NJRC MUSES01

MUSES01
High Quality Audio , J-FET Input,
Dual Operational Amplifier
The MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and
professional audio applications with advanced circuitry and layout, unique material and assembled technology by
skilled-craftwork.
It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound.
FEATURES
Vopr=±9V to ±16V
9.5nV/√Hz at f=1kHz
0.8mV typ. 5mV max.
200pA typ. 800pA max. at Ta=25°C
105dB typ.
12V/μs typ.
●Operating Voltage
●Output noise
●Input Offset Voltage
●Input Bias Current
●Voltage Gain
●Slew Rate
●Bipolar Technology
●Package Outline
DIP8
PIN CONFIGURATION
PACKAGE OUTLINE
PIN FUNCTION
1
2
3
4
8
7
-+
+ -
6
5
1. A OUTPUT
2. A -INPUT
3. A +INPUT
4. V5. B +INPUT
6. B -INPUT
7. B OUTPUT
8.V+
MUSES01D
MUSES and this logo are trademarks of New Japan Radio Co., Ltd.
Ver.2009-12-18
-1-
MUSES01
ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
PARAMETER
SYMBOL
RATING
UNIT
Supply Voltage
V+/V-
±18
V
Common Mode Input Voltage
VICM
±15 (Note1)
V
Differential Input Voltage
VID
±30
V
Power Dissipation
PD
910
mW
Output Current
IO
±25
mA
Operating Temperature Range
T opr
-40 to +85
°C
Storage Temperature Range
T stg
-50 to +150
°C
(Note1) For supply Voltages less than ±15 V, the maximum input voltage is equal to the Supply Voltage.
RECOMMENDED OPERATING CONDITION (Ta=25°C)
PARAMETER
Supply Voltage
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
V+/V-
-
±9
-
±16
V
MIN.
TYP.
MAX.
UNIT
ELECTRIC CHARACTERISTICS
DC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified)
PARAMETER
SYMBOL
TEST CONDITION
Operating Current
I cc
No Signal, R L =∞
-
8.5
12.0
mA
Input Offset Voltage
V IO
Rs≤10kΩ (Note2, 3)
-
0.8
5.0
mV
Input Bias Current
IB
(Note2, 3)
-
200
800
pA
Input Offset Current
I IO
(Note2, 3)
-
100
400
pA
Voltage Gain
AV
R L ≥2kΩ, V o =±10V
90
105
-
dB
CMR
V ICM =±8V (Note4)
60
75
-
dB
Common Mode Rejection Ratio
+
-
Supply Voltage Rejection Ratio
SVR
V /V =±9.0 to ±16.0V
(Note2, 5)
70
83
-
dB
Max Output Voltage 1
V OM1
R L =10kΩ
±12
±13.5
-
V
Max Output Voltage 2
V OM2
R L =2kΩ
±10
±12.5
-
V
Input Common Mode Voltage
Range
V ICM
CMR≥60dB
±8
±9.5
-
V
(Note2) Measured at VICM=0V
(Note3) Written by the absolute rate.
(Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to −8V)
(Note5) SVR is calculated by specified change in offset voltage. (V+/V−=±9V to ±16V)
-2-
Ver.2009-12-18
MUSES01
AC CHARACTERISTICS (V+/V-=±15V, Ta=25°C unless otherwise specified)
PARAMETER
Gain Bandwidth Product
SYMBOL
GB
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
f=10kHz
-
3.3
-
MHz
Unity Gain Frequency
fT
AV=+100, RS=100Ω,
RL=2kΩ, CL=10pF
-
3.0
-
MHz
Phase Margin
φM
AV=+100, RS=100Ω,
RL=2kΩ,CL=10pF
-
60
-
deg
Input Noise Voltage1
V NI
f=1kHz, AV=+100,
RS=100Ω
-
9.5
-
nV/√Hz
Input Noise Voltage2
V N2
RIAA, RS =2.2kΩ,
30kHz LPF
-
1.2
3.0
μVrms
Total Harmonic Distortion
THD
f=1kHz, AV=+10,
RL=2kΩ, Vo=5Vrms
-
0.002
-
%
f=1kHz, AV=-+100, RS=1kΩ,
RL=2kΩ
-
150
-
dB
-
12
-
V/μs
-
13
-
V/μs
Channel Separation
CS
Positive Slew Rate
+SR
Negative Slew Rate
-SR
Ver.2009-12-18
AV=1, VIN=2Vp-p,
RL=2kΩ, CL=10pF
AV=1, VIN=2Vp-p,
RL=2kΩ, CL=10pF
-3-
MUSES01
Application Notes
•Package Power, Power Dissipation and Output Power
IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called
Power Dissipation PD. The dependence of the MUSES01 PD on ambient temperature is shown in Fig 1. The plots are
depended on following two points. The first is PD on ambient temperature 25°C, which is the maximum power dissipation.
