INPUTS (SCLK, SDIN, CS, where SPEN = VAVDD)—PARALLEL CONTROL MODE (Figure 5) Input Pullup Current Input Pulldown Current Open-Circuit Voltage VOC VSCLK/VSDIN/VCS = VAVDD = 1.8V 7 12 17 VSCLK/VSDIN/VCS = VAVDD = 3.3V 16 21 26 VSCLK/VSDIN/VCS = 0V, VAVDD = 1.8V -65 -50 -35 VSCLK/VSDIN/VCS = 0V, VAVDD = 3.3V -105 -90 -75 VAVDD = 1.8V 1.35 1.45 1.55 VAVDD = 3.3V 2.58 2.68 2.78 μA μA V DIGITAL OUTPUTS (75Ω, D0–D9 (A and B Channel), DCLKA, DCLKB, DORA, DORB) Output-Voltage Low VOL Output-Voltage High VOH Three-State Leakage Current ILEAK ISINK = 200μA ISOURCE = 200μA 0.2 VOVDD - 0.2 VOVDD applied GND applied V +0.5 -0.5 V μA _______________________________________________________________________________________ 5 NBY2:626 ELECTRICAL CHARACTERISTICS (continued) NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER-MANAGEMENT CHARACTERISTICS Wake-Up Time from Shutdown tWAKE Internal reference, CREFIO = 0.1μF (10τ) 5 ms Wake-Up Time from Standby tWAKE Internal reference 15 μs SERIAL-PORT INTERFACE TIMING (Note 2) (Figure 7) SCLK Period tSCLK 50 ns SCLK to CS Setup Time tCSS 10 ns SCLK to CS Hold Time tCSH 10 ns SDIN to SCLK Setup Time tSDS Serial-data write 10 ns SDIN to SCLK Hold Time tSDH Serial-data write 0 SCLK to SDIN Output Data Delay tSDD Serial-data read ns 10 ns TIMING CHARACTERISTICS—DUAL BUS PARALLEL MODE (Figure 9) (Default Timing, see Table 5) Clock Pulse-Width High tCH 7.69 ns Clock Pulse-Width Low tCL 7.69 ns tCH/tCLK 30 to 70 % Clock Duty Cycle Data Delay After Rising Edge of CLK+ tDD CL = 10pF, VOVDD = 1.8V (Note 2) 3.4 CL = 10pF, VOVDD = 3.3V 5.3 7.1 4.1 ns Data to DCLK Setup Time tSETUP CL = 10pF, VOVDD = 1.8V (Note 2) 12.8 13.4 ns Data to DCLK Hold Time tHOLD CL = 10pF, VOVDD = 1.8V (Note 2) 1.4 2.0 ns TIMING CHARACTERISTICS—MULTIPLEXED BUS PARALLEL MODE (Figure 10) (Default Timing, see Table 5) Clock Pulse-Width High Clock Pulse-Width Low Clock Duty Cycle Data Delay After Rising Edge of CLK+ tCH 7.69 ns tCL 7.69 ns tCH/tCLK 30 to 70 tDD CL = 10pF, VOVDD = 1.8V (Note 2) 3.3 CL = 10pF, VOVDD = 3.3V 5.2 % 7.0 4.0 ns Data to DCLK Setup Time tSETUP CL = 10pF, VOVDD = 1.8V (Note 2) 5.0 5.9 ns Data to DCLK Hold Time tHOLD CL = 10pF, VOVDD = 1.8V (Note 2) 1.2 1.8 ns DCLK Duty Cycle tDCH/tCLK CL = 10pF, VOVDD = 1.8V (Note 2) 44 50 56 % MUX Data Duty Cycle tCHA/tCLK CL = 10pF, VOVDD = 1.8V (Note 2) 44 50 56 % TIMING CHARACTERISTICS—SYNCHRONIZATION (Figure 12) Setup Time for Valid Clock Edge tSUV Edge mode (Note 2) 0.7 ns Hold-Off Time for Invalid Clock Edge tSDH Edge mode (Note 2) 0.5 ns Minimum Synchronization Pulse Width 6 Relative to input clock period 2 _______________________________________________________________________________________ Cycles ၷᄰࡸĂ21ᆡĂ76Ntqt! BED (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER REQUIREMENTS Analog Supply Voltage VAVDD Digital Output Supply Voltage VOVDD Low-level VAVDD 1.7 1.9 High-level VAVDD (regulator mode, invoked automatically) 2.3 3.5 1.7 Dual channel Analog Supply Current Analog Power Dissipation Digital Output Supply Current IAVDD PDA IOVDD 3.5 47 28 Standby mode 8.5 12 Power-down mode 0.65 0.9 Power-down mode, VAVDD = 3.3V 1.6 Dual channel 85 Dual channel, VAVDD = 3.3V 155 Single channel active 50 Standby mode 15 22 Power-down mode 1.2 1.6 Power-down mode, VAVDD = 3.3V 2.9 Dual-channel mode, CL = 10pF 13 < 0.1 V 55 Single channel active Power-down mode V mA 99 mW mA Note 1: Specifications ≥ +25°C guaranteed by production test, specifications < +25°C guaranteed by design and characterization. Note 2: Guaranteed by design and characterization. _______________________________________________________________________________________ 7 NBY2:626 ELECTRICAL CHARACTERISTICS (continued) ``````````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) 3MHz SINGLE-ENDED INPUT FFT PLOT -100 -60 -100 -120 10 15 20 25 FREQUENCY (MHz) 30 175MHz INPUT FFT PLOT 10 15 20 25 FREQUENCY (MHz) 30 0 -100 0 -40 -60 -80 -100 -120 10 15 20 25 30 5 10 15 20 25 FREQUENCY (MHz) 0.8 0 0.2 DNL (LSB) 0.4 0.2 0 -0.2 90 0 -0.2 SFDR2 SFDR1 80 75 -THD 70 65 -0.6 -0.6 60 -0.8 -0.8 55 -1.0 -1.0 50 1024 SNR 0 256 512 768 DIGITAL OUTPUT CODE 30 85 -0.4 256 512 768 DIGITAL OUTPUT CODE 10 15 20 25 FREQUENCY (MHz) PERFORMANCE vs. INPUT FREQUENCY -0.4 0 5 95 PERFORMANCE (dBFS) 0.6 0.4 MAX19515 toc03 -80 30 MAX19515 toc08 1.0 MAX19515 toc07 0.6 -60 DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODE INTEGRAL NONLINEARITY vs. DIGITAL OUTPUT CODE 0.8 -40 -120 0 FREQUENCY (MHz) 1.0 30 -100 -120 5 10 15 20 25 FREQUENCY (MHz) fIN1 = 172.49286MHz fIN2 = 177.50202MHz -20 AMPLITUDE (dBFS) -80 0 5 175MHz TWO-TONE IMD fIN1 = 71.496925MHz fIN2 = 68.504600MHz -20 AMPLITUDE (dBFS) AMPLITUDE (dBFS) -60 5 0 MAX19515 toc04 fIN = 175.096626MHz AIN = -0.512dBFS SNR = 59.073dB SINAD = 59.022dB THD = -78.338dBc SFDR1 = 81.806dBc SFDR2 = 84.255dBc -40 -80 70MHz TWO-TONE IMD PLOT 0 -20 -60 -120 0 MAX19515 toc05 5 -40 -100 -120 0 8 MAX19515 toc02 -80 fIN = 70.1014328MHz AIN = -0.532dBFS SNR = 59.432dB SINAD = 58.388dB THD = -79.349dBc SFDR1 = 84.227dBc SFDR2 = 81.877dBc -20 MAX19515 toc06 -80 -40 70MHz INPUT FFT PLOT 0 AMPLITUDE (dBFS) -60 fIN = 2.99877166748047MHz AIN = -0.546dBFS SNR = 59.675dB SINAD = 59.632dB THD = -79.673dBc SFDR1 = 88.737dBc SFDR2 = 82.290dBc -20 AMPLITUDE (dBFS) AMPLITUDE (dBFS) -40 MAX19515 toc01 fIN = 2.99877166MHz AIN = -0.532dBFS SNR = 59.682dB SINAD = 59.641dB THD = -79.826dBc SFDR1 = 83.946dBc SFDR2 = 82.852dBc -20 0 1024 MAX19515 toc09 3MHz INPUT FFT PLOT 0 INL (LSB) NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED 0 50 SINAD 100 150 200 250 300 350 400 INPUT FREQUENCY (MHz) _______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED 80 SFDR1 70 65 SNR 100 PERFORMANCE (dBFS) 85 SFDR1 -THD SFDR2 90 80 -THD 70 SFDR1 85 80 75 -THD 70 SNR 65 60 60 55 SINAD 80 75 -THD 70 SNR 65 60 SFDR1 80 75 -THD 70 65 SNR 60 55 55 SINAD 50 0.35 0.55 0.75 0.95 1.15 1.35 COMMON-MODE VOLTAGE (V) SFDR1 80 75 -THD 70 65 SNR 60 55 SINAD 50 1.70 1.75 1.80 1.85 1.90 ANALOG SUPPLY VOLTAGE (V) 1.95 2.3 44 42 40 38 36 34 49 48 47 46 45 44 43 42 41 30 40 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (MHz) MAX19515 toc17 50 32 2.5 2.7 2.9 3.1 3.3 ANALOG SUPPLY VOLTAGE (V) 3.5 ANALOG SUPPLY CURRENT vs. SUPPLY VOLTAGE ANALOG SUPPLY CURRENT vs. TEMPERATURE ANALOG SUPPLY CURRENT (mA) 46 SFDR2 85 SINAD 1.65 MAX19515 toc16 48 90 50 ANALOG SUPPLY CURRENT vs. SAMPLING FREQUENCY 50 PERFORMANCE vs. ANALOG SUPPLY VOLTAGE SFDR2 85 PERFORMANCE (dBFS) SFDR2 85 90 MAX19515 toc13 SFDR1 90 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (Msps) 0 PERFORMANCE vs. ANALOG SUPPLY VOLTAGE PERFORMANCE vs. COMMON-MODE VOLTAGE 95 -70 -60 -50 -40 -30 -20 -10 ANALOG INPUT AMPLITUDE (dBFS) MAX19515 toc15 -80 70 PERFORMANCE (dBFS) 60 50 49 ANALOG SUPPLY CURRENT (mA) 20 30 40 50 INPUT FREQUENCY (MHz) MAX19515 toc14 10 SINAD 50 50 MAX19515 toc18 55 0 PERFORMANCE (dBFS) SFDR2 90 60 50 ANALOG SUPPLY CURRENT (mA) SINAD SNR 95 PERFORMANCE (dBFS) SFDR2 75 110 MAX19515 toc11 90 MAX19515 toc10 SINGLE-ENDED PERFORMANCE (dBFS) 95 PERFORMANCE vs. SAMPLING FREQUENCY PERFORMANCE vs. ANALOG INPUT AMPLITUDE MAX19515 toc12 SINGLE-ENDED PERFORMANCE vs. INPUT FREQUENCY 48 47 46 45 44 43 42 41 40 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 1.65 1.70 1.75 1.80 1.85 SUPPLY VOLTAGE (V) 1.90 _______________________________________________________________________________________ 1.95 9 NBY2:626 ``````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) ``````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) 47 46 45 44 43 42 10 8 6 4 2 25 MAX19515 toc21 VOVDD = 1.8V VOVDD = 3.6V DIGITAL SUPPLY CURRENT (mA) 48 12 MAX19515 toc20 49 DIGITAL SUPPLY CURRENT (mA) MAX19515 toc19 50 ANALOG SUPPLY CURRENT (mA) DIGITAL SUPPLY CURRENT vs. SAMPLING FREQUENCY DIGITAL SUPPLY CURRENT vs. SAMPLING FREQUENCY ANALOG SUPPLY CURRENT vs. SUPPLY VOLTAGE 20 15 10 5 41 0 2.7 2.9 3.1 SUPPLY VOLTAGE (V) 3.3 3.5 0 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (Msps) 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (Msps) DIGITAL SUPPLY CURRENT vs. SUPPLY VOLTAGE DIGITAL SUPPLY CURRENT vs. SUPPLY VOLTAGE DIGITAL SUPPLY CURRENT vs. TEMPERATURE 23 SUPPLY CURRENT (mA) 21 19 VOVDD = 3.6V 17 15 VOVDD = 1.8V 13 11 9 25 DUAL BUS DIGITAL SUPPLY CURRENT (mA) MAX19515 toc22 25 20 15 10 5 30 MAX19515 toc24 2.5 MAX19515 toc23 2.3 MULTIPLEXED BUS DIGITAL SUPPLY CURRENT (mA) 40 25 20 15 10 5 7 5 0 0 60 80 PERFORMANCE vs. CLOCK DUTY CYCLE PERFORMANCE vs. TEMPERATURE SFDR1 SFDR2 -THD 70 SNR 65 SFDR1 90 85 PERFORMANCE (dBFS) 80 75 95 MAX19515 toc25 90 85 80 SFDR2 -THD 75 70 SNR 65 60 SINAD 10 40 45 50 55 CLOCK DUTY CYCLE (%) 60 65 0.03 0.02 0.01 0 -0.01 -0.04 SINAD 50 35 0.04 -0.03 55 55 GAIN ERROR vs. TEMPERATURE 0.05 -0.02 60 30 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 SUPPLY VOLTAGE (V) 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 SUPPLY VOLTAGE (V) MAX19515 toc27 0 20 40 TEMPERATURE (°C) GAIN ERROR (%) -20 MAX19515 toc26 -40 PERFORMANCE (dBFS) NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED -0.05 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -40 -20 0 20 40 TEMPERATURE (°C) ______________________________________________________________________________________ 60 80 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED REFERENCE VOLTAGE vs. TEMPERATURE REFERENCE VOLTAGE (V) -0.1 -0.2 -0.3 -0.4 -0.5 1.2495 1.2474 1.2453 -0.6 -0.7 60 80 VCM = 1.2V 1.2 VCM = 1.05V 1.0 VCM = 0.9V 0.8 VCM = 0.75V VCM = 0.6V 0.6 VCM = 0.45V 0.4 0.2 -40 -20 0 20 40 TEMPERATURE (°C) 60 MAX19515 toc31 0.06 80 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 INPUT CURRENT vs. COMMON-MODE VOLTAGE GAIN ERROR vs. SUPPLY VOLTAGE 0.08 60 55 0.02 0 -0.02 REGULATOR MODE INPUT CURRENT (μA) 0.04 50 45 40 35 -0.04 30 -0.06 25 -0.08 MAX19515 toc32 0 20 40 TEMPERATURE (°C) GAIN ERROR (%) -20 VCM = 1.35V 1.4 0 1.2432 -40 1.6 MAX19515 toc30 0 MAX19515 toc29 0.1 OFFSET ERROR (mV) 1.2516 MAX19515 toc28 0.2 COMMON-MODE REFERENCE VOLTAGE vs. TEMPERATURE COMMON-MODE REFERENCE VOLTAGE (V) OFFSET ERROR vs. TEMPERATURE 20 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 SUPPLY VOLTAGE (V) 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 COMMON-MODE VOLTAGE (V) ______________________________________________________________________________________ 11 NBY2:626 ``````````````````````````````````````````````````````````````````` ࢜ቯᔫᄂቶ)ኚ* (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ``````````````````````````````````````````````````````````````````````````` ୭ႁී ୭ ߂ 1, 12, 13, 48 AVDD ෝผ࢟Ꮞ࢟ኹăಽ1/2μG࢟ྏඛৈBWEEၒྜྷ࣪)2Ă59*ਜ਼)23Ă24*വᒗHOEă 2 CMA ᄰࡸBࡼৢෝၒྜྷ࢟ኹᓰă 3 INA+ ᄰࡸBࡼෝผၒྜྷᑵ࣡ă 4 INA- ᄰࡸBࡼෝผၒྜྷঌ࣡ă 5 SPEN ࢅ࢟ຳᎌTQJဧถăདࣅᆐ࢟ຳဟLjဧถ݀ా߈ܠෝါă 6 REFIO ᓰၒྜྷ0ၒ߲ăဧดݝᓰဟLjᄰਭጙৈࡍ᎖1/2μGࡼ࢟ྏവᒗHOEăਈ᎖ᅪݝᓰࢯᑳࡼ ቧᇦLj༿ݬఠᓰၒྜྷ0ၒ߲)SFGJP*ݝॊă 7 SHDN ࢟ຳᎌਈ఼ࣥᒜăྙਫSPENᆐ࢟ຳ)݀ా߈ܠෝါ*LjᐌᏴTIEOࡼሆଢ଼ዘࣅࡀআᆡă 8 I.C. 9 INB+ ᄰࡸCࡼෝผၒྜྷᑵ࣡ă 10 INB- ᄰࡸCࡼෝผၒྜྷঌ࣡ă 11 CMB ᄰࡸCࡼৢෝၒྜྷ࢟ኹᓰă 14 SYNC ဟᒩॊຫෝါᄴݛၒྜྷă 15 CLK+ ဟᒩၒྜྷᑵ࣡ă 16 CLK- ဟᒩၒྜྷঌ࣡ăྙਫDML.LjDML,ᐌᆐ࣡൝࢟ຳဟᒩၒྜྷǗ॥ᐌLjDML,0DML.ᆐᔈມᒙތॊ ဟᒩၒྜྷă 12 ถ ดݝጯೌLjೌݙă 17, 18 GND 19 DORB LjჅᎌၒྜྷਜ਼FQ! )ൡ*ೌᏴጙă ᄰࡸCၫިሢă 20 DCLKB ᄰࡸCၫဟᒩă 21 D0B ᄰࡸCࡼྯზၫᔊၒ߲Lj1ᆡ)MTC*ă 22 D1B ᄰࡸCࡼྯზၫᔊၒ߲Lj2ᆡă 23 D2B ᄰࡸCࡼྯზၫᔊၒ߲Lj3ᆡă 24 D3B ᄰࡸCࡼྯზၫᔊၒ߲Lj4ᆡă 25, 36 OVDD 26 D4B ᄰࡸCࡼྯზၫᔊၒ߲Lj5ᆡă 27 D5B ᄰࡸCࡼྯზၫᔊၒ߲Lj6ᆡă 28 D6B ᄰࡸCࡼྯზၫᔊၒ߲Lj7ᆡă 29 D7B ᄰࡸCࡼྯზၫᔊၒ߲Lj8ᆡă 30 D8B ᄰࡸCࡼྯზၫᔊၒ߲Lj9ᆡă 31 D9B ᄰࡸCࡼྯზၫᔊၒ߲Lj:ᆡ)NTC*ă 32 D0A ᄰࡸBࡼྯზၫᔊၒ߲Lj1ᆡ)MTC*ă 33 D1A ᄰࡸBࡼྯზၫᔊၒ߲Lj2ᆡă 34 D2A ᄰࡸBࡼྯზၫᔊၒ߲Lj3ᆡă 35 D3A ᄰࡸBࡼྯზၫᔊၒ߲Lj4ᆡă 37 D4A ᄰࡸBࡼྯზၫᔊၒ߲Lj5ᆡă 38 D5A ᄰࡸBࡼྯზၫᔊၒ߲Lj6ᆡă 39 D6A ᄰࡸBࡼྯზၫᔊၒ߲Lj7ᆡă ၫᔊ࢟Ꮞ࢟ኹLjᄰਭ1/2μG࢟ྏඛৈPWEEၒྜྷവᒗHOEă ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ୭ ߂ ถ 40 D7A ᄰࡸBࡼྯზၫᔊၒ߲Lj8ᆡă 41 D8A ᄰࡸBࡼྯზၫᔊၒ߲Lj9ᆡă 42 D9A ᄰࡸBࡼྯზၫᔊၒ߲Lj:ᆡ)NTC*ă 43 DORA ᄰࡸBၫިሢă 44 DCLKA ᄰࡸBၫဟᒩă 45 SDIN/FORMAT 46 SCLK/DIV 47 CS/OUTSEL — EP TQJၫၒྜྷ0ৃါăࡩSPENᆐࢅ࢟ຳဟLjᆐࠈቲၫၒྜྷǗࡩSPENᆐ࢟ຳဟLjᒙၒ߲ၫৃါă ࠈቲဟᒩ0ဟᒩॊຫăࡩSPENᆐࢅ࢟ຳဟLjᆐࠈቲဟᒩǗࡩSPENᆐ࢟ຳဟLjᔫဟᒩॊຫၒྜྷă ࠈాኡᐋ0ၫၒ߲ෝါăࡩSPENᆐࢅ࢟ຳဟLjᆐࠈాኡᐋǗࡩSPENᆐ࢟ຳဟLjኡᐋၫၒ߲ෝါă ൡăดೌݝᒗHOELjೌࡵࡍෂ૩ށLjጲᄋᔢଛྲེă ``````````````````````````````` ሮᇼႁී NBY2:626ݧ೫21ĂཝތॊĂഗၺሣஉ৩)ᅄ2*Ljถ৫ ᏴဣሚႥᓞધࡼᄴဟଢ଼ᒗᔢࢅăၒྜྷݧዹږᑍ ඛۍৈဟᒩᒲ໐ᓆᄰਭഗၺሣLjၒྜྷࡵၒ߲ࡼᔐዓဟ ᆐ:ৈဟᒩᒲ໐ăഗၺሣᓞધࡼඛጙၒྜྷ࢟ኹᓞ ધ߅ၫᔊၒ߲ܠ൩ă߹ᔢઁጙᅪLjඛၒྜྷ࢟ኹਜ਼ၫᔊ ၒ߲ܠ൩ᒄମࡼᇙۻތहࡍ݀႙ᒗሆጙăၫᔊᇙތኀᑵ ᎖ޡݗඛBED୷܈ࡼມތLj݀ཀྵۣࣀݙ൩ăᅄ3Ⴥ ာᆐNBY2:626ࡼถౖᅄă + MAX19515 Σ x2 − FLASH ADC DAC IN_+ STAGE 1 STAGE 2 STAGE 9 IN_- STAGE 10 END OF PIPELINE DIGITAL ERROR CORRECTION ෝผၒྜྷਜ਼ৢෝᓰ ෝผၒྜྷቧᔫࡵෝผၒྜྷ)JOB,0JOB.JOC,0JOC.*࣡Lj ೌۻᒗၒྜྷݧዹఎਈ)ᅄ4*LjࡩၒྜྷݧዹఎਈܕဟLj ၒྜྷቧᄰਭၒྜྷఎਈࡴᄰ࢟ᔜᔫࡵནዹ࢟ྏăၒྜྷ ఎਈࡌఎၾମ࣪ၒྜྷቧቲݧዹăഗၺሣBED࣪ݧዹ ࢟ኹቲࠀಯLj݀Ᏼ:ৈဟᒩᒲ໐ઁᄋၫᔊၒ߲உਫă Ᏼၒྜྷఎਈܕఎဪሆጙࠨݧዹᒄ༄Ljݧዹ࢟ྏۻআᆡ ࡵၒྜྷৢෝ࢟ኹă ৢෝມᒙభᎅᅪݝᄋᑗᄰਭ3lΩ࢟ᔜᎅดݝᄋăᒇ ഗẮ።ᒦLjቧᏎ와ݝມኹਜ਼ມഗǗୣഗẮ ።ᒦLjၒྜྷ࢟ഗᎅৢෝၒྜྷ࢟ኹᄋăಿྙLjၒྜྷ࢟ ഗభᄰਭܤኹࠨླྀᔝࡼᒦቦߥᄿᄋăᑗᄰਭࠈ D0_ THROUGH D9_ ᅄ2/! ഗၺሣஉ৩—ॊౖᅄ ాᒙሤ።