www.fairchildsemi.com FAN8725 (KA3025) Spindle Motor and 5-Channel Motor Driver Features Description Common The FAN8725 is a monolithic IC suitable for a 3-phase BLDC spindle motor driver and 5-ch motor drivers which drives the focus actuator, tracking actuator, loading motor, stepping motor driver of the CD-media systems. • • • • Built-in thermal shutdown circuit (TSD) Built-in power save circuit 3 Independent voltage source Corresponds to 3.3V or 5V DSP Spindle • • • • • 48-QFPH-1414 Built-in hall bias Built-in FG signal output circuit Built-in rotational direction detecting circuit Built-in protection circuit for reverse rotation Built-in short brake circuit BTL (5-channel) • • • • Built-in 5-CH balanced transformerless (BTL) driver Built-in Level shift circuit Independent voltage sources VM2 = CH1,CH2 / VM3 = CH3, CH4 ,CH5 Typical Applications • • • • • • Ordering Information Compact disk ROM (CD-ROM) Compact disk RW (CD-RW) Digital video disk ROM (DVD-ROM) Digital video disk RAM (DVD-RAM) Digital video disk Player (DVDP) Other compact disk media Device Package Operating Temp. FAN8725 48-QFPH-1414 −35°C ~ +85°C Rev. 1.0.1 March. 2000. ©2000 Fairchild Semiconductor International 1 FAN8725 (KA3025) VH PC1 EC ECR PS SB VREF SVCC2 VM3 OUT5 IN5 PGND3 Pin Assignments 48 47 46 45 44 43 42 41 40 39 38 37 H1+ 1 36 DO5 - H1- 2 35 DO5+ H2+ 3 34 DO4 - H2- 4 32 DO4+ H3+ 5 32 DO3 - H3- 6 31 DO3+ FAN8725 VM1 10 27 DO1 - CS1 11 26 DO1+ PGND1 12 25 OUT1 13 14 15 16 17 18 2 19 20 21 22 23 24 IN1 DO2+ VM2 28 OUT2 9 IN2 SVCC1 OUT3 DO2 - IN3 29 OUT4 8 IN4 DIR SGND2 PGND2 A3 30 A2 7 A1 FG FAN8725 (KA3025) Pin Definitions Pin Number Pin Name I/O Pin Function Description 1 H1- I Hall 1(-) input 2 H1+ I Hall 1(+) input 3 H2+ I Hall 2(-) input 4 H2- I Hall 2(+) input 5 H3+ I Hall 3(-) input 6 H3- I Hall 3(+) input 7 FG O Frequency Generator output 8 DIR O Rotation direction output 9 SVCC1 - Spindle Signal supply voltage 10 VM1 - Spindle power supply 11 CS1 I Spindle current sense 12 PGND1 - Spindle power ground 13 A1 O 3-phase output1 14 A2 O 3-phase output2 15 A3 O 3-phase output3 16 SGND2 - CH signal ground 17 IN4 I OP-Amp CH 4 input(-) 18 OUT4 O OP-Amp CH 4 output 19 IN3 I OP-Amp CH 3 input(-) 20 OUT3 O OP-Amp CH 3 output 21 IN2 I OP-Amp CH 2 input(-) 22 OUT2 O OP-Amp CH 2 output 23 VM2 - CH1/CH2 power supply 24 IN1 I OP-Amp CH 1 input(-) 25 OUT1 O OP-Amp CH 1 output 26 DO1+ O Channel 1 output (+) 27 DO1 - O Channel 1 output (−) 28 DO2+ O Channel 2 output (+) 29 DO2 - O Channel 2 output (−) 30 PGND2 - CH1/CH2 power ground 31 DO3+ O Channel 3 output (+) 32 DO3 - O Channel 3 output (−) 33 DO4+ O Channel 4 output (+) 3 FAN8725 (KA3025) Pin Definitions (Continued) Pin Number Pin Name I/O Pin Function Description 34 DO4 - O Channel 4 output (−) 35 DO5+ O Channel 5 output (+) 36 DO5- O Channel 5 output (−) 37 PGND3 - CH3/CH4/CH5 power ground 38 IN5 I OP-Amp CH 5 input(-) 39 OUT5 O OP-Amp CH 5 output 40 VM3 - CH3/CH4/CH5 power supply 41 SVCC2 - CH Signal supply voltage 42 VREF I BTL reference voltage 43 SB