The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature
Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD
lower than 25°C to it on 25°C. The PD is shown following formula as a function of the ambient temperature between those
points.
Dissipation Power
PD =
Tjmax - Ta
θja
[W] (Ta=25°C to Ta=150°C)
Where, θja is heat thermal resistance which depends on parameters such as package material, frame material and so on.
Therefore, PD is different in each package.
While, the actual measurement of dissipation power on MUSES01 is obtained using following equation.
(Actual Dissipation Power) = (Supply Voltage VDD) X (Supply Current IDD) – (Output Power Po)
The MUSES01 should be operated in lower than PD of the actual dissipation power.
To sustain the steady state operation, take account of the Dissipation Power and thermal design.
PD [mW]
DIP8
910
Ta [deg]
-40
25
85
(Topr max.)
150
(Tstg max.)
Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01
-4-
Ver.2009-12-18
MUSES01
TYPICAL CHARACTERISTICS
T O T A L H A R M O N IC D IS T O R T IO N + N O IS E
vs O U T P U T A M P LIT U D E (F R E Q U E N C Y )
T O T A L H A R M O N IC D IS T O R T IO N + N O IS E
vs O U T P U T A M P LIT U D E (F R E Q U E N C Y )
10
10
1
1
T H D + N oise [% ]
T H D + N oise [% ]
V + /V -= ±16V ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃
0.1
f= 20kH z
0.01
1kH z
0.1
f= 20kH z
0.01
1kH z
100H z
0.001
100H z
0.001
V + /V -= ±15V ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃
20H z
20H z
0.0001
0.0001
0.01
0.1
1
0.01
10
0.1
1
10
O utput A m plitude [V rm s]
O utput A m plitude [V rm s]
T O T A L H A R M O N IC D IS T O R T IO N + N O IS E
vs O U T P U T A M P LIT U D E (F R E Q U E N C Y )
E Q U IV A LE N T IN P U T N O IS E D E N S IT Y vs
FR E Q U E N C Y
V + /V -= ±9V ,A V = + 10, R g= 1kohm ,R f= 9.1kohm , R L = 2kohm ,T a= 25℃
V + /V -= ±16V ,A V = + 100,R s= 100ohm ,R L = ∞,T a= 25℃
80
10
70
N oise D ensity [nV /√H z]
T H D + N oise [% ]
1
0.1
f= 20kH z
0.01
1kH z
100H z
0.001
20H z
60
50
40
30
20
10
0.0001
0
0.01
0.1
1
1
10
10
E Q U IV A LE N T IN P U T N O IS E D E N S IT Y vs
FR E Q U E N C Y
V + /V -= ±15V ,A V = + 100,R s= 100ohm ,R L = ∞,T a= 25℃
V + /V -= ±9V ,A V = + 100,R s= 100ohm ,R L = ∞,T a= 25℃
80
70
60
60
N oise D ensity [nV /√H z]
N oise D ensity [nV /√H z]
10,000
E Q U IV A LE N T IN P U T N O IS E D E N S IT Y vs
FR E Q U E N C Y
70
50
40
30
20
10
50
40
30
20
10
0
0
1
10
100
F requency [H z]
Ver.2009-12-18
1,000
F requency [H z]
O utput A m plitude [V rm s]
80
100
1,000
10,000
1
10
100
1,000
10,000
F requency [H z]
-5-
MUSES01
C H A N N E L S E P A R A T IO N vs F R E Q U E N C Y
C H A N N E L S E P A R A T IO N vs F R E Q U E N C Y
-120
-130
-130
C hannel S eparation [dB ]
-140
-150
-160
V + /V -= ±15V ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 5V rm s, T a= 25℃
-140
-150
-160
-170
-170
-180
-180
10
100
1000
10000
10
100000
100
