MUSES01 High Quality Audio , J-FET Input, Dual Operational Amplifier The MUSES01 is a dual J-FET input high quality audio operational amplifier, which is optimized for high-end audio and professional audio applications with advanced circuitry and layout, unique material and assembled technology by skilled-craftwork. It is the best for audio preamplifiers, active filters, and line amplifiers with excellent sound. FEATURES Vopr=9V to 16V 9.5nV/√Hz at f=1kHz 0.8mV typ. 5mV max. 200pA typ. 800pA max. at Ta=25°C 105dB typ. 12V/s typ. ●Operating Voltage ●Output noise ●Input Offset Voltage ●Input Bias Current ●Voltage Gain ●Slew Rate ●Bipolar Technology ●Package Outline DIP8 PIN CONFIGURATION PACKAGE OUTLINE PIN FUNCTION 1 2 3 4 8 7 -+ + - 6 5 1. A OUTPUT 2. A -INPUT 3. A +INPUT 4. V5. B +INPUT 6. B -INPUT 7. B OUTPUT 8.V+ MUSES01 MUSES and this logo are trademarks of New Japan Radio Co., Ltd. Ver.2015-04-13 -1- MUSES01 ABSOLUTE MAXIMUM RATINGS (Ta=25°C) PARAMETER SYMBOL RATING UNIT Supply Voltage V+/V- 18 V Common Mode Input Voltage VICM 15 (Note1) V Differential Input Voltage VID 30 V Power Dissipation PD 910 mW Output Current IO 25 mA Operating Temperature Range T opr -40 to +85 °C Storage Temperature Range T stg -50 to +150 °C (Note1) For supply Voltages less than 15 V, the maximum input voltage is equal to the Supply Voltage. RECOMMENDED OPERATING CONDITION (Ta=25°C) PARAMETER Supply Voltage SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT V+/V- - 9 - 16 V MIN. TYP. MAX. UNIT ELECTRIC CHARACTERISTICS DC CHARACTERISTICS (V+/V-=15V, Ta=25°C unless otherwise specified) PARAMETER SYMBOL TEST CONDITION Operating Current I cc No Signal, R L =∞ - 8.5 12.0 mA Input Offset Voltage V IO Rs10k (Note2) - 0.8 5.0 mV Input Bias Current IB (Note2, 3) - 200 800 pA Input Offset Current I IO (Note2, 3) - 100 400 pA Voltage Gain AV R L ≥2kΩ, V o =10V 90 105 - dB CMR V ICM =8V (Note4) 60 75 - dB Common Mode Rejection Ratio + - Supply Voltage Rejection Ratio SVR V /V =9.0 to 16.0V (Note2, 5) 70 83 - dB Max Output Voltage 1 V OM1 R L =10kΩ 12 13.5 - V Max Output Voltage 2 V OM2 R L =2kΩ 10 12.5 - V Input Common Mode Voltage Range V ICM CMR≥60dB 8 9.5 - V (Note2) Measured at VICM=0V (Note3) Written by the absolute rate. (Note4) CMR is calculated by specified change in offset voltage. (VICM=0V to +8V and VICM=0V to −8V) (Note5) SVR is calculated by specified change in offset voltage. (V+/V−=±9V to ±16V) -2- Ver.2015-04-13 MUSES01 AC CHARACTERISTICS (V+/V-=15V, Ta=25°C unless otherwise specified) PARAMETER Gain Bandwidth Product SYMBOL GB TEST CONDITION MIN. TYP. MAX. UNIT f=10kHz - 3.3 - MHz Unity Gain Frequency fT AV=+100, RS=100Ω, RL=2kΩ, CL=10pF - 3.0 - MHz Phase Margin M AV=+100, RS=100Ω, RL=2kΩ,CL=10pF - 60 - deg Input Noise Voltage1 V NI