I Short brake 44 PS I Power save 45 ECR I Torque control reference 46 EC I Torque control 47 PC1 - Phase compensation capacitor 48 VH I Hall bias Notes: BTL drive part symbol(+,- outputs of drives) is determined according to the polarity of input pin. (For example, if the voltage of pin 24 is high, the output of pin 26 is high) 4 FAN8725 (KA3025) 2 H2+ 3 H2 - 4 H3+ 5 H3 - 6 OUT5 IN5 PGND3 SB VM3 PS 43 SVCC2 ECR 44 VREF EC 45 FIN(GND) PC1 46 42 41 40 39 38 37 Hall Bias CH5 X8 Absolute Values CH4 X8 Current Sense Amp CS1 H1 - 47 Output Current Limit CH3 X8 DO5 - 35 DO5+ 34 DO4 - 33 DO4+ 32 DO3 - 31 DO3+ R VM3 VM3 R Detection FG Generator FIN(GND) 36 VM 1 48 Hall Amp H1+ VH Internal Block Diagram VM3 FIN(GND) Logic R VM2 FG 7 Reverse Rotation DIR 8 Short Brake SVCC1 9 VM1 10 CS1 PGND1 VM2 VM2 R 30 PGND2 CH2 X5 29 DO2 - 28 DO2+ 27 DO1 - 11 26 DO1+ 12 25 OUT1 Distributor CH1 X5 5 A3 SGND2 IN4 OUT4 20 21 22 23 24 IN1 A2 19 VM2 18 OUT2 17 IN2 16 OUT3 15 IN3 14 FIN(GND) 13 A1 Driver FAN8725 (KA3025) Equivalent Circuits (Spindle Part) HALL INPUT DRIVER OUTPUT Pin 10 1KΩ 22.5Ω 1KΩ Pin 11 22.5Ω 15KΩ Pin 2,4,6 Pin 1,3,5 Pin 13,14,15 TORQUE CONTROL INPUT 22.5Ω HALL BIAS INPUT 1KΩ 5Ω + Pin 45 Pin 48 1KΩ 22.5Ω - Pin 46 100KΩ POWER SAVE INPUT 22.5Ω SHORT BRAKE INPUT 22.5Ω 40KΩ 1KΩ Pin 43 Pin 44 30KΩ 20KΩ FG OUTPUT DIR OUTPUT Vcc Vcc 10KΩ 30KΩ 22.5Ω 22.5Ω Pin 8 Pin 7 6 FAN8725 (KA3025) Equivalent Circuits (BTL Part) OP-AMP INPUT 20KΩ OP-AMP OUTPUT 20KΩ Pin 25,22,20,18,39 Pin 24,21, 19,17,38 22.5Ω 1KΩ DRIVE OUTPUT 40kΩ 20kΩ VREF CH-O (Pin 26,28,31,33,35 ) 20KΩ Pin 42 CH-O (Pin 27,29,32,34,36) 22.5Ω 20kΩ 7 1KΩ 20KΩ FAN8725 (KA3025) Absolute Maximum Ratings (Ta = 25°°C) Parameter Symbol Value Unit Supply Voltage (Spindle Signal) SVCC1max 7 V Supply Voltage (BTL Signal) SVCC2max 15 V Supply Voltage (Spindle Motor) VM1max 15 V Supply Voltage (BTL CH1/2) VM2max 15 V Supply Voltage (BTL CH3/4/5) VM3max 15 V Power dissipation 3.0 PD note W Operating Temperature Range TOPR -35 ~ +85 °C Storage temperature Range TSTG -55 ~ +150 °C Maximum Output Current (Spindle) IOmaxa 1.3 A Maximum Output Current (BTL) IOmaxb 0.6 A NOTE: 1. When mounted on 70mm × 70mm × 1.6mm PCB (Phenolic resin material) 2. Power dissipation is reduced 24mW/°C for using above Ta=25°C 3. Do not exceed PD and SOA (Safe Operating Area) Power Dissipation Curve Pd [mW] 3,000 2,000 1,000 0 0 25 50 85 100 125 150 175 Ambient Temperature, Ta [°C] Recommended Operating Conditions (Ta = 25°°C) Parameter Symbol Min. Typ. Max. Unit Operating Supply Voltage (Spindle Signal) SVCC1 4.5 – 5.5 V Operating Supply Voltage (BTL Signal) SVCC2 10.8 – 13.2 V Operating Supply Voltage (Spindle Motor) VM1 10.8 – 13.2 V Operating Supply Voltage (BTL CH1/2) VM2 4.5 – SVCC2 V Operating Supply Voltage (BTL CH3/4/5) VM3 4.5 – SVCC2 V 8 FAN8725 (KA3025) Electrical Characteristics (Ta = 25°°C) Parameter Symbol Condition Min. Typ. Max. Units FULL CHIP Quiescent Circuit Current 1 ICC1 FULL CHIP (PS=0V) – 0 0.2 mA Quiescent Circuit Current 2 ICC2 SPINDLE (PS=5V) – 5 10 mA