MUSES01 High Quality Audio , J-FET Input, Dual Operational Amplifier The MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications with advanced circuitry and layout, unique material and assembled technology by skilled-craftwork. It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound. FEATURES Vopr=±9V to ±16V 9.5nV/√Hz at f=1kHz 0.8mV typ. 5mV max. 200pA typ. 800pA max. at Ta=25°C 105dB typ. 12V/μs typ. ●Operating Voltage ●Output noise ●Input Offset Voltage ●Input Bias Current ●Voltage Gain ●Slew Rate ●Bipolar Technology ●Package Outline DIP8 PIN CONFIGURATION PACKAGE OUTLINE PIN FUNCTION 1 2 3 4 8 7 -+ + - 6 5 1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V5. B +INPUT 6. B -INPUT 7. B OUTPUT 8.V+ MUSES01D MUSES and this logo are trademarks of New Japan Radio Co., Ltd. Ver.2009-12-18 -1- MUSES01 ABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER SYMBOL RATING UNIT Supply Voltage V+/V- ±18 V Common Mode Input Voltage VICM ±15 (Note1) V Differential Input Voltage VID ±30 V Power Dissipation PD 910 mW Output Current IO ±25 mA Operating Temperature Range T opr -40 to +85 °C Storage Temperature Range T stg -50 to +150 °C (Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage. RECOMMENDED OPERATING CONDITION (Ta=25°C) PARAMETER Supply Voltage SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT V+/V- - ±9 - ±16 V MIN. TYP. MAX. UNIT ELECTRIC CHARACTERISTICS DC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified) PARAMETER SYMBOL TEST CONDITION Operating Current I cc No Signal, R L =∞ - 8.5 12.0 mA Input Offset Voltage V IO Rs≤10kΩ (Note2, 3) - 0.8 5.0 mV Input Bias Current IB (Note2, 3) - 200 800 pA Input Offset Current I IO (Note2, 3) - 100 400 pA Voltage Gain AV R L ≥2kΩ, V o =±10V 90 105 - dB CMR V ICM =±8V (Note4) 60 75 - dB Common Mode Rejection Ratio + - Supply Voltage Rejection Ratio SVR V /V =±9.0 to ±16.0V (Note2, 5) 70 83 - dB Max Output Voltage 1 V OM1 R L =10kΩ ±12 ±13.5 - V Max Output Voltage 2 V OM2 R L =2kΩ ±10 ±12.5 - V Input Common Mode Voltage Range V ICM CMR≥60dB ±8 ±9.5 - V (Note2) Measured at VICM=0V (Note3) Written by the absolute rate. (Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to −8V) (Note5) SVR is calculated by specified change in offset voltage. (V+/V−=±9V to ±16V) -2- Ver.2009-12-18 MUSES01 AC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified) PARAMETER Gain Bandwidth Product SYMBOL GB TEST CONDITION MIN. TYP. MAX. UNIT f=10kHz - 3.3 - MHz Unity Gain Frequency fT AV=+100, RS=100Ω, RL=2kΩ, CL=10pF - 3.0 - MHz Phase Margin φM AV=+100, RS=100Ω, RL=2kΩ,CL=10pF - 60 - deg Input Noise Voltage1 V NI f=1kHz, AV=+100, RS=100Ω - 9.5 - nV/√Hz Input Noise Voltage2 V N2 RIAA, RS =2.2kΩ, 30kHz LPF - 1.2 3.0 μVrms Total Harmonic Distortion THD f=1kHz, AV=+10, RL=2kΩ, Vo=5Vrms - 0.002 - % f=1kHz, AV=-+100, RS=1kΩ, RL=2kΩ - 150 - dB - 12 - V/μs - 13 - V/μs Channel Separation CS Positive Slew Rate +SR