MAXIM MAX3953EVKIT

19-2607; Rev 0; 10/02
MAX3953 Evaluation Kit
Features
♦ Single +3.3V Supply
♦ 9.953Gbps/10.312Gbps Evaluation
♦ Fully Assembled and Tested
♦ Fully Matched with High-Bandwidth SMP
Connectors at the Input
Component List
DESIGNATION QTY
Ordering Information
DESCRIPTION
C1
1
2.2µF ±10% ceramic capacitor (0805)
C2, C4, C16
3
0.1µF ±10% ceramic capacitors (0402)
C3, C5, C7
3
0.01µF ±10% ceramic capacitors (0402)
C6, C10
2
0.1µF ±10% ceramic capacitors (0201)
C8
1
33µF ±10% tantalum capacitor, case B
C9
1
0.047µF ±10% ceramic capacitor (0402)
PART
MAX3953EVKIT
TEMP RANGE
0oC to +85oC
IC PACKAGE
68 QFN
Component Suppliers
C13, C15
2
0.01µF ±10% ceramic capacitors (0201)
PHONE
FAX
J1, J2, J7–J40
36
SMB connectors
AVX
843-448-9411
843-448-1943
SUPPLIER
J3, J4
2
SMP698 connectors, edge mount
Coilcraft
408-224-8566
408-224-6304
J41, J42
2
Test points
Murata
770-436-1300
770-436-3030
J43, J44
2
Do not install
JU2
1
10 x 2 pin headers, 0.1in centers
L1
1
56nH ±10% inductor (0805)
0805HS-560TKBC
R1
1
100Ω ±1% resistor (0402)
R5–R16,
R18–R22
17
Open
TP1, TP2
2
Test points
MAX3953UGK 68-pin QFN
U1*
1
None
4
Shunts
None*
1
MAX3953 EV kit circuit board
None*
1
MAX3953 EV kit data sheet
None*
1
MAX3953 data sheet
*Supplied by Maxim
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX3953
General Description
The MAX3953 evaluation kit (EV kit) is an assembled
surface-mount demonstration board that provides easy
evaluation of the MAX3953 10Gbps 1:16 deserializer
with clock data recovery (CDR). The EV kit includes all
components necessary to interface with +3.3V CML
inputs and LVDS outputs.
Evaluates: MAX3953
MAX3953 Evaluation Kit
Quick Start
1) Apply +3.3V to the VCC (J41) pin. Connect powersupply ground to GND (J42). Set the supply current
limit to 500mA.
2) Install shunts from pins 1 to 2, 7 to 8, 9 to 10, and 17
to 18, of JU2.
3) Apply a differential input clock from 200mVP-P to
1600mVP-P at 622.08MHz to J1 and J2 (REFCLK+
and REFCLK-).
4) Apply a differential input signal from 100mVP-P to
1600mV P-P at 9.95328Gbps to J3 and J4 (SDI+
and SDI-).
5) Use a 50Ω terminated oscilloscope to monitor the
output data on any of the parallel output lines
(PDO0± to PDO15±). Monitor the output clock on
PCLKO+ and PCLKO-. The oscilloscope should
show a 622.08MHz clock output and a 622.08Mbps
data output. LVDS outputs must be AC-coupled into
the oscilloscope.
Detailed Description
The MAX3953 EV kit simplifies evaluation of the
MAX3953 1:16 deserializer with CDR. The EV kit operates from a single +3.3V supply and includes all the
external components necessary to interface with +3.3V
CML inputs and LVDS outputs. Transmission-line test
structures (J43 to J44) are included on the evaluation
board to allow measurement of signal loss and dispersion of clock and data signals at 10GHz.
Applications Information
Connecting LVDS Outputs to 50Ω
Oscilloscope Inputs
To monitor LVDS signals with 50Ω oscilloscope inputs,
set the inputs of the oscilloscope to “AC-coupling” or
place a DC block in series with each output. If you are
observing only one output with a 50Ω probe, balance
the complementary output with a DC block and a 50Ω
terminator to ground.
Connecting LVDS Outputs to HighImpedance Oscilloscope Inputs
To monitor LVDS signals with high-impedance oscilloscope inputs, install 100Ω (0402) resistors on locations
2
JU2
19
SYNC_ERR
GND
CLKSEL
VCC
GND
REFSET
VCC
GND
RATESET
VCC
3
GND
1
VCC
LOS_IN
Figure 1. JU2 Header Configuration
R5–R16 and R18–R22. Note that this does not provide
as good a termination scheme as using the 50Ω inputs
on an oscilloscope, which degrades the resulting output.
Exposed-Pad Package
The 68-pin QFN package with exposed pad incorporates features that provide a very low thermal-resistance path for heat removal from the IC, either to a PC
board or to an external heatsink. The exposed pad on
the MAX3953 must be soldered directly to a ground
plane with good thermal conductance.
Configuration for JU2
The 10 × 2 header (JU2) provides control for the input
configuration of the MAX3953. Figure 1 shows the control structure for the JU2 header.
_______________________________________________________________________________________
MAX3953 Evaluation Kit
SYNC_ERR, LOS_IN, and CLKSEL pins. CLKSEL is an
input signal used to select the VCO to lock on to incoming data (SDI) or the reference clock (REFCLK).
Connecting SYNC_ERR to CLKSEL (pin 17 to 18 on
JU2) activates the holdover mode.