ࡼดݝࡀLjᎅดݝ3lΩ࢟ᔜᄋၒྜྷᒇഗ ࢟ഗ)ᅄ4*ăᎅด࢟ݝᔜᄋၒྜྷ࢟ഗဟLj࢟ᔜࡼኹଢ଼ ્ଢ଼ࢅၒྜྷৢෝ࢟ኹăৢෝၒྜྷᓰ࢟ኹᄰਭభ߈ܠ ࡀᒙᏴ1/56Wᒗ2/46WपᆍดLjጲ1/26Wᆐޠݛቲ ᒙLj෦ཱྀᒙᆐ1/:1Wă።কถᆐᒇഗẮདࣅ࢟ വᄋৢෝၒ߲ᓰă ______________________________________________________________________________________ 13 NBY2:626 ```````````````````````````````````````````````````````````````````````````` ୭ႁී)ኚ* NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED CLOCK MAX19515 INA+ T/H INA- PIPELINE ADC DIGITAL ERROR CORRECTION D0A–D9A DORA DCLKA CMA REFIO CMB REFERENCE AND BIAS SYSTEM INTERNAL REFERENCE GENERATOR PIPELINE ADC DIGITAL ERROR CORRECTION DATA AND OUTPUT FORMAT OUTPUT DRIVERS OVDD (1.8V TO 3.3V) D0B–D9B INB+ T/H INB- DORB DCLKB CLOCK CLK+ CLOCK DIVIDER CLK- DUTYCYCLE EQUALIZER SYNC AVDD (1.8V OR 2.5V TO 3.3V) REGULATOR AND POWER CONTROL 1.8V INTERNAL CS SERIAL PORT AND CONTROL REGISTERS SCLK SDIN SHDN INTERNAL CONTROL GND SPEN ᅄ3/! ถౖᅄ AVDD CMA RSWITCH 120Ω INA+ CSAMPLE 1.2pF CPAR 0.7pF 2kΩ *VCOM AVDD 2kΩ RSWITCH 120Ω INACPAR 0.7pF CSAMPLE 1.2pF SAMPLING CLOCK MAX19515 *VCOM PROGRAMMABLE FROM 0.45V TO 1.35V. SEE COMMON-MODE REGISTER (08h) ᅄ4/! ดݧݝዹۣߒ)U0I*࢟വ 14 ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED INTERNAL GAIN—BYPASS REFIO EXTERNAL GAIN CONTROL—DRIVE REFIO 36kΩ REFIO 1.250V BANDGAP REFERENCE 10kΩ BUFFER DECODER 0.1μF EXTERNAL BYPASS CS SCLK SDIN 23/32 AVDD TO CONTROL LOGIC 156kΩ SCALE AND INTERNAL REFERENCE LEVEL SHIFT (CONTROLS ADC GAIN) 3/32 AVDD ᅄ5/! ଼છࡼᓰᏇಯᅄ ᅄ6/! ଼છࡼ݀ాၒྜྷᏇಯᅄ ܭ2/! ݀ా୭ถ SPEN SDIN/FORMAT SCLK/DIV CS/OUTSEL DESCRIPTION 0 SDIN SCLK CS SPI interface active. Features are programmed through the serial port (see the Serial Programming Interface section). 1 0 X X Two’s complement 1 AVDD X X Offset binary 1 Unconnected X X Gray code 1 X 0 X Clock divide-by-1 1 X AVDD X Clock divide-by-2 1 X Unconnected X Clock divide-by-4 1 X X 0 CMOS (dual bus) 1 X X AVDD MUX CMOS (channel A data bus) 1 X X Unconnected MUX CMOS (channel B data bus) Y! >! ᇄਈă ᓰၒྜྷ0ၒ߲)SFGJP* SFGJPࢯஂᓰ࢟ኹLj࠭ऎࢯᑳBEDࡼ൸߈पᆍăᅄ5ᆐ ଼છࡼᓰᏇಯᅄăดࡒݝᇺ࢟ኹᓰᏎᄋดݝᓰ࢟ ኹăࡒᇺ࢟ኹளਭદߡ݀ᄰਭጙৈ21lΩ࢟ᔜᔫࡵSFGJPă ಽጙৈ1/2μG࢟ྏSFGJPവᒗHOEăࡒᇺ࢟ኹၒྜྷࡵ ጙৈ܈ಿࢯஂਜ਼࢟ຳᓞધ࢟വLjᎅক࢟വޘညཀྵࢾBED൸ ߈पᆍࡼดݝᓰ࢟ኹăᔫᏴSFGJP࣡ࡼᅪ࢟ݝኹభ ጲࢯஂBED൸߈पᆍLjᏤࢯᑳपᆍᆐ,60.26&ăSFGJP ᒗBEDࡼᐐፄࠅၒၫᆐǖ WGT >! 2/6! y! \WSFGJP02/36^! ॰ᄂ ߈ܠਜ਼ా భᄰਭೝᒬऱज఼ᒜNBY2:626ࡼᔫෝါăಽTQJా భጲ఼ᒜჅᎌถኡሲLjಽ݀ాᐌభ఼ᒜᎌሢࡼጙᔝޟ ถă߈ܠෝါᄰਭSPENၒྜྷኡᐋLjSPENདࣅᆐࢅ ࢟ຳဟኡᐋTQJాǗSPENདࣅᆐ࢟ຳဟኡᐋ݀ాă ݀ా ݀ాᄋ೫ጙৈ୭ా߈ܠLjถ৫ᒙᎌሢࡼଂᒬถă SPENೌᒗBWEELjဧถ݀ాăਈ᎖୭ถ༿ݬఠ ܭ2Lj଼છࡼ݀ాၒྜྷᏇಯᅄ༿ݬఠᅄ6ă ______________________________________________________________________________________ 15 NBY2:626 29/32 AVDD AVDD NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED CS SCLK SDIN R/W A6 A5 A4 A3 A2 A1 D7 D6 D5 D4 D3 D2 D1 D0 DATA WRITE OR READ ADDRESS R/W A0 0 = WRITE 1 = READ ᅄ7/! ࠈాᄰቧᒲ໐ tCSH tCSS CS tSCLK SCLK tSDS tSDH tSDD SDIN WRITE READ ᅄ8/! ࠈాဟኔᅄ ࠈቲా߈ܠ ࠈాᄰਭCSĂTEJOਜ਼TDMLၒྜྷ࣪NBY2:626ࡼ఼ᒜࡀ ቲ߈ܠăࡩCSᆐࢅ࢟ຳဟLjᏴTDMLࡼဍዘLjࠈቲ ၫۻᓆᆡጤྜྷTEJOǗࡩCSᆐ࢟ຳဟLjNBY2:626 TEJOਜ਼TDMLࡼၫăᏴඛࠨࣗ0ቖݷᔫઁLjDT࣒ܘኍᏘ ࡵܤ࢟ຳăTEJOጐభᔫᆐࣗན఼ᒜࡀࡼࠈቲၫ ၒ߲ăࠈాᑽߒᏴጙৈᄰቧᒲ໐ดࡼၷᔊஂࠅၒăጙৈ ᔊஂᆐ఼ᒜᔊஂLj۞౪ᒍਜ਼ࣗ0ቖᒎഎLjቖྜྷNBY2:626 < औৈᔊஂᆐၫᔊஂLjቖྜྷNBY2:626࠭NBY2:626 ߲ࣗă 16 ᅄ7Ⴥာᆐࠈాᄰቧᒲ໐ăጙৈTEJOᆡཀྵࢾকᄰቧᒲ໐ ቲቖݷᔫࣗݷᔫ)1ࡔܭቖݷᔫǗ2ࡔݷࣗܭᔫ*ăႲઁ 8ᆡᒎࢾገቖྜྷࣗནࡼࡀᒍăᔢઁ9ৈTEJOᆡ ᆐࡀၫăჅᎌᒍਜ਼ၫᆡᏴቖྜྷਜ਼ࣗནဟᆐ NTCᏴ༄ăࣗݷᔫ໐ମLjNBY2:626ࠈాᏴTDML9ৈ ဍዘᒄઁࡼሆଢ଼ዘገࣗནၫ)E8*႙ᒗTEJOăᎅ᎖TEJO ၒྜྷࡼᔢቃۣߒဟମᆐഃLjჅጲᓍ఼۸ᏴTDMLࡼ9ৈ ဍዘઁభႲဟᄫᒏTEJOདࣅăႲઁࡼၫᆡᏴTDMLࡼ ሆଢ଼ዘ႙ᒗTEJOăࣗݷᔫࡼၒ߲ၫᏴTDMLࡼဍዘۻ ჄࢾLjᅄ8߲೫ሮᇼࡼࠈాဟኔᅄă ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ᒜࡀۻআᆡࡵ෦ཱྀᒋă࣪ࡀ1Biࡼࣗݷᔫऩૄᓨ ზᔊஂLjᄏፃ༿ݬఠܭ3Ⴥာࡼቧᇦႁීă ܭ3/! ࡀ1Biࡼᓨზᔊஂ BIT NO. VALUE DESCRIPTION 7 0 6 0 5 0 or 1 1 = ROM read in progress 4 0 or 1 1 = ROM read completed and register data is valid (checksum is OK) 3 0 2 1 Reserved 1 0 or 1 Reserved 0 0 or 1 1 = Duty-cycle equalizer DLL is locked Reserved Reserved Reserved ઓ߈ܠࡀ ܭ4/! ઓ߈ܠࡀ ADDRESS POR DEFAULT FUNCTION 00h 00000011 Power management 01h 00000000 Output format 02h 00000000 Digital output power management 03h 10000000 Data/DCLK timing 04h 00000000 CHA data output termination control 05h 00000000 CHB data output termination control 06h 00000000 Clock divide/data format/test pattern 07h Reserved Reserved—do not use 08h 00000000 Common mode 0Ah — Software reset ࢟Ꮞಯ)11i* BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 HPS_SHDN1 STBY_SHDN1 CHB_ON_SHDN1 CHA_ON_SHDN1 HPS_SHDN0 STBY_SHDN0 CHB_ON_SHDN0 CHA_ON_SHDN0 TIEOၒྜྷ)୭8*᎖఼ᒜྀፀೝৈ࢟Ꮞಯᓨზᒄମࡼ ᓞધă࢟Ꮞಯࡀࢾፃ೫ඛৈ࢟Ꮞಯᓨზă෦ཱྀᓨ ზሆLjTIEO > 2ဟਈࣥNBY2:626ǗTIEO > 1ဟऩૄࡵᅲ ཝᔫᓨზă ______________________________________________________________________________________ 17 NBY2:626 ᒍᆐ1Biࡼࡀᆐᄂၐถࡀăၫ6Biቖྜྷ ࡀ1BiLjᐌࣅࡀআᆡăᒊቲকݷᔫဟLjჅᎌ఼ NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ߹೫࢟ᏎಯLjIQT`TIEO2ਜ਼IQT`TIEO1થభጲࣅB,C ଝजෝါăকෝါሆLj࣪ೝৈᄰࡸࡼஉਫནຳăNVY`DI ᆡኡᐋၒ߲)B,C*03ၫࡼᔐሣă ఼ᒜᆡǖ HPS_SHDN0 STBY_SHDN0 CHA_ON_SHDN0 CHB_ON_SHDN0 SHDN INPUT = 0* HPS_SHDN1 STBY_SHDN1 CHA_ON_SHDN1 CHB_ON_SHDN1 X 0 0 0 Complete power-down 0 0 0 1 Channel B active, channel A full power-down 0 0 1 0 Channel A active, channel B full power-down 0 X 1 1 Channels A and B active 0 1 0 0 Channels A and B in standby mode 0 1 0 1 Channel B active, channel A standby 0 1 1 0 Channel A active, channel B standby 1 1 0 0 Channels A and B in standby mode 1 X X 1 Channels A and B active, output is averaged 1 X 1 X Channels A and B active, output is averaged SHDN INPUT = 1** *ࡩTIEO! >! 1ဟLjIQT`TIEO1ĂTUCZ`TIEO1ĂDIB`PO`TIEO1ਜ਼DIC`PO`TIEO1ᎌă **ࡩTIEO! >! 2ဟLjIQT`TIEO2ĂTUCZ`TIEO2ĂDIB`PO`TIEO2ਜ਼DIC`PO`TIEO2ᎌă Y! >! ᇄਈă ᓖǖࡩIQT`TIEO`! >! 2! )B,Cଝजෝါ*ဟLjDIB`PO`TIEO`ਜ਼DIC`PO`TIEO`ܘኍ࣒ࢀ᎖1ݣభྜྷਈࣥࡗ૦ᓨზă ၒ߲ৃါ)12i* BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 0 0 BIT_ORDER_B BIT_ORDER_A MUX_CH MUX 0 8Ă7Ă6ᆡ ᒙ1Ljᑵޟᔫ 5ᆡ CJU`PSEFS`CǖDICၒ߲ᆡၿኔनሶ 1! >! ږᑍࢾፃࡼၫᔐሣ୭ၿኔ)෦ཱྀ* 2! >! ၫᔐሣ୭ࡼၿኔनሶ 4ᆡ CJU`PSEFS`BǖDIBၒ߲ᆡၿኔनሶ 1! >! ږᑍࢾፃࡼၫᔐሣ୭ၿኔ)෦ཱྀ* 2! >! ၫᔐሣ୭ࡼၿኔनሶ 3ᆡ NVY`DIǖআၫᔐሣኡᐋ 1! >! ᏴDIBআၫၒ߲)၅ሌၒ߲DIBၫLjႲઁၒ߲DICၫ*! )෦ཱྀ* 2! >! ᏴDICআၫၒ߲)၅ሌၒ߲DICၫLjႲઁၒ߲DIBၫ* 2ᆡ NVYǖၫᔊၒ߲ෝါ 1! >! ၷവၫᔐሣၒ߲ෝါ)෦ཱྀ* 2! >! വআၫᔐሣၒ߲ෝါ NVY`DIኡᐋၒ߲ᔐሣ 1ᆡ 18 ᒙ1Ljᑵޟᔫ ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 X X X X PD_DOUT_1 PD_DOUT_0 DIS_DOR DIS_DCLK 8–5ᆡ ᇄਈሲ 4Ă3ᆡ QE`EPVU`2ĂQE`EPVU`1ǖਈࣥၫᔊၒ߲ᓨზ఼ᒜ 11! >! ၫᔊၒ߲ᆐྯზ)෦ཱྀ* 12! >! ၫᔊၒ߲ᆐࢅ࢟ຳ 21! >! ၫᔊၒ߲ᆐྯზ 22! >! ၫᔊၒ߲ᆐ࢟ຳ 2ᆡ EJT`EPSǖEPSདࣅண 1! >! EPSᎌ)෦ཱྀ* 2! >! EPSண)ྯზ* 1ᆡ EJT`EDMLǖEDMLདࣅண 1! >! EDMLᎌ)෦ཱྀ* 2! >! EDMLண)ྯზ* ______________________________________________________________________________________ 19 NBY2:626 ၫᔊၒ߲࢟Ꮞಯ)13i* NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ၫ0EDMLဟኔ)14i* BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 DA_BYPASS DLY_HALF_T DCLKTIME_2 DCLKTIME_1 DCLKTIME_0 DTIME_2 DTIME_1 DTIME_0 8ᆡ EB`CZQBTTǖၫ࣪ᓰവ 1! >! ܪᓰᔫෝါ 2! >! വၫ࣪ᓰዓߕሣLjሤ࣪᎖ၒྜྷဟᒩࡼၒ߲ၫዓߕᔢቃ ᒙEUJNF! >! 111cဟLj࠭ဟᒩဍዘࡵၫᓞધࡼဟମࡍᏖᆐ7ot! )෦ཱྀ* 7ᆡ EMZ`IBMG`Uǖၫਜ਼EDMLዓߕU03 1! >! ܪᓰᔫෝါLjᇄዓߕ)෦ཱྀ* 2! >! ၫਜ਼EDMLၒ߲ዓߕU03! ᏴNVYၫᔐሣෝါሆண 6Ă5Ă4ᆡ EDMLUJNF`3ĂEDMLUJNF`2ĂEDMLUJNF`1ǖEDMLဟኔࢯᑳ)఼ᒜೝৈᄰࡸ* 111! >! ܪᓰᔫෝါ)෦ཱྀ* 112! >! ,U027 121! >! ,3U027 122! >! ,4U027 211! >! ۣഔLjᎌဧ 212! >! .2U027 221! >! .3U027 222! >! .4U027 3Ă2Ă1ᆡ EUJNF`3ĂEUJNF`2ĂEUJNF`1ǖၫဟኔࢯᑳ)఼ᒜೝৈᄰࡸ* 111! >! ܪᓰᔫෝါ)෦ཱྀ* 112! >! ,U027 121! >! ,3U027 122! >! ,4U027 211! >! ۣഔLjᎌဧ 212! >! .2U027 221! >! .3U027 222! >! .4U027 20 ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 X X CT_DCLK_2_A CT_DCLK_1_A CT_DCLK_0_A CT_DATA_2_A CT_DATA_1_A CT_DATA_0_A 8Ă7ᆡ ᇄਈሲ 6Ă5Ă4ᆡ DU`EDML`3`BĂDU`EDML`2`BĂDU`EDML`1`BǖDIB! EDML఼࣡ᒜ 111! >! 61Ω )෦ཱྀ* 112! >! 86Ω 121! >! 211Ω 122! >! 261Ω 2yy! >! 411Ω 3Ă2Ă1ᆡ DU`EBUB`3`BĂDU`EBUB`2`BĂDU`EBUB`1`BǖDIBၫၒ఼߲࣡ᒜ 111! >! 61Ω )෦ཱྀ* 112! >! 86Ω 121! >! 211Ω 122! >! 261Ω 2yy! >! 411Ω DICၫၒ఼߲࣡ᒜ)16i* BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 X X CT_DCLK_2_B CT_DCLK_1_B CT_DCLK_0_B CT_DATA_2_B CT_DATA_1_B CT_DATA_0_B 8Ă7ᆡ ᇄਈሲ 6Ă5Ă4ᆡ DU`EDML`3`CĂDU`EDML`2`CĂDU`EDML`1`CǖDIC! EDML఼࣡ᒜ 111! >! 61Ω )෦ཱྀ* 112! >! 86Ω 121! >! 211Ω 122! >! 261Ω 2yy! >! 411Ω 3Ă2Ă1ᆡ DU`EBUB`3`CĂDU`EBUB`2`CĂDU`EBUB`1`CǖDICၫၒ఼߲࣡ᒜ 111! >! 61Ω )෦ཱྀ* 112! >! 86Ω 121! >! 211Ω 122! >! 261Ω 2yy! >! 411Ω ______________________________________________________________________________________ 21 NBY2:626 DIBၫၒ఼߲࣡ᒜ)15i* NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ဟᒩॊຫ0ၫৃါ0ހ၂ෝ)ۇ17i* BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TEST_PATTERN TEST_DATA FORMAT_1 FORMAT_0 TERM_100 SYNC_MODE DIV1 DIV0 8ᆡ UFTU`QBUUFSOǖހ၂ෝۇኡᐋ 1! >! ࠭1ဍࡵ2134! )ມጤऔᒜ*݀ᒮআকਭ߈)ݧઁኚৃါ*! )෦ཱྀ* 2! >! Ᏼೝৈၫᄰࡸୣᄐၒ߲ǖE\:;1^! >! 1212121212ĂEPS! >! 2ਜ਼E\:;1^! >! 2121212121ĂEPS! >! 1 7ᆡ UFTU`EBUBǖၫހ၂ෝါ 1! >! ܪᓰၫၒ߲)෦ཱྀ* 2! >! ၒ߲ހ၂ၫෝۇ 6Ă5ᆡ GPSNBU`2ĂGPSNBU`1ǖၫᆡৃါ 11! >! औᒜݗ൩)෦ཱྀ* 12! >! ມጤऔᒜ 21! >! ৃಙ൩ 22! >! औᒜݗ൩ 4ᆡ UFSN`211ǖኡᐋ211Ωဟᒩၒྜྷ࣡ 1! >! ᇄ࣡)෦ཱྀ* 2! >! ތॊဟᒩၒྜྷో211Ω࣡ 3ᆡ TZOD`NPEFǖॊຫᄴݛෝါኡᐋ 1! >! ઘࣅෝါ)ᅄ22*! )෦ཱྀ* 2! >! ܟዘෝါ)ᅄ23* 2Ă1ᆡ EJW2ĂEJW1ǖၒྜྷဟᒩॊຫኡᐋ 11! >! ᎌॊຫ)෦ཱྀ* 12! >! 3ॊຫ 21! >! 5ॊຫ 22! >! ᎌॊຫ ۣഔ)18i*—༿ᇖቖྜྷকࡀ 22 ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 CMI_SELF_B CMI_ADJ_2_B CMI_ADJ_1_B CMI_ADJ_0_B CMI_SELF_A CMI_ADJ_2_A CMI_ADJ_1_A CMI_ADJ_0_A 8ᆡ DNJ`TFMG`CǖDICၒྜྷৢෝෝผၒྜྷ 1! >! ดৢݝෝ࢟ኹݙᔫࡵၒྜྷ࣡)෦ཱྀ* 2! >! ᄰਭ3lΩ࢟ᔜดৢݝෝ࢟ኹᔫࡵෝผၒྜྷ࣡ 7Ă6Ă5ᆡ DNJ`BEK`3`CĂDNJ`BEK`2`CĂDNJ`BEK`1`CǖDICၒྜྷৢෝ࢟ኹࢯᑳ 111! >! 1/:11W! )෦ཱྀ* 112! >! 2/161W 121! >! 2/311W 122! >! 2/461W 211! >! 1/:11W 212! >! 1/861W 221! >! 1/711W 222! >! 1/561W 4ᆡ DNJ`TFMG`BǖDIBၒྜྷৢෝෝผၒྜྷ 1! >! ดৢݝෝ࢟ኹݙᔫࡵၒྜྷ࣡)෦ཱྀ* 2! >! ᄰਭ3lΩ࢟ᔜดৢݝෝ࢟ኹᔫࡵෝผၒྜྷ࣡ 3Ă2Ă1ᆡ DNJ`BEK`3`BĂDNJ`BEK`2`BĂDNJ`BEK`1`BǖDIBၒྜྷৢෝࢯᑳ 111! >! 1/:11W! )෦ཱྀ* 112! >! 2/161W 121! >! 2/311W 122! >! 2/461W 211! >! 1/:11W 212! >! 1/861W 221! >! 1/711W 222! >! 1/561W ྟୈআᆡ)1Bi* 8–1ᆡ TXSFTFUǖቖྜྷ6Biဟࣅྟୈআᆡ ______________________________________________________________________________________ 23 NBY2:626 ৢෝ)19i* NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ဟᒩၒྜྷ 100Ω TERMINATION (PROGRAMMABLE) CLK+ ၒྜྷဟᒩాᆐဟᒩॊຫࡼገཇᄋ೫ഉቶă NBY2:626၊ཝތॊဟᒩ࣡൝࢟ຳဟᒩăᆐဣሚ ތॊဟᒩᔫLj༿ތॊဟᒩೌᒗDML,ਜ਼DML.ၒྜྷă ᏴকෝါሆLjดݝೂၒྜྷৢෝ࢟ኹጲᏤୣഗẮă ྙਫৢෝ࢟ኹۻሢᒜᏴਖࢾࡼ2Wᒗ2/5Wဟᒩၒྜྷৢෝप ᆍดLjᐌތॊဟᒩቧጐభጲݧᒇഗẮăᆐဣሚ ࣡ᔫLj༿DML.ೌᒗHOE݀༦൝࢟ຳቧདࣅ DML,ၒྜྷăࡩDML.ၒྜྷ)ᑗۻሆ౯ᒗࢅ᎖ဟᒩෝ ါଶ୷܈ހࡼඡሢ*ဟLjணތॊᒗ࣡ᓞધLj ൝࢟ຳनሤᄰവă 2:1 MUX AVDD 5kΩ 50Ω 10kΩ 20kΩ 50Ω SELECT THRESHOLD 5kΩ GND CLK- ဟᒩॊຫ NBY2:626ᄋ೫ဟᒩॊຫኡሲăᄰਭࠈాᒙEJW1ਜ਼ EJW2ဧถဟᒩॊຫLjਈ᎖ဟᒩॊຫኡሲࡼሮᇼቧᇦLj ༿ݬఠဟᒩॊຫ0ၫৃါ0ހ၂ෝۇࡀ)17i*ăᑗᏴ ݀ా߈ܠᒙ)SPEN > 2*ᒦဧEJWၒྜྷဧถဟᒩॊຫă SELF-BIAS TURNED OFF FOR SINGLE-ENDED CLOCK OR POWER-DOWN. ᅄ9/! ଼છࡼဟᒩၒྜྷᏇಯᅄ DUAL-BUS OUTPUT MODE SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT tAD SAMPLING INSTANT SAMPLING INSTANT IN_ SAMPLING INSTANT tCLK SAMPLE ON RISING EDGE n tCL tCH n+1 n+2 n+4 n+3 n+5 SAMPLE CLOCK tDD DATA, DOR n-10 n-9 tDC n-8 n-7 n-6 n-5 tHOLD tSETUP DCLK SAMPLE CLOCK IS THE DERIVED CLOCK FROM (CLK+ - CLK-)/CLOCK DIVIDER, IN_ = IN_+ - IN_-. ᅄ:/! ၷᔐሣၒ߲ෝါဟኔ 24 ______________________________________________________________________________________ n-4 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED NBY2:626 MUX OUTPUT MODE SAMPLING INSTANT tAD SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT IN_ tCLK n tCL tCH SAMPLE ON RISING EDGE n+1 n+2 n+3 n+4 n+5 SAMPLE CLOCK tCHA tDD DATA, DOR tCHB CHB CHA CHB CHA CHB CHA CHB CHA CHB CHA CHB CHA CHB n-10 n-9 n-9 n-8 n-8 n-7 n-7 n-6 n-6 n-5 n-5 n-4 n-4 tDC tHOLD tDCH tDCL tSETUP tHOLD tSETUP DCLK SAMPLE CLOCK IS THE DERIVED CLOCK FROM (CLK+ - CLK-)/CLOCK DIVIDER, IN_ = IN_+ - IN_-. MUX_CH (BIT 2, OUTPUT FORMAT 01h) DETERMINES THE OUTPUT BUS AND WHICH CHANNEL DATA IS PRESENTED. ᅄ21/! আၒ߲ෝါဟኔ ᇹᄻဟኔገཇ ᅄ:ਜ਼ᅄ21ႁී೫ဟᒩၒྜྷਜ਼ၒ߲ĂෝผၒྜྷĂݧዹူୈ ਜ਼ၫၒ߲ᒄମࡼਈᇹăNBY2:626Ᏼݧዹဟᒩࡼဍዘ ቲݧዹăளਭ:ৈဟᒩࡼดݝዓߕઁLjᏴሆጙৈEDML ࡼဍዘၒ߲ᎌၫăᏴဟᒩॊຫ።ᒦLjݧዹဟᒩ ᆐॊຫઁࡼดݝဟᒩLjါྙሆǖ [(CLK+ - CLK-)/DIVIDER] ᄴݛ ݧဟᒩॊຫဟLjดݝဟᒩࡼሤᆡభถᎧᇹᄻࡼGQHBĂ ᆈ఼ᒜNBY2:626ࡼဟᒩݙᄴሤăᎌೝᒬऱါభ ጲᄴݛดݝဟᒩǖઘࣅᄴݛਜ਼ܟዘᄴݛăဟᒩॊຫ0ၫ ৃါ0ހ၂ෝۇࡀ)17i*ࡼTZOD`NPEF )3ᆡ*ኡᐋ ᄴݛෝါ݀TZODၒྜྷདࣅᆐ࢟ຳቲᄴݛă ઘࣅᄴݛෝါLjTZOD`NPEF > 1 )෦ཱྀ*ǖᏴTZODဍ ዘ)ଣ൸ᔗೂਜ਼ۣߒဟମ*ᒄઁࡼ4ৈၒྜྷဟᒩ)DML* ࡼဍዘLj༓ᒜॊຫၒ߲ᄢਭጙࠨᓨზᏘ)ܤᅄ22*ă ܟዘᄴݛෝါLjTZOD`NPEF > 2ǖᏴTZODဍዘ)ଣ ൸ᔗೂਜ਼ۣߒဟମ*ᒄઁࡼ4ৈၒྜྷဟᒩ)DML*ࡼ ဍዘLjॊຫၒ߲ۻ༓ᒜᆐᓨზ1ăጙৈTZODࡼᎌ ဍዘઁLjॊຫဟᒩဍዘ߲ሚᏴDMLࡼ5ৈ)03ෝါ* 6ৈ)05ෝါ*ဍዘ)ᅄ23*ă ______________________________________________________________________________________ 25 NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED tHO DIVIDE-BY-2 SLIP SYNCRONIZATION tSUV tSUV = SET-UP TIME FOR VALID CLOCK EDGE. tHO = HOLD-OFF TIME FOR INVALID CLOCK EDGE. SYNC 1 2 3 4 2x INPUT CLK SLIP (0) (1) (0) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (1) (0) (1) (0) (1) (0) (1) (0) (1) 1x DIVIDED CLK (STATE) tHO tSUV DIVIDE-BY-4 SLIP SYNCHRONIZATION SYNC 1 2 3 4 5 4x INPUT CLK SLIP (0) (1) (2) (3) (3) (0) (1) (2) (3) (0) (1) (2) (3) (1) (2) (3) (0) (0) (1) (2) (3) (0) (1) (2) (3) (0) (2) (3) (0) (1) (1) (2) (3) (0) (1) (2) (3) (0) (1) (3) (0) (1) (2) (2) (3) (0) (1) (2) (3) (0) (1) (2) 1x DIVIDED CLK (STATE) ᅄ22/! ઘࣅᄴݛෝါ 26 ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED NBY2:626 tHO DIVIDE-BY-2 EDGE SYNCRONIZATION tSUV tSUV = SET-UP TIME FOR VALID CLOCK EDGE. tHO = HOLD-OFF TIME FOR INVALID CLOCK EDGE. SYNC 1 2 3 4 2x INPUT CLK FORCE TO 0 (0) (1) (0) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) 1x DIVIDED CLK (STATE) tHO tSUV DIVIDE-BY-4 EDGE SYNCHRONIZATION SYNC 1 2 3 4 5 4x INPUT CLK FORCE TO 0 (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (1) (2) (3) (0) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (3) (0) (1) (2) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) 1x DIVIDED CLK (STATE) ᅄ23/! ܟዘᄴݛෝါ ______________________________________________________________________________________ 27 NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ܭ5/! ၫဟኔ఼ᒜ DATA TIMING CONTROL DESCRIPTION DA_BYPASS Data aligner bypass. When this control is active (high), data and DCLK delay is reduced by approximately 3.4ns (relative to DA_BYPASS = 0). DLY_HALF_T When this control is active, data output is delayed by half clock period (T/2). This control does not delay data output if MUX mode is active. DTIME<2:0> Allows adjustment of data output delay in T/16 increments, where T is the sample clock period. Provides adjustment of DCLK delay in T/16 increments, where T is the sample clock period. When DTIME and DCLKTIME are adjusted to the same setting, the rising edge of DCLK occurs T/8 prior to data transitions. DCLKTIME<2:0> ܭ6/! ၫဟኔ఼ᒜ෦ཱྀᒙ DATA TIMING CONTROL DEFAULT DA_BYPASS 1 Data aligner disabled DLY_HALF_T 0 No delay DTIME<2:0> 000 No delay DCLKTIME<2:0> 000 No delay DESCRIPTION ਜ਼EMZ`IBMG`Uࡼ25ᒬభᓨზࡼ߂ܪၫဟኔLj࠰ሣࡔ ܭ෦ཱྀᒙሆࡼၫဟኔă༿ᓖፀNBY2:626! 