Negative Slew Rate -SR Ver.2009-12-18 AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF -3- MUSES01 Application Notes •Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation PD. The dependence of the MUSES01 PD on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is PD on ambient temperature 25°C, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD lower than 25°C to it on 25°C. The PD is shown following formula as a function of the ambient temperature between those points. Dissipation Power PD = Tjmax - Ta θja [W] (Ta=25°C to Ta=150°C) Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, PD is different in each package. While, the actual measurement of dissipation power on MUSES01 is obtained using following equation. (Actual Dissipation Power) = (Supply Voltage VDD) X (Supply Current IDD) – (Output Power Po) The MUSES01 should be operated in lower than PD of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. PD [mW] DIP8 910 Ta [deg] -40 25 85 (Topr max.) 150 (Tstg max.) Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01 -4- Ver.2009-12-18 MUSES01 TYPICAL CHARACTERISTICS T O T A L H A R M O N IC D IS T O R T IO N + N O IS E vs O U T P U T A M P LIT U D E (F R E Q U E N C Y ) T O T A L H A R M O N IC D IS T O R T IO N + N O IS E vs O U T P U T A M P LIT U D E (F R E Q U E N C Y ) 10 10 1 1 T H D + N oise [% ] T H D + N oise [% ] V + /V -= ±16V ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃ 0.1 f= 20kH z 0.01 1kH z 0.1 f= 20kH z 0.01 1kH z 100H z 0.001 100H z 0.001 V + /V -= ±15V ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃ 20H z 20H z 0.0001 0.0001 0.01 0.1 1 0.01 10 0.1 1 10 O utput A m plitude [V rm s] O utput A m plitude [V rm s] T O T A L H A R M O N IC D IS T O R T IO N + N O IS E vs O U T P U T A M P LIT U D E (F R E Q U E N C Y ) E Q U IV A LE N T IN P U T N O IS E D E N S IT Y vs FR E Q U E N C Y V + /V -= ±9V ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃ V + /V -= ±16V ,A V = + 100,R s= 100ohm ,R L = ∞,T a= 25℃ 80 10 70 N oise D ensity [nV /√H z] T H D + N oise [% ] 1 0.1 f= 20kH z 0.01 1kH z 100H z 0.001 20H z 60 50 40 30 20 10 0.0001 0 0.01 0.1 1 1 10 10 E Q U IV A LE N T IN P U T N O IS E D E N S IT Y vs FR E Q U E N C Y V + /V -= ±15V ,A V = + 100,R s= 100ohm ,R L = ∞,T a= 25℃ V + /V -= ±9V ,A V = + 100,R s= 100ohm ,R L = ∞,T a= 25℃ 80 70 60 60 N oise D ensity [nV /√H z] N oise D ensity [nV /√H z] 10,000 E Q U IV A LE N T IN P U T N O IS E D E N S IT Y vs FR E Q U E N C Y 70 50 40 30 20 10 50 40 30 20 10 0 0 1 10 100 F requency [H z] Ver.2009-12-18 1,000 F requency [H z] O utput A m plitude [V rm s] 80 100 1,000 10,000 1 10 100 1,000 10,000 F requency [H z] -5- MUSES01 C H A N N E L S E P A R A T IO N vs F R E Q U E N C Y C H A N N E L S E P A R A T IO N vs F R E Q U E N C Y -120 -130 -130 C hannel S eparation [dB ] -140 -150 -160 V + /V -= ±15V ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 5V rm