SPP21N50C3 SPI21N50C3, SPA21N50C3 Cool MOS™ Power Transistor Feature VDS @ Tjmax 560 V RDS(on) 0.19 Ω ID 21 A • New revolutionary high voltage technology • Worldwide best RDS(on) in TO 220 • Ultra low gate charge P G-TO262 PG-TO220FP PG-TO220 • Periodic avalanche rated • Extreme dv/dt rated 1 2 3 • Ultra low effective capacitances • Improved transconductance Type Package Ordering Code Marking SPP21N50C3 PG-TO220 Q67040-S4565 21N50C3 SPI21N50C3 PG-TO262 21N50C3 SPA21N50C3 PG-TO220FP Q67040-S4564 SP000216364 21N50C3 Maximum Ratings Parameter Value Symbol SPA SPP_I Continuous drain current Unit ID A TC = 25 °C 21 211) TC = 100 °C 13.1 13.11) 63 63 Pulsed drain current, tp limited by Tjmax ID puls Avalanche energy, single pulse EAS 690 690 EAR 1 1 Avalanche current, repetitive tAR limited by Tjmax IAR 21 21 A Gate source voltage VGS ±20 ±20 V Gate source voltage AC (f >1Hz) VGS ±30 ±30 Power dissipation, TC = 25°C Ptot 208 34.5 Operating and storage temperature Tj , Tstg A mJ ID=10A, VDD=50V Avalanche energy, repetitive tAR limited by Tjmax2) ID=21A, VDD=50V Reverse diode dv/dt Rev. 3.2 7) dv/dt page 1 -55...+150 15 W °C V/ns 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 50 V/ns Values Unit VDS = 400 V, ID = 21 A, Tj = 125 °C Thermal Characteristics Symbol Parameter min. typ. max. Thermal resistance, junction - case RthJC - - 0.6 Thermal resistance, junction - case, FullPAK RthJC_FP - - 3.6 Thermal resistance, junction - ambient, leaded RthJA - - 62 Thermal resistance, junction - ambient, FullPAK RthJA_FP - - 80 SMD version, device on PCB: RthJA @ min. footprint - - 62 @ 6 cm 2 cooling area 3) - 35 - - - 260 Soldering temperature, wavesoldering Tsold K/W °C 1.6 mm (0.063 in.) from case for 10s 4) Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS VGS=0V, ID=21A Values Unit min. typ. max. 500 - - - 600 - 2.1 3 3.9 V breakdown voltage Gate threshold voltage VGS(th) ID=1000µA, VGS=VDS Zero gate voltage drain current I DSS VDS=500V, V GS=0V, Gate-source leakage current I GSS Drain-source on-state resistance RDS(on) Gate input resistance Rev. 3.2 RG µA Tj=25°C - 0.1 1 Tj=150°C - - 100 VGS=20V, V DS=0V - - 100 Ω VGS=10V, ID=13.1A Tj=25°C - 0.16 0.19 Tj=150°C - 0.54 - f=1MHz, open drain - 0.53 - page 2 nA 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 Electrical Characteristics Parameter Transconductance Symbol gfs Conditions VDS≥2*ID*R DS(on)max, Values Unit min. typ. max. - 18 - S pF ID=13.1A Input capacitance Ciss VGS=0V, VDS=25V, - 2400 - Output capacitance Coss f=1MHz - 1200 - Reverse transfer capacitance Crss - 30 - - 87 - - 181 - Effective output capacitance,5) Co(er) VGS=0V, VDS=400V energy related Effective output capacitance,6) Co(tr) time related Turn-on delay time td(on) VDD=380V, VGS=0/10V, - 10 - Rise time tr ID=21A, - 5 - Turn-off delay time td(off) RG =3.6Ω - 67 - Fall time tf - 4.5 - - 10 - - 50 - - 95 - - 5 - ns Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Qgd Gate charge total Qg VDD=380V, ID=21A VDD=380V, ID=21A, nC VGS=0 to 10V Gate plateau voltage V(plateau) VDD=380V, ID=21A V 1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as P =E *f. AR AV 3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4Soldering temperature for TO-263: 220°C, reflow 5C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS. 6C o(tr) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. 7I <=I , di/dt<=200A/us, V SD D DClink=400V, Vpeak<VBR, DSS, Tj<Tj,max. Identical low-side and high-side switch. Rev. 3.2 page 3 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 Electrical Characteristics Parameter Symbol Inverse diode continuous IS Conditions Values Unit min. typ. max. - - 21 - - 63 TC=25°C A forward current Inverse diode direct current, I SM pulsed Inverse diode forward voltage VSD VGS =0V, IF=IS - 1 1.2 V Reverse recovery time t rr VR =380V, IF =IS , - 450 720 ns Reverse recovery charge Q rr diF/dt=100A/µs - 9 - µC Peak reverse recovery current I rrm - 60 - A Peak rate of fall of reverse dirr /dt - 1200 - A/µs Tj=25°C recovery current Typical Transient Thermal Characteristics Value Symbol Unit SPP_I SPA Rth1 0.00769 0.00769 Rth2 0.015 Rth3 Symbol Value Unit SPP_I SPA Cth1 0.0003763 0.0003763 0.015 Cth2 0.001411 0.001411 0.029 0.029 Cth3 0.001931 0.001931 Rth4 0.114 