f=1kHz, AV=+100, RS=100Ω - 9.5 - nV/√Hz Input Noise Voltage2 V N2 RIAA, RS =2.2kΩ, 30kHz LPF - 1.2 3.0 Vrms Total Harmonic Distortion THD f=1kHz, AV=+10, RL=2kΩ, Vo=5Vrms - 0.002 - % f=1kHz, AV=-+100, RS=1kΩ, RL=2kΩ - 150 - dB - 12 - V/s - 13 - V/s Channel Separation CS Positive Slew Rate +SR Negative Slew Rate -SR Ver.2015-04-13 AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF AV=1, VIN=2Vp-p, RL=2kΩ, CL=10pF -3- MUSES01 Application Notes •Package Power, Power Dissipation and Output Power IC is heated by own operation and possibly gets damage when the junction power exceeds the acceptable value called Power Dissipation PD. The dependence of the MUSES01 PD on ambient temperature is shown in Fig 1. The plots are depended on following two points. The first is PD on ambient temperature 25°C, which is the maximum power dissipation. The second is 0W, which means that the IC cannot radiate any more. Conforming the maximum junction temperature Tjmax to the storage temperature Tstg derives this point. Fig.1 is drawn by connecting those points and conforming the PD lower than 25°C to it on 25°C. The PD is shown following formula as a function of the ambient temperature between those points. Dissipation Power PD = Tjmax - Ta ja [W] (Ta=25°C to Ta=150°C) Where, ja is heat thermal resistance which depends on parameters such as package material, frame material and so on. Therefore, PD is different in each package. While, the actual measurement of dissipation power on MUSES01 is obtained using following equation. (Actual Dissipation Power) = (Supply Voltage VDD) X (Supply Current IDD) – (Output Power Po) The MUSES01 should be operated in lower than PD of the actual dissipation power. To sustain the steady state operation, take account of the Dissipation Power and thermal design. PD [mW] DIP8 910 Ta [deg] -40 25 85 (Topr max.) 150 (Tstg max.) Fig.1 Power Dissipations vs. Ambient Temperature on the MUSES01 -4- Ver.2015-04-13 MUSES01 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT AMPLITUDE(FREQUENCY) TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT AMPLITUDE(FREQUENCY) + 10 10 1 1 THD+Noise [%] THD+Noise [%] V+/V-=±16V,AV =+10, Rg=1kohm,Rf=9.1kohm, RL =2kohm,Ta=25℃ 0.1 f=20kHz 0.01 1kHz 0.001 - V /V =±15V,AV =+10, Rg=1kohm,Rf=9.1kohm, RL =2kohm,Ta=25℃ 0.1 f=20kHz 0.01 1kHz 100Hz 0.001 100Hz 20Hz 20Hz 0.0001 0.0001 0.01 0.1 1 0.01 10 0.1 1 10 Output Amplitude [Vrms] Output Amplitude [Vrms] TOTAL HARMONIC DISTORTION + NOISE vs OUTPUT AMPLITUDE(FREQUENCY) EQUIVALENT INPUT NOISE DENSITY vs FREQUENCY + - V /V =±9V,A V=+10, Rg=1kohm,Rf=9.1kohm, RL=2kohm,Ta=25℃ + - V /V =±16V,AV=+100,Rs=100ohm,RL =∞,Ta=25℃ 80 10 70 Noise Density [nV/√Hz] THD+Noise [%] 1 0.1 f=20kHz 0.01 1kHz 100Hz 0.001 20Hz 60 50 40 30 20 10 0.0001 0 0.01 0.1 1 1 10 10 