76Ntqt! BED ࡼ෦ཱྀဟኔࢯᑳ્ޘညৎࣶࡼၫዓߕᒲ໐ă ܭ7ਜ਼ܭ8߲೫ݙᄴݧዹൈሆࡼᅎୀဟኔᒙă ᑚቋᅎୀဟኔᒙሆࡼ߂ܪၫဟኔᄂቶᎧݧዹൈࡼਈᇹ ྙᅄ26ਜ਼ᅄ27Ⴥာă ࡩEB`CZQBTT > 2ဟLjEDMLUJNFዓߕᒙܘኍࢀ᎖ࢅ ᎖EUJNFࡼዓߕᒙLjྙܭ9Ⴥာă ၫᔊၒ߲ NBY2:626ᎌጙৈၷDNPTĂభআࡼభภၫᔐሣă Ᏼ݀ా߈ܠෝါሆLjಽGPSNBUၒྜྷᒙມጤऔᒜĂ औᒜݗ൩ৃಙ൩ၫၒ߲)E1`–E:`*ăPVUTFMၒ ྜྷኡᐋআၷᔐሣᔫăਈ᎖ಽTQJాᒙၒ߲ৃ ါࡼৎࣶቧᇦLj༿ݬఠၒ߲ৃါࡀ)12i*ăTQJాᄋ ৎࣶഉቶLjᒦE1`–E:`ᆡࡼၿኔۻनሶLjჅጲMTC ߲ሚᏴE:`ᆡᒙLjऎNTC߲ሚᏴE1`ᆡᒙăPWEEᒙၒ ߲࢟ኹLjభᏴ2/9Wᒗ4/4WᒄମᒙPWEEăၫᔊၒ߲࣡ࡼ ၒ߲࢟ᔜభᏴ61Ωᒗ411ΩᒄମᒙăಽDI`ၫၒ߲࣡ ఼ᒜࡀ)15iਜ਼16i*ᒙඛৈᔐሣࡼၒ߲࢟ᔜă భ߈ܠၫဟኔ NBY2:626ᄋభ߈ܠၫဟኔ఼ᒜLj࣪ဟኔቲᎁછLj ࠭ऎ൸ᔗᇹᄻဟኔࡼገཇăဟኔࢯᑳถથభᄰਭܜݧ ዹၾମࡼၫၒ߲ᏘܤᄋဍBEDቶถăਈ᎖ၫဟኔ ఼ᒜቧࡼLj༿ݬఠܭ5ăܭ6߲೫ဟኔࢯᑳ఼ᒜࡼ ෦ཱྀᒙLjࣶ።࣒ݙኊገኀখ෦ཱྀᒙă ࢟Ꮞಯ TIEOၒྜྷ)୭8*᎖఼ᒜྀፀೝৈ࢟Ꮞಯᓨზᒄମࡼ ༤ધă࢟Ꮞಯࡀ)11i*ࢾፃ೫ඛᒬ࢟Ꮞಯࡼᓨზă ෦ཱྀᓨზሆLjTIEO > 2ဟਈࣥNBY2:626LjTIEO > 1ဟऩ ૄᅲཝᔫෝါă࢟Ꮞಯถ݀ݙገཇጙࢾဧTIEO ၒྜྷăᇄ൙TIEOࠀ᎖ੜᒬᓨზLjୈభ유۸ࡼ࢟ ᏎಯഉቶLjᒦ۞౪ᄰਭ࢟Ꮞಯࡀ)11i*ဣሚ ࣖೂࡼBEDᄰࡸ࢟Ꮞಯ఼ᒜăୈᄋਈࣥਜ਼ࡗ૦ೝ ᒬࢅෝါăࡗ૦ෝါሆLjᓰਜ਼ᐴహ܈ੰ࢟വۣ ߒᎌᔫᓨზLjۣᑺႥታୈăࡗ૦ෝါሆLjᅪ ݝဗଝࡼဟᒩቧܘኍۣߒᎌLjጲۣᑺᐴహ܈ੰ ۣߒჄࢾă࠭ࡗ૦ෝါታࡼ࢜ቯဟମᆐ26μtăਈࣥෝ ါሆLj߹೫ૹ߅ᔈଶ࢟ހኹࢯஂჅገཇࡼᓰ࢟വᅪLj Ⴥᎌ࢟വ࣒ਈܕăࡩୈࠀ᎖ਈࣥᓨზဟLjྙਫᆮኹ ࠀ᎖ᎌᓨზLj્ሿऄᅪࡼᎧࢯஂ࢟വሤਈࡼ࢟Ꮞ ࢟ഗă࠭ਈࣥෝါታࡼ࢜ቯဟମᆐ 6ntLjᓍገན᎖ SFGJPࡼSDဟମޟၫă ၫဟኔࢯᑳᒙࡼ፬ሰ༿ݬఠᅄ24ਜ਼ᅄ25ăyᒷᆐݧዹ ൈLjzᒷᆐጲဟᒩᒲ໐ᆐᆡࡼၫዓߕăဣሣᆐEUJNF 28 ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED VOVDD = 1.8V DA_BYPASS = 1 1.5 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 1.0 0.5 MAX19515 fig15 2.0 DATA DELAY (T FRACTIONAL PERIOD) DATA DELAY (T FRACTIONAL PERIOD) RECOMMENDED DATA TIMING vs. SAMPLE RATE MAX19515 fig13 2.0 +10/16 +8/16 +6/16 +2/16 0 -2/16 0 VOVDD = 1.8V DA_BYPASS = 1 1.5 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 1.0 0.5 +10/16 +8/16 +6/16 +2/16 0 -2/16 0 30 40 50 60 30 40 SAMPLING RATE (Msps) RECOMMENDED DATA TIMING vs. SAMPLE RATE MAX19515 fig14 DATA DELAY (T FRACTIONAL PERIOD) 1.5 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 1.0 0.5 +10/16 +8/16 +6/16 +2/16 0 -2/16 0 40 50 MAX19515 fig16 2.0 VOVDD = 3.3V DA_BYPASS = 1 30 60 ᅄ26/! ᅎୀၫဟኔ)WPWEE >! 2/9W* FACTORY-DEFAULT NOMINAL DATA TIMING vs. SAMPLE RATE 2.0 50 SAMPLING RATE (Msps) ᅄ24/! ෦ཱྀၫဟኔ)WPWEE >! 2/9W* DATA DELAY (T FRACTIONAL PERIOD) NBY2:626 FACTORY-DEFAULT NOMINAL DATA TIMING vs. SAMPLE RATE VOVDD = 3.3V DA_BYPASS = 1 1.5 1.0 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 0.5 0 60 30 40 SAMPLING RATE (Msps) 50 +10/16 +8/16 +6/16 +2/16 0 -2/16 60 SAMPLING RATE (Msps) ᅄ25/! ෦ཱྀၫဟኔ)WPWEE >! 4/4W* ᅄ27/! ᅎୀၫဟኔ)WPWEE >! 4/4W* ܭ7/! ᅎୀဟኔࢯᑳ)WPWEE >! 2/9W* SAMPLING RATE (Msps) VOVDD = 1.8V FROM TO DA_BYPASS DLY_HALF_T DTIME<2:0> DCLKTIME<2:0> 30 56 1 0 000 000 56 65 1 0 101 101 ______________________________________________________________________________________ 29 NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ܭ8/! ᅎୀဟኔࢯᑳ)WPWEE >! 4/4W* SAMPLING RATE (Msps) VOVDD = 3.3V FROM TO DA_BYPASS DLY_HALF_T DTIME<2:0> DCLKTIME<2:0> 30 65 1 0 000 000 ܭ9/! EB`CZQBTT! >! 2ဟLjEDMLUJNFਜ਼EUJNFჅᏤࡼᒙ DTIME<2:0> ALLOWED DCLKTIME<2:0> SETTINGS 111 (-3T/16) 111 (-3T/16) 110 (-2T/16) 110 (-2T/16); 111 (-3T/16) 101 (-1T/16) 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 000 (nominal) 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 001 (+1T/16) 001 (+1T/16); 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 010 (+2T/16) 010 (+2T/16); 001 (+1T/16); 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 011 (+3T/16) 011 (+3T/16); 010 (+2T/16); 001 (+1T/16); 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) ܭ:/! আᆡऱज RESET MODE DESCRIPTION Power-On Reset Upon power-up (AVDD supply voltage and clock signal applied), the POR (power-on-reset) circuit initiates a register reset. Software Reset Write data 5Ah to address 0Ah to initiate register reset. Hardware Reset A register reset is initiated by the falling edge on the SHDN pin when SPEN is high. ૹ߅࢟ኹࢯஂ NBY2:626Ᏼෝผ࢟Ꮞ)BWEE*ૹ߅೫ጙৈᔈଶހሣቶᆮ ኹLjྙᅄ28ჅာăࡩBWEEࡼ࢟ኹࢅ᎖3WဟLj࢟ኹ ࢯஂۻവLjऎਖ਼ቦෝผ࢟വᎅᅪ࢟ݝᏎ࢟ăྙਫ BWEE࢟ኹ᎖3WLjᐌਈஂࢯܕവLjဧถ࢟ኹࢯஂෝ ါă࢟ኹࢯஂෝါሆLjดݝਖ਼ቦෝผ࢟വᎅࢯஂᄋࡼ 2/9Wᆮࢾ࢟ኹ࢟ăᏴ3/4Wᒗ4/6W BWEEၒྜྷ࢟ኹपᆍดLj ࢯஂᄋ2/9Wၒ߲࢟ኹăᎅ᎖࢟Ꮞ࢟ഗᏴক࢟ኹपᆍด ۣߒੱࢾLjჅጲෝผ࢟വࡼᎧჅᔫࡼၒྜྷ࢟ኹ߅ ᑵ܈ă 30 ࢟ਜ਼আᆡ ઓభ߈ܠࡀࡼ෦ཱྀᒙૺ߲ޣᒙࡀᏴऻ ጵပࡀăୈ࢟ઁLjᑚቋၫᒋۻଝᏲࡵ఼ᒜࡀ ăকݷᔫखညᏴBWEE࢟ਜ਼ဗଝၒྜྷဟᒩቧᒄઁă ᒑገBWEEࠀ᎖࢟ᓨზLjۣߒࡀၫᒋăBWEE ࢟ࡼᄴဟLjࡀభጲআᆡLjჅᎌઓభ߈ܠࡀ ࣒ۻ෦ཱྀᒋჅঙăᄰਭࠈాख႙ࡼྟୈෘഎᄰਭ SPENਜ਼TIEOၒྜྷࡼ፮ୈ఼ᒜLjభࣅআᆡݷᔫăআ ᆡဟମᎧBEDဟᒩᒲ໐߅ᑵ܈LjᏴ76Ntqtဟኊገ241μtLj ܭ:࣪আᆡऱजቲ೫ᔐஉă ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED NBY2:626 AVDD (PINS 1, 12, 13, 48) REGULATOR IN 2.3V TO 3.5V OUT 1.8V ENABLE INTERNAL ANALOG CIRCUITS REFERENCE GND ᅄ28/! ૹ߅࢟ኹࢯஂ ``````````````````````````````` ።ቧᇦ 0.1μF 1 VIN 6 IN_+ ෝผၒྜྷ CM_ ܤኹẮތॊෝผၒྜྷ NBY2:626ݧཝތॊၒྜྷቧဟLjᎌᎁ᎖࣡ၒྜྷད ࣅࡼTGESਜ਼UIEăތॊၒྜྷෝါሆLjᎅ᎖ೝവၒྜྷဵຳ ੰࡼLj๔ࠨቕ݆୷ࢅăᅪLjᎧ࣡ၒྜྷෝါሤ܈Ljඛৈ BEDၒྜྷᒑኊጙࡼۍቧڼ७ă 36.5Ω 0.5% MAX19515 T1 N.C. 5 2 N.C. 0.1μF 3 SGܤኹ)ᅄ29*ᆐ࣡ቧᓞધᆐཝތॊቧᄋ೫ጙ ৈੑࡼஊऱښăܤኹᒦቦߥᄿೌᒗDN`Ljᄋ ৢෝ࢟ኹăᅄᒦܤኹᎌ2;2/5ࡼᔜఝ܈ăጐభጲኡᐋݙ ᄴࡼဍኹܤኹLjጲଢ଼ࢅདࣅገཇăၒྜྷདࣅቧڼ७ࡼ ଢ଼ࢅᎌᓐ᎖খ࿖ᑳᄏပᑞăᅄ29Ⴥာᒙ࣪᎖จౠႅᄂຫ ൈ)gDML03*ጲሆࡼၒྜྷభጲᄋ୷ੑࡼᔫᄂቶă 4 MINI-CIRCUITS 36.5Ω 0.5% ADT1-1WT IN_- ᅄ29/! ၒྜྷຫൈᏴจౠႅᄂຫൈጲሆဟࡼܤኹẮၒྜྷདࣅ IN_+ 0.1μF 1 VIN N.C. 5 T1 6 2 1 75Ω 0.5% N.C. N.C. 5 T2 110Ω 0.5% 6 MAX19515 2 CM_ N.C. 0.1μF 3 4 MINI-CIRCUITS ADT1-1WT 75Ω 0.5% 3 4 MINI-CIRCUITS ADT1-1WT 110Ω 0.5% IN_- ᅄ2:/! ၒྜྷຫൈިਭจౠႅᄂຫൈဟࡼܤኹẮၒྜྷདࣅ ______________________________________________________________________________________ 31 NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED VIN 0.1μF 0.01μF IN_+ MAX4108 CLK+ 0.1μF CLKIN 100Ω 49.9Ω MAX19515 MAX19515 CM_ 100Ω 0.1μF 49.9Ω 0.01μF CLK- IN_0.1μF ᅄ31/! ࣡ĂୣഗẮၒྜྷདࣅ ᅄ32/! ࣡ᒗތॊဟᒩၒྜྷ ᅄ2:Ⴥာ࢟വభ࣡ၒྜྷቧᓞધ߅ཝތॊቧăᅄ2: ࣶ೫ጙৈܤኹLjᎌᓐ᎖খ࿖ৢෝጴᒜᒎܪLjး᎖ ᎖จౠႅᄂຫൈࡼຫၒྜྷቧăጙᔝ86Ωਜ਼221Ω࣡࢟ ᔜᆐቧᏎᄋࢀࡼ61Ω࣡ăऔᔝ࣡࢟ᔜೌᒗ DN`Ljᄋးࡩࡼၒྜྷৢෝ࢟ኹă ผሣLjኍཀྵۣෝผၒྜྷሣᎧᔈࡼᓞધᄰࡸಭఎLj ဧᄰࡸମࠈཷଢ଼ᒗᔢࢅăۣᑺჅᎌቧሣభถLj݀ ༦ᎌ:1°ᓞ୯ă ``````````````````````````````````` ࢾፃ ࣡ୣഗẮၒྜྷቧ ᅄ31Ⴥာᆐ࣡ୣഗẮၒྜྷLjNBY5219ᎌႥĂࡒĂ ࢅᐅဉĂࢅပᑞᄂቶLjۣᑺၒྜྷቧࡼᅲᑳቶăᄰਭดݝ 3lΩ࢟ᔜLjມᒙ࢟ኹᔫࡵၒྜྷ࣡Ljৎࣶቧᇦ༿ݬఠৢෝ ࡀ19iă JOMᆐဣࠅހၒၫᎧᔢଛผᒇሣࡼມތLjᔢࡍມࢾތ ፃᆐJOMă ᒇഗẮၒྜྷ NBY2:626୷ࡼৢෝ࢟ኹपᆍ)1/5Wᒗ2/5W*ဧถ৫ݧ ᒇഗẮቧLjኍཀྵۣৢෝ࢟ኹۣߒᏴ1/5Wᒗ2/5Wᒄମă EOMဵဣଔࠅၒၫࡼࣞޠݛᎧ2ৈMTCಯሯᒋᒄތLj ቃ᎖2! MTCࡼEOMᇙۣތᑺޘ્ݙညပ൩Lj݀భཀྵۣࠅၒ ၫࢯăᏴࠅၒၫࡼඛৈހޠݛEOMມތLjᔢࡍ ມࢾތፃᆐEOMă ૩ॊऻሣቶ)JOM* ᆈॊऻሣቶ)EOM* ဟᒩၒྜྷ ᅄ32Ⴥာᆐ࣡ᒗތॊࡼဟᒩၒྜྷᓞધ࢟വă Ăവਜ਼ ````````````````````` ࢟വݚۇᓖፀူሲ NBY2:626ኊገݧႥ࢟വݚۇଆၣăჅᎌവ࢟ ྏణதୈहᒙLjᔢੑᎧBEDࠀ᎖ᄴጙށLjݧܭ ᄣᏄୈဧည࢟ঢଢ଼ᒗᔢቃăಽ 1/2μG ࡼჿࠣ࢟ྏ BWEEĂPWEEĂSFGJPĂDNBਜ਼DNCവᒗHOEăࡒᎌ ށਜ਼࢟Ꮞ࢟ށࣶࡼށവۇถ৫ᔢࡍ߈ۣࣞᑺቧࡼ ᅲᑳቶăဧඛጙᄰࡸࡼႥၫᔊቧሣᏐಭැঢࡼෝ 32 ပࢯᇙތ ပࢯᇙܭތာဣଔࠅၒၫᎧಯሯࠅၒၫᏴᒦ࢛ࡼປ ߈ࣞăಯሯ༽ౚሆLjᒦ࢛ᄢ߲ܤሚᏴᒦ࢛ጲ1/6ৈMTC ࠀLjပࢯᇙဵތဣࡼހᒦ࢛ᄢ࢛ܤᎧಯሯᒦ࢛ᄢ࢛ܤମ ࡼތᒋă ᐐፄᇙތ ᐐፄᇙܭތာᏴਖࢾࡼ൸߈ၒྜྷपᆍดLjဣࠅހၒ ၫቓൈᎧಯሯࠅၒၫቓൈࡼປࣞăᐐፄᇙࢾތፃᆐ ဣࠅހၒၫࡼሤ࣪ᇙތLjڻॊܭ܈ာă ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ፒᇄᏭྲࣅზपᆍ)TGES2ਜ਼TGES3* TTOGᆐቃቧၒྜྷᏴจౠႅᄂຫࡒดࡼಝ૩ᐅဉਜ਼ပᑞ ൈăଐႯকᐅဉဟ߹ᒇഗပࢯă࣪᎖ᑚᒬᓞધLjቃ ቧࢾፃᆐ७ᒋቃ᎖.46eCGTࡼፒቧăকݬၫ۞೫ ᓞધࡼེᐅဉਜ਼છᐅဉLj᎖ଐႯ၃ᄰࡸࡼᔐᐅ ဉᇹၫăਈ᎖ེᐅဉਜ਼છᐅဉࡼሮᇼቧᇦLj༿ݬఠ dijob/nbyjn.jd/dpnࡼ።܊ă TGESဵ݆)ᔢࡍቧ߅ॊ*ࡼSNT७ᒋᎧ۞ݙ౪ᒇഗပࢯ ࡼऔࡍᏭྲ߅ॊࡼSNT७ᒋᒄ܈Ljጲॊ۴ᆐᆡăTGES2 न፯᎖ᔢތ3ࠨ4ࠨቕ݆ပᑞࡼᏭྲቶถăTGES3ࢾፃ ᆐ۞ݙ౪3ࠨĂ4ࠨቕ݆ૺᒇഗပࢯࡼᔢތᏭྲॊă ቧᐅ)܈TOS* ࠭ၫᔊݧዹᒦᒮᔢଛ݆ተLjಯ൙TOSᔢࡍᒋဵ൸߈ ෝผၒྜྷ)SNTᒋ*ᎧSNTછᇙ)ތထᇙ*ތᒄ܈Ljಯሯ ༽ౚሆLjෝ0ၫᓞધᐅဉࡼᔢቃಯ൙ᒋஞᎅછᇙޘތညLj ݀༦ᒇᎅBEDࡼॊܦൈ)Oᆡ*ࢾǖ SNR[max] = 6.02 x N + 1.76 ဣଔLj߹೫છᐅဉᅪથᎌᐅဉᏎ)ಿྙེᐅဉĂ ᓰᐅဉĂဟᒩ࣌ࣅࢀ*ăTOSݧSNTቧᎧSNTᐅဉᒄ ܈ଐႯăSNTᐅဉ۞౪߹݆Ă༄ങࠨቕ݆)IE3–IE8* ᎧᒇഗပࢯጲᅪจౠႅᄂຫൈࡼჅᎌຫໍ߅ॊă ⎛ SIGNALRMS ⎞ SNR = 20 × log ⎜ ⎟ ⎝ NOISERMS ⎠ ᔐቕ݆ပᑞ)UIE* UIEᄰဵޟၒྜྷቧ༄ങࠨቕ݆ࡼSNTᒄਜ਼Ꭷ݆ᒄ܈Lj భጲሆါܭာǖ ⎛ V22 + V32 + V4 2 + V52 + V62 + V72 THD = 20 × log ⎜ ⎜ V1 ⎝ ⎞ ⎟ ⎟ ⎠ ᒦW2 ᆐ݆७ᒋLjW3–W8 ᆐ3ࠨᒗ8ࠨቕ݆)IE3–IE8*ࡼ ७ᒋă ྯୣࢯ)JN4* JN4ᆐจౠႅᄂຫࡒดྯୣࢯࡼᔐൈᎧೝവፒၒྜྷ g JO2 ਜ਼g JO3 ᔐൈࡼ܈ᒋăඛവၒྜྷቧ࢟ຳᆐ.8eCGTLj ྯୣࢯॊᆐǖ3! y! gJO2 .! gJO3Ă3! y! gJO3 .! gJO2Ă3! y! gJO2 ,! gJO3Ă3! y! gJO3 ,! gJO2ă ዓߕ ቧᎧᐅဉ ,! ပᑞ)܈TJOBE* TJOBEݧSNTቧᎧSNTᐅဉ , SNTပᑞᒄ܈ଐႯă SNTᐅဉ۞౪߹݆Ă༄ങࠨቕ݆)IE3–IE8*ਜ਼ᒇഗပࢯ ጲᅪจౠႅᄂຫൈࡼჅᎌຫໍ߅ॊLjऎSNTပᑞ۞౪༄ ങࠨቕ݆)IE3–IE8*ă ⎛ SIGNALRMS SINAD = 20 × log ⎜ ⎜ 2 2 ⎝ NOISERMS + DISTORTIONRMS ⎞ ⎟ ⎟ ⎠ ၒྜྷቧᏴݧዹဟᒩࡼဍዘቲݧዹăዓဟ)uBE*ဵ ᒎݧዹဟᒩဍዘᎧဣଔݧዹၾମࡼᆈቃዓဟă ࣌ࣅ ࣌ࣅ)uBK*ࢾፃᆐݧዹᎧݧዹᒄମዓဟࡼܤછă ਭདࣅૂআဟମ ਭདࣅૂআဟମဵBED࠭ިਭ൸߈ሢᒜࡼၒྜྷၾზቲ ૂআჅኊገࡼဟମăਖࢾਭདࣅૂআဟମᏴၒྜྷި߲൸ ߈±21&ࡼ༽ౚሆቲހă ``````````````````````````````` በຢቧᇦ PROCESS: CMOS ______________________________________________________________________________________ 33 NBY2:626 ቃቧᐅ)TTOG* OVDD D4B D5B D6B D7B D8B D9B D0A D1A D3A OVDD TOP VIEW D2A ```````````````````````````````````````````````````````````````````````````` ୭ᒙ 36 35 34 33 32 31 30 29 28 27 26 25 D4A 37 24 D3B D5A 38 23 D2B D6A 39 22 D1B D7A 40 21 D0B D8A 41 20 DCLKB 19 DORB 18 GND D9A 42 DORA 43 DCLKA 44 17 GND SDIN/FORMAT 45 16 CLK- SCLK/DIV 46 15 CLK+ CS/OUTSEL 47 14 SYNC AVDD 48 13 AVDD MAX19515 *EP 10 11 12 INB- CMB 9 AVDD 8 I.C. 7 INB+ 6 SHDN INA- 5 SPEN 4 REFIO 3 INA+ 1 2 CMA + AVDD NBY2:626 ၷᄰࡸĂ21ᆡĂ76Ntqt! BED *EXPOSED PAD ```````````````````````````````````````````````````````````````````````````` ॖᓤቧᇦ ྙኊᔢதࡼॖᓤᅪተቧᇦਜ਼ݚLj༿އኯ china.maxim-ic.com/packagesă༿ᓖፀLjॖᓤܠ൩ᒦࡼĐ,đĂ Đ$đĐ.đஞܭာSpITᓨზă ॖᓤᅄᒦభถ۞ݙᄴࡼᆘᓮᔊ९LjࡣॖᓤᅄᒑᎧॖᓤᎌਈLjᎧSpITᓨზᇄਈă 34 ॖᓤಢቯ ॖᓤܠ൩ ᅪተܠ ݚܠ 48 TQFN-EP T4877+4 21-0144 90-0130 ______________________________________________________________________________________ ၷᄰࡸĂ21ᆡĂ76Ntqt! BED ኀࢿ ኀࢿ྇໐ ႁී 0 7/08 ᔢ߱۾ۈă 1 10/08 ኀᑵ೫࢜ቯᔫᄂቶᒦᅄ43ࡼᔑᔬܪă 2 9/10 োDNPTၒ߲དࣅࡼܤછLjৎቤ೫ဟମᄂቶݬၫă ኀখ — 11 5, 6, 28, 29, 30 Nbyjn ۱யࠀူێ ۱ய 9439ቧረ ᎆᑶܠ൩ 211194 ॅ࢟જǖ911!921!1421 ࢟જǖ121.7322 62:: ࠅᑞǖ121.7322 63:: Nbyjn࣪ݙNbyjnޘອጲᅪࡼྀੜ࢟വဧঌᐊLjጐݙᄋᓜಽభăNbyjnۣഔᏴྀੜဟମĂᎌྀੜᄰۨࡼ༄ᄋሆኀখޘອᓾ೯ਜ਼ਖৃࡼཚಽă Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ______________________ 35 © 2010 Maxim Integrated Products Nbyjn ဵ Nbyjn!Joufhsbufe!Qspevdut-!Jod/ ࡼᓖݿܪă NBY2:626 ```````````````````````````````````````````````````````````````````````````` ኀࢿ಼ဥ MAX19515 双通道、10位、65Msps ADC - 概述 ENGLISH • 简体中文 • 日本語 • 한국어 • РУССКИЙ Login | Register 最新内容 产品 方案 设计 应用 技术支持 销售联络 公司简介 我的Maxim Maxim > 产品 > 汽车电子 > MAX19515 Maxim > 产品 > 高速数据转换器 > MAX19515 MAX19515 双通道、10位、65Msps ADC 10位、65Msps、双通道ADC,提供60dBFS SNR和85dBFS SFDR,每通道功耗仅为43mW 概述 技术文档 定购信息 相关产品 用户说明 (0) 所有内容 状况 状况:生产中。 概述 数据资料 MAX19515双通道模数转换器(ADC)可提供10位的分辨率并具有65Msps的最大采样速率。 完整的数据资料 提供更新的英文版数据资料 MAX19515的模拟输入可接受0.4V至1.4V的宽输入共模电压范围,可以与宽范围的RF、IF以及基带前端元 件直流耦合输入。在基带至超过400MHz的输入频率范围内,MAX19515具有优异的动态性能,非常适合 零中频(ZIF)和高中频(IF)采样应用。fIN = 70MHz、fCLK = 65MHz时,典型的信噪比(SNR)性能 为60.1dBFS,而典型的无杂散动态范围(SFDR)为82dBc。 英文 下载 Rev. 3 (PDF, 552kB) 中文 下载 Rev. 2 (PDF, 844kB) MAX19515工作在1.8V电源下。此外,内置的自检测电压调节器可工作在2.5V至3.3V电压(AVDD)下。数 字输出驱动器可工作在1.8V至3.5V的独立电源电压(OVDD)下。VAVDD = 1.8V时,每通道的模拟功耗仅 为43mW。除了具有较低的工作功耗外,MAX19515在断电模式下的功耗仅为1mW,待机模式下的功耗仅 为15mW。 各种调节和功能的选择可以通过3线串行接口访问可编程寄存器实现。此外,串口还可以被禁用,同时提 供三个输入引脚,可选择输出模式、数据格式和时钟分频比。数据输出采用双并行CMOS兼容输出数据总 线,可配置为单复用并行CMOS总线。 MAX19515采用小尺寸、7mm x 7mm、48引脚薄型QFN封装,规定工作在-40°C至+85°C扩展级温度范 围。 引脚及特性兼容的8位65Msps、100Msps以及130Msps版本请分别参考MAX19505、MAX19506以 及MAX19507数据资料。引脚及特性兼容的10位100Msps和130Msps版本请分别参 考MAX19516和MAX19517数据资料。 现备有评估板:MAX19505EVKIT, MAX19506EVKIT, MAX19507EVKIT, MAX19515EVKIT, MAX19516EVKIT, MAX19517EVKIT 注:使用该产品需要以下文件: MAX19505、MAX19506、MAX19507、MAX19515、MAX19516和MAX19517评估板软件 关键特性 极低的工作功耗(65Msps时为43mW/通道) 1.8V或2.5V至3.3V模拟电源电压 优异的动态性能 70MHz时,SNR为60.1dBFS 70MHz时,SFDR为82dBc 通过SPI™接口实现用户可编程调节和特性选择 可选的数据总线(双CMOS或单复用CMOS) DCLK输出和可编程数据输出定时,简化了高速数字接口 非常宽的输入共模电压范围(0.4V至1.4V) 非常高的模拟输入带宽(> 850MHz) 单端或差分模拟输入 单端或差分时钟输入 1分频(DIV1)、2分频(DIV2)以及四分频(DIV4)时钟模式 二进制补码、格雷码以及偏移二进制输出数据格式 超限指示器(DOR) CMOS输出内部端接选项(可编程) 比特顺序可逆(可编程) 数据输出测试模板 小尺寸、7mm x 7mm、48引脚薄型QFN封装,带有裸焊盘 Key Specifications: High-Speed ADCs (> 5Msps) http://china.maxim-ic.com/datasheet/index.mvp/id/5924[2011-02-23 10:21:04] 应用/使用 数字机顶盒 中频和基带通信,包括:蜂窝基站及点对点微 波接收机 便携式仪表和低功耗数据采集 超声和医学成像 MAX19515 双通道、10位、65Msps ADC - 概述 Part Number MAX19515 Smallest Full Sample AC Available SFDR Pwr. I CC Price Rate Specs BW (mA) Data Bus Pckg. Input Resolution (Msps) (MHz) (dBc) SINAD SNR THD INL DNL Features 2 (MHz) Chan. Interface (mm ) (bits) (dB) (dB) (dB) (±LSB) (±LSB) 2 DCLK Output Programmable Data Output Timing Selectable Data Bus 10 max ≥ @ f IN min 65 70 77 59.6 60.1 -79 0.25 0.2 min typ 850 47 Selectable Dual/Mux'd CMOS 查看所有High-Speed ADCs (> 5Msps) (77) Pricing Notes: This pricing is BUDGETARY, for comparing similar parts. Prices are in U.S. dollars and subject to change. Quantity pricing may vary substantially and international prices may differ due to local duties, taxes, fees, and exchange rates. For volume-specific prices and delivery, please see the price and availability page or contact an authorized distributor. 