FAIRCHILD KA3050

www.fairchildsemi.com
KA3050
Camera Motor Drive and Control IC
Features
Description
• Built-in DC motor driver
: 1.5-CH DC motor driver : CW, CCW & Brake
• Stepping motor driver
• Built-in strobo control
• Built-in IRED driver for auto-focus
• Built-in VE selector
• Built-in VE voltage detector
• Built-in 5V regulator
• Built-in step-up DC/DC converter controller
The KA3050 is a monolithic integrated circuit, and suitable
for the motor driver (AE, AF, zoom and reel motor driver)
and the controller (strobo trigger, IRED driver, supply voltage detector, step-up converter control, etc.) in camera systems.
Typical Applications
Ordering Information
• Camera system
48-QFP-1010E
Device
Package
Operating Temp.
KA3050
48-QFP-1010E
−20°C ~ +50°C
Rev. 1.0.1
February. 2000.
©2000 Fairchild Semiconductor International
KA3050
2
DEO
RBT
BTS
VDS
FMI
IRI
S-GND1
S-VE
P-VE
P-VE
FBR
FMO
Pin Assignments
36
35
34
33
32
31
30
29
28
27
26
25
VDD
37
24
P-GND2
VDI
38
23
IRO
VCC
39
22
DM1
MC1
40
21
DM2
MC2
41
20
DM3
MC3
42
19
P-GND2
MC4
43
18
SM1
S-GND2
44
17
SM2
SC1
45
16
SM3
SC2
46
15
SM4
SC3
47
14
SM5
SC4
48
13
P-GND1
4
5
6
7
8
9
NES
PTR
NEC
TRI
MGI
P-GND1
VSI
VSI
10
11
12
MGO
3
TRO
2
OSC
1
SEL
KA3050
KA3050
Pin Definitions
Pin Number
Pin Name
Pin Function Description
1
SEL
IC on/off
2
NES
Comparator input
3
PTR
PNP open collector output
4
NEC
PNP open collector output
5
TRI
Trigger input
6
MGI
Magnet drive input
7
P-GND1
8
VSI
Step motor & AE meter power
9
VSI
Step motor & AE meter power
10
OSC
Power ground 1
NPN open collector output
11
TRO
PNP open collector output
12
MGO
Magnet drive output (NPN open collector output)
13
P-GND1
14
SM5
Step motor & AE meter output 5
15
SM4
Step motor & AE meter output 4
16
SM3
Step motor & AE meter output 3
17
SM2
Step motor & AE meter output 2
18
SM1
Step motor & AE meter output 1
19
P-GND2
20
DM3
DC motor output 3
21
DM2
DC motor output 2
22
DM1
DC motor output 1
23
IRO
IRED drive output
24
P-GND2
25
FMO
Step-up converter switching output
26
FBR
IRED feedback input
27
P-VE
Power VE (Battery power)
28
P-VE
Power VE (Battery power)
29
S-VE
Signal VE (Battery power)
30
S-GND1
Power ground 1
Power ground 2
Power ground 2
Signal ground 1
31
IRI
IRED control input
32
FMI
Step-up converter clock input
33
VDS
VDD selection (4V/5V)
34
BTS
Battery selection (3V/6V)
35
RBT
VE voltage detection output(analog)
36
DEO
VE voltage detection output(digital)
37
VDD
Inside power & outside power output
38
VDI
Step-up voltage
39
VCC
Motor drive IC power & control block power (5V) output
40
MC1
MC code input 1
3
KA3050
Pin Definitions (Continued)
Pin Number
Pin Name
Pin Function Description
41
MC2
MC code input 2
42
MC3
MC code input 3
43
MC4
MC code input 4
44
S-GND2
Signal ground 2
45
SC1
SC code input 1
46
SC2
SC code input 2
47
SC3
SC code input 3
48
SC4
SC code input 4 / buffer output
Internal Block Diagram
P_VE
DM2
22
21
DM3
VSI
VSI
SM1
SM2
SM3
SM4
SM5
IRO
FBR
20
9
8
18
17
16
15
14
23
26
OSC NEC NESPTR MGO
10
4
2
3
TRO
12
11
NPN Open Collector Output
DM1
39
PNP Open Collector Output
VCC
38
Comparator Input
VDI
25
PNP Open Collector Output
FMO
27
PNP Open Collector Output
29
NPN Open Collector Output
28
S_VE
REG1
I RED
Drive
Block
VDD
37
VDS
33
REG1
IRED/
VE/VDD
Detect
Stepping
Motor
Current
Control
PFM
DC/DC
4
P-GND1 7
13
P_GND2 19
24
S-GND 30
44
Motor or Strobo Control Block
1
34
36
SEL
BTS
DEO
32
35
FMI RBT
40
41
42
43
45
46
47
48
31
6
MC1
MC2
MC3
MC4
SC1
SC2
SC3
SC4
IRI
MGI
5
TRI
KA3050
Equivalent Circuits
Description
Pin No.
