MUSES01 Data Sheet

MUSES01
High Quality Audio , J-FET Input,
Dual Operational Amplifier
The MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and
professional audio applications with advanced circuitry and layout, unique material and assembled technology by
skilled-craftwork.
It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound.
 FEATURES
Vopr=9V to 16V
9.5nV/√Hz at f=1kHz
0.8mV typ. 5mV max.
200pA typ. 800pA max. at Ta=25°C
105dB typ.
12V/s typ.
●Operating Voltage
●Output noise
●Input Offset Voltage
●Input Bias Current
●Voltage Gain
●Slew Rate
●Bipolar Technology
●Package Outline
DIP8
 PIN CONFIGURATION
 PACKAGE OUTLINE
PIN FUNCTION
1
2
3
4
8
7
-+
+ -
6
5
1. A OUTPUT
2. A -INPUT
3. A +INPUT
4. V5. B +INPUT
6. B -INPUT
7. B OUTPUT
8.V+
MUSES01
MUSES and this logo are trademarks of New Japan Radio Co., Ltd.
Ver.2015-04-13
-1-
MUSES01
 ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
PARAMETER
SYMBOL
RATING
UNIT
Supply Voltage
V+/V-
18
V
Common Mode Input Voltage
VICM
15 (Note1)
V
Differential Input Voltage
VID
30
V
Power Dissipation
PD
910
mW
Output Current
IO
25
mA
Operating Temperature Range
T opr
-40 to +85
°C
Storage Temperature Range
T stg
-50 to +150
°C
(Note1) For supply Voltages less than 15 V, the maximum input voltage is equal to the Supply Voltage.
 RECOMMENDED OPERATING CONDITION (Ta=25°C)
PARAMETER
Supply Voltage
SYMBOL
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
V+/V-
-
9
-
16
V
MIN.
TYP.
MAX.
UNIT
 ELECTRIC CHARACTERISTICS
DC CHARACTERISTICS (V+/V-=15V, Ta=25°C unless otherwise specified)
PARAMETER
SYMBOL
TEST CONDITION
Operating Current
I cc
No Signal, R L =∞
-
8.5
12.0
mA
Input Offset Voltage
V IO
Rs10k (Note2)
-
0.8
5.0
mV
Input Bias Current
IB
(Note2, 3)
-
200
800
pA
Input Offset Current
I IO
(Note2, 3)
-
100
400
pA
Voltage Gain
AV
R L ≥2kΩ, V o =10V
90
105
-
dB
CMR
V ICM =8V (Note4)
60
75
-
dB
Common Mode Rejection Ratio
+
-
Supply Voltage Rejection Ratio
SVR
V /V =9.0 to 16.0V
(Note2, 5)
70
83
-
dB
Max Output Voltage 1
V OM1
R L =10kΩ
12
13.5
-
V
Max Output Voltage 2
V OM2
R L =2kΩ
10
12.5
-
V
Input Common Mode Voltage
Range
V ICM
CMR≥60dB
8
9.5
-
V
(Note2) Measured at VICM=0V
(Note3) Written by the absolute rate.
(Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to −8V)
(Note5) SVR is calculated by specified change in offset voltage. (V+/V−=±9V to ±16V)
-2-
Ver.2015-04-13
MUSES01
AC CHARACTERISTICS (V+/V-=15V, Ta=25°C unless otherwise specified)
PARAMETER
Gain Bandwidth Product
SYMBOL
GB
TEST CONDITION
MIN.
TYP.
MAX.
UNIT
f=10kHz
-
3.3
-
MHz
Unity Gain Frequency
fT
AV=+100, RS=100Ω,
RL=2kΩ, CL=10pF
-
3.0
-
MHz
Phase Margin
M
AV=+100, RS=100Ω,
RL=2kΩ,CL=10pF
-
60
-
deg
Input Noise Voltage1
V NI
f=1kHz, AV=+100,
RS=100Ω
-
9.5
-
nV/√Hz
Input Noise Voltage2
V N2
RIAA, RS =2.2kΩ,
30kHz LPF
-
1.2
3.0
Vrms
Total Harmonic Distortion
THD
f=1kHz, AV=+10,
RL=2kΩ, Vo=5Vrms
-
0.002
-
%
f=1kHz, AV=-+100, RS=1kΩ,
RL=2kΩ
-
150
-
dB
-
12
-
V/s
-
13
-
V/s
Channel Separation
CS
Positive Slew Rate
+SR
Negative Slew Rate
-SR
Ver.2015-04-13
AV=1, VIN=2Vp-p,
RL=2kΩ, CL=10pF
AV=1, VIN=2Vp-p,
RL=2kΩ, CL=10pF
-3-
MUSES01
 Application Notes
•Package Power, Power Dissipation and Output Power
IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called
Power Dissipation PD. The dependence of the MUSES01 PD on ambient temperature is shown in Fig 1. The plots are
depended on following two points. The first is PD on ambient temperature 25°C, which is the maximum power dissipation.