s, T a= 25℃ -140 -150 -160 -170 -170 -180 -180 10 100 1000 10000 10 100000 100 V + /V -= ±16V , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF V + /V -= ±9V ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 4V rm s, T a= 25℃ V IN = -30dB m ,V icm = 0V 60 G ain -130 180 T a=25℃ 40 120 -140 -150 -160 -170 -180 20 60 P hase 0 -20 -60 -40 -120 -60 10 100 1000 10000 100000 -180 1 10 100 1000 10000 100000 F requency [H z] F requency [kH z] C LO S E D -LO O P G A IN /P H A S E vs F R E Q U E N C Y (T E M P E R A T U R E ) C LO S E D LO O P G A IN /P H A S E vs F R E Q U E N C Y (T E M P E R A T U R E ) V + /V -= ±15V , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF V + /V -= ±9V , A V = + 100, R S = 100ohm , R T = 50ohm , R L = 2kohm ,C L = 10pF V IN = -30dB m ,V icm = 0V 60 G ain 180 60 120 40 V IN = -30dB m ,V icm = 0V G ain T a=25℃ 40 0 85℃ -20 -60 -40 -60 10 100 1000 F requency [kH z] 10000 V oltage G ain [dB ] P hase P hase S hift [deg] 60 1 120 -40℃ 20 0 180 T a=25℃ -40℃ V oltage G ain [dB ] 0 85℃ P hase S hift [deg] -40℃ V oltage G ain [dB ] C hannel S eparation [dB ] 100000 C LO S E D -LO O P G A IN /P H A S E vs F R E Q U E N C Y (T E M P E R A T U R E ) C H A N N E L S E P A R A T IO N vs F R E Q U E N C Y -6- 10000 F requency [H z] F requency [H z] -120 1000 20 60 P hase 0 0 85℃ P hase S hift [deg] C hannel S eparation [dB ] V + /V -= ±16V ,A V =-100, R S =1kohm , R L = 2kohm , V o= 5V rm s, T a= 25℃ -120 -20 -60 -120 -40 -120 -180 -60 100000 -180 1 10 100 1000 10000 100000 F requency [kH z] Ver.2009-12-18 MUSES01 S LE W R A T E vs T E M P E R A T U R E T R A N S IE N T R E S P O N S E (T E M P E R A T U R E ) V + /V -=±16V ,V IN =2V P -P ,f= 100kH z V + /V -=±16V ,V IN =2V P -P ,f=100kH z P ulseE dge= 10nsec,G v= 0dB ,C L =10pF ,R L = 2kohm P ulseE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm 6 20 2 Input V oltage 5 1 4 0 3 -1 T a=25℃ 1 -40℃ -2 85℃ -3 0 -4 -1 -5 S lew R ate [V /μsec] 2 Input V oltage [V ] O utput V oltage [V ] 16 F all 12 8 R ise 4 O utput V oltage -2 -6 -2 -1 0 1 2 3 4 5 6 7 8 0 9 -50 -25 0 T im e [μsec] 50 75 100 125 150 S LE W R A T E vs T E M P E R A T U R E T R A N S IE N T R E S P O N S E (T E M P E R A T U R E ) + 25 T em perature [℃] V + /V -=±15V ,V IN =2V P -P ,f=100kH z - V /V =±15V ,V IN =2V P -P ,f= 100kH z P ulseE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm P ulseE dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm 6 20 2 Input V oltage 5 1 4 0 3 -1 T a=25℃ 1 -40℃ -2 85℃ -3 0 -4 -1 -5 S lew R ate [V /μsec] 2 Input V oltage [V ] O utput V oltage [V ] 16 F all 12 8 R ise 4 O utput V oltage -2 0 -6 -2 -1 0 1 2 3 4 5 6 7 8 -50 9 -25 0 25 50 75 100 125 150 T em perature [℃] T im e [μsec] S LE W R A T E vs T E M P E R A T U R E T R A N S IE N T R E S P O N S E (T E M P E R A T U R E ) V + /V -=±9V ,V IN =2V P -P ,f= 100kH z V + /V -=±9V ,V IN =2V P -P ,f= 100kH z P