Quiescent Circuit Current 3 ICC3 BTL ( PS=5V) – 20 30 mA POWER SAVE On Voltage Range VPSon L-H Circuit On 2.5 – Vcc V Off Voltage Range VPSoff H-L Circuit Off – – 1.0 V 0.4 1.0 1.8 V HALL BIAS Hall Bias Voltage VHB IHB=20mA HALL AMP IHA - – 0.5 2 uA Common Mode Input Range Hall Bias Current VHAR - 1.5 – 4.0 V Minimum in Level VINH - 100 – – mVpp H1 Hysteresis VHYS - 5 20 40 mVpp Ecr In Voltage Range ECR - 0.2 – 4.0 V Ec In Voltage Range EC - 0.2 – 4.0 V TORQUE CONTROL Offset Voltage (-) ECoff- EC =1.9V -80 -50 -20 mV Offset Voltage (+) ECoff+ ECR =1.9V 20 50 80 mV -3 -0.5 – uA EC In Current ECin EC=1.9V ECR In Current ECRin ECR=1.9V -3 -0.5 – uA In/output Gain GEC ECR=2.5V, RCS=0.5Ω 0.56 0.70 0.84 A/V FG Output Voltage (H) VFGh IFG= -10uA 4.5 4.9 VCC V FG Output Voltage (L) VFHl IFG=10uA – – 0.5 V FG RCS=0.5Ω Duty(Reference Value) 50 % OUTPUT BLOCK Saturation Voltage (upper TR) VOh IO= -300mA – 1.0 1.4 V Saturation Voltage (lower TR) VOl IO=300mA – 0.4 0.7 V Torque Limit Current ITL RCS=0.5Ω 560 700 840 mA DIR Output Voltage (H) VDIRh IFG=-10uA 4.5 4.7 Dir Output Voltage (L) VDIRl IFG=10uA – – 0.5 V DIRECTION DETECTOR V SHORT BRAKE On Voltage Range VSBon - 2.5 – VCC V Off Voltage Range VSBoff - 0 – 1.0 V 9 FAN8725 (KA3025) ELECTRICAL CHARACTERISTICS (continued) BTL Drive Part (Ta=25°°C, SVCC2=12V, VM2=5V, VM3=12V, RL=8, 24Ω Ω) Parameter Symbol Condition Min. Typ. Max. Units Output Offset Voltage1,2 VOF1/2 - -95 – 95 mV Maximum Output Voltage1,2 VOM1/2 VM2=5V,RL=8Ω 3.6 4.0 – V Voltage Gain GVC1/2 VIN=0.1Vrms, 1kHz 12.0 14.0 16.0 dB -95 – 95 mV CH1/CH2 CH3/CH4/CH5 Output Offset Voltage3,4,5 VOF3/4/5 Maximum Output Voltage3,4,5 VOM3/4/5 VM3=12V,RL=24Ω 8.4 10.5 – V Voltage Gain GVC3/4/5 VIN=0.1Vrms, 1kHz 16.0 18.0 20.0 dB 11.0 V - OP-AMP CIRCUIT Common Mode Input Range VICM - 0 – ΙB - -300 -30 Low Level Output Voltage VCL - - 0.2 0.5 V High Level Output Voltage VOH - 10.0 11 – V ISOURCE - 1 4.0 – mA ISINK - 5 10 – mA Input Bias Current Output Driving Source Current Output Driving Sink Current 10 nA FAN8725 (KA3025) Application Information 1. TORQUE CONTROL & OUTPUT CURRENT CONTROL VM + Rcs Vcs VM + Ecr + Current Sense AMP VAMP Torque AMP Io + - - Gain Controller Driver M ECR-EC TSD Ec 1) By amplifying the voltage difference between Ec and Ecr from Servo IC, the Torque Sense AMP produces the input voltage(VAMP) for the Current Sense AMP. 2) The output current (IO) is converted into the voltage (VCS) through the sense resistor (RCS) and compared with the VAMP. By the negative feedback loop, the sensed output voltage, VCS is equal to the input VAMP. The output current (IO) is linearly controlled by the input VAMP. 3) The signals, EC and ECR can control the velocity of the Motor by controlling the output current (IO) of the Driver. 