INFINEON SPP21N50C3_09

SPP21N50C3
SPI21N50C3, SPA21N50C3
Cool MOS™ Power Transistor
Feature
VDS @ Tjmax
560
V
RDS(on)
0.19
Ω
ID
21
A
• New revolutionary high voltage technology
• Worldwide best RDS(on) in TO 220
• Ultra low gate charge
P G-TO262
PG-TO220FP
PG-TO220
• Periodic avalanche rated
• Extreme dv/dt rated
1
2
3
• Ultra low effective capacitances
• Improved transconductance
Type
Package
Ordering Code
Marking
SPP21N50C3
PG-TO220
Q67040-S4565
21N50C3
SPI21N50C3
PG-TO262
21N50C3
SPA21N50C3
PG-TO220FP
Q67040-S4564
SP000216364
21N50C3
Maximum Ratings
Parameter
Value
Symbol
SPA
SPP_I
Continuous drain current
Unit
ID
A
TC = 25 °C
21
211)
TC = 100 °C
13.1
13.11)
63
63
Pulsed drain current, tp limited by Tjmax
ID puls
Avalanche energy, single pulse
EAS
690
690
EAR
1
1
Avalanche current, repetitive tAR limited by Tjmax
IAR
21
21
A
Gate source voltage
VGS
±20
±20
V
Gate source voltage AC (f >1Hz)
VGS
±30
±30
Power dissipation, TC = 25°C
Ptot
208
34.5
Operating and storage temperature
Tj , Tstg
A
mJ
ID=10A, VDD=50V
Avalanche energy, repetitive tAR limited by Tjmax2)
ID=21A, VDD=50V
Reverse diode dv/dt
Rev. 3.2
7)
dv/dt
page 1
-55...+150
15
W
°C
V/ns
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
Maximum Ratings
Parameter
Symbol
Drain Source voltage slope
dv/dt
Value
Unit
50
V/ns
Values
Unit
VDS = 400 V, ID = 21 A, Tj = 125 °C
Thermal Characteristics
Symbol
Parameter
min.
typ.
max.
Thermal resistance, junction - case
RthJC
-
-
0.6
Thermal resistance, junction - case, FullPAK
RthJC_FP
-
-
3.6
Thermal resistance, junction - ambient, leaded
RthJA
-
-
62
Thermal resistance, junction - ambient, FullPAK
RthJA_FP
-
-
80
SMD version, device on PCB:
RthJA
@ min. footprint
-
-
62
@ 6 cm 2 cooling area 3)
-
35
-
-
-
260
Soldering temperature, wavesoldering
Tsold
K/W
°C
1.6 mm (0.063 in.) from case for 10s 4)
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter
Symbol
Conditions
Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA
Drain-Source avalanche
V(BR)DS VGS=0V, ID=21A
Values
Unit
min.
typ.
max.
500
-
-
-
600
-
2.1
3
3.9
V
breakdown voltage
Gate threshold voltage
VGS(th)
ID=1000µA, VGS=VDS
Zero gate voltage drain current
I DSS
VDS=500V, V GS=0V,
Gate-source leakage current
I GSS
Drain-source on-state resistance RDS(on)
Gate input resistance
Rev. 3.2
RG
µA
Tj=25°C
-
0.1
1
Tj=150°C
-
-
100
VGS=20V, V DS=0V
-
-
100
Ω
VGS=10V, ID=13.1A
Tj=25°C
-
0.16
0.19
Tj=150°C
-
0.54
-
f=1MHz, open drain
-
0.53
-
page 2
nA
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
Electrical Characteristics
Parameter
Transconductance
Symbol
gfs
Conditions
VDS≥2*ID*R DS(on)max,
Values
Unit
min.
typ.
max.