Internal Circuit
1.5-Channel DC Motor Drive Block
MC1~4
40~43
SC1~4
45~48
DM1
22
DM2
21
DM3
20
P_VE
27,28
P_GND
7, 13, 19, 24
P_VE
27 28
MC1
MC2
MC3
MC4
40
SC1
SC2
SC3
SC4
45
41
42
MC1~MC4
46
47
DM2
DM3
43
20
DC Motor Control
Block
DM1
21
22
SC1~SC4
48
7
13 19 24
P_GND
Stepping Motor Drive Block
MC1~4
40~43
SC1~4
45~48
SM1
18
SM2
17
SM3
16
SM4
15
SM5
14
VSI
8, 9
P_GND
7, 13, 19, 24
VSI
MC1
MC2
MC3
MC4
40
SC1
SC2
SC3
SC4
45
8
9
41
42
MC1~MC4
43
46
47
SM1
Step Motor Control
Block
SM2
18
SM3
17
SM4
15
16
SM5
14
SC1~SC4
48
7
P_GND 19
13
24
IRED Drive Block
MC1~4
40~43
SC1~4
45~48
IRO
23
FBR
26
IRO
23
IRI
31
MC1
MC2
MC3
MC4
40
SC1
SC2
SC3
SC4
45
41
42
MC1~MC4
43
46
47
IRED Control Block
SC1~SC4
48
26
FBR
5
KA3050
Equivalent Circuits (Continued)
Description
Pin No.
Internal Circuit
Step-up Control Block
FMI
32
VDI
38
FMO
25
P_GND
7, 13, 19, 24
25
FMO
VDI
38
Q
S
Q
R
Vref
32
7
13
19 24
FMI
P_GND
General Buffer & Comparator Drive
Block
6
MC1~4
40~43
SC1~3
45~47
MGI
17
MGO
16
NES
2
SC4
48
TRI
5
TRO
11
PTR
3
NEC
4
OSC
10
P_GND
7, 13, 19, 24
MGI
6
NES
2
12
MGO
48
SC4
11
TRO
3
PTR
4
NEC
10
OSC
VDD*0.3
VCC
TRI
MC1
MC2
MC3
MC4
40
SC1
SC2
SC3
45
5
Buffer Control
Block
41
42
MC1~MC4
43
46
SC1~SC3
47
7
13
19 24
P_GND
KA3050
Absolute Maximum Ratings (Ta = 25°°C)
Parameter
Symbol
Value
Unit
VE
−0.3 ~ +7.5
V
Output current (VDD)
IVDD
80
mA
Output current (VCC)
IVCC
50
mA
ISM1, 2, 3, 4
500
mA
Within 70ms
ISM4, 5
1000
mA
Within 70ms
IDM
3000
mA
Within 10ms
Supply voltage
Output current (Stepping motor)
Output current (AE meter)
Current (DC motor)
Remark
Output current (IRO)
IIRO
2000
mA
Within 500µs
Output current (MGO)
IMGO
500
mA
Within 200ms
Output terminal voltage
VOUT
−0.3 ~ +7.5
V
Input terminal voltage
VIN
−0.3 ~ +7.5
V
Power dissipation
PD
1.0
W
Operating temperature range
TOPR
−20 ~ +50
°C
Storage temperature
TSTG
−55 ~ +125
°C
Power Dissipation Curve
Power dissipation (W)
1.0
0.8
Ambient temperature, Ta (°C)
25
50
150
Recommended Operating Conditions (Ta = 25°°C)
Parameter
Operating Supply Voltage
Symbol
Min.