0.16 Cth4 0.005297 0.005297 Rth5 0.136 0.319 Cth5 0.012 0.008659 Rth6 0.059 2.523 Cth6 0.091 0.412 Tj K/W R th1 R th,n T case Ws/K E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Rev. 3.2 page 4 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 1 Power dissipation 2 Power dissipation FullPAK Ptot = f (TC) Ptot = f (TC) 240 SPP21N50C3 35 W W 200 25 160 Ptot Ptot 180 140 20 120 15 100 80 10 60 40 5 20 0 0 20 40 60 80 100 120 °C 0 0 160 20 40 60 80 100 120 TC 3 Safe operating area 4 Safe operating area FullPAK ID = f ( VDS ) ID = f (VDS) parameter : D = 0 , TC=25°C parameter: D = 0, TC = 25°C 10 2 °C 160 TC 10 2 10 1 10 1 ID A ID A 10 0 10 -1 10 -2 0 10 Rev. 3.2 10 0 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC 10 1 10 -1 10 2 10 V VDS 3 page 5 10 -2 0 10 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC 10 1 10 2 10 V VDS 2009-12-22 3 SPP21N50C3 SPI21N50C3, SPA21N50C3 5 Transient thermal impedance 6 Transient thermal impedance FullPAK ZthJC = f (tp) ZthJC = f (tp) parameter: D = tp/T parameter: D = tp/t 10 0 10 1 K/W K/W 10 0 ZthJC ZthJC 10 -1 10 -2 10 -3 10 -4 -7 10 10 -1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -6 10 -5 10 -4 10 -3 10 -2 s tp D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -2 10 10 -3 -6 10 0 10 -5 10 -4 10 -3 10 -2 -1 1 s 10 tp 7 Typ. output characteristic 8 Typ. output characteristic ID = f (VDS); Tj =25°C ID = f (VDS); Tj =150°C parameter: tp = 10 µs, VGS parameter: tp = 10 µs, VGS 70 40 A A 50 10 Vgs = 20V Vgs = 7V Vgs = 6.5V 30 ID ID Vgs = 6V Vgs = 20V Vgs = 7V Vgs = 6V Vgs = 5.5V 25 Vgs = 5V 40 20 Vgs = 5.5V 30 15 Vgs = 5V 20 Vgs = 4.5V 10 Vgs = 4V Vgs = 4.5V 10 5 Vgs = 4V 0 0 5 10 15 25 V VDS Rev. 3.2 page 6 0 0 5 10 15 25 V VDS 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 9 Typ. drain-source on resistance 10 Drain-source on-state resistance RDS(on)=f(ID) RDS(on) = f (Tj) parameter: Tj=150°C, VGS parameter : ID = 13.1 A, VGS = 10 V 1.5 1.1 SPP21N50C3 Ω 0.9 RDS(on) RDS(on) Vgs = 4V Vgs = 4.5V Vgs = 5V Vgs = 5.5V Vgs = 6V Vgs = 20V Ω 0.8 0.7 0.6 0.9 0.5 0.4 0.3 0.6 98% 0.2 typ 0.1 0.3 0 5 10 15 20 25 30 A ID 0 -60 40 -20 20 60 100 °C 180 Tj 11 Typ. transfer characteristics 12 Typ. gate charge ID = f ( VGS ); VDS≥ 2 x ID x RDS(on)max VGS = f (Q Gate) parameter: ID = 21 A pulsed parameter: tp = 10 µs 70 16 A V SPP21N50C3 Tj = 25°C 12 VGS 50 ID Tj = 150°C 0,2 VDS max 10 40 0,8 VDS max 8 30 6 20 4 10 0 0 2 2 4 6 V 10 VGS Rev. 3.2 page 7 0 0 20 40 60 80 100 nC 140 QGate 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 13 Forward characteristics of body diode 14 Avalanche SOA IF = f (VSD) IAR = f (tAR) parameter: Tj , tp = 10 µs par.: Tj ≤ 150 °C 10 2 SPP21N50C3 20 A A IF IAR 10 1 Tj(Start)=25°C 10 10 0 Tj = 25 °C typ Tj(Start)=125°C 5 Tj = 150 °C typ Tj = 25 °C (98%) Tj = 150 °C (98%) 10 -1 0 0.4 0.8 1.2 1.6 2 2.4 V 0 -3 10 3 10 -2 10 -1 10 0 10 1 10 2 µs 10 tAR VSD 15 Avalanche energy 16 Drain-source breakdown voltage EAS = f (Tj) V(BR)DSS = f (Tj) 4 par.: ID = 10 A, VDD = 50 V 750 600 600 570 V V(BR)DSS mJ EAS 550 500 450 560 550 540 400 530 350 520 300 510 250 500 200 490 150 480 100 470 50 460 0 20 40 60 80 100 120 °C 160 Tj Rev. 3.2 SPP21N50C3 450 -60 -20 20 60 100 °C 180 Tj page 8 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 17 Avalanche power losses 18 Typ. capacitances PAR = f (f ) C = f (VDS) parameter: EAR =1mJ parameter: VGS =0V, f=1 MHz 10 5 500 pF W 10 4 C PAR Ciss 300 10 3 200 10 2 100 10 1 0 4 10 10 5 10 Hz 6 10 0 0 Coss Crss 100 200 300 V 500 VDS f 19 Typ. Coss stored energy Eoss=f(VDS) 10 E oss µJ 6 4 2 0 0 Rev. 3.1 50 100 150 200 250 300 350 400 V 500 VDS page 9 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 Definition of diodes switching characteristics Rev. 3.2 page 10 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 PG-TO220-3-1, PG-TO220-3-21 Rev. 3.2 page 11 2009-12-22 SPP16N50C3 SPI16N50C3, SPA16N50C3 PG-TO220-3 (Fully isolated) 24 Dimensions in mm/ inches Rev. 3.2 page 12 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 PG-TO262-3-1, PG-TO262-3-21 (I²-PAK) Rev. 3.2 page 13 2009-12-22 SPP21N50C3 SPI21N50C3, SPA21N50C3 Published by Infineon Technologies AG 81726 Munich, Germany © 2007 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Rev. 3.2 page 14 2009-12-22