ulseE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm P ulseE dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm 6 20 2 4 0 3 -1 2 T a=25℃ 1 -40℃ -2 85℃ -3 0 -4 -1 -5 16 S lew R ate [V /μsec] 1 Input V oltage [V ] O utput V oltage [V ] Input V oltage 5 F all 12 8 R ise 4 O utput V oltage -2 -6 -2 -1 0 1 2 3 4 5 T im e [μsec] Ver.2009-12-18 6 7 8 9 0 -50 -25 0 25 50 75 100 125 150 T em perature [℃] -7- MUSES01 SUPPLY CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) SUPPLY CURRENT vs SUPPLY VOLTAGE (TEMPERATURE) GV=0dB,Vin=0V GV=0dB,Vin=0V 12 12 Ta=25℃ ±16V -40℃ Supply Current [mA] Supply Current [mA] 8 6 85℃ 4 8 6 ±9V 4 2 2 0 -50 0 0 3 6 9 12 Supply Voltage [V+/V-] 15 18 INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE (TEMPERATURE) -25 0 25 50 75 Temperature [℃] 100 125 150 POWER SUPPLY REJECTION RATIO vs TEMPERATURE VICM=0V,Vin=0V 5 V ICM=0V ,V+/V-=±9V to ±16V 100 4 90 Power Supply Rejection Ratio [dB] -40℃ 3 Input Offset Voltage [mV] - 10 10 Ta=25℃ 2 1 0 -1 -2 -3 85℃ -4 0 2 4 6 8 80 70 60 50 40 30 20 10 -5 10 12 + 14 16 0 18 -50 - -25 Supply Voltage [V /V ] INPUT BIAS CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) 1,000,000 100,000 100,000 Input Bias Current [pA] 1,000,000 10,000 V+/V-=±15V 1,000 ±16V 100 10 0 25 50 75 Temperature [℃] 100 125 150 INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) V ICM=0V Input Bias Current [pA] + V /V =±15V V+ /V -=±16V 10,000 85℃ 1,000 Ta=25℃ 100 10 ±9V -40℃ 1 1 -50 -8- -25 0 25 50 75 Temperature [℃] 100 125 150 -16 -12 -8 -4 0 4 8 Common-Mode Votage [V] 12 16 Ver.2009-12-18 MUSES01 INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) + + - V /V =±15V 1,000,000 100,000 Input Bias Current [pA] 100,000 Input Bias Current [pA] - V /V =±9V 1,000,000 10,000 85℃ 1,000 Ta=25℃ 100 10,000 85℃ 1,000 Ta=25℃ 100 10 10 -40℃ -40℃ 1 -15 -12 -9 -6 -3 0 3 6 9 Common-Mode Voltage [V] 12 1 15 -9 -6 -3 0 3 Cmmon-Mode Voltage [V] 6 9 IN P U T O F F S E T V O LT A G E vs O U T P U T V O LT A G E INPUT OFFSET CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) (T E M P E R A T U R E ) V ICM=0V V + /V -= ±15V ,R L = 2kohm to 0V 5 10,000 Input O ffset V olatage [m V ] Input Offset Current [pA] 4 1,000 V+/V-=±15V 100 ±16V 10 -40℃ 3 T a=25℃ 2 1 0 -1 85℃ -2 -3 -4 ±9V 1 -5 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 -16 -12 -8 -4 0 4 8 12 16 O utput V oltage [V ] O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E R L = 2kohm to 0V ,V + /V -= ±15V ,V o= -10V to + 10V 120 120 110 110 100 100 O pen-Loop V oltage G ain [dB ] O pen-Loop V oltage G ain [dB ] R L = 2kohm to 0V ,V + /V -= ±16V ,V o= -11V to + 11V 90 80 70 60 50 40 30 20 90 80 70 60 50 40 30 20 10 10 0 0 -50 -25 0 25 50 75 T em perature [℃] Ver.2009-12-18 100 125 150 -50 -25 0 25 50 75 100 125 150 T em perature [℃] -9- MUSES01 O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E COMMON-MODE REJECTION RATIO vs TEMPERATUER (INPUT COMMON-MODE VOLTAGE) V+ /V- =±16V