图表 引脚配置 更多信息 新品发布 [ 2008-10-27 ] 没有找到你需要的产品吗? 应用工程师帮助选型,下个工作日回复 参数搜索 应用帮助 概述 技术文档 定购信息 相关产品 概述 关键特性 应用/ 使用 关键指标 图表 注释、注解 数据资料 应用笔记 评估板 设计指南 可靠性报告 软件/ 模型 价格与供货 样品 在线订购 封装信息 无铅信息 类似功能器件 类似应用器件 评估板 类似型号器件 配合该器件使用的产品 参考文献: 19- 4195 Rev. 3; 2011- 02- 22 本页最后一次更新: 2011- 02- 22 联络我们:信息反馈、提出问题 • 对该网页的评价 • 发送本网页 • 隐私权政策 • 法律声明 http://china.maxim-ic.com/datasheet/index.mvp/id/5924[2011-02-23 10:21:04] max w/pins See Notes 50.4 $7.50 @1k MAX19515 双通道、10位、65Msps ADC - 概述 © 2011 Maxim Integrated Products版权所有 http://china.maxim-ic.com/datasheet/index.mvp/id/5924[2011-02-23 10:21:04] 19-4195; Rev 3; 1/11 KIT ATION EVALU E L B A AVAIL Dual-Channel, 10-Bit, 65Msps ADC The MAX19515 dual-channel, analog-to-digital converter (ADC) provides 10-bit resolution and a maximum sample rate of 65Msps. The MAX19515 analog input accepts a wide 0.4V to 1.4V input common-mode voltage range, allowing DCcoupled inputs for a wide range of RF, IF, and baseband front-end components. The MAX19515 provides excellent dynamic performance from baseband to high input frequencies beyond 400MHz, making the device ideal for zero-intermediate frequency (ZIF) and highintermediate frequency (IF) sampling applications. The typical signal-to-noise ratio (SNR) performance is 60.1dBFS and typical spurious-free dynamic range (SFDR) is 82dBc at fIN = 70MHz and fCLK = 65MHz. The MAX19515 operates from a 1.8V supply. Additionally, an integrated, self-sensing voltage regulator allows operation from a 2.5V to 3.3V supply (AVDD). The digital output drivers operate on an independent supply voltage (OVDD) over the 1.8V to 3.5V range. The analog power consumption is only 43mW per channel at V AVDD = 1.8V. In addition to low operating power, the MAX19515 consumes only 1mW in powerdown mode and 15mW in standby mode. Various adjustments and feature selections are available through programmable registers that are accessed through the 3-wire serial-port interface. Alternatively, the serial-port interface can be disabled, with the three pins available to select output mode, data format, and clock-divider mode. Data outputs are available through a dual parallel CMOS-compatible output data bus that can also be configured as a single multiplexed parallel CMOS bus. The MAX19515 is available in a small 7mm x 7mm 48pin thin QFN package and is specified over the -40°C to +85°C extended temperature range. Refer to the MAX19505, MAX19506, and MAX19507 data sheets for pin- and feature-compatible 8-bit, 65Msps, 100Msps, and 130Msps versions, respectively. Refer to the MAX19516 and MAX19517 data sheets for pin- and feature-compatible 10-bit, 100Msps and 130Msps versions, respectively. Applications IF and Baseband Communications, Including Cellular Base Stations and Point-to-Point Microwave Receivers Ultrasound and Medical Imaging Portable Instrumentation and Low-Power Data Acquisition Digital Set-Top Boxes Features o Very-Low-Power Operation (43mW/Channel at 65Msps) o 1.8V or 2.5V to 3.3V Analog Supply o Excellent Dynamic Performance 60.1dBFS SNR at 70MHz 82dBc SFDR at 70MHz o User-Programmable Adjustments and Feature Selection through an SPI™ Interface o Selectable Data Bus (Dual CMOS or Single Multiplexed CMOS) o DCLK Output and Programmable Data Output Timing Simplifies High-Speed Digital Interface o Very Wide Input Common-Mode Voltage Range (0.4V to 1.4V) o Very High Analog Input Bandwidth (> 850MHz) o Single-Ended or Differential Analog Inputs o Single-Ended or Differential Clock Input o Divide-by-One (DIV1), Divide-by-Two (DIV2), and Divide-by-Four (DIV4) Clock Modes o Two’s Complement, Gray Code, and Offset Binary Output Data Format o Out-of-Range Indicator (DOR) o CMOS Output Internal Termination Options (Programmable) o Reversible Bit Order (Programmable) o Data Output Test Patterns o Small 7mm x 7mm 48-Pin Thin QFN Package with Exposed Pad Ordering Information PART TEMP RANGE PIN-PACKAGE MAX19515ETM+ -40°C to +85°C 48 TQFN-EP* MAX19515ETM/V+ -40°C to +85°C 48 TQFN-EP* /V denotes an automotive qualified part. +Denotes a lead(Pb)-free/RoHS-compliant package. *EP = Exposed pad. Pin Configuration appears at end of data sheet. SPI is a trademark of Motorola, Inc. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX19515 General Description MAX19515 Dual-Channel, 10-Bit, 65Msps ADC ABSOLUTE MAXIMUM RATINGS OVDD, AVDD to GND............................................-0.3V to +3.6V CMA, CMB, REFIO, INA+, INA-, INB+, INB- to GND ......................................................-0.3V to +2.1V CLK+, CLK-, SYNC, SPEN, CS, SCLK, SDIN to GND ..........-0.3V to the lower of (VAVDD + 0.3V) and +3.6V DCLKA, DCLKB, D9A–D0A, D9B–D0B, DORA, DORB to GND..........-0.3V to the lower of (VOVDD + 0.3V) and +3.6V Continuous Power Dissipation (TA = +70°C) 48-Pin Thin QFN, 7mm x 7mm x 0.8mm (derate 40mW/°C above +70°C).............................................................3200mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Soldering Temperature (reflow) .......................................+260°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC ACCURACY Resolution 10 Bits Integral Nonlinearity INL fIN = 3MHz -0.8 ±0.25 +0.8 LSB Differential Nonlinearity DNL fIN = 3MHz -0.7 ±0.2 +0.7 LSB Offset Error OE Internal reference -0.4 ±0.1 +0.4 %FS Gain Error GE External reference = 1.25V -1.5 ±0.3 +1.5 %FS ANALOG INPUTS (INA+, INA-, INB+, INB-) (Figure 3) Differential Input-Voltage Range VDIFF Differential or single-ended inputs Common-Mode Input-Voltage Range VCM (Note 2) Input Resistance RIN Input Current 1.5 0.4 Fixed resistance Input Capacitance 1.4 V > 100 Differential input resistance, common mode connected to inputs 4 IIN Switched capacitance input current, each input 35 CPAR Fixed capacitance to ground, each input 0.7 Switched capacitance, each input 1.2 CSAMPLE VP-P kΩ µA pF CONVERSION RATE Maximum Clock Frequency fCLK Minimum Clock Frequency fCLK Data Latency 2 65 MHz 30 Figures 9, 10 9 _______________________________________________________________________________________ MHz Cycles Dual-Channel, 10-Bit, 65Msps ADC (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DYNAMIC PERFORMANCE Small-Signal Noise Floor SSNF Signal-to-Noise Ratio SNR fIN = 70MHz, < -35dBFS -60.4 fIN = 3MHz fIN = 70MHz 60.2 59.3 fIN = 175MHz Signal-to-Noise Plus Distortion Ratio fIN = 70MHz 59.7 58.8 fIN = 175MHz Spurious-Free Dynamic Range (2nd and 3rd Harmonic) fIN = 70MHz 85 73 fIN = 175MHz Spurious-Free Dynamic Range (4th and Higher Harmonics) Second Harmonic HD2 Third Harmonic HD3 Total Harmonic Distortion Third-Order Intermodulation Full-Power Bandwidth THD IM3 fIN = 70MHz dBc 84 81 fIN = 3MHz SFDR2 dB 59.6 59.3 fIN = 3MHz SFDR1 dBFS 60.1 59.8 fIN = 3MHz SINAD dBFS 82 74.4 dBc 82 fIN = 175MHz 82 fIN = 3MHz -86 fIN = 70MHz -86 fIN = 175MHz -82 fIN = 3MHz -86 fIN = 70MHz -86 fIN = 175MHz -82 fIN = 3MHz -80 fIN = 70MHz -79 fIN = 175MHz -77 fIN = 70MHz ±1.5MHz, -7dBFS -90 fIN = 175MHz ±2.5MHz, -7dBFS -80 -73 dBc -74 dBc -71.8 dBc dBc FPBW 850 Aperture Delay tAD 850 ps Aperture Jitter tAJ 0.3 psRMS 1 Cycles Overdrive Recovery Time ±10% beyond full scale MHz _______________________________________________________________________________________ 3 MAX19515 ELECTRICAL CHARACTERISTICS (continued) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS INTERCHANNEL CHARACTERISTICS Crosstalk fINA or fINB = 70MHz at -1dBFS 95 fINA or fINB = 175MHz at -1dBFS 85 dBc Gain Match fIN = 70MHz ±0.05 dB Offset Match fIN = 70MHz ±0.1 %FSR Phase Match fIN = 70MHz ±0.5 Degrees ANALOG OUTPUTS (CMA, CMB) CMA, CMB Output Voltage VCOM Default programmable setting 0.85 0.9 0.95 1.25 1.27 V INTERNAL REFERENCE REFIO Output Voltage REFIO Temperature Coefficient VREFOUT 1.23 V TCREF < ±60 ppm/°C REFIO Input-Voltage Range VREFIN 1.25 +5/ -10% V REFIO Input Resistance RREFIN 10 ±20% kΩ 0.4 to 2.0 VP-P EXTERNAL REFERENCE CLOCK INPUTS (CLK+, CLK-)—DIFFERENTIAL MODE Differential Clock Input Voltage Self-biased Differential Input Common-Mode Voltage Input Resistance Input Capacitance 1.2 DC-coupled clock signal RCLK CCLK V 1.0 to 1.4 Differential, default 10 Differential, internal termination selected kΩ 100 Ω Common mode 9 kΩ To ground, each input 3 pF CLOCK INPUTS (CLK+, CLK-)—SINGLE-ENDED MODE (VCLK- < 0.1V) Single-Ended Mode Selection Threshold (VCLK-) 0.1 Allowable Logic Swing (VCLK+) 0 - VAVDD Single-Ended Clock Input High Threshold (VCLK+) Input Leakage (CLK-) Input Capacitance (CLK+) 4 V 1.5 V Single-Ended Clock Input Low Threshold (VCLK+) Input Leakage (CLK+) 0.3 VCLK+ = VAVDD = 1.8V or 3.3V +0.5 VCLK+ = 0V -0.5 VCLK- = 0V -150 V -50 3 _______________________________________________________________________________________ V µA µA pF Dual-Channel, 10-Bit, 65Msps ADC (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS CLOCK INPUT (SYNC) Allowable Logic Swing 0 - VAVDD Sync Clock Input High Threshold V 1.5 V Sync Clock Input Low Threshold 0.3 VSYNC = VAVDD = 1.8V or 3.3V Input Leakage VSYNC = 0V +0.5 -0.5 Input Capacitance V µA 4.5 pF 0 - VAVDD V DIGITAL INPUTS (SHDN, CS) Allowable Logic Swing Input High Threshold 1.5 V Input Low Threshold 0.3 VSHDN/VSPEN = VAVDD = 1.8V or 3.3V Input Leakage VSHDN/VSPEN = 0V Input Capacitance +0.5 -0.5 CDIN V µA 3 pF 0 - VAVDD V SERIAL-PORT INPUTS (SCLK, SDIN, CS, where SPEN = 0V)—SERIAL-PORT CONTROL MODE Allowable Logic Swing Input High Threshold 1.5 V Input Low Threshold 0.3 VSCLK/VSDIN/VCS = VAVDD = 1.8V or 3.3V Input Leakage VSCLK/VSDIN/VCS = 0V Input Capacitance +0.5 -0.5 CDIN 3 V µA pF SERIAL-PORT INPUTS (SCLK, SDIN, CS, where SPEN = VAVDD)—PARALLEL CONTROL MODE (Figure 5) Input Pullup Current Input Pulldown Current Open-Circuit Voltage VOC VSCLK/VSDIN/VCS = VAVDD = 1.8V 7 12 17 VSCLK/VSDIN/VCS = VAVDD = 3.3V 16 21 26 VSCLK/VSDIN/VCS = 0V, VAVDD = 1.8V -65 -50 -35 VSCLK/VSDIN/VCS = 0V, VAVDD = 3.3V -105 -90 -75 VAVDD = 1.8V 1.35 1.45 1.55 VAVDD = 3.3V 2.58 2.68 2.78 µA µA V DIGITAL OUTPUTS (75Ω, D0–D9 (A and B Channel), DCLKA, DCLKB, DORA, DORB) Output-Voltage Low VOL ISINK = 200µA Output-Voltage High VOH ISOURCE = 200µA Three-State Leakage Current ILEAK 0.2 VOVDD - 0.2 VOVDD applied GND applied V +0.5 -0.5 V µA _______________________________________________________________________________________ 5 MAX19515 ELECTRICAL CHARACTERISTICS (continued) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC ELECTRICAL CHARACTERISTICS (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER-MANAGEMENT CHARACTERISTICS Wake-Up Time from Shutdown tWAKE Internal reference, CREFIO = 0.1µF (10τ) 5 ms Wake-Up Time from Standby tWAKE Internal reference 15 µs SERIAL-PORT INTERFACE TIMING (Note 2) (Figure 7) SCLK Period tSCLK 50 ns SCLK to CS Setup Time tCSS 10 ns SCLK to CS Hold Time tCSH 10 ns SDIN to SCLK Setup Time tSDS Serial-data write 10 ns SDIN to SCLK Hold Time tSDH Serial-data write 0 SCLK to SDIN Output Data Delay tSDD Serial-data read ns 10 ns TIMING CHARACTERISTICS—DUAL BUS PARALLEL MODE (Figure 9) (Default Timing, see Table 5) Clock Pulse-Width High tCH 7.69 ns Clock Pulse-Width Low tCL 7.69 ns tCH/tCLK 30 to 70 % Clock Duty Cycle Data Delay After Rising Edge of CLK+ tDD CL = 10pF, VOVDD = 1.8V (Note 2) 3.4 CL = 10pF, VOVDD = 3.3V 5.3 7.1 4.1 ns Data to DCLK Setup Time tSETUP CL = 10pF, VOVDD = 1.8V (Note 2) 12.8 13.4 ns Data to DCLK Hold Time tHOLD CL = 10pF, VOVDD = 1.8V (Note 2) 1.4 2.0 ns TIMING CHARACTERISTICS—MULTIPLEXED BUS PARALLEL MODE (Figure 10) (Default Timing, see Table 5) Clock Pulse-Width High tCH 7.69 ns Clock Pulse-Width Low tCL 7.69 ns tCH/tCLK 30 to 70 % Clock Duty Cycle Data Delay After Rising Edge of CLK+ Data to DCLK Setup Time Data to DCLK Hold Time tDD CL = 10pF, VOVDD = 1.8V (Note 2) 3.3 CL = 10pF, VOVDD = 3.3V 5.2 7.0 4.0 tSETUP CL = 10pF, VOVDD = 1.8V (Note 2) 5.0 5.9 ns ns tHOLD CL = 10pF, VOVDD = 1.8V (Note 2) 1.2 1.8 DCLK Duty Cycle tDCH/tCLK CL = 10pF, VOVDD = 1.8V (Note 2) 44 50 56 ns % MUX Data Duty Cycle tCHA/tCLK CL = 10pF, VOVDD = 1.8V (Note 2) 44 50 56 % TIMING CHARACTERISTICS—SYNCHRONIZATION (Figure 12) Setup Time for Valid Clock Edge tSUV Edge mode (Note 2) 0.7 ns Hold-Off Time for Invalid Clock Edge tSDH Edge mode (Note 2) 0.5 ns Minimum Synchronization Pulse Width 6 Relative to input clock period 2 _______________________________________________________________________________________ Cycles Dual-Channel, 10-Bit, 65Msps ADC (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS POWER REQUIREMENTS Analog Supply Voltage VAVDD Digital Output Supply Voltage