V + /V -= ±16V , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF
V + /V -= ±9V ,A V = -100, R S = 1kohm , R L = 2kohm , V o= 4V rm s, T a= 25℃
V IN = -30dB m ,V icm = 0V
60
G ain
-130
180
T a=25℃
40
120
-140
-150
-160
-170
-180
20
60
P hase
0
-20
-60
-40
-120
-60
10
100
1000
10000
100000
-180
1
10
100
1000
10000
100000
F requency [H z]
F requency [kH z]
C LO S E D -LO O P G A IN /P H A S E vs
F R E Q U E N C Y (T E M P E R A T U R E )
C LO S E D LO O P G A IN /P H A S E vs
F R E Q U E N C Y (T E M P E R A T U R E )
V + /V -= ±15V , A V = + 100, R S = 100ohm , R T = 50ohm ,R L = 2kohm ,C L = 10pF
V + /V -= ±9V , A V = + 100, R S = 100ohm , R T = 50ohm , R L = 2kohm ,C L = 10pF
V IN = -30dB m ,V icm = 0V
60
G ain
180
60
120
40
V IN = -30dB m ,V icm = 0V
G ain
T a=25℃
40
0
85℃
-20
-60
-40
-60
10
100
1000
F requency [kH z]
10000
V oltage G ain [dB ]
P hase
P hase S hift [deg]
60
1
120
-40℃
20
0
180
T a=25℃
-40℃
V oltage G ain [dB ]
0
85℃
P hase S hift [deg]
-40℃
V oltage G ain [dB ]
C hannel S eparation [dB ]
100000
C LO S E D -LO O P G A IN /P H A S E vs
F R E Q U E N C Y (T E M P E R A T U R E )
C H A N N E L S E P A R A T IO N vs F R E Q U E N C Y
-6-
10000
F requency [H z]
F requency [H z]
-120
1000
20
60
P hase
0
0
85℃
P hase S hift [deg]
C hannel S eparation [dB ]
V + /V -= ±16V ,A V =-100, R S =1kohm , R L = 2kohm , V o= 5V rm s, T a= 25℃
-120
-20
-60
-120
-40
-120
-180
-60
100000
-180
1
10
100
1000
10000
100000
F requency [kH z]
Ver.2009-12-18
MUSES01
S LE W R A T E vs T E M P E R A T U R E
T R A N S IE N T R E S P O N S E (T E M P E R A T U R E )
V + /V -=±16V ,V IN =2V P -P ,f= 100kH z
V + /V -=±16V ,V IN =2V P -P ,f=100kH z
P ulseE dge= 10nsec,G v= 0dB ,C L =10pF ,R L = 2kohm
P ulseE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm
6
20
2
Input V oltage
5
1
4
0
3
-1
T a=25℃
1
-40℃
-2
85℃
-3
0
-4
-1
-5
S lew R ate [V /μsec]
2
Input V oltage [V ]
O utput V oltage [V ]
16
F all
12
8
R ise
4
O utput V oltage
-2
-6
-2
-1
0
1
2
3
4
5
6
7
8
0
9
-50
-25
0
T im e [μsec]
50
75
100
125
150
S LE W R A T E vs T E M P E R A T U R E
T R A N S IE N T R E S P O N S E (T E M P E R A T U R E )
+
25
T em perature [℃]
V + /V -=±15V ,V IN =2V P -P ,f=100kH z
-
V /V =±15V ,V IN =2V P -P ,f= 100kH z
P ulseE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm
P ulseE dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm
6
20
2
Input V oltage
5
1
4
0
3
-1
T a=25℃
1
-40℃
-2
85℃
-3
0
-4
-1
-5
S lew R ate [V /μsec]
2
Input V oltage [V ]
O utput V oltage [V ]
16
F all
12
8
R ise
4
O utput V oltage
-2
0
-6
-2
-1
0
1
2
3
4
5
6
7
8
-50
9
-25
0
25
50
75
100
125
150
T em perature [℃]
T im e [μsec]
S LE W R A T E vs T E M P E R A T U R E
T R A N S IE N T R E S P O N S E (T E M P E R A T U R E )
V + /V -=±9V ,V IN =2V P -P ,f= 100kH z
V + /V -=±9V ,V IN =2V P -P ,f= 100kH z
P ulseE dge=10nsec,G v=0dB ,C L =10pF ,R L =2kohm
P ulseE dge= 10nsec,G v= 0dB ,C L = 10pF ,R L = 2kohm
6
20
2
4
0
3
-1