Typ.
Max.
Unit
VE
2.0
-
7.5
V
7
KA3050
Electrical Characteristics (Ta = 25°°C)
Block
Total
Parameter
ISTB
-
-
1.0
µA
1
-
−0.3
-
0.6
V
2
High input voltage range
VINH
-
1.6
-
7.0
V
3
µA
4
V
5
V
6
V
7
KHz
8
V
9
V
10
V
11
V
12
8
IIH
VIH=4.0V
-
80
120
IIL
VIL=GND
−1
-
0
-
-
1.0
VVDI1
5.35
5.5
5.65
Step-up output voltage 2
VVDI2
VE=2.0V,
ILOAD=100mA
8.3
8.6
8.9
FMO output voltage 1
VOL1
VE=2.0V,
ILOAD=700mA
-
-
0.3
FMO output voltage 2
VOL2
VE=2.0V,
ILOAD=1000mA
-
-
0.4
VMIN
-
f
VE=2.0V
39
156
313
VDD output voltage 3
VVDD3
IO=80mA
3.85
4.0
4.15
VDD output voltage 4
VVDD4
IO=80mA
4.85
5.0
5.15
Input & output potential
difference 1
VSAT1
IO=80mA
-
-
0.3
VE detection voltage (1-1)
VTH+1
VE=6V
3.0
3.15
3.3
VE detection voltage (1-2)
VTH-1
VE=6V
2.7
2.85
3.0
VE detection voltage (2-1)
VTH+2
VE=6V/3V
1.5
1.65
1.8
VE detection voltage (2-2)
VTH-2
VE=6V/3V
1.2
1.35
1.5
Output saturation voltage
VDEO
VE=2.0V, IOL=5mA
-
-
0.5
V
13
Operating voltage range 1
VOPR1
VE
1.2
-
7.5
V
14
-
-
0.1
V
15
0.47
0.5
1.5
-
Stand-by output voltage
VSBT
Output voltage in operating
VRBT1
Operating voltage range 2
VOPR2
Output voltage temperature
coefficient
DC
MOTOR
VE=6.0V
VE=2.0V,
ILOAD=100mA
FMI step-up clock
VCC
Notes
VINL
Step-up output voltage 1
RBT
Min. Typ. Max. Unit
Low input voltage range
Min. operating voltage
VDET
Condition
Leakage current
Control input current
Step-up
&
VDD
Symbol
IOL=10µA
-
VT
-
0.53 × VE
16
7.5
V
17
18
-
-
2.0
mV/
°C
4.85
5.0
5.15
V
19
-
-
0.3
V
20
1.0
-
7.5
V
21
V
22
V
23
VCC output voltage
VVDD5
IO=50mA
Input & output potential
difference 2
VDAT2
IO=50mA, VCC=3V
Function compensation voltage
range 3
VOPR3
VE
Function compensation voltage
range 4
VOPR4
-
1.0
-
7.5
Output voltage (PNP+NPN) 1
VDM1
VE=2.0V, IOL=800mA
-
0.6
0.8
Output voltage (PNP+NPN) 2
VDM2
VE=2.0V, IOL=1000mA
-
0.8
1.0
KA3050
Electrical Characteristics (Continued)
Block
Parameter
Function compensation
voltage range 5
S.M
&
AE
METER
Output saturation voltage
Output voltage relative error
Symbol
VOPR5
Condition
VSI=VE
Min.
Typ.
Max.