EQUIVALENT INPUT NOISE DENSITY vs FREQUENCY V+/V-=±15V,AV=+100,Rs=100ohm,RL =∞,Ta=25℃ + 70 60 60 50 40 30 20 10 - V /V =±9V,AV=+100,Rs=100ohm,RL =∞,Ta=25℃ 80 Noise Density [nV/√Hz] Noise Density [nV/√Hz] 10,000 EQUIVALENT INPUT NOISE DENSITY vs FREQUENCY 70 50 40 30 20 10 0 0 1 10 100 Frequency [Hz] Ver.2015-04-13 1,000 Frequency [Hz] Output Amplitude [Vrms] 80 100 1,000 10,000 1 10 100 1,000 10,000 Frequency [Hz] -5- MUSES01 CHANNEL SEPARATION vs FREQUENCY CHANNEL SEPARATION vs FREQUENCY V+ /V-=±16V,AV =-100, RS =1kohm, RL =2kohm, Vo=5Vrms, Ta=25℃ -120 -130 Channel Separation [dB] -130 -140 -150 -160 -140 -150 -160 -170 -170 -180 -180 10 100 1000 10000 10 100000 100 Frequency [Hz] CHANNEL SEPARATION vs FREQUENCY CLOSED-LOOP GAIN/PHASE vs FREQUENCY (TEMPERATURE) + + - VIN=-30dBm,Vicm=0V 60 Gain 40 180 Ta=25℃ 120 -140 -150 -160 -170 -180 10 100 1000 10000 20 60 Phase 0 -20 -60 -40 -120 -60 100000 -180 1 10 Frequency [Hz] 100 1000 10000 100000 Frequency [kHz] CLOSED-LOOP GAIN/PHASE vs FREQUENCY (TEMPERATURE) CLOSED LOOP GAIN/PHASE vs FREQUENCY (TEMPERATURE) V /V =±15V, A V=+100, RS=100ohm, RT=50ohm,RL =2kohm,CL =10pF V /V =±9V, A V=+100, RS =100ohm, RT=50ohm, RL =2kohm,CL =10pF + - V IN=-30dBm,Vicm=0V 60 Gain 40 Ta=25℃ + 180 60 120 40 - V IN=-30dBm,Vicm=0V Gain 0 85℃ 1000 Frequency [kHz] 10000 Phase 0 0 85℃ -120 -40 -120 -180 -60 -40 100 60 -60 -60 10 20 -20 -20 -60 Voltage Gain [dB] Phase Phase Shift [deg] 60 1 120 -40℃ 20 0 180 Ta=25℃ -40℃ Voltage Gain [dB] 0 85℃ Phase Shift [deg] -40℃ Voltage Gain [dB] Channel Separation [dB] 100000 V /V =±16V, AV=+100, RS=100ohm, RT=50ohm,RL =2kohm,CL =10pF - -130 -6- 10000 Frequency [Hz] V /V =±9V,AV =-100, RS =1kohm, RL =2kohm, Vo=4Vrms, Ta=25℃ -120 1000 Phase Shift [deg] Channel Separation [dB] V+ /V-=±15V,AV =-100, RS =1kohm, RL =2kohm, Vo=5Vrms, Ta=25℃ -120 100000 -180 1 10 100 1000 10000 100000 Frequency [kHz] Ver.2015-04-13 MUSES01 SLEW RATE vs TEMPERATURE TRANSIENT RESPONSE (TEMPERATURE) + + PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm 6 1 0 3 -1 2 Ta=25℃ 1 -40℃ -2 85℃ -3 0 -4 -1 -5 Output Voltage -2 -2 -1 0 1 Slew Rate [V/μsec] 16 4 Input Voltage [V] Output Voltage [V] 20 2 Input Voltage 5 - V /V =±16V,VIN=2VP-P,f=100kHz - V /V =±16V,VIN=2V P-P ,f=100kHz 3 4 5 6 7 8 12 8 Rise 4 -6 2 Fall 0 9 -50 -25 0 25 + Input Voltage 3 -1 -2 85℃ -3 0 -4 -1 -5 Output Voltage -2 -2 -1 0 1 Slew Rate [V/μsec] 16 0 Input Voltage [V] Output Voltage [V] 1 4 -40℃ - 20 2 1 3 4 5 6 7 8 12 8 Rise 4 0 -6 2 Fall -50 9 -25 0 25 + PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm -1 -2 85℃ -3 0 -4 -2 -6 -1 0 1 2 3 4 Time [μsec] Ver.2015-04-13 Fall 12 8 Rise 4 -5 Output Voltage -2 Slew Rate [V/μsec] 3 -1 - 16 0 Input Voltage [V] Output Voltage [V] 1 4 -40℃ 150 20 2 Input Voltage 1 125 PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm 6 Ta=25℃ 100 V /V =±9V,VIN=2V P-P,f=100kHz - V /V =±9V,VIN=2VP-P,f=100kHz 2 75 SLEW RATE vs TEMPERATURE TRANSIENT RESPONSE (TEMPERATURE) 5 50 Temperature [℃] Time [μsec] + 150 PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm PulseEdge=10nsec,Gv=0dB,CL=10pF,RL=2kohm 6 Ta=25℃ 125 V /V =±15V,VIN=2VP-P,f=100kHz - V /V =±15V,VIN=2V P-P,f=100kHz 2 100 SLEW RATE vs TEMPERATURE TRANSIENT RESPONSE (TEMPERATURE) 5 75 Temperature [℃] Time [μsec] + 50 5 6 7 8 9 0 -50 -25 0 25 50 75 100 125 150 Temperature [℃] -7- MUSES01 SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY CURRENT vs TEMPERATURE (TEMPERATURE) GV=0dB,VIN=0V (SUPPLY VOLTAGE) GV=0dB,VIN=0V 12 12 Ta=25ºC -40ºC 10 Supply Current [mA] Supply Current [mA] 10 8 6 85ºC 4 2 8 6 ±9V 4 2 0 0 0 3 6 9 12 Supply Voltage [V+/V-] 15 18 -50 -25 0 25 50 75 100 125 150 Temperature [ºC] POWER SUPPLY REJECTION RATIO vs TEMPERATURE INPUT OFFSET VOLTAGE vs SUPPLY VOLTAGE (TEMPERATURE) VICM=0V, VIN=0V VICM=0V ,V+/V-=±9V to ±16V 5 100 90 Power Supply Rejection Ratio [dB] 4 Input Offset Voltage [mV] V+/V-=±15V ±16V -40ºC 3 Ta=25ºC 2 1 0 -1 -2 -3 85ºC -4 -5 80 70 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 Supply Voltage [V+/V-] 16 18 -50 0 25 50 75 100 125 150 Temperature [ºC] INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) INPUT OFFSET CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) VICM=0V -25 V +/V- =±16V 1,000,000 10,000 1,000 Input Bias Current [pA] Input Offset Current [pA] 100,000 V+/V-=±15V 100 ±16V 10,000 85℃ 1,000 Ta=25℃ 100 10 10 ±9V -40℃ 1 1 -50 -8- -25 0 25 50 75 100 125 150 Temperature [ºC] -16 -12 -8 -4 0 4 8 Common-Mode Votage [V] 12 16 Ver.2015-04-13 MUSES01 INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) INPUT BIAS CURRENT vs INPUT COMMON-MODE VOLTAGE (TEMPERATURE) + V /V =±15V 1,000,000 1,000,000 100,000 Input Bias Current [pA] 100,000 Input Bias Current [pA] V+ /V -=±9V - 10,000 85℃ 1,000 Ta=25℃ 100 10,000 85℃ 1,000 Ta=25℃ 100 10 10 -40℃ -40℃ 1 -15 -12 -9 -6 -3 0 3 6 9 Common-Mode Voltage [V] 12 1 15 -9 -6 -3 0 3 Cmmon-Mode Voltage [V] (TEMPERATURE) VICM=0V V+/V-=±15V,RL =2kohm to 0V 5 10,000 Input Offset Volatage [mV] Input Offset Current [pA] 4 1,000 V+/V-=±15V 100 ±16V 10 1 0 25 50 75 Temperature [℃] 100 -40℃ 3 Ta=25℃ 2 1 0 -1 85℃ -2 -3 -4 ±9V -25 9 INPUT OFFSET VOLTAGE vs OUTPUT VOLTAGE INPUT OFFSET CURRENT vs TEMPERATURE (SUPPLY VOLTAGE) -50 6 125 -5 150 -16 -12 -8 -4 0 4 8 12 16 Output Voltage [V] OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE + + RL =2kohm to 0V,V /V =±16V,Vo=-11V to +11V 120 120 110 110 100 100 Open-Loop Voltage Gain [dB] Open-Loop Voltage Gain [dB] - RL =2kohm to 0V,V /V =±15V,Vo=-10V to +10V - 90 80 70 60 50 40 30 20 90 80 70 60 50 40 30 20 10 10 0 0 -50 -25 0 