R L = 2kohm to 0V ,V + /V -= ±9V ,V o= -4V to + 4V 120 100 110 Common-Mode Rejection Ratio [dB] O pen-Loop V olatage G ain [dB ] 100 90 80 70 60 50 40 30 20 0V to +9V 80 60 Vicm=0V to -9V 40 20 10 0 -50 -25 0 25 50 75 100 125 0 150 -50 -25 0 25 50 75 Temperature [℃] T em perature [℃] COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V +/V- =±15V 100 125 150 COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V + /V - =±9V 100 100 Common-Mode Rejection Ratio [dB] Common-Mode Rejection Ratio [dB] 0V to +2V 80 60 0V to +8V Vicm=0V to -8V 40 20 0 80 60 Vicm=0V to -2V 40 20 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 -50 V + /V -= ±16V ,G v= open,R L to 0V 100 125 150 12 12 M axim um O utput V otage [V ] M axim um O utput V oltage [V ] 25 50 75 Temperature [℃] V + /V -= ±15V ,G v= open,R L to 0V 16 15 -40℃ 9 6 3 0 85℃ -3 -6 -9 -12 8 -40℃ 4 85℃ 0 -4 -8 -12 25℃ -15 25℃ -16 -18 10 100 1000 10000 Load R esistance [ohm ] - 10 - 0 M A X IM U M O U T P U T V O LT A G E vs LO A D R E S IS T A N C E (T E M P E R A T U R E ) M A X IM U M O U T P U T V O LT A G E vs LO A D R E S IS T A N C E (T E M P E R A T U R E ) 18 -25 100000 10 100 1000 10000 100000 Load R esistance [ohm ] Ver.2009-12-18 MUSES01 M A X IM U M O U T P U T V O LT A G E vs T E M P E R A T U R E (S U P P LY V O LT A G E ) M A X IM U M O U T P U T V O LT A G E vs LO A D R E S IS T A N C E (T E M P E R A T U R E ) G v= open,R L = 2kohm to 0V V + /V -= ±9V ,G v= open,R L to 0V 10 18 15 6 -40℃ 4 2 85℃ 0 12 M axim um O utput V oltage [V ] M axim um O utput V oltage [V ] 8 -2 -4 -6 25℃ 9 6 3 ±9V 0 V +/V -=±15V -3 ±16V -6 -9 -12 -8 -15 -10 -18 10 100 1000 10000 100000 -50 -25 0 Load R esistance [ohm ] 25 50 75 100 125 150 T em perature [℃] M A X IM U M O U T P U T V O LT A G E vs T E M P E R A T U R E (S U P P LY V O LT A G E ) G A IN B A N D W ID T H P R O D U C T vs T E M P E R A T U R E (S U P P LY V O LT A G E ) G v= open,R L =10kohm to 0V 18 f=10kH z,A V =80dB , R S =10ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-50dB m 6 12 G ain B andw idth P roduct [M H z] M axim um O utput V oltage [V ] 15 9 6 3 ±9V 0 V +/V -=±15V -3 ±16V -6 -9 -12 5 V +/V -=±15V ±16V 4 3 ±9V 2 1 -15 0 -18 -50 -25 0 25 50 75 100 125 150 -50 -25 0 T em perature [℃] 50 75 100 125 150 T em perature [℃] U N IT Y G A IN F R E Q U E N C Y vs T E M P E R A T U R E (S U P P LY V O LT A G E ) P H A S E M A R G IN vs T E M P E R A T U R E (S U P P LY V O LT A G E ) A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =56pF ,V IN =-30dB m A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-30dB m 6 90 ±16V V+ /V-=±15V 5 V + /V -=±15V 4 P hase M argin [deg] U nity G ain F requency [M H z] 25 ±16V 3 2 ±9V 60 ±9V 30 1 0 -50 -25 0 25 50 75 T em perature [℃] Ver.2009-12-18 100 125 150 0 -50 -25 0 25 50 75 100 125 150 T em perature [℃] - 11 - MUSES01 MEMO [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 12 - Ver.2009-12-18