Unit Notes
1.6
-
7.5
V
24
VSTP
VSI=3.5V,
IO=500mA
-
-
0.8
V
25
∆V
IO=300mA,
SMI1,2,3,4
-
-
0.1
V
26
VCOIL voltage
VCOIL
1.7
1.8
1.9
V
VCOIL voltage STEP
VCOST
-
-
190
-
mV
Function compensation
voltage range 6
VOPR6
-
1.0
-
7.5
V
28
TRO output voltage
VTRO
IO=10mA
-
-
0.5
V
29
PTR output voltage
VPTR
IO=10mA
-
-
0.5
V
30
STROBO NEC output voltage
OSC output voltage
VNEC
IO=10mA
-
-
0.5
V
31
VOSC
IO=10mA
-
-
0.5
V
32
IRED
MG
VCC=5V
0.33 × VDD
33
0.3
V
34
-
-
× VDD
35
-
1.0
V
36
0.72
0.8
0.88
A
37
7.5
V
38
NES detection voltage
VNES
-
0.27
0.3
SC4 “L” level
VSOL
-
-
-
-
0.8
-
SC4 “H” level
VSOH
Output saturation voltage 3
VSAT3
Output current
IO
IOL=1A
RFBR=0.25Ω
VFBR=200mV
27
Operating voltage range
VOP
-
1.5
-
MGI detection voltage
VMGI
-
0.22
0.25
MGO output saturation
voltage
VMGO
IO=500mA
-
-
0.28 × VCC
39
0.5
40
V
9
KA3050
Electrical Characteristics (Continued)
Notes:
1. Define Input Current at Stand-By.
2. Define Low Level of Input Terminals.
3. Define High Level of Input Terminals.
4. Define Input Current of Each Control Input Terminals.
5. Define Min. Operating Voltage for Step-up Circuits (SEL, FMO)
6. Define Output Voltage of VDD at Step-up.
7. Define Saturation Voltage of FMO Output.
8. Define Frequency of Step-up Clock.
9. Define Output Voltage of VDD.
10. Define Input and Output Potential Difference of VDD Regulator.
11. Define Detection Voltage of VE Detection Circuit. ( with Hysteresis, Using 6V Battery )
12. Define Detection Voltage of VE Detection Circuit. ( with Hysteresis, Using 6V or 3V Battery )
13. Define Output Saturation Voltage of DEO.
14. Define Operating Voltage Range of VE Detection Circuit.
15. Define Output Voltage at Stand-by.
16. Define RBT Output Voltage at Operating RBT Circuit.
17. Define Operating Voltage Range of RBT Circuit.
18. Define Temperature Coefficient of RBT Output Voltage.
19. Define VCC Output Voltage at Connecting VSI and VE.
20. Define Input and Output Potential Difference of VCC Regulator.
21. Define Function Compensation Voltage of VCC Output Circuit.
22. Define Function Compensation Voltage of DC Motor Driving Circuit.
23. Define Output Saturation Voltage ( PNP + NPN ) of DC Motor Driving Circuit.
24. Define Function Compensation Voltage of Stepping Motor and AE Meter Driving Circuit.
25. Define Output Saturation Voltage ( PNP + NPN ) at Flowing Specified Current.
26. Define Relative Error of Output Voltage at Flowing Specified Current between SM1-2 and SM3-4.
27. Define Voltage between Both Side of VCOIL.
28. Define Function Compensation Voltage of Strobo Control Circuit.
29. Define Output Saturation Voltage of TRO.
30. Define Output Saturation Voltage of PTR.
31. Define Output Saturation Voltage of NEC.
32. Define Output Saturation Voltage of OSC.
33. Define Detection Voltage of NES Voltage Detection Circuit.
34. Define Low Level of SC4.
35. Define High Level of SC4.
36. Define Output Saturation Voltage of IRED Driving Circuit.
37. Define Output Current of IRO.
38. Define Operating Voltage Range of IRED Driving Circuit.
39. Define Detection Voltage of MGI.
40. Define Output Saturation Voltage at Flowing Specified Current of MGO.
10
KA3050
Application Information
1. Zoom And Reel Motor Drive Block (1.5-Channel Dc Motor Drive Block)
MC1~MC4
DM2
DM3
VE
20
DC Motor Control
Block
DM1
21
22
SC1~SC4
M
M
This block diagram describes the driver of zoom and reel motor in camera systems.