25 50 75 Temperature [℃] Ver.2015-04-13 100 125 150 -50 -25 0 25 50 75 100 125 150 Temperature [℃] -9- MUSES01 OPEN-LOOP VOLTAGE GAIN vs TEMPERATURE + COMMON-MODE REJECTION RATIO vs TEMPERATUER (INPUT COMMON-MODE VOLTAGE) V+ /V- =±16V - RL =2kohm to 0V,V /V =±9V,Vo=-4V to +4V 120 100 100 Common-Mode Rejection Ratio [dB] Open-Loop Volatage Gain [dB] 110 90 80 70 60 50 40 30 20 0V to +9V 80 60 Vicm=0V to -9V 40 20 10 0 -50 -25 0 25 50 75 100 125 0 150 -50 -25 0 25 50 75 Temperature [℃] Temperature [℃] COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V+ /V - =±15V 100 125 150 COMMON-MODE REJECTION RATIO vs TEMPERATURE (INPUT COMMON-MODE VOLTAGE) V + /V - =±9V 100 100 Common-Mode Rejection Ratio [dB] Common-Mode Rejection Ratio [dB] 0V to +2V 80 60 0V to +8V Vicm=0V to -8V 40 20 0 80 60 Vicm=0V to -2V 40 20 0 -50 -25 0 25 50 75 Temperature [℃] 100 125 150 -50 + - V /V =±16V,Gv=open,RL to 0V 100 125 150 12 12 Maximum Output Votage [V] Maximum Output Voltage [V] 25 50 75 Temperature [℃] V+/V-=±15V,Gv=open,RL to 0V 16 15 -40℃ 9 6 3 0 85℃ -3 -6 -9 -12 8 -40℃ 4 85℃ 0 -4 -8 -12 25℃ -15 25℃ -16 -18 10 100 1000 10000 Load Resistance [ohm] - 10 - 0 MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE (TEMPERATURE) MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE (TEMPERATURE) 18 -25 100000 10 100 1000 10000 100000 Load Resistance [ohm] Ver.2015-04-13 MUSES01 MAXIMUM OUTPUT VOLTAGE vs TEMPERATURE (SUPPLY VOLTAGE) MAXIMUM OUTPUT VOLTAGE vs LOAD RESISTANCE (TEMPERATURE) Gv=open,RL =2kohm to 0V V +/V-=±9V,Gv=open,RL to 0V 10 18 15 8 -40℃ Maximum Output Voltage [V] Maximum Output Voltage [V] 6 4 2 85℃ 0 -2 -4 -6 25℃ -8 12 9 6 3 ±9V 0 V+/V-=±15V -3 ±16V -6 -9 -12 -15 -10 -18 10 100 1000 10000 100000 -50 -25 0 Load Resistance [ohm] 25 50 75 100 125 150 Temperature [℃] MAXIMUM OUTPUT VOLTAGE vs TEMPERATURE (SUPPLY VOLTAGE) GAIN BANDWIDTH PRODUCT vs TEMPERATURE (SUPPLY VOLTAGE) Gv=open,RL=10kohm to 0V 18 f=10kHz,AV =80dB, RS =10ohm, RT=50ohm,RL=2kohm, CL=10pF,VIN=-50dBm 6 12 Gain Bandwidth Product [MHz] Maximum Output Voltage [ V] 15 9 6 3 ±9V 0 V+/V-=±15V -3 ±16V -6 -9 -12 5 V+/V-=±15V ±16V 4 3 ±9V 2 1 -15 0 -18 -50 -25 0 25 50 75 100 125 150 -50 -25 0 Temperature [℃] 50 75 100 125 150 Temperature [℃] UNITY GAIN FREQUENCY vs TEMPERATURE (SUPPLY VOLTAGE) PHASE MARGIN vs TEMPERATURE (SUPPLY VOLTAGE) AV =+100, RS =100ohm, RT=50ohm,RL=2kohm, CL=56pF,VIN=-30dBm AV =+100, RS=100ohm, RT=50ohm,RL=2kohm, CL =10pF,VIN=-30dBm 6 90 ±16V V+ /V-=±15V 5 V+/V-=±15V 4 Phase Margin [deg] U nity G ain Frequency [M H z] 25 ±16V 3 2 ±9V 60 ±9V 30 1 0 -50 -25 0 25 50 75 Temperature [℃] Ver.2015-04-13 100 125 150 0 -50 -25 0 25 50 75 100 125 150 Temperature [℃] - 11 - MUSES01 MEMO [CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. - 12 - Ver.2015-04-13