The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature
Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD
lower than 25°C to it on 25°C. The PD is shown following formula as a function of the ambient temperature between those
points.
Dissipation Power
PD =
Tjmax - Ta
ja
[W] (Ta=25°C to Ta=150°C)
Where, ja is heat thermal resistance which depends on parameters such as package material, frame material and so on.
Therefore, PD is different in each package.
While, the actual measurement of dissipation power on MUSES01 is obtained using following equation.
(Actual Dissipation Power) = (Supply Voltage VDD) X (Supply Current IDD) – (Output Power Po)
The MUSES01 should be operated in lower than PD of the actual dissipation power.
To sustain the steady state operation, take account of the Dissipation Power and thermal design.
PD [mW]
DIP8
910
Ta [deg]
-40
25
85
(Topr max.)
150
(Tstg max.)
Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01
-4-
Ver.2015-04-13
MUSES01
 TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION + NOISE
vs OUTPUT AMPLITUDE(FREQUENCY)
TOTAL HARMONIC DISTORTION + NOISE
vs OUTPUT AMPLITUDE(FREQUENCY)
+
10
10
1
1
THD+Noise [%]
THD+Noise [%]
V+/V-=±16V,AV =+10, Rg=1kohm,Rf=9.1kohm, RL =2kohm,Ta=25℃
0.1
f=20kHz
0.01
1kHz
0.001
-
V /V =±15V,AV =+10, Rg=1kohm,Rf=9.1kohm, RL =2kohm,Ta=25℃
0.1
f=20kHz
0.01
1kHz
100Hz
0.001
100Hz
20Hz
20Hz
0.0001
0.0001
0.01
0.1
1
0.01
10
0.1
1
10
Output Amplitude [Vrms]
Output Amplitude [Vrms]
TOTAL HARMONIC DISTORTION + NOISE
vs OUTPUT AMPLITUDE(FREQUENCY)
EQUIVALENT INPUT NOISE DENSITY vs
FREQUENCY
+
-
V /V =±9V,A V=+10, Rg=1kohm,Rf=9.1kohm, RL=2kohm,Ta=25℃
+
-
V /V =±16V,AV=+100,Rs=100ohm,RL =∞,Ta=25℃
80
10
70
Noise Density [nV/√Hz]
THD+Noise [%]
1
0.1
f=20kHz
0.01
1kHz
100Hz
0.001
20Hz
60
50
40
30
20
10
0.0001
0
0.01
0.1
1
1
10
10
EQUIVALENT INPUT NOISE DENSITY vs
FREQUENCY
V+/V-=±15V,AV=+100,Rs=100ohm,RL =∞,Ta=25℃
+
70
60
60
50
40
30
20
10
-
V /V =±9V,AV=+100,Rs=100ohm,RL =∞,Ta=25℃
80
Noise Density [nV/√Hz]
Noise Density [nV/√Hz]
10,000
EQUIVALENT INPUT NOISE DENSITY vs
FREQUENCY
70
50
40
30
20
10
0
0
1
10
100
Frequency [Hz]
Ver.2015-04-13
1,000
Frequency [Hz]
Output Amplitude [Vrms]
80
100
1,000
10,000
1
10
100
1,000
10,000
Frequency [Hz]
-5-
MUSES01
CHANNEL SEPARATION vs FREQUENCY
CHANNEL SEPARATION vs FREQUENCY
V+ /V-=±16V,AV =-100, RS =1kohm, RL =2kohm, Vo=5Vrms, Ta=25℃
-120
-130
Channel Separation [dB]
-130
-140
-150
-160
-140
-150
-160
-170
-170
-180
-180
10
100
1000
10000
10
100000
100
Frequency [Hz]
CHANNEL SEPARATION vs FREQUENCY
CLOSED-LOOP GAIN/PHASE vs