2
T a=25℃
1
-40℃
-2
85℃
-3
0
-4
-1
-5
16
S lew R ate [V /μsec]
1
Input V oltage [V ]
O utput V oltage [V ]
Input V oltage
5
F all
12
8
R ise
4
O utput V oltage
-2
-6
-2
-1
0
1
2
3
4
5
T im e [μsec]
Ver.2009-12-18
6
7
8
9
0
-50
-25
0
25
50
75
100
125
150
T em perature [℃]
-7-
MUSES01
SUPPLY CURRENT vs TEMPERATURE
(SUPPLY VOLTAGE)
SUPPLY CURRENT vs SUPPLY VOLTAGE
(TEMPERATURE)
GV=0dB,Vin=0V
GV=0dB,Vin=0V
12
12
Ta=25℃
±16V
-40℃
Supply Current [mA]
Supply Current [mA]
8
6
85℃
4
8
6
±9V
4
2
2
0
-50
0
0
3
6
9
12
Supply Voltage [V+/V-]
15
18
INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE
(TEMPERATURE)
-25
0
25
50
75
Temperature [℃]
100
125
150
POWER SUPPLY REJECTION RATIO vs
TEMPERATURE
VICM=0V,Vin=0V
5
V ICM=0V ,V+/V-=±9V to ±16V
100
4
90
Power Supply Rejection Ratio [dB]
-40℃
3
Input Offset Voltage [mV]
-
10
10
Ta=25℃
2
1
0
-1
-2
-3
85℃
-4
0
2
4
6
8
80
70
60
50
40
30
20
10
-5
10
12
+
14
16
0
18
-50
-
-25
Supply Voltage [V /V ]
INPUT BIAS CURRENT vs TEMPERATURE
(SUPPLY VOLTAGE)
1,000,000
100,000
100,000
Input Bias Current [pA]
1,000,000
10,000
V+/V-=±15V
1,000
±16V
100
10
0
25
50
75
Temperature [℃]
100
125
150
INPUT BIAS CURRENT vs INPUT COMMON-MODE
VOLTAGE (TEMPERATURE)
V ICM=0V
Input Bias Current [pA]
+
V /V =±15V
V+ /V -=±16V
10,000
85℃
1,000
Ta=25℃
100
10
±9V
-40℃
1
1
-50
-8-
-25
0
25
50
75
Temperature [℃]
100
125
150
-16
-12
-8
-4
0
4
8
Common-Mode Votage [V]
12
16
Ver.2009-12-18
MUSES01
INPUT BIAS CURRENT vs INPUT COMMON-MODE
VOLTAGE (TEMPERATURE)
INPUT BIAS CURRENT vs INPUT COMMON-MODE
VOLTAGE (TEMPERATURE)
+
+
-
V /V =±15V
1,000,000
100,000
Input Bias Current [pA]
100,000
Input Bias Current [pA]
-
V /V =±9V
1,000,000
10,000
85℃
1,000
Ta=25℃
100
10,000
85℃
1,000
Ta=25℃
100
10
10
-40℃
-40℃
1
-15 -12
-9
-6 -3
0
3
6
9
Common-Mode Voltage [V]
12
1
15
-9
-6
-3
0
3
Cmmon-Mode Voltage [V]
6
9
IN P U T O F F S E T V O LT A G E vs O U T P U T V O LT A G E
INPUT OFFSET CURRENT vs TEMPERATURE
(SUPPLY VOLTAGE)
(T E M P E R A T U R E )
V ICM=0V
V + /V -= ±15V ,R L = 2kohm to 0V
5
10,000
Input O ffset V olatage [m V ]
Input Offset Current [pA]
4
1,000
V+/V-=±15V
100
±16V
10
-40℃
3
T a=25℃
2
1
0
-1
85℃
-2
-3
-4
±9V
1
-5
-50
-25
0
25
50
75
Temperature [℃]
100
125
150
-16
-12
-8
-4
0
4
8
12
16
O utput V oltage [V ]
O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E
O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E
R L = 2kohm to 0V ,V + /V -= ±15V ,V o= -10V to + 10V
120
120
110
110
100
100
O pen-Loop V oltage G ain [dB ]
O pen-Loop V oltage G ain [dB ]
R L = 2kohm to 0V ,V + /V -= ±16V ,V o= -11V to + 11V
90
80
70
60
50
40
30
20
90
80
70
60
50
40
30
20
10
10
0
0
-50
-25
0
25
50
75
T em perature [℃]
Ver.2009-12-18
100
125
150
-50
-25
0
25
50
75
100
125
150
T em perature [℃]
-9-
MUSES01
O P E N -LO O P V O LT A G E G A IN vs T E M P E R A T U R E
COMMON-MODE REJECTION RATIO vs TEMPERATUER
(INPUT COMMON-MODE VOLTAGE)
V+ /V- =±16V
R L = 2kohm to 0V ,V + /V -= ±9V ,V o= -4V to + 4V