4) The range of the torque voltage is as shown below. Current [mA] Forward Reverse Rotation 700 Ecoff- Ecoff+ 6 -1.0 V -50mV 0 50mV 1.0 V ECR -EC The input range of ECR, EC is 0.2 V ~ 4.0 V ( RCS = 0.5[Ω] ) 11 ECR > Ec Forward rotation ECR < Ec Stop after detecting reverse rotation FAN8725 (KA3025) 2. SHORT BRAKE MOTOR OFF Vcc ON 43 13 1KΩ 14 15 OFF ON 20KΩ Pin # 43 Short Brake HIGH ON LOW OFF When the pick-up mechanism moves from the inner to the outer spindle of the CD, the Brake function of the reverse voltage is commonly employed to decrease the rotating velocity of the Spindle Motor. However, if the Spindle Motor rotates rapidly, the Brake function of the reverse voltage may produce much heat at the Drive IC. To enhance the braking efficiency, the Short Brake function is added to FAN8725. When the Short Brake function is activated, all upper Power TRs turn off and all lower Power TRs turn on, so as to make the rotating velocity of the motor slow down. But FG and DIR functions continue to operate normally. 3. POWER SAVE Vcc IC bias Start 44 40KΩ Stop 30KΩ Pin # 44 Power Save HIGH Motor Drive Ouput Activated LOW Sleep mode When PowerSave(PS) function is activated, the chip is deactivated. 12 FAN8725 (KA3025) 4. TSD (THERMAL SHUTDOWN) Gain Controller BIAS Q2 When the chip temperature rises up to about 175C(degree), the Q2 turns on and the output driver shuts down. When the chip temperature falls off to about 150C(degree), then the Q2 turns off and the driver operates normally. TSD has the temperature hysteresis of about 25C(degree). -- The TSD circuit shuts down all the power drives(spindle and BTL power drives) excluding both CH1 and CH2 power drives(actuator part). 5. ROTATIONAL DIRECTION DETECTION Vcc H2+ + H2- - DIR Rotation 8 DIR Forward Low Reverse High 8 D Q CK H3+ + H3- - D-F/F 1) The forward and the reverse rotations of the CD are detected by using the D-F/F and the truth table is shown in the above. 2) The rotational direction of the CD can be explained by the output waveform of the Hall sensors. Let the three outputs of Hall sensors be H1, H2 and H3 respectively. When the spindle rotates in reverse direction, the Hall sensor output waveform are shown in Fig.(a). Thus the phases ordered in H1→H2→H3 with a 120° phase difference. H1 H2 H3 (a) Reverse rotation 13 FAN8725 (KA3025) On the other hand, if the spindle rotates in forward rotation, the phase relationship is H3->H2->H1 as shown in Fig.(b) H1 H2 H3 (b) Forward rotation The direction output ,detector is Low, when the spindle rotates forward, and HIGH in the reverse direction. 6. REVERSE ROTATION PREVENTION EC + ECR - H2+ + H2- - H3+ + H3- - Current Sense Amp Low Active A D Q CK Gain Controller D-F/F Driver M 1) When the output of the OR Gate, A is LOW, it steers all the output current of the current sense Amp to the Gain Controller zero. The output current of the Driver becomes zero and the motor stops. 2) As in the state of the forward rotation, the D-F/F output, Q is HIGH and the motor rotates normally. At this state, if the control input is changed such that EC>ECR, then the motor rotates slowly by the reverse commutation in the Driver. When the motor rotates in reverse direction, the D-F/F output becomes Low and the OR Gate output, becomes LOW. This prevents the motor from rotating in reverse direction. The operation principle is shown in the table and the flow chart. 