FREQUENCY (TEMPERATURE)
+
+
-
VIN=-30dBm,Vicm=0V
60
Gain
40
180
Ta=25℃
120
-140
-150
-160
-170
-180
10
100
1000
10000
20
60
Phase
0
-20
-60
-40
-120
-60
100000
-180
1
10
Frequency [Hz]
100
1000
10000
100000
Frequency [kHz]
CLOSED-LOOP GAIN/PHASE vs
FREQUENCY (TEMPERATURE)
CLOSED LOOP GAIN/PHASE vs
FREQUENCY (TEMPERATURE)
V /V =±15V, A V=+100, RS=100ohm, RT=50ohm,RL =2kohm,CL =10pF
V /V =±9V, A V=+100, RS =100ohm, RT=50ohm, RL =2kohm,CL =10pF
+
-
V IN=-30dBm,Vicm=0V
60
Gain
40
Ta=25℃
+
180
60
120
40
-
V IN=-30dBm,Vicm=0V
Gain
0
85℃
1000
Frequency [kHz]
10000
Phase
0
0
85℃
-120
-40
-120
-180
-60
-40
100
60
-60
-60
10
20
-20
-20
-60
Voltage Gain [dB]
Phase
Phase Shift [deg]
60
1
120
-40℃
20
0
180
Ta=25℃
-40℃
Voltage Gain [dB]
0
85℃
Phase Shift [deg]
-40℃
Voltage Gain [dB]
Channel Separation [dB]
100000
V /V =±16V, AV=+100, RS=100ohm, RT=50ohm,RL =2kohm,CL =10pF
-
-130
-6-
10000
Frequency [Hz]
V /V =±9V,AV =-100, RS =1kohm, RL =2kohm, Vo=4Vrms, Ta=25℃
-120
1000
Phase Shift [deg]
Channel Separation [dB]
V+ /V-=±15V,AV =-100, RS =1kohm, RL =2kohm, Vo=5Vrms, Ta=25℃
-120
100000
-180
1
10
100
1000
10000
100000
Frequency [kHz]
Ver.2015-04-13
MUSES01
SLEW RATE vs TEMPERATURE
TRANSIENT RESPONSE (TEMPERATURE)
+
+
PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm
PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm
6
1
0
3
-1
2
Ta=25℃
1
-40℃
-2
85℃
-3
0
-4
-1
-5
Output Voltage
-2
-2
-1
0
1
Slew Rate [V/μsec]
16
4
Input Voltage [V]
Output Voltage [V]
20
2
Input Voltage
5
-
V /V =±16V,VIN=2VP-P,f=100kHz
-
V /V =±16V,VIN=2V P-P ,f=100kHz
3
4
5
6
7
8
12
8
Rise
4
-6
2
Fall
0
9
-50
-25
0
25
+
Input Voltage
3
-1
-2
85℃
-3
0
-4
-1
-5
Output Voltage
-2
-2
-1
0
1
Slew Rate [V/μsec]
16
0
Input Voltage [V]
Output Voltage [V]
1
4
-40℃
-
20
2
1
3
4
5
6
7
8
12
8
Rise
4
0
-6
2
Fall
-50
9
-25
0
25
+
PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm
-1
-2
85℃
-3
0
-4
-2
-6
-1
0
1
2
3
4
Time [μsec]
Ver.2015-04-13
Fall
12
8
Rise
4
-5
Output Voltage
-2
Slew Rate [V/μsec]
3
-1
-
16
0
Input Voltage [V]
Output Voltage [V]
1
4
-40℃
150
20
2
Input Voltage
1
125
PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm
6
Ta=25℃
100
V /V =±9V,VIN=2V P-P,f=100kHz
-
V /V =±9V,VIN=2VP-P,f=100kHz
2
75
SLEW RATE vs TEMPERATURE
TRANSIENT RESPONSE (TEMPERATURE)
5
50
Temperature [℃]
Time [μsec]
+
150
PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm
PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm
6
Ta=25℃
125
V /V =±15V,VIN=2VP-P,f=100kHz
-
V /V =±15V,VIN=2V P-P,f=100kHz
2
100
SLEW RATE vs TEMPERATURE
TRANSIENT RESPONSE (TEMPERATURE)
5
75