VOVDD Analog Supply Current Analog Power Dissipation Digital Output Supply Current IAVDD PDA IOVDD Low-level VAVDD 1.7 1.9 High-level VAVDD (regulator mode, invoked automatically) 2.3 3.5 1.7 3.5 Dual channel 47 Single channel active 28 8.5 12 Power-down mode 0.65 0.9 Power-down mode, VAVDD = 3.3V 1.6 Dual channel 85 Dual channel, VAVDD = 3.3V 155 Single channel active 50 Standby mode 15 22 Power-down mode 1.2 1.6 Power-down mode, VAVDD = 3.3V 2.9 Dual-channel mode, CL = 10pF 13 < 0.1 V 55 Standby mode Power-down mode V mA 99 mW mA Note 1: Specifications ≥ +25°C guaranteed by production test, specifications < +25°C guaranteed by design and characterization. Note 2: Guaranteed by design and characterization. _______________________________________________________________________________________ 7 MAX19515 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) 3MHz SINGLE-ENDED INPUT FFT PLOT -100 -60 -100 -120 10 15 20 25 FREQUENCY (MHz) 30 175MHz INPUT FFT PLOT 10 15 20 25 FREQUENCY (MHz) 30 0 -100 0 -40 -60 -80 -100 -120 10 15 20 25 30 5 10 15 20 25 FREQUENCY (MHz) 0.8 0 0.2 DNL (LSB) 0.4 0.2 0 -0.2 90 0 -0.2 SFDR2 SFDR1 80 75 -THD 70 65 -0.6 -0.6 60 -0.8 -0.8 55 -1.0 -1.0 50 1024 SNR 0 256 512 768 DIGITAL OUTPUT CODE 30 85 -0.4 256 512 768 DIGITAL OUTPUT CODE 10 15 20 25 FREQUENCY (MHz) PERFORMANCE vs. INPUT FREQUENCY -0.4 0 5 95 PERFORMANCE (dBFS) 0.6 0.4 MAX19515 toc03 -80 30 MAX19515 toc08 1.0 MAX19515 toc07 0.6 -60 DIFFERENTIAL NONLINEARITY vs. DIGITAL OUTPUT CODE INTEGRAL NONLINEARITY vs. DIGITAL OUTPUT CODE 0.8 -40 -120 0 FREQUENCY (MHz) 1.0 30 -100 -120 5 10 15 20 25 FREQUENCY (MHz) fIN1 = 172.49286MHz fIN2 = 177.50202MHz -20 AMPLITUDE (dBFS) -80 0 5 175MHz TWO-TONE IMD fIN1 = 71.496925MHz fIN2 = 68.504600MHz -20 AMPLITUDE (dBFS) AMPLITUDE (dBFS) -60 5 0 MAX19515 toc04 fIN = 175.096626MHz AIN = -0.512dBFS SNR = 59.073dB SINAD = 59.022dB THD = -78.338dBc SFDR1 = 81.806dBc SFDR2 = 84.255dBc -40 -80 70MHz TWO-TONE IMD PLOT 0 -20 -60 -120 0 MAX19515 toc05 5 -40 -100 -120 0 8 MAX19515 toc02 -80 fIN = 70.1014328MHz AIN = -0.532dBFS SNR = 59.432dB SINAD = 58.388dB THD = -79.349dBc SFDR1 = 84.227dBc SFDR2 = 81.877dBc -20 MAX19515 toc06 -80 -40 70MHz INPUT FFT PLOT 0 AMPLITUDE (dBFS) -60 fIN = 2.99877166748047MHz AIN = -0.546dBFS SNR = 59.675dB SINAD = 59.632dB THD = -79.673dBc SFDR1 = 88.737dBc SFDR2 = 82.290dBc -20 AMPLITUDE (dBFS) AMPLITUDE (dBFS) -40 MAX19515 toc01 fIN = 2.99877166MHz AIN = -0.532dBFS SNR = 59.682dB SINAD = 59.641dB THD = -79.826dBc SFDR1 = 83.946dBc SFDR2 = 82.852dBc -20 0 1024 MAX19515 toc09 3MHz INPUT FFT PLOT 0 INL (LSB) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC 0 50 SINAD 100 150 200 250 300 350 400 INPUT FREQUENCY (MHz) _______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC 80 SFDR1 70 65 SNR -THD SFDR2 90 80 -THD 70 SFDR1 85 80 75 -THD 70 SNR 65 60 60 55 SINAD -80 70 PERFORMANCE vs. COMMON-MODE VOLTAGE SFDR2 85 80 75 -THD 70 SNR 65 90 60 SFDR1 80 75 -THD 70 65 SNR 60 55 55 0.55 0.75 0.95 1.15 1.35 COMMON-MODE VOLTAGE (V) 1.65 75 -THD 70 65 SNR 60 55 SINAD 1.70 1.75 1.80 1.85 1.90 ANALOG SUPPLY VOLTAGE (V) 1.95 2.3 40 38 36 34 48 47 46 45 44 43 42 32 41 30 40 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (MHz) MAX19515 toc17 49 50 49 ANALOG SUPPLY CURRENT (mA) 42 50 ANALOG SUPPLY CURRENT (mA) 44 2.5 2.7 2.9 3.1 3.3 ANALOG SUPPLY VOLTAGE (V) 3.5 ANALOG SUPPLY CURRENT vs. SUPPLY VOLTAGE ANALOG SUPPLY CURRENT vs. TEMPERATURE MAX19515 toc16 46 SFDR1 80 50 ANALOG SUPPLY CURRENT vs. SAMPLING FREQUENCY 48 SFDR2 85 50 0.35 50 90 SINAD SINAD 50 PERFORMANCE vs. ANALOG SUPPLY VOLTAGE SFDR2 85 PERFORMANCE (dBFS) SFDR1 90 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (Msps) 0 PERFORMANCE vs. ANALOG SUPPLY VOLTAGE MAX19515 toc13 95 -70 -60 -50 -40 -30 -20 -10 ANALOG INPUT AMPLITUDE (dBFS) MAX19515 toc15 60 PERFORMANCE (dBFS) 20 30 40 50 INPUT FREQUENCY (MHz) MAX19515 toc14 10 SINAD 50 50 MAX19515 toc18 55 0 PERFORMANCE (dBFS) SFDR2 90 60 50 ANALOG SUPPLY CURRENT (mA) SINAD SNR 95 MAX19515 toc12 100 PERFORMANCE (dBFS) 85 SFDR1 PERFORMANCE (dBFS) SFDR2 75 110 MAX19515 toc11 90 MAX19515 toc10 SINGLE-ENDED PERFORMANCE (dBFS) 95 PERFORMANCE vs. SAMPLING FREQUENCY PERFORMANCE vs. ANALOG INPUT AMPLITUDE SINGLE-ENDED PERFORMANCE vs. INPUT FREQUENCY 48 47 46 45 44 43 42 41 40 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 1.65 1.70 1.75 1.80 1.85 SUPPLY VOLTAGE (V) 1.90 _______________________________________________________________________________________ 1.95 9 MAX19515 Typical Operating Characteristics (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) 47 46 45 44 43 42 VOVDD = 1.8V 10 8 6 4 2 25 MAX19515 toc21 48 12 MAX19515 toc20 49 DIGITAL SUPPLY CURRENT (mA) MAX19515 toc19 50 ANALOG SUPPLY CURRENT (mA) DIGITAL SUPPLY CURRENT vs. SAMPLING FREQUENCY DIGITAL SUPPLY CURRENT vs. SAMPLING FREQUENCY VOVDD = 3.6V DIGITAL SUPPLY CURRENT (mA) ANALOG SUPPLY CURRENT vs. SUPPLY VOLTAGE 20 15 10 5 41 0 2.7 2.9 3.1 SUPPLY VOLTAGE (V) 3.3 3.5 0 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (Msps) 20 25 30 35 40 45 50 55 60 65 70 SAMPLING FREQUENCY (Msps) DIGITAL SUPPLY CURRENT vs. SUPPLY VOLTAGE DIGITAL SUPPLY CURRENT vs. SUPPLY VOLTAGE DIGITAL SUPPLY CURRENT vs. TEMPERATURE 23 SUPPLY CURRENT (mA) 21 19 VOVDD = 3.6V 17 15 VOVDD = 1.8V 13 11 9 25 DUAL BUS DIGITAL SUPPLY CURRENT (mA) MAX19515 toc22 25 20 15 10 5 30 MULTIPLEXED BUS DIGITAL SUPPLY CURRENT (mA) 2.5 MAX19515 toc23 2.3 MAX19515 toc24 40 25 20 15 10 5 7 0 0 5 60 PERFORMANCE vs. CLOCK DUTY CYCLE SFDR2 -THD 70 SNR SFDR1 90 85 PERFORMANCE (dBFS) 80 65 95 MAX19515 toc25 SFDR1 75 80 SFDR2 -THD 75 70 SNR 65 60 SINAD 10 40 45 50 55 CLOCK DUTY CYCLE (%) 60 65 0.03 0.02 0.01 0 -0.01 -0.04 SINAD -0.05 50 35 0.04 -0.03 55 55 0.05 -0.02 60 30 GAIN ERROR vs. TEMPERATURE PERFORMANCE vs. TEMPERATURE 90 85 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 SUPPLY VOLTAGE (V) 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 SUPPLY VOLTAGE (V) 80 MAX19515 toc27 0 20 40 TEMPERATURE (°C) GAIN ERROR (%) -20 MAX19515 toc26 -40 PERFORMANCE (dBFS) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC -40 -20 0 20 40 TEMPERATURE (°C) 60 80 -40 -20 0 20 40 TEMPERATURE (°C) ______________________________________________________________________________________ 60 80 Dual-Channel, 10-Bit, 65Msps ADC REFERENCE VOLTAGE (V) -0.1 -0.2 -0.3 -0.4 -0.5 1.2495 1.2474 1.2453 -0.6 -0.7 60 80 VCM = 1.2V 1.2 VCM = 1.05V 1.0 VCM = 0.9V 0.8 VCM = 0.75V VCM = 0.6V 0.6 VCM = 0.45V 0.4 0.2 -40 -20 0 20 40 TEMPERATURE (°C) 60 MAX19515 toc31 0.06 80 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 INPUT CURRENT vs. COMMON-MODE VOLTAGE GAIN ERROR vs. SUPPLY VOLTAGE 0.08 60 55 0.02 0 -0.02 REGULATOR MODE INPUT CURRENT (µA) 0.04 50 45 40 35 -0.04 30 -0.06 25 -0.08 MAX19515 toc32 0 20 40 TEMPERATURE (°C) GAIN ERROR (%) -20 VCM = 1.35V 1.4 0 1.2432 -40 MAX19515 toc30 0 1.6 COMMON-MODE REFERENCE VOLTAGE (V) 0.1 MAX19515 toc29 1.2516 MAX19515 toc28 0.2 OFFSET ERROR (mV) COMMON-MODE REFERENCE VOLTAGE vs. TEMPERATURE REFERENCE VOLTAGE vs. TEMPERATURE OFFSET ERROR vs. TEMPERATURE 20 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 SUPPLY VOLTAGE (V) 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 COMMON-MODE VOLTAGE (V) ______________________________________________________________________________________ 11 MAX19515 Typical Operating Characteristics (continued) (VAVDD = VOVDD = 1.8V, internal reference, differential clock, VCLK = 1.5VP-P, fCLK = 65MHz, AIN = -0.5dBFS, data output termination = 50Ω, TA = +25°C, unless otherwise noted.) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC Pin Description PIN NAME 1, 12, 13, 48 AVDD 12 FUNCTION Analog Supply Voltage. Bypass each AVDD input pair (1, 48) and (12, 13) to GND with 0.1µF. 2 CMA Channel A Common-Mode Input-Voltage Reference 3 INA+ Channel A Positive Analog Input 4 INA- Channel A Negative Analog Input 5 SPEN Active-Low SPI Enable. Drive high to enable parallel programming mode. 6 REFIO Reference Input/Output. To use internal reference, bypass to GND with a > 0.1µF capacitor. See the Reference Input/Output (REFIO) section for external reference adjustment. 7 SHDN Active-High Power-Down. If SPEN is high (parallel programming mode), a register reset is initiated on the falling edge of SHDN. 8 I.C. 9 INB+ Internally Connected. Leave unconnected. Channel B Positive Analog Input 10 INB- Channel B Negative Analog Input 11 CMB Channel B Common-Mode Input-Voltage Reference 14 SYNC Clock-Divider Mode Synchronization Input 15 CLK+ Clock Positive Input 16 CLK- Clock Negative Input. If CLK- is connected to ground, CLK+ is a single-ended logic-level clock input. Otherwise, CLK+/CLK- are self-biased differential clock inputs. 17, 18 GND 19 DORB Channel B Data Over Range Ground. Connect all ground inputs and EP (exposed pad) together. 20 DCLKB Channel B Data Clock 21 D0B Channel B Three-State Digital Output, Bit 0 (LSB) 22 D1B Channel B Three-State Digital Output, Bit 1 23 D2B Channel B Three-State Digital Output, Bit 2 Channel B Three-State Digital Output, Bit 3 24 D3B 25, 36 OVDD 26 D4B Channel B Three-State Digital Output, Bit 4 27 D5B Channel B Three-State Digital Output, Bit 5 28 D6B Channel B Three-State Digital Output, Bit 6 29 D7B Channel B Three-State Digital Output, Bit 7 30 D8B Channel B Three-State Digital Output, Bit 8 31 D9B Channel B Three-State Digital Output, Bit 9 (MSB) 32 D0A Channel A Three-State Digital Output, Bit 0 (LSB) 33 D1A Channel A Three-State Digital Output, Bit 1 34 D2A Channel A Three-State Digital Output, Bit 2 35 D3A Channel A Three-State Digital Output, Bit 3 37 D4A Channel A Three-State Digital Output, Bit 4 38 D5A Channel A Three-State Digital Output, Bit 5 39 D6A Channel A Three-State Digital Output, Bit 6 Digital Supply Voltage. Bypass each OVDD input to GND with 0.1µF capacitor. ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC PIN NAME 40 D7A Channel A Three-State Digital Output, Bit 7 FUNCTION 41 D8A Channel A Three-State Digital Output, Bit 8 42 D9A 43 DORA Channel A Data Over Range 44 DCLKA Channel A Data Clock 45 SDIN/FORMAT 46 SCLK/DIV Serial Clock/Clock Divider. Serial clock when SPEN is low. Clock divider when SPEN is high. 47 CS/OUTSEL Serial-Port Select/Data Output Mode. Serial-port select when SPEN is low. Data output mode selection when SPEN is high. — EP Channel A Three-State Digital Output, Bit 9 (MSB) SPI Data Input/Format. Serial-data input when SPEN is low. Output data format when SPEN is high. Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Detailed Description The MAX19515 uses a 10-stage, fully differential, pipelined architecture (Figure 1) that allows for highspeed conversion while minimizing power consumption. Samples taken at the inputs move progressively through the pipeline stages every half clock cycle. From input to output the total latency is 9 clock cycles. Each pipeline converter stage converts its input voltage to a digital output code. At every stage, except the last, the error between the input voltage and the digital output code is multiplied and passed on to the next pipeline stage. Digital error correction compensates for ADC comparator offsets in each pipeline stage and ensures no missing codes. Figure 2 shows the MAX19515 functional diagram. Analog Inputs and Common-Mode Reference Apply the analog input signal to the analog inputs (INA+/INA- or INB+/INB-), which are connected to the input sampling switch (Figure 3). When the input sampling switch is closed, the input signal is applied to the sampling capacitors through the input switch resistance. The input signal is sampled at the instant the input switch opens. The pipeline ADC processes the sampled voltage and the digital output result is available 9 clock cycles later. Before the input switch is closed to begin the next sampling cycle, the sampling capacitors are reset to the input common-mode potential. Common-mode bias can be provided externally or internally through 2kΩ resistors. In DC-coupled applications, the signal source provides the external bias and the bias current. In AC-coupled applications, the input + MAX19515 Σ x2 − FLASH ADC DAC IN_+ STAGE 1 STAGE 2 STAGE 9 IN_- STAGE 10 END OF PIPELINE DIGITAL ERROR CORRECTION D0_ THROUGH D9_ Figure 1. Pipeline Architecture—Stage Blocks current is supplied by the common-mode input voltage. For example, the input current can be supplied through the center tap of a transformer secondary winding. Alternatively, program the appropriate internal register through the serial-port interface to supply the input DC current through internal 2kΩ resistors (Figure 3). When the input current