14 FAN8725 (KA3025) Forward rotation at EC < ECR Rotating speed is decreased due to reverse torque at EC >ECR. (Motor still rotates forward) At the moment that the motor rotates in reverse, the reverse rotation preventer makes the output power transistor open. Rotating reverse at short time due to motor inertia Stop within 1/6 turn reverse rotating Reverse Rotation Preventer Rotation H2 H3 D-F/F (Q) ECR>EC EC>ECR Forward H H→L H Forward - Reverse L H→L L - Brake and Stop 7. FG OUTPUT Vcc 7 H3+ + H3- - FG 8. HALL SENSOR CONNECTION Vcc Vcc HALL 1 HALL 1 HALL 2 HALL 3 HALL 2 HALL 3 48 VH 48 VH 15 FAN8725 (KA3025) 9. CONNECT A BYPASS CAPACITOR, FROM ALL THE SUPPLY VOLTAGE SOURCES TO GROUND. (Typically 0.1uF, or even higher) SVcc1, SVcc2, VM1, VM2, VM3 0.1uF 10. THE HEAT RADIATION FIN IS CONNECTED TO THE INTERNAL GND OF THE PACKAGE. Connect the FIN to the external GND. 16 FAN8725 (KA3025) 11. INPUT-OUTPUT TIMING CHART H1 + H2 + H3 + A1 output current (H1 -)+(H2 +) A1 output voltage A2 output current (H2 -)+(H3 +) A2 output voltage A3 output current (H3 -)+(H1 +) A3 output voltage 17 FAN8725 (KA3025) 12. BTL DRIVE PART DO+ 26 28 31 33 35 Power amp 10K 10K 10K − 10K 25K 25K (40K) (40K) 25K (40K) − + + 25K (40K) + 23 40 VM2 (VM3) M − 27 29 32 34 36 DO R 18 20 22 24 39 − R Error Amp VM2 (VM3) + 42 Vref − + R2 − R1 17 19 21 24 38 • • • • The reference voltage REF is given externally through pin 42. The error amp output signal is amplified by R2 / R1 times and then fed to the power amp circuit. The power amp circuit produces the differential output voltages and drives the two output power amplifier circuit. Since the differential gain of the output amplifiers of CH1/CH2 is equal to 2 × (25K / 10K) , the output signal of the error amp is amplified by (R2 / R1) × 5. • Since the differential gain of the output amplifiers of CH3/CH4/CH5 is equal to 2 × (40K / 10K) , the output signal of the error amp is amplified by (R2 / R1) × 8. • If the total gain is insufficient, the input error amp can be used to increase the gain. • The CH1/CH2 are generally used as actuator drive circuit so this channels are not affected by TSD circuit. 18 FAN8725 (KA3025) Typical Application Circuits SLED2 SIGNAL SERVO SIGNAL SHORT BRAKE SVCC2 VM3 47 46 45 44 43 42 41 40 39 38 1 H1+ EC ECR PS SB VREF SVCC2 VM3 OUT5 IN5 PGND3 48 PC1 VH POWER SAVE 2 H1 - DO5+ 35 3 H2+ DO4 - 34 4 H2 - DO4+ 33 5 H3+ DO3 - 32 H3 - DO3+ 31 HALL1 37 DO5 - 36 M SLED (stepping) MOTOR M LOADING MOTOR HALL2 HALL3 6 FAN8725 8 DIR 9 PGND2 30 DO2 - 29 SVCC1 10 VM1 DO1 - 27 11 CS1 DO1+ 26 FOCUS ACTUATOR A3 SGND2 IN4 OUT4 IN3 OUT3 IN2 OUT2 VM2 IN1 OUT1 13 14 15 16 17 18 19 20 21 22 23 24 12 PGND1 TRACKING ACTUATOR DO2+ 28 A2 VM1 FG A1 SVCC 1 7 25 VM2 SLED1 SIGNAL LOADING SIGNAL 19 TRACKING SIGNAL FOCUS SIGNAL FAN8725 (KA3025) DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com 12/1/00 0.0m 001 Stock#DSxxxxxxxx 2000 Fairchild Semiconductor International