The drive block is controlled by MC1~4 and SC1~4, which are come from micro controller.
Follow is the control logic table.
INPUT
MC1
L
MC2
MC3
MC4
L
L
L
L
OUTPUT
SC1
DM1
DM2
DM3
H
L
H
-
H
L
H
L
-
H
H
L
L
-
H
L
H
-
H
L
H
H
L
-
L
H
H
H
H
-
L
L
L
SC2
L
SC3
L
SC4
L
11
KA3050
2. Af Motor And Ae Meter Drive Block (Stepping Motor Drive Block)
MC1~MC4
VSI
SM1
SM2
18
Stepping Motor
Control Block
SM3
17
SM4
15
16
SM5
14
SC1~SC4
The block diagram describes the driver of AF motor and AE meter in camera systems.
The drive output is selected by MC signals (MC1~4).
These MC codes are as follows.
INPUT
MC1
H
OUTPUT
MC2
MC3
MC4
SM1
SM2
SM3
SM4
SM5
L
L
H
-
-
-
L
H
L
H
L
-
-
-
H
L
L
H
H
-
-
-
L
L
H
L
L
L
H
L
H
-
H
L
H
L
H
H
L
-
H
H
L
H
L
L
H
-
H
H
H
H
L
H
L
-
The output voltage (VCOIL) is determined by SC1~4.
The VCOIL is potential difference between drive output and ground.
i.e.,
VCOIL = VSM - GND.
The VCOIL is selected by following table.
12
KA3050
INPUT
VCOIL OUTPUT VOLTAGE [V]
SC1
SC2
SC3
SC4
L
L
L
L
1.80
L
L
L
H
1.99
L
L
H
L
2.18
L
L
H
H
2.37
L
H
L
L
2.56
L
H
L
H
2.75
L
H
H
L
2.94
L
H
H
H
3.13
H
L
L
L
3.32
H
L
L
H
3.51
H
L
H
L
3.70
H
L
H
H
3.89
H
H
L
L
4.08
H
H
L
H
4.27
H
H
H
L
4.46
H
H
H
H
4.65
3. Ired Drive Block
IRED
IRO
23
IRI
31
MC1~MC4
IRED Control Block
SC1~SC4
26
FBR
RC
The block drives infrared emitting diode (IRED).
The FBR voltage (VFBR) is controlled by MC codes and SC codes.
The IRED current ( IIRED ) is determined by VFBR and resistor Rc.
i.e.,
IIRED = VFBR / RC
13
KA3050
The VFBR is controlled as following table.
INPUT
VFBR [mV]
MC1
MC2
MC3
MC4
SC1
SC2
SC3
SC4
L
H
L
L
L
L
L
L
190
L
L
L
H
210
L
L
H
L
230
L
L
H
H
250
L
H
L
L
270
L
H
L
H
290
L
H
H
L
310
L
H
H
H
330
H
L
L
L
350
H
L
L
H
370
H
L
H
L
390
H
L
H
H
410
H
H
L
L
430
H
H
L
H
450
H
H
H
L
470
H
H
H
H
490
4. Step-up Control Block
25
VE
FMO
38
Q
S
Q
R
VDI
Vref
32
The FMO frequency from KA3050 steps up the battery voltage VE.
The FMO frequency depends on the FMI frequency, which is come from micro controller.
Maximum value of VDI is 5.5V in normal operation mode, and 8.6V in IRED operation mode.
i.e.,
14
FMI
KA3050
Normal Operation Mode: VDI = 5.5V
IRED Operation Mode: VDI = 8.6V
5. General Buffer And Comparator Drive Block
MGI
6
NES
2
12
MGO
48
SC4
11
TRO
3
PTR
4
NEC
10
OSC
VDD*0.3
VCC
TRI
Buffer Control
Block
5
MC1~MC4
SC1~SC3
The KA3050 is composed of 5 general buffers and a comparator.