is supplied through the internal resistors, the input common-mode potential is reduced by the voltage drop across the resistors. The commonmode input reference voltage can be adjusted through programmable register settings from 0.45V to 1.35V in 0.15V increments. The default setting is 0.90V. Use this feature to provide a common-mode output reference to a DC-coupled driving circuit. ______________________________________________________________________________________ 13 MAX19515 Pin Description (continued) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC CLOCK MAX19515 INA+ T/H INA- PIPELINE ADC DIGITAL ERROR CORRECTION D0A–D9A DORA DCLKA CMA REFIO CMB REFERENCE AND BIAS SYSTEM INTERNAL REFERENCE GENERATOR PIPELINE ADC DIGITAL ERROR CORRECTION DATA AND OUTPUT FORMAT OUTPUT DRIVERS OVDD (1.8V TO 3.3V) D0B–D9B INB+ T/H INB- DORB DCLKB CLOCK CLK+ CLOCK DIVIDER CLK- DUTYCYCLE EQUALIZER SYNC AVDD (1.8V OR 2.5V TO 3.3V) REGULATOR AND POWER CONTROL 1.8V INTERNAL CS SERIAL PORT AND CONTROL REGISTERS SCLK SDIN SHDN INTERNAL CONTROL GND SPEN Figure 2. Functional Diagram AVDD CMA RSWITCH 120Ω INA+ CSAMPLE 1.2pF CPAR 0.7pF 2kΩ *VCOM AVDD 2kΩ RSWITCH 120Ω INACPAR 0.7pF CSAMPLE 1.2pF SAMPLING CLOCK MAX19515 *VCOM PROGRAMMABLE FROM 0.45V TO 1.35V. SEE COMMON-MODE REGISTER (08h) Figure 3. Internal Track-and-Hold (T/H) Circuit 14 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC INTERNAL GAIN—BYPASS REFIO EXTERNAL GAIN CONTROL—DRIVE REFIO 36kΩ 0.1µF EXTERNAL BYPASS REFIO 1.250V BANDGAP REFERENCE 10kΩ BUFFER DECODER CS SCLK SDIN 23/32 AVDD TO CONTROL LOGIC 156kΩ SCALE AND INTERNAL REFERENCE LEVEL SHIFT (CONTROLS ADC GAIN) 3/32 AVDD Figure 4. Simplified Reference Schematic Figure 5. Simplified Parallel-Interface Input Schematic Table 1. Parallel-Interface Pin Functionality SPEN SDIN/FORMAT SCLK/DIV CS/OUTSEL DESCRIPTION SPI interface active. Features are programmed through the serial port (see the Serial Programming Interface section). SDIN SCLK CS 1 0 X X 1 AVDD X X Offset binary 1 Unconnected X X Gray code 1 X 0 X Clock divide-by-1 1 X AVDD X Clock divide-by-2 1 X Unconnected X Clock divide-by-4 1 X X 0 CMOS (dual bus) 1 X X AVDD MUX CMOS (channel A data bus) X X Unconnected MUX CMOS (channel B data bus) 0 1 X = Don’t care. Two’s complement Reference Input/Output (REFIO) Programming and Interface REFIO adjusts the reference potential, which, in turn, adjusts the full-scale range of the ADC. Figure 4 shows a simplified schematic of the reference system. An internal bandgap voltage generator provides an internal reference voltage. The bandgap potential is buffered and applied to REFIO through a 10kΩ resistor. Bypass REFIO with a 0.1µF capacitor to GND. The bandgap voltage is applied to a scaling and level-shift circuit, which creates internal reference potentials that establish the full-scale range of the ADC. Apply an external voltage on REFIO to trim the ADC full scale. The allowable adjustment range is +5/-15%. The REFIO-to-ADC gain transfer function is: VFS = 1.5 x [VREFIO/1.25] Volts There are two ways to control the MAX19515 operating modes. Full feature selection is available using the SPI interface, while the parallel interface offers a limited set of commonly used features. The programming mode is selected using the SPEN input. Drive SPEN low for SPI interface; drive SPEN high for parallel interface. Parallel Interface The parallel interface offers a pin-programmable interface with a limited feature set. Connect SPEN to AVDD to enable the parallel interface. See Table 1 for pin functionality; see Figure 5 for a simplified parallel-interface input schematic. ______________________________________________________________________________________ 15 MAX19515 29/32 AVDD AVDD MAX19515 Dual-Channel, 10-Bit, 65Msps ADC CS SCLK SDIN R/W A6 A5 A4 A3 R/W A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 DATA WRITE OR READ ADDRESS 0 = WRITE 1 = READ Figure 6. Serial-Interface Communication Cycle tCSH tCSS CS tSCLK SCLK tSDS tSDH tSDD SDIN WRITE READ Figure 7. Serial-Interface Timing Diagram Serial Programming Interface A serial interface programs the MAX19515 control registers through the CS, SDIN, and SCLK inputs. Serial data is shifted into SDIN on the rising edge of SCLK when CS is low. The MAX19515 ignores the data presented at SDIN and SCLK when CS is high. CS must transition high after each read/write operation. SDIN also serves as the serial-data output for reading control registers. The serial interface supports two-byte transfer in a communication cycle. The first byte is a control byte, containing the address and read/write instruction, written to the MAX19515. The second byte is a data byte and can be written to or read from the MAX19515. Figure 6 shows a serial-interface communication cycle. The first SDIN bit clocked in establishes the communi- 16 cation cycle as either a write or read transaction (0 for write operation and 1 for read operation). The following 7 bits specify the address of the register to be written or read. The final 8 SDIN bits are the register data. All address and data bits are clocked in or out MSB first. During a read operation, the MAX19515 serial port drives read data (D7) into SDIN after the falling edge of SCLK following the 8th rising edge of SCLK. Since the minimum hold time on SDIN input is zero, the master can stop driving SDIN any time after the 8th rising edge of SCLK. Subsequent data bits are driven into SDIN on the falling edge of SCLK. Output data in a read operation is latched on the rising edge of SCLK. Figure 7 shows the detailed serial-interface timing diagram. ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC ters are reset to default values. A read operation of register 0Ah returns a status byte with information described in Table 2. Table 2. Register 0Ah Status Byte BIT NO. VALUE 7 0 DESCRIPTION Reserved 6 0 5 0 or 1 1 = ROM read in progress Reserved 4 0 or 1 1 = ROM read completed and register data is valid (checksum is OK) 3 0 2 1 Reserved 1 0 or 1 Reserved 0 0 or 1 1 = Duty-cycle equalizer DLL is locked Reserved User-Programmable Registers Table 3. User-Programmable Registers ADDRESS POR DEFAULT FUNCTION 00h 00000011 01h 00000000 Output format 02h 00000000 Digital output power management 03h 10000000 Data/DCLK timing 04h 00000000 CHA data output termination control 05h 00000000 CHB data output termination control 06h 00000000 Clock divide/data format/test pattern 07h Reserved Reserved—do not use 08h 00000000 Common mode 0Ah — Software reset Power management Power Management (00h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 HPS_SHDN1 STBY_SHDN1 CHB_ON_SHDN1 CHA_ON_SHDN1 HPS_SHDN0 STBY_SHDN0 CHB_ON_SHDN0 CHA_ON_SHDN0 The SHDN input (pin 7) toggles between any two power-management states. The Power Management register defines each power-management state. In the default state, SHDN = 1 shuts down the MAX19515 and SHDN = 0 returns to full power. ______________________________________________________________________________________ 17 MAX19515 Register address 0Ah is a special-function register. Writing data 5Ah to register 0Ah initiates a register reset. When this operation is executed, all control regis- MAX19515 Dual-Channel, 10-Bit, 65Msps ADC In addition to power management, the HPS_SHDN1 and HPS_SHDN0 activate an A+B adder mode. In this mode, the results from both channels are averaged. The MUX_CH bit selects which bus the (A+B)/2 data is presented. Control Bits: HPS_SHDN0 STBY_SHDN0 CHA_ON_SHDN0 CHB_ON_SHDN0 SHDN INPUT = 0* HPS_SHDN1 STBY_SHDN1 CHA_ON_SHDN1 CHB_ON_SHDN1 SHDN INPUT = 1** X 0 0 0 Complete power-down 0 0 0 1 Channel B active, channel A full power-down 0 0 1 0 Channel A active, channel B full power-down 0 X 1 1 Channels A and B active 0 1 0 0 Channels A and B in standby mode 0 1 0 1 Channel B active, channel A standby 0 1 1 0 Channel A active, channel B standby 1 1 0 0 Channels A and B in standby mode 1 X X 1 Channels A and B active, output is averaged 1 X 1 X Channels A and B active, output is averaged *HPS_SHDN0, STBY_SHDN0, CHA_ON_SHDN0, and CHB_ON_SHDN0 are active when SHDN = 0. **HPS_SHDN1, STBY_SHDN1, CHA_ON_SHDN1, and CHB_ON_SHDN1 are active when SHDN = 1. X = Don’t care. Note: When HPS_SHDN_ = 1 (A+B adder mode), CHA_ON_SHDN_ and CHB_ON_SHDN_ must BOTH equal 0 for power-down or standby. Output Format (01h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 0 0 0 BIT_ORDER_B BIT_ORDER_A MUX_CH MUX 0 Bit 7, 6, 5 Set to 0 for proper operation Bit 4 BIT_ORDER_B: Reverse CHB output bit order 0 = Defined data bus pin order (default) 1 = Reverse data bus pin order Bit 3 BIT_ORDER_A: Reverse CHA output bit order 0 = Defined data bus pin order (default) 1 = Reverse data bus pin order Bit 2 MUX_CH: Multiplexed data bus selection 0 = Multiplexed data output on CHA (CHA data presented first, followed by CHB data) (default) 1 = Multiplexed data output on CHB (CHB data presented first, followed by CHA data) Bit 1 MUX: Digital output mode 0 = Dual data bus output mode (default) 1 = Single multiplexed data bus output mode MUX_CH selects the output bus Bit 0 Set to 0 for proper operation 18 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 X X X X PD_DOUT_1 PD_DOUT_0 DIS_DOR DIS_DCLK Bit 7–4 Don’t care Bit 3, 2 PD_DOUT_1, PD_DOUT_0: Power-down digital output state control 00 = Digital output three state (default) 01 = Digital output low 10 = Digital output three state 11 = Digital output high Bit 1 DIS_DOR: DOR driver disable 0 = DOR active (default) 1 = DOR disabled (three state) Bit 0 DIS_DCLK: DCLK driver disable 0 = DCLK active (default) 1 = DCLK disabled (three state) ______________________________________________________________________________________ 19 MAX19515 Digital Output Power Management (02h) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC Data/DCLK Timing (03h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 DA_BYPASS DLY_HALF_T DCLKTIME_2 DCLKTIME_1 DCLKTIME_0 DTIME_2 DTIME_1 DTIME_0 Bit 7 DA_BYPASS: Data aligner bypass 0 = Nominal 1 = Bypasses data aligner delay line to minimize output data latency with respect to the input clock. Rising clock to data transition is approximately 6ns with DTIME = 000b settings (default) Bit 6 DLY_HALF_T: Data and DCLK delayed by T/2 0 = Normal, no delay (default) 1 = Delays data and DCLK outputs by T/2 Disabled in MUX data bus mode Bit 5, 4, 3 DCLKTIME_2, DCLKTIME_1, DCLKTIME_0: DCLK timing adjust (controls both channels) 000 = Nominal (default) 001 = +T/16 010 = +2T/16 011 = +3T/16 100 = Reserved, do not use 101 = -1T/16 110 = -2T/16 111 = -3T/16 Bit 2, 1, 0 DTIME_2, DTIME_1, DTIME_0: Data timing adjust (controls both channels) 000 = Nominal (default) 001 = +T/16 010 = +2T/16 011 = +3T/16 100 = Reserved, do not use 101 = -1T/16 110 = -2T/16 111 = -3T/16 20 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 X X CT_DCLK_2_A CT_DCLK_1_A CT_DCLK_0_A CT_DATA_2_A CT_DATA_1_A CT_DATA_0_A Bit 7, 6 Don’t care Bit 5, 4, 3 CT_DCLK_2_A, CT_DCLK_1_A, CT_DCLK_0_A: CHA DCLK termination control 000 = 50Ω (default) 001 = 75Ω 010 = 100Ω 011 = 150Ω 1xx = 300Ω Bit 2, 1, 0 CT_DATA_2_A, CT_DATA_1_A, CT_DATA_0_A: CHA data output termination control 000 = 50Ω (default) 001 = 75Ω 010 = 100Ω 011 = 150Ω 1xx = 300Ω CHB Data Output Termination Control (05h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 X X CT_DCLK_2_B CT_DCLK_1_B CT_DCLK_0_B CT_DATA_2_B CT_DATA_1_B CT_DATA_0_B Bit 7, 6 Don’t care Bit 5, 4, 3 CT_DCLK_2_B, CT_DCLK_1_B, CT_DCLK_0_B: CHB DCLK termination control 000 = 50Ω (default) 001 = 75Ω 010 = 100Ω 011 = 150Ω 1xx = 300Ω Bit 2, 1, 0 CT_DATA_2_B, CT_DATA_1_B, CT_DATA_0_B: CHB data output termination control 000 = 50Ω (default) 001 = 75Ω 010 = 100Ω 011 = 150Ω 1xx = 300Ω ______________________________________________________________________________________ 21 MAX19515 CHA Data Output Termination Control (04h) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC Clock Divide/Data Format/Test Pattern (06h) BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 TEST_PATTERN TEST_DATA FORMAT_1 FORMAT_0 TERM_100 SYNC_MODE DIV1 DIV0 Bit 7 TEST_PATTERN: Test pattern selection 0 = Ramps from 0 to 1023 (offset binary) and repeats (subsequent formatting applied) (default) 1 = Data alternates between D[9:0] = 0101010101, DOR = 1, and D[9:0] = 1010101010, DOR = 0 on both channels Bit 6 TEST_DATA: Data test mode 0 = Normal data output (default) 1 = Outputs test data pattern Bit 5, 4 FORMAT_1, FORMAT_0: Data numerical format 00 = Two’s complement (default) 01 = Offset binary 10 = Gray code 11 = Two’s complement Bit 3 TERM_100: Select 100Ω clock input termination 0 = No termination (default) 1 = 100Ω termination across differential clock inputs Bit 2 SYNC_MODE: Divider synchronization mode select 0 = Slip mode (Figure 11) (default) 1 = Edge mode (Figure 12) Bit 1, 0 DIV1, DIV0: Input clock-divider select 00 = No divider (default) 01 = Divide-by-2 10 = Divide-by-4 11 = No divider Reserved (07h)—Do not write to this register 22 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 CMI_SELF_B CMI_ADJ_2_B CMI_ADJ_1_B CMI_ADJ_0_B CMI_SELF_A CMI_ADJ_2_A CMI_ADJ_1_A CMI_ADJ_0_A Bit 7 CMI_SELF_B: CHB connect input common-mode to analog inputs 0 = Internal common-mode voltage is NOT applied to inputs (default) 1 = Internal common-mode voltage applied to analog inputs through 2kΩ resistors Bit 6, 5, 4 CMI_ADJ_2_B, CMI_ADJ_1_B, CMI_ADJ_0_B: CHB input common-mode voltage adjustment 000 = 0.900V (default) 001 = 1.050V 010 = 1.200V 011 = 1.350V 100 = 0.900V 101 = 0.750V 110 = 0.600V 111 = 0.450V Bit 3 Bit 2, 1, 0 CMI_SELF_A: CHA connect input common-mode to analog inputs 0 = Internal common-mode voltage is NOT applied to inputs (default) 1 = Internal common-mode voltage applied to analog inputs through 2kΩ resistors CMI_ADJ_2_A, CMI_ADJ_1_A, CMI_ADJ_0_A: CHA input common-mode adjustment 000 = 0.900V (default) 001 = 1.050V 010 = 1.200V 011 = 1.350V 100 = 0.900V 101 = 0.750V 110 = 0.600V 111 = 0.450V Software Reset (0Ah) Bit 7–0 SWRESET: Write 5Ah to initiate software reset ______________________________________________________________________________________ 23 MAX19515 Common Mode (08h) MAX19515 Dual-Channel, 10-Bit, 65Msps ADC Clock Inputs 100Ω TERMINATION (PROGRAMMABLE) CLK+ The input clock interface provides for flexibility in the requirements of the clock driver. The MAX19515 accepts a fully differential clock or single-ended logiclevel clock. For differential clock operation, connect a differential clock to the CLK+ and CLK- inputs. In this mode, the input common mode is established internally to allow for AC-coupling. The differential clock signal can also be DC-coupled if the common mode is constrained to the specified 1V to 1.4V clock input common-mode range. For single-ended operation, connect CLK- to GND and drive the CLK+ input with a logiclevel signal. When the CLK- input is grounded (or pulled below the threshold of the clock mode detection comparator) the differential-to-single-ended conversion stage is disabled and the logic-level inverter path is activated. 2:1 MUX AVDD 5kΩ 50Ω 10kΩ 20kΩ 50Ω SELECT THRESHOLD 5kΩ GND CLK- SELF-BIAS TURNED OFF FOR SINGLE-ENDED CLOCK OR POWER-DOWN. Clock Divider The MAX19515 offers a clock-divider option. Enable clock division either by setting DIV0 and DIV1 through the serial interface; see the Clock Divide/Data Figure 8. Simplified Clock Input Schematic DUAL-BUS OUTPUT MODE SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT tAD SAMPLING INSTANT SAMPLING INSTANT IN_ SAMPLING INSTANT tCLK SAMPLE ON RISING EDGE n tCL tCH n+1 n+2 n+4 n+3 n+5 SAMPLE CLOCK tDD DATA, DOR n-10 n-9 tDC n-8 n-7 n-6 n-5 tHOLD tSETUP DCLK SAMPLE CLOCK IS THE DERIVED CLOCK FROM (CLK+ - CLK-)/CLOCK DIVIDER, IN_ = IN_+ - IN_-. Figure 9. Dual-Bus Output Mode Timing 24 ______________________________________________________________________________________ n-4 Dual-Channel, 10-Bit, 65Msps ADC MAX19515 MUX OUTPUT MODE SAMPLING INSTANT tAD SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT SAMPLING INSTANT IN_ tCLK SAMPLE ON RISING EDGE n tCL tCH n+1 n+2 n+3 n+4 n+5 SAMPLE CLOCK tCHA tDD DATA, DOR tCHB CHB CHA CHB CHA CHB CHA CHB CHA CHB CHA CHB CHA CHB n-10 n-9 n-9 n-8 n-8 n-7 n-7 n-6 n-6 n-5 n-5 n-4 n-4 tDC tHOLD tDCH tDCL tSETUP tHOLD tSETUP DCLK SAMPLE CLOCK IS THE DERIVED CLOCK FROM (CLK+ - CLK-)/CLOCK DIVIDER, IN_ = IN_+ - IN_-. MUX_CH (BIT 2, OUTPUT FORMAT 01h) DETERMINES THE OUTPUT BUS AND WHICH CHANNEL DATA IS PRESENTED. Figure 10. Multiplexed Output Mode Timing Format/Test Pattern register (06h) for clock-divider options, or in parallel programming configuration (SPEN = 1) by using the DIV input. System Timing Requirements Figures 9 and 10 depict the relationship between the clock input and output, analog input, sampling event, and data output. The MAX19515 samples on the rising edge of the sampling clock. Output data is valid on the next rising edge of DCLK after a nine-clock internal latency. For applications where the clock is divided, the sample clock is the divided internal clock derived from: [(CLK+ - CLK-)/DIVIDER] Synchronization When using the clock divider, the phase of the internal clock can be different than that of the FPGA, microcontroller, or other MAX19515s in the system. There are two mechanisms to synchronize the internal clock: slip synchronization and edge synchronization. Select the synchronization mode using SYNC_MODE (bit 2) in the Clock Divide/Data Format/Test Pattern register (06h) and drive the SYNC input high to synchronize. Slip Synchronization Mode, SYNC_MODE = 0 (default): On the third rising edge of the input clock (CLK) after the rising edge of SYNC (provided set-up and hold times are met), the divided output is forced to skip a state transition (Figure 11). Edge Synchronization Mode, SYNC_MODE = 1: On the third rising edge of the input clock (CLK) after the rising edge of SYNC (provided set-up and hold times are met), the divided output is forced to state 0. A divided clock rising edge occurs on the fourth (/2 mode) or fifth (/4 mode) rising edge of CLK, after a valid rising edge of SYNC (Figure 12). ______________________________________________________________________________________ 25 MAX19515 Dual-Channel, 10-Bit, 65Msps ADC tHO DIVIDE-BY-2 SLIP SYNCRONIZATION tSUV tSUV = SET-UP TIME FOR VALID CLOCK EDGE. tHO = HOLD-OFF TIME FOR INVALID CLOCK EDGE. SYNC 1 2 3 4 2x INPUT CLK SLIP (0) (1) (0) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (1) (0) (1) (0) (1) (0) (1) (0) (1) 1x DIVIDED CLK (STATE) tHO tSUV DIVIDE-BY-4 SLIP SYNCHRONIZATION SYNC 1 2 3 5 4 4x INPUT CLK SLIP (0) (1) (2) (3) (3) (0) (1) (2) (3) (0) (1) (2) (3) (1) (2) (3) (0) (0) (1) (2) (3) (0) (1) (2) (3) (0) (2) (3) (0) (1) (1) (2) (3) (0) (1) (2) (3) (0) (1) (3) (0) (1) (2) (2) (3) (0) (1) (2) (3) (0) (1) (2) 1x DIVIDED CLK (STATE) Figure 11. Slip Synchronization Mode 26 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC MAX19515 tHO DIVIDE-BY-2 EDGE SYNCRONIZATION tSUV tSUV = SET-UP TIME FOR VALID CLOCK EDGE. tHO = HOLD-OFF TIME FOR INVALID CLOCK EDGE. SYNC 1 2 3 4 2x INPUT CLK FORCE TO 0 (0) (1) (0) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) (0) (1) 1x DIVIDED CLK (STATE) tHO tSUV DIVIDE-BY-4 EDGE SYNCHRONIZATION SYNC 1 2 3 4 5 4x INPUT CLK FORCE TO 0 (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (1) (2) (3) (0) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) (3) (0) (1) (2) (0) (1) (2) (3) (0) (1) (2) (3) (0) (1) 1x DIVIDED CLK (STATE) Figure 12. Edge Synchronization Mode ______________________________________________________________________________________ 27 MAX19515 Dual-Channel, 10-Bit, 65Msps ADC Table 4. Data Timing Controls DATA TIMING CONTROL DESCRIPTION DA_BYPASS Data aligner bypass. When this control is active (high), data and DCLK delay is reduced by approximately 3.4ns (relative to DA_BYPASS = 0). DLY_HALF_T When this control is active, data output is delayed by half clock period (T/2). This control does not delay data output if MUX mode is active. DTIME<2:0> Allows adjustment of data output delay in T/16 increments, where T is the sample clock period. Provides adjustment of DCLK delay in T/16 increments, where T is the sample clock period. When DTIME and DCLKTIME are adjusted to the same setting, the rising edge of DCLK occurs T/8 prior to data transitions. DCLKTIME<2:0> Table 5. Data Timing Control Default Settings DATA TIMING CONTROL DEFAULT DA_BYPASS 1 Data aligner disabled DLY_HALF_T 0 No delay DTIME<2:0> 000 No delay DCLKTIME<2:0> 000 No delay DESCRIPTION Digital Outputs The MAX19515 features a dual CMOS, multiplexable, reversible data bus. In parallel programming mode, configure the data outputs (D0_–D9_) for offset binary, two’s complement, or gray code using the FORMAT input. Select multiplexed or dual-bus operation using the OUTSEL input. See the Output Format register (01h) for details on output formatting using the SPI interface. The SPI interface offers additional flexibility where D0_–D9_ are reversed, so the LSB appears at D9_ and the MSB at D0_. OVDD sets the output voltage; set OVDD between 1.8V and 3.3V. The digital outputs feature programmable output impedance from 50Ω to 300Ω. Set the output impedance for each bus using the CH_ Data Output Termination Control registers (04h and 05h). Programmable Data Timing The MAX19515 provides programmable data timing control to allow for optimization of timing characteristics to meet the system timing requirements. The timing adjustment feature also allows for ADC performance improvements by shifting the data output transition away from the sampling instant. The data timing control signals are summarized in Table 4. The default settings for timing adjustment controls are given in Table 5. Many applications will not require adjustment from the default settings. The effects of the data timing adjustment settings are illustrated in Figures 13 and 14. The x axis is sampling rate and the y axis is data delay in units of clock period. 28 The solid lines are the nominal data timing characteristics for the 14 available states of DTIME and DLY_HALF_T. The heavy line represents the nominal data timing characteristics for the default settings. Note that the default timing adjustment setting for the MAX19515 65Msps ADC results in an additional period of data latency. Tables 6 and 7 show the recommended timing control settings versus sampling rate. The nominal data timing characteristics versus sampling rate for these recommended timing adjustment settings are shown in Figures 15 and 16. When DA_BYPASS = 1, the DCLKTIME delay setting must be equal to or less than the DTIME delay setting, as shown in Table 8. Power Management The SHDN input (pin 7) toggles between any two powermanagement states. The Power Management register (00h) defines each power-management state. In default state, SHDN = 1 shuts down the MAX19515 and SHDN = 0 returns to full power. Use of the SHDN input is not required for power management. For either state of SHDN, complete power-management flexibility is provided, including individual ADC channel power-management control, through the Power Management register (00h). The available reduced-power modes are shutdown and standby. In standby mode, the reference and duty-cycle equalizer circuits remain active for rapid wake-up time. In standby mode, the externally applied clock signal must remain active for the duty-cycle equalizer to remain locked. Typical wake-up time from standby mode is 15µs. In shutdown mode, all circuits are turned off except for the reference circuit required for the integrated self-sensing voltage regulator. If the regulator is active, there is additional supply current associated with the regulator circuit when the device is in shutdown. Typical wake-up time from shutdown mode is 5ms, which is dominated by the RC time constant on REFIO. ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC 1.5 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 1.0 0.5 MAX19515 fig15 2.0 VOVDD = 1.8V DA_BYPASS = 1 DATA DELAY (T FRACTIONAL PERIOD) DATA DELAY (T FRACTIONAL PERIOD) RECOMMENDED DATA TIMING vs. SAMPLE RATE MAX19515 fig13 2.0 +10/16 +8/16 +6/16 +2/16 0 -2/16 0 VOVDD = 1.8V DA_BYPASS = 1 1.5 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 1.0 0.5 +10/16 +8/16 +6/16 +2/16 0 -2/16 0 30 40 50 60 30 40 SAMPLING RATE (Msps) RECOMMENDED DATA TIMING vs. SAMPLE RATE MAX19515 fig14 DATA DELAY (T FRACTIONAL PERIOD) 1.5 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 1.0 0.5 +10/16 +8/16 +6/16 +2/16 0 -2/16 0 40 50 MAX19515 fig16 2.0 VOVDD = 3.3V DA_BYPASS = 1 30 60 Figure 15. Recommended Data Timing (VOVDD = 1.8V) FACTORY-DEFAULT NOMINAL DATA TIMING vs. SAMPLE RATE 2.0 50 SAMPLING RATE (Msps) Figure 13. Default Data Timing (VOVDD = 1.8V) DATA DELAY (T FRACTIONAL PERIOD) MAX19515 FACTORY-DEFAULT NOMINAL DATA TIMING vs. SAMPLE RATE VOVDD = 3.3V DA_BYPASS = 1 1.5 1.0 +11/16 +9/16 +7/16 +5/16 +3/16 +1/16 -1/16 -3/16 0.5 0 60 30 40 SAMPLING RATE (Msps) 50 +10/16 +8/16 +6/16 +2/16 0 -2/16 60 SAMPLING RATE (Msps) Figure 14. Default Data Timing (VOVDD = 3.3V) Figure 16. Recommended Data Timing (VOVDD = 3.3V) Table 6. Recommended Timing Adjustments (VOVDD = 1.8V) SAMPLING RATE (Msps) VOVDD = 1.8V FROM TO DA_BYPASS DLY_HALF_T DTIME<2:0> DCLKTIME<2:0> 30 56 1 0 000 000 56 65 1 0 101 101 ______________________________________________________________________________________ 29 MAX19515 Dual-Channel, 10-Bit, 65Msps ADC Table 7. Recommended Timing Adjustments (VOVDD = 3.3V) SAMPLING RATE (Msps) VOVDD = 3.3V FROM TO DA_BYPASS DLY_HALF_T DTIME<2:0> DCLKTIME<2:0> 30 65 1 0 000 000 Table 8. Allowed Settings of DCLKTIME and DTIME for DA_BYPASS = 1 DTIME<2:0> ALLOWED DCLKTIME<2:0> SETTINGS 111 (-3T/16) 111 (-3T/16) 110 (-2T/16) 110 (-2T/16); 111 (-3T/16) 101 (-1T/16) 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 000 (nominal) 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 001 (+1T/16) 001 (+1T/16); 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 010 (+2T/16) 010 (+2T/16); 001 (+1T/16); 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) 011 (+3T/16) 011 (+3T/16); 010 (+2T/16); 001 (+1T/16); 000 (nominal); 101 (-1T/16); 110 (-2T/16); 111 (-3T/16) Table 9. Reset Methods RESET MODE DESCRIPTION Upon power-up (AVDD supply voltage and clock signal applied), the POR (power-on-reset) circuit initiates a Power-On Reset register reset. Software Reset Write data 5Ah to address 0Ah to initiate register reset. Hardware Reset A register reset is initiated by the falling edge on the SHDN pin when SPEN is high. Integrated Voltage Regulator Power-On and Reset The MAX19515 includes an integrated self-sensing linear voltage regulator on the analog supply (AVDD). See Figure 17. When the applied voltage on AVDD is below 2V, the voltage regulator is bypassed, and the core analog circuitry operates from the externally applied voltage. If the applied voltage on AVDD is higher than 2V, the regulator bypass switches off, and voltage regulator mode is enabled. When in voltage regulation mode, the internal-core analog circuitry operates from a stable 1.8V supply voltage provided by the regulator. The regulator provides an output voltage of 1.8V over a 2.3V to 3.5V AVDD input-voltage range. Since the power-supply current is constant over this voltage range, analog power dissipation is proportional to the applied voltage. The user-programmable register default settings and other factory-programmed settings are stored in nonvolatile memory. Upon device power-up, these values are loaded into the control registers. This operation occurs after application of supply voltage to AVDD and application of an input clock signal. The register values are retained as long as AVDD is applied. While AVDD is applied, the registers can be reset, which will overwrite all user-programmed registers with the default values. This reset operation can be initiated by software command through the serial-port interface or by hardware control using the SPEN and SHDN inputs. The reset time is proportional to the ADC clock period and requires 130µs at 65Msps. Table 9 summarizes the reset methods. 30 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC MAX19515 AVDD (PINS 1, 12, 13, 48) REGULATOR IN 2.3V TO 3.5V OUT 1.8V ENABLE INTERNAL ANALOG CIRCUITS REFERENCE GND Figure 17. Integrated Voltage Regulator Applications Information Analog Inputs IN_+ 0.1µF 1 VIN 6 36.5Ω 0.5% MAX19515 T1 N.C. 5 2 Transformer-Coupled Differential Analog Input The MAX19515 provides better SFDR and THD with fully differential input signals than a single-ended input drive. In differential input mode, even-order harmonics are lower as both inputs are balanced, and each of the ADC inputs only require half the signal swing compared to single-ended input mode. An RF transformer (Figure 18) provides an excellent solution for converting a single-ended signal to a fully differential signal. Connecting the center tap of the transformer to CM_ provides a common-mode voltage. The transformer shown has an impedance ratio of 1:1.4. Alternatively, a different step-up transformer can be selected to reduce the drive requirements. A reduced signal swing from the input driver can also improve the overall distortion. The configuration of Figure 18 is good for frequencies up to Nyquist (fCLK/2). CM_ N.C. 0.1µF 3 4 MINI-CIRCUITS 36.5Ω 0.5% ADT1-1WT IN_- Figure 18. Transformer-Coupled Input Drive for Input Frequencies Up to Nyquist IN_+ 0.1µF 1 VIN N.C. 5 T1 6 2 1 75Ω 0.5% N.C. N.C. 5 T2 110Ω 0.5% 6 MAX19515 2 CM_ N.C. 0.1µF 3 4 MINI-CIRCUITS ADT1-1WT 75Ω 0.5% 3 4 MINI-CIRCUITS ADT1-1WT 110Ω 0.5% IN_- Figure 19. Transformer-Coupled Input Drive for Input Frequencies Beyond Nyquist ______________________________________________________________________________________ 31 MAX19515 Dual-Channel, 10-Bit, 65Msps ADC VIN 0.1µF 0.01µF IN_+ MAX4108 CLK+ 0.1µF CLKIN 100Ω 49.9Ω MAX19515 MAX19515 CM_ 100Ω 0.1µF 49.9Ω 0.01µF CLK- IN_0.1µF Figure 20. Single-Ended, AC-Coupled Input Drive Figure 21. Single-Ended-to-Differential Clock Input The circuit of Figure 19 also converts a single-ended input signal to a fully differential signal. Figure 19 utilizes an additional transformer to improve the commonmode rejection allowing high-frequency signals beyond the Nyquist frequency. A set of 75Ω and 110Ω termination resistors provide an equivalent 50Ω termination to the signal source. The second set of termination resistors connect to CM_ providing the correct input common-mode voltage. duce the highest level of signal integrity. Route highspeed digital signal traces away from the sensitive analog traces of either channel. Make sure to isolate the analog input lines to each respective converter to minimize channel-to-channel crosstalk. Keep all signal lines short and free of 90° turns. Single-Ended AC-Coupled Input Signal Figure 20 shows a single-ended, AC-coupled input application. The MAX4108 provides high speed, high bandwidth, low noise, and low distortion to maintain the input signal integrity. Bias voltage is applied to the inputs through internal 2kΩ resistors. See Common Mode register 08h for further details. INL is the deviation of the measured transfer function from a best-fit straight line. Worst-case deviation is defined as INL. DC-Coupled Input The MAX19515’s wide common-mode voltage range (0.4V to 1.4V) allows DC-coupled signals. Ensure that the common-mode voltage remains between 0.4V and 1.4V. Definitions Integral Nonlinearity (INL) Differential Nonlinearity (DNL) DNL is the difference between the measured transfer function step width and the ideal value of 1 LSB. A DNL error specification of less than 1 LSB guarantees no missing codes and a monotonic transfer function. DNL deviations are measured at each step of the transfer function and the worst-case deviation is defined as DNL. Offset Error Grounding, Bypassing, and Board-Layout Considerations Offset error is a parameter that indicates how well the actual transfer function matches the ideal transfer function at midscale. Ideally, the midscale transition occurs at 0.5 LSB above midscale. The offset error is the amount of deviation between the measured midscale transition point and the ideal midscale transition point. The MAX19515 requires high-speed board-layout design techniques. Locate all bypass capacitors as close as possible to the device, preferably on the same side as the ADC, using surface-mount devices for minimum inductance. Bypass AVDD, OVDD, REFIO, CMA, and CMB with 0.1µF ceramic capacitors to GND. Multilayer boards with ground and power planes pro- Gain error is a figure of merit that indicates how well the slope of the measured transfer function matches the slope of the ideal transfer function based on the specified full-scale input-voltage range. The gain error is defined as the relative error of the measured transfer function and is expressed as a percentage. Clock Input Figure 21 shows a single-ended-to-differential clock input converting circuit. 32 Gain Error ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC Single-Tone Spurious-Free Dynamic Range (SFDR1 and SFDR2) SFDR is the ratio expressed in decibels of the RMS amplitude of the fundamental (maximum signal component) to the RMS amplitude of the next largest spurious component, excluding DC offset. SFDR1 reflects the spurious performance based on worst 2nd-order or 3rd-order harmonic distortion. SFDR2 is defined by the worst spurious component excluding 2nd- and 3rdorder harmonics and DC offset. Signal-to-Noise Ratio (SNR) Total Harmonic Distortion (THD) For a waveform perfectly reconstructed from digital samples, the theoretical maximum SNR is the ratio of the full-scale analog input (RMS value) to the RMS quantization error (residual error). The ideal, theoretical minimum analog-to-digital noise is caused by quantization error only and results directly from the ADC’s resolution (N bits): SNR[max] = 6.02 x N + 1.76 THD is the ratio of the RMS of the first six harmonics of the input signal to the fundamental itself. This is expressed as: In reality, there are other noise sources besides quantization noise (e.g., thermal noise, reference noise, clock jitter, etc.). SNR is computed by taking the ratio of the RMS signal to the RMS noise. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first six harmonics (HD2–HD7), and the DC offset. ⎛ SIGNALRMS ⎞ SNR = 20 × log ⎜ ⎟ ⎝ NOISERMS ⎠ ⎞ ⎟ ⎟ ⎠ where V1 is the fundamental amplitude and V2–V7 are the amplitudes of the 2nd-order through 7th-order harmonics (HD2–HD7). Third-Order Intermodulation (IM3) IM3 is the total power of the third-order intermodulation products to the Nyquist frequency relative to the total input power of the two input tones fIN1 and fIN2. The individual input tone levels are at -7dBFS. The thirdorder intermodulation products are: 2 x fIN1 - fIN2, 2 x fIN2 - fIN1, 2 x fIN1 + fIN2, 2 x fIN2 + fIN1. Aperture Delay Signal-to-Noise and Distortion (SINAD) SINAD is computed by taking the ratio of the RMS signal to the RMS noise plus the RMS distortion. RMS noise includes all spectral components to the Nyquist frequency excluding the fundamental, the first six harmonics (HD2–HD7), and the DC offset. RMS distortion includes the first six harmonics (HD2–HD7). ⎛ SIGNALRMS SINAD = 20 × log ⎜ ⎜ 2 2 ⎝ NOISERMS + DISTORTIONRMS ⎛ V22 + V32 + V4 2 + V52 + V62 + V72 THD = 20 × log ⎜ ⎜ V1 ⎝ ⎞ ⎟ ⎟ ⎠ The input signal is sampled on the rising edge of the sampling clock. There is a small delay between the rising edge of the sampling clock and the actual sampling instant, which is defined as aperture delay (tAD). Aperture Jitter Aperture jitter (tAJ) is defined as the sample-to-sample time variation in the aperture delay. Overdrive Recovery Time Overdrive recovery time is the time required for the ADC to recover from an input transient that exceeds the full-scale limits. The specified overdrive recovery time is measured with an input transient that exceeds the fullscale limits by ±10%. Chip Information PROCESS: CMOS ______________________________________________________________________________________ 33 MAX19515 Small-Signal Noise Floor (SSNF) SSNF is the integrated noise and distortion power in the Nyquist band for small-signal inputs. The DC offset is excluded from this noise calculation. For this converter, a small signal is defined as a single tone with an amplitude less than -35dBFS. This parameter captures the thermal and quantization noise characteristics of the converter and can be used to help calculate the overall noise figure of a receive channel. Refer to www.maxim-ic.com for application notes on Thermal + Quantization Noise Floor. Dual-Channel, 10-Bit, 65Msps ADC OVDD D4B D5B D6B D7B D8B D9B D0A D1A D2A OVDD TOP VIEW D3A MAX19515 Pin Configuration 36 35 34 33 32 31 30 29 28 27 26 25 D4A 37 24 D3B D5A 38 23 D2B D6A 39 22 D1B D7A 40 21 D0B D8A 41 20 DCLKB 19 DORB 18 GND D9A 42 DORA 43 DCLKA 44 17 GND SDIN/FORMAT 45 16 CLK- SCLK/DIV 46 15 CLK+ 14 SYNC 13 AVDD 3 4 5 6 7 8 9 10 11 12 SPEN REFIO SHDN I.C. INB+ INB- CMB 2 AVDD 1 INA- 48 INA+ AVDD CMA 47 *EP + AVDD CS/OUTSEL MAX19515 *EXPOSED PAD Package Information For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status. 34 PACKAGE TYPE PACKAGE CODE OUTLINE NO. LAND PATTERN NO. 48 TQFN-EP T4877+4 21-0144 90-0130 ______________________________________________________________________________________ Dual-Channel, 10-Bit, 65Msps ADC REVISION NUMBER REVISION DATE DESCRIPTION PAGES CHANGED 0 7/08 Initial release — 1 10/08 Corrected error in vertical scale for TOC32 11 2 9/10 Updated timing characteristics due to CMOS output driver changes 3 1/11 Added automotive qualified part to Ordering Information 5, 6, 28, 29, 30 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 35 © 2011 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX19515 Revision History