Temperature [℃]
Time [μsec]
+
50
5
6
7
8
9
0
-50
-25
0
25
50
75
100
125
150
Temperature [℃]
-7-
MUSES01
SUPPLY CURRENT vs SUPPLY VOLTAGE
SUPPLY CURRENT vs TEMPERATURE
(TEMPERATURE)
GV=0dB,VIN=0V
(SUPPLY VOLTAGE)
GV=0dB,VIN=0V
12
12
Ta=25ºC
-40ºC
10
Supply Current [mA]
Supply Current [mA]
10
8
6
85ºC
4
2
8
6
±9V
4
2
0
0
0
3
6
9
12
Supply Voltage [V+/V-]
15
18
-50
-25
0
25 50 75 100 125 150
Temperature [ºC]
POWER SUPPLY REJECTION RATIO vs
TEMPERATURE
INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE
(TEMPERATURE)
VICM=0V, VIN=0V
VICM=0V ,V+/V-=±9V to ±16V
5
100
90
Power Supply Rejection Ratio
[dB]
4
Input Offset Voltage [mV]
V+/V-=±15V
±16V
-40ºC
3
Ta=25ºC
2
1
0
-1
-2
-3
85ºC
-4
-5
80
70
60
50
40
30
20
10
0
0
2
4
6
8 10 12 14
Supply Voltage [V+/V-]
16
18
-50
0
25 50 75 100 125 150
Temperature [ºC]
INPUT BIAS CURRENT vs INPUT COMMON-MODE
VOLTAGE (TEMPERATURE)
INPUT OFFSET CURRENT vs TEMPERATURE
(SUPPLY VOLTAGE)
VICM=0V
-25
V +/V- =±16V
1,000,000
10,000
1,000
Input Bias Current [pA]
Input Offset Current [pA]
100,000
V+/V-=±15V
100
±16V
10,000
85℃
1,000
Ta=25℃
100
10
10
±9V
-40℃
1
1
-50
-8-
-25
0
25 50 75 100 125 150
Temperature [ºC]
-16
-12
-8
-4
0
4
8
Common-Mode Votage [V]
12
16
Ver.2015-04-13
MUSES01
INPUT BIAS CURRENT vs INPUT COMMON-MODE
VOLTAGE (TEMPERATURE)
INPUT BIAS CURRENT vs INPUT COMMON-MODE
VOLTAGE (TEMPERATURE)
+
V /V =±15V
1,000,000
1,000,000
100,000
Input Bias Current [pA]
100,000
Input Bias Current [pA]
V+ /V -=±9V
-
10,000
85℃
1,000
Ta=25℃
100
10,000
85℃
1,000
Ta=25℃
100
10
10
-40℃
-40℃
1
-15 -12
-9
-6 -3
0
3
6
9
Common-Mode Voltage [V]
12
1
15
-9
-6
-3
0
3
Cmmon-Mode Voltage [V]
(TEMPERATURE)
VICM=0V
V+/V-=±15V,RL =2kohm to 0V
5
10,000
Input Offset Volatage [mV]
Input Offset Current [pA]
4
1,000
V+/V-=±15V
100
±16V
10
1
0
25
50
75
Temperature [℃]
100
-40℃
3
Ta=25℃
2
1
0
-1
85℃
-2
-3
-4
±9V
-25
9
INPUT OFFSET VOLTAGE vs OUTPUT VOLTAGE
INPUT OFFSET CURRENT vs TEMPERATURE
(SUPPLY VOLTAGE)
-50
6
125
-5
150
-16
-12
-8
-4
0
4
8
12
16
Output Voltage [V]
OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE
OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE
+
+
RL =2kohm to 0V,V /V =±16V,Vo=-11V to +11V
120
120
110
110
100
100
Open-Loop Voltage Gain [dB]
Open-Loop Voltage Gain [dB]
-
RL =2kohm to 0V,V /V =±15V,Vo=-10V to +10V
-
90
80
70
60
50
40
30
20
90
80
70
60
50
40
30
20
10
10
0
0
-50
-25
0
25
50
75
Temperature [℃]
Ver.2015-04-13
100
125
150
-50
-25
0
25
50
75
100
125
150
Temperature [℃]
-9-
MUSES01
OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE
+
COMMON-MODE REJECTION RATIO vs TEMPERATUER