Adjustment and Control Description (see Quick Start first)
COMPONENT
NAME
FUNCTION
JU2
CLKSEL
Output Clock Selector, TTL. CLKSEL is the control input for clock holdover. When CLKSEL = GND,
PCLKO is derived from the input data. When CLKSEL = VCC, PCLKO is derived from the reference
clock.
JU2
REFSET
Reference Clock Select Input, TTL. When the reference clock is 155MHz/161MHz, set REFSET to
GND. When the reference clock is 622MHz/644MHz then set REFSET to VCC.
JU2
RATESET
Serial Data Rate Select Input, TTL. When the input serial data stream is 9.953Gbps, set RATESET to
GND. When the input serial data stream is 10.312Gbps, set RATESET to VCC.
JU2
LOS_IN
Loss-of-Signal Input, TTL. The LOS_IN is an external input. Clock holdover is activated when LOS_IN
is TTL low. (See the Clock Holdover section.)
TP1
SYNC_ERR
TP2
LOL
Synchronization Error Output, TTL. SYNC_ERR is intended to drive CLKSEL for holdover mode.
(See the Clock Holdover section.)
Loss-of-Lock Indicator Output, TTL. LOL signals a TTL low when the VCO frequency is more than
1000ppm from the reference clock frequency. LOL signals a TTL high when the VCO frequency is
within 500ppm of the reference clock frequency. (See the Clock Holdover section.)
_______________________________________________________________________________________
3
Evaluates: MAX3953
Clock Holdover
The clock holdover mode of the MAX3953 is designed
to provide an accurate parallel clock in the event of a
loss-of-lock (LOL) or loss-of-signal (LOS) condition. The
activation of the holdover mode is controlled by the
Figure 2. MAX3953 EV Kit Schematic
_______________________________________________________________________________________
GND
VCC
J42
J41
LOS_IN
RATESET
REFSET
CLKSEL
3
1
2
7
8
4
9
10
5
11
12
6
13
14
17
19
15
C8
33µF
JU2
16
18
20
J3
SMB
J2
SMB
J1
SMB
C1
2.2µF
L1
50nH
VCC
VCC
VCC
VCC
SYNC_ERR
J4
SMB
C6
0.1µF
REFSET
C4
0.1µF
C2
0.1µF
C3
0.01µF
VCC
VCC
VCC
VCC
VCC
C10
0.1µF
VCC
R1
100Ω
VCC
C5
0.01µF
18
GND
VCC
VCC
GND
VCC
VCC
VCC
SDI-
SDI+
VCC
REFSET
GND
GND
GND
REFCLK-
REFCLK+
GND
LOS_IN
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
FIL
C7
0.01µF
19
LOS_IN
66
LOL
TP2
20
65
64
63
62
22
R5
OPEN
C13
0.01µF
24
R6
OPEN
61
R21
OPEN
C16
0.1µF
J9 J10
SMB SMB
23
C15
0.01µF
J7
J8
SMB SMB
21
RATESET
PCLKO+
67
PDO0PCLKO-
68
VCC
LOL
R22
OPEN
MAX3953
U1
26
R7
OPEN
J11 J12
SMB SMB
25
60
59
VCC
VCC
27
58
57
R20
OPEN
56
55
R19
OPEN
54
53
R18
OPEN
29
R8
OPEN
J13 J14
SMB SMB
28
31
R9
OPEN
J15 J16
SMB SMB
30
33
R10
OPEN
J17 J18
SMB SMB
32
PD02PD013+
VCC
PD00+
PD015+
J32 J31
SMB SMB
PD02+
PD013-
VCC
PD01PD015-
J34 J33
SMB SMB
PD03PD012+
C9
0.047µF
VCC
J36 J35
SMB SMB
PD03+
PD012-
J38 J37
SMB SMB
PD04PD011+
J40 J39
SMB SMB
PD04+
PD011-
RATESET
PD01+
PD014+
GND
GND
GND
PD014-
52
GND
34
GND
PDO10+
PDO10-
PDO9+
PDO9-
PDO8+
PDO8-
VCC
PDO7+
PDO7-
PDO6+
PDO6-
PDO5+
PDO5-
SYNC_ERR
CLKSEL
GND
GND
4
VCC
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
R11
OPEN
R12
OPEN
R13
OPEN
J20
SMB
J22
SMB
J24
SMB
J26
SMB
J28
SMB
J19
SMB
J21
SMB
J23
SMB
J25
SMB
J27
SMB
J29
SMB
SYNC_ERR
J30
SMB
TP1
VCC
R14
OPEN
R15
OPEN
R16
OPEN
CLKSEL
Evaluates: MAX3953
MAX3953 Evaluation Kit
MAX3953 Evaluation Kit
Evaluates: MAX3953
1.0"
Figure 3. MAX3953 EV Kit Component Placement Guide—Component Side
_______________________________________________________________________________________
5
Evaluates: MAX3953
MAX3953 Evaluation Kit
1.0"
1.0"
Figure 4. MAX3953 EV Kit PC Board Layout—Component Side
1.0"
Figure 5. MAX3953 EV Kit PC Board Layout—Ground Plane
1.0"
Figure 6. MAX3953 EV Kit PC Board Layout—Power Plane
Figure 7. MAX3953 EV Kit PC Board Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.