This block has 10 inputs and 6 outputs.
All output are controlled by MC and SC codes except MGO.
The control codes are as follows.
INPUT
MC1
L
MC2
L
MC3
L
MC4
L
OUTPUT
SC1
SC2
SC3
NES
TRI
SC4
OSC
NEC
PTR
TRO
L
L
H
H/L
-
L/H
-
H
-
-
L
H
L
H/L
-
L/H
L
H
-
-
L
H
H
-
-
-
L
-
-
-
H
L
L
-
H/L
-
-
-
H
H/
OPEN
The NES and SC4 are conflict with each other, it means.
NES = High → SC4 = Low
NES = Low → SC4 = High
15
KA3050
The meaning of H/L in TRI signal and H/OPEN in TRO signal are as follows.
TRI = High → SC4 = High
TRI = Low → SC4 = Open
The OSC signal refer to following table.
VDET1
DEO(VDET2)
H
-
BTS
H
L
Open(6V)
L
H
Ground(3V)
L
OSC
Step-up Circuit
Enable
Enable
Disable
Enable
Disable
Disable
Enable
Enable
Disable
Disable
Where,
DEO: Battery Voltage Checker, Pin 36
BTS: Battery Selector, Pin 34
Users can’t check the VDET1 because VDET1 is selected automatically inside the KA3050 in 6V battery usage.
But step-up circuit (SUC) can be checked by DEO signal.
The VDET1 and DEO have hysteresis loop as following graph.
VDET1
DEO
H
L
H
VTH1-
VTH1+
VE[V]
The VTH1 and VTH2 refer to electrical characteristics.
16
L
VTH2-
VTH2+
VE[V]
KA3050
6. Other Control Blocks
The following table is description of other control blocks.
Pin No.
Symbol
Function
1
SEL
33
VDS
34
BTS
35
RBT
36
DEO
37
VDD
4V or 5V Regulator output
39
VCC
5V Regulator output
High: KA3050 Operation
Low: KA3050 No Operation
Open: VDD = 5V
Ground: VDD = 4V
Open: VE = 6V
Ground: VE = 3V
VRBT = VE / 2
High: Sufficient Battery
Low: Insufficient Battery
17
KA3050
Control Code Table
MC1 MC2 MC3 MC4 SC1 SC2 SC3 SC4 DM1 DM2 DM3 SM1 SM2 SM3 SM4 SM5 OSC NEC PTR NES TR1
L
L
L
L
L
L
L
H
L
L
L
TR0
FBR VCO
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L
H
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L
L
L
H
L
H
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L
L
H
H
L
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L
H
L
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L
H
L
H
-
H
L
-
-
-
-
-
-
-
-
-
-
-
-
-
L
H
H
L
-
L
H
-
-
-
-
-
-
-
-
-
-
-
-
-
L
H
H
H
-
L
L
-
-
-
-
-
-
-
-
-
-
-
-
-
H
L
L
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
H
L
L
H
-
-
-
-
-
-
L
H
-
-
-
-
-
-
-
-
H
L
H
L
-
-
-
-
-
-
H
L
-
-
-
-
-
-
-
-
H
L
H
H
-
-
-
-
-
-
L
L
-
-
-
-
-
-
-
-
CODE
L
L
L
L
CODE
H
H
L
L
-
-
-
L
H
L
H
-
-
-
-
-
-
-
-
-
H
H
L
H
-
-
-
L
H
H
L
-
-
-
-
-
-
-
-
-
H
H
H
L
-
-