120
100
110
Common-Mode Rejection Ratio [dB]
O pen-Loop V olatage G ain [dB ]
100
90
80
70
60
50
40
30
20
0V to +9V
80
60
Vicm=0V to -9V
40
20
10
0
-50
-25
0
25
50
75
100
125
0
150
-50
-25
0
25
50
75
Temperature [℃]
T em perature [℃]
COMMON-MODE REJECTION RATIO vs TEMPERATURE
(INPUT COMMON-MODE VOLTAGE)
V +/V- =±15V
100
125
150
COMMON-MODE REJECTION RATIO vs TEMPERATURE
(INPUT COMMON-MODE VOLTAGE)
V + /V - =±9V
100
100
Common-Mode Rejection Ratio [dB]
Common-Mode Rejection Ratio [dB]
0V to +2V
80
60
0V to +8V
Vicm=0V to -8V
40
20
0
80
60
Vicm=0V to -2V
40
20
0
-50
-25
0
25
50
75
Temperature [℃]
100
125
150
-50
V + /V -= ±16V ,G v= open,R L to 0V
100
125
150
12
12
M axim um O utput V otage [V ]
M axim um O utput V oltage [V ]
25
50
75
Temperature [℃]
V + /V -= ±15V ,G v= open,R L to 0V
16
15
-40℃
9
6
3
0
85℃
-3
-6
-9
-12
8
-40℃
4
85℃
0
-4
-8
-12
25℃
-15
25℃
-16
-18
10
100
1000
10000
Load R esistance [ohm ]
- 10 -
0
M A X IM U M O U T P U T V O LT A G E vs
LO A D R E S IS T A N C E (T E M P E R A T U R E )
M A X IM U M O U T P U T V O LT A G E vs
LO A D R E S IS T A N C E (T E M P E R A T U R E )
18
-25
100000
10
100
1000
10000
100000
Load R esistance [ohm ]
Ver.2009-12-18
MUSES01
M A X IM U M O U T P U T V O LT A G E vs
T E M P E R A T U R E (S U P P LY V O LT A G E )
M A X IM U M O U T P U T V O LT A G E vs
LO A D R E S IS T A N C E (T E M P E R A T U R E )
G v= open,R L = 2kohm to 0V
V + /V -= ±9V ,G v= open,R L to 0V
10
18
15
6
-40℃
4
2
85℃
0
12
M axim um O utput V oltage [V ]
M axim um O utput V oltage [V ]
8
-2
-4
-6
25℃
9
6
3
±9V
0
V +/V -=±15V
-3
±16V
-6
-9
-12
-8
-15
-10
-18
10
100
1000
10000
100000
-50
-25
0
Load R esistance [ohm ]
25
50
75
100
125
150
T em perature [℃]
M A X IM U M O U T P U T V O LT A G E vs
T E M P E R A T U R E (S U P P LY V O LT A G E )
G A IN B A N D W ID T H P R O D U C T vs T E M P E R A T U R E
(S U P P LY V O LT A G E )
G v= open,R L =10kohm to 0V
18
f=10kH z,A V =80dB , R S =10ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-50dB m
6
12
G ain B andw idth P roduct [M H z]
M axim um O utput V oltage [V ]
15
9
6
3
±9V
0
V +/V -=±15V
-3
±16V
-6
-9
-12
5
V +/V -=±15V
±16V
4
3
±9V
2
1
-15
0
-18
-50
-25
0
25
50
75
100
125
150
-50
-25
0
T em perature [℃]
50
75
100
125
150
T em perature [℃]
U N IT Y G A IN F R E Q U E N C Y vs T E M P E R A T U R E
(S U P P LY V O LT A G E )
P H A S E M A R G IN vs T E M P E R A T U R E
(S U P P LY V O LT A G E )
A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =56pF ,V IN =-30dB m
A V =+100, R S =100ohm , R T =50ohm ,R L =2kohm , C L =10pF ,V IN =-30dB m
6
90
±16V
V+ /V-=±15V
5
V + /V -=±15V
4
P hase M argin [deg]
U nity G ain F requency [M H z]
25
±16V
3
2
±9V
60
±9V
30
1
0
-50
-25
0
25
50
75
T em perature [℃]
Ver.2009-12-18
100
125
150
0
-50
-25
0
25
50
75
100
125
150
T em perature [℃]
- 11 -
MUSES01
MEMO
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 12 -
Ver.2009-12-18