(INPUT COMMON-MODE VOLTAGE)
V+ /V- =±16V
-
RL =2kohm to 0V,V /V =±9V,Vo=-4V to +4V
120
100
100
Common-Mode Rejection Ratio [dB]
Open-Loop Volatage Gain [dB]
110
90
80
70
60
50
40
30
20
0V to +9V
80
60
Vicm=0V to -9V
40
20
10
0
-50
-25
0
25
50
75
100
125
0
150
-50
-25
0
25
50
75
Temperature [℃]
Temperature [℃]
COMMON-MODE REJECTION RATIO vs TEMPERATURE
(INPUT COMMON-MODE VOLTAGE)
V+ /V - =±15V
100
125
150
COMMON-MODE REJECTION RATIO vs TEMPERATURE
(INPUT COMMON-MODE VOLTAGE)
V + /V - =±9V
100
100
Common-Mode Rejection Ratio [dB]
Common-Mode Rejection Ratio [dB]
0V to +2V
80
60
0V to +8V
Vicm=0V to -8V
40
20
0
80
60
Vicm=0V to -2V
40
20
0
-50
-25
0
25
50
75
Temperature [℃]
100
125
150
-50
+
-
V /V =±16V,Gv=open,RL to 0V
100
125
150
12
12
Maximum Output Votage [V]
Maximum Output Voltage [V]
25
50
75
Temperature [℃]
V+/V-=±15V,Gv=open,RL to 0V
16
15
-40℃
9
6
3
0
85℃
-3
-6
-9
-12
8
-40℃
4
85℃
0
-4
-8
-12
25℃
-15
25℃
-16
-18
10
100
1000
10000
Load Resistance [ohm]
- 10 -
0
MAXIMUM OUTPUT VOLTAGE vs
LOAD RESISTANCE (TEMPERATURE)
MAXIMUM OUTPUT VOLTAGE vs
LOAD RESISTANCE (TEMPERATURE)
18
-25
100000
10
100
1000
10000
100000
Load Resistance [ohm]
Ver.2015-04-13
MUSES01
MAXIMUM OUTPUT VOLTAGE vs
TEMPERATURE (SUPPLY VOLTAGE)
MAXIMUM OUTPUT VOLTAGE vs
LOAD RESISTANCE (TEMPERATURE)
Gv=open,RL =2kohm to 0V
V +/V-=±9V,Gv=open,RL to 0V
10
18
15
8
-40℃
Maximum Output Voltage [V]
Maximum Output Voltage [V]
6
4
2
85℃
0
-2
-4
-6
25℃
-8
12
9
6
3
±9V
0
V+/V-=±15V
-3
±16V
-6
-9
-12
-15
-10
-18
10
100
1000
10000
100000
-50
-25
0
Load Resistance [ohm]
25
50
75
100
125
150
Temperature [℃]
MAXIMUM OUTPUT VOLTAGE vs
TEMPERATURE (SUPPLY VOLTAGE)
GAIN BANDWIDTH PRODUCT vs TEMPERATURE
(SUPPLY VOLTAGE)
Gv=open,RL=10kohm to 0V
18
f=10kHz,AV =80dB, RS =10ohm, RT=50ohm,RL=2kohm, CL=10pF,VIN=-50dBm
6
12
Gain Bandwidth Product [MHz]
Maximum Output Voltage [ V]
15
9
6
3
±9V
0
V+/V-=±15V
-3
±16V
-6
-9
-12
5
V+/V-=±15V
±16V
4
3
±9V
2
1
-15
0
-18
-50
-25
0
25
50
75
100
125
150
-50
-25
0
Temperature [℃]
50
75
100
125
150
Temperature [℃]
UNITY GAIN FREQUENCY vs TEMPERATURE
(SUPPLY VOLTAGE)
PHASE MARGIN vs TEMPERATURE
(SUPPLY VOLTAGE)
AV =+100, RS =100ohm, RT=50ohm,RL=2kohm, CL=56pF,VIN=-30dBm
AV =+100, RS=100ohm, RT=50ohm,RL=2kohm, CL =10pF,VIN=-30dBm
6
90
±16V
V+ /V-=±15V
5
V+/V-=±15V
4
Phase Margin [deg]
U nity G ain Frequency [M H z]
25
±16V
3
2
±9V
60
±9V
30
1
0
-50
-25
0
25
50
75
Temperature [℃]
Ver.2015-04-13
100
125
150
0
-50
-25
0
25
50
75
100
125
150
Temperature [℃]
- 11 -
MUSES01
MEMO
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 12 -
Ver.2015-04-13