-
H
L
L
H
-
-
-
-
-
-
-
-
-
H
H
H
H
-
-
-
H
L
H
L
-
-
-
-
-
-
-
-
-
L
L
/
H
L
H
/
*
L
L
/
*
L
L
H
*1
-
-
-
-
-
-
-
-
-
H
-
H/L
-
-
-
-
L
H
L
*1
-
-
-
-
-
-
-
-
L
H
-
H/L
-
-
-
-
L
H
H
*1
-
-
-
-
-
-
-
-
L
-
-
-
-
-
-
-
H
L
L
*1
-
-
-
-
-
-
-
-
-
-
H
-
H/L
H/OPEN
-
-
L
L
L
L
-
-
-
-
FBR 190mV
-
-
-
VCOIL 1.80V
-
-
-
L
L
L
H
-
-
-
-
210mV
-
-
-
1.99V
-
-
-
L
L
H
L
-
-
-
-
230mV
-
-
-
2.18V
-
-
-
L
L
H
H
-
-
-
-
250mV
-
-
-
2.37V
-
-
-
L
H
L
L
-
-
-
-
270mV
-
-
-
2.56V
-
-
-
L
H
L
H
-
-
-
-
290mV
-
-
-
2.75V
-
-
-
L
H
H
L
-
-
-
-
310mV
-
-
-
2.94V
-
-
-
L
H
H
H
-
-
-
-
330mV
-
-
-
3.13V
-
-
-
H
L
L
L
-
-
-
-
350mV
-
-
-
3.32V
-
-
-
H
L
L
H
-
-
-
-
370mV
-
-
-
3.51V
-
-
-
H
L
H
L
-
-
-
-
390mV
-
-
-
3.70V
-
-
-
H
L
H
H
-
-
-
-
410mV
-
-
-
3.89V
-
-
-
H
H
L
L
-
-
-
-
430mV
-
-
-
4.08V
-
-
-
H
H
L
H
-
-
-
-
450mV
-
-
-
4.27V
-
-
-
H
H
H
L
-
-
-
-
470mV
-
-
-
4.46V
-
-
-
H
H
H
H
-
-
-
-
490mV
-
-
-
4.65V
-
-
-
L
L
/
*
Note: * mark : Detect NES signal and send a inverted signal to SC4.
18
KA3050
Test Circuits
0.25
10K
10K
R
R L
L R
R
L
L
SW15
SW18
36
SW17
35
34
SW16
33
32
31
30
29
28
27
26
25
37
24
38
23
39
22
40
21
10K
L
41
H
H
M
L
H
M
L
H
M
20
10K
10K
100
10K
100
L
42
19
KA3050
43
18
H
100
44
17
L
H
45
16
46
15
47
14
48
13
L
H
L
H
M
L
H
M
10K
100
10K
100
L
1
A
IVE
2
3
IVDI
SW1
L
VE
4
5
6
7
8
9
A
VDI
10K
10
SW3
SW2
R
R
L
SW4
RL
12
SW5
RL
A
R
A
L
10K
11
IVSI
IIN
10K
10K
10K
VIN
VSI
19
KA3050
Typical Application Circuits
9
VE
25
29 28 27
23
FMO IRO
38
37
39
8
VDI VDD VCC VSI
26
FBR
VE
1
5
12
31
32
33
34
Micro
Controller
Unit
35
36
40
41
42
43
45
46
47
48
24 19 13
7
44 34 33 30
SEL
TRI
MGO
IRI
FMI
VDS
BTS
RBT
DEO
MC1
MC2
MC3
MC4
SC1
SC2
SC3
SC4
GND
GND
NES
PTR
NEC
OSC
TRO
DM3
3
Strobo Block
4
10
11
20
M
KA3050
DM2
21
DM1
22
SM5
14
SM4
15
M
SM3
MGI
6
20
2
16
SM2
17
SM1
18
KA3050
21
KA3050
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER
DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES
OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR
INTERNATIONAL. As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, and (c) whose failure to
perform when properly used in accordance with
instructions for use provided in the labeling, can be
reasonably expected to result in a significant injury of the
user.
2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
12/1/00 0.0m 001
Stock#DSxxxxxxxx
 2000 Fairchild Semiconductor International