-
18
-
S
pF
ID=13.1A
Input capacitance
Ciss
VGS=0V, VDS=25V,
-
2400
-
Output capacitance
Coss
f=1MHz
-
1200
-
Reverse transfer capacitance
Crss
-
30
-
-
87
-
-
181
-
Effective output capacitance,5) Co(er)
VGS=0V, VDS=400V
energy related
Effective output capacitance,6) Co(tr)
time related
Turn-on delay time
td(on)
VDD=380V, VGS=0/10V,
-
10
-
Rise time
tr
ID=21A,
-
5
-
Turn-off delay time
td(off)
RG =3.6Ω
-
67
-
Fall time
tf
-
4.5
-
-
10
-
-
50
-
-
95
-
-
5
-
ns
Gate Charge Characteristics
Gate to source charge
Qgs
Gate to drain charge
Qgd
Gate charge total
Qg
VDD=380V, ID=21A
VDD=380V, ID=21A,
nC
VGS=0 to 10V
Gate plateau voltage
V(plateau) VDD=380V, ID=21A
V
1Limited only by maximum temperature
2Repetitve avalanche causes additional power losses that can be calculated as P =E *f.
AR
AV
3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical without blown air.
4Soldering temperature for TO-263: 220°C, reflow
5C
o(er)
is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% VDSS.
6C
o(tr)
is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
7I <=I , di/dt<=200A/us, V
SD
D
DClink=400V, Vpeak<VBR, DSS, Tj<Tj,max.
Identical low-side and high-side switch.
Rev. 3.2
page 3
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
Electrical Characteristics
Parameter
Symbol
Inverse diode continuous
IS
Conditions
Values
Unit
min.
typ.
max.
-
-
21
-
-
63
TC=25°C
A
forward current
Inverse diode direct current,
I SM
pulsed
Inverse diode forward voltage
VSD
VGS =0V, IF=IS
-
1
1.2
V
Reverse recovery time
t rr
VR =380V, IF =IS ,
-
450
720
ns
Reverse recovery charge
Q rr
diF/dt=100A/µs
-
9
-
µC
Peak reverse recovery current
I rrm
-
60
-
A
Peak rate of fall of reverse
dirr /dt
-
1200
-
A/µs
Tj=25°C
recovery current
Typical Transient Thermal Characteristics
Value
Symbol
Unit
SPP_I
SPA
Rth1
0.00769
0.00769
Rth2
0.015
Rth3
Symbol
Value
Unit
SPP_I
SPA
Cth1
0.0003763
0.0003763
0.015
Cth2
0.001411
0.001411
0.029
0.029
Cth3
0.001931
0.001931
Rth4
0.114
0.16
Cth4
0.005297
0.005297
Rth5
0.136
0.319
Cth5
0.012
0.008659
Rth6
0.059
2.523
Cth6
0.091
0.412
Tj
K/W
R th1
R th,n
T case
Ws/K
E xternal H eatsink
P tot (t)
C th1
C th2
C th,n
T am b
Rev. 3.2
page 4
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
1 Power dissipation
2 Power dissipation FullPAK
Ptot = f (TC)
Ptot = f (TC)
240
SPP21N50C3
35
W
W
200
25
160
Ptot
Ptot
180
140
20
120
15
100
80
10
60
40
5
20
0
0
20
40
60
80
100
120
°C
0
0
160
20
40
60
80
100
120
TC
3 Safe operating area
4 Safe operating area FullPAK
ID = f ( VDS )
ID = f (VDS)
parameter : D = 0 , TC=25°C
parameter: D = 0, TC = 25°C
10
2
°C 160
TC
10 2
10 1
10 1
ID
A
ID
A
10 0
10 -1
10 -2 0
10
Rev. 3.2
10 0
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
10
1
10 -1
10
2
10
V
VDS
3
page 5
10 -2 0
10
tp = 0.001 ms
tp = 0.01 ms
tp = 0.1 ms
tp = 1 ms
tp = 10 ms
DC
10
1
10
2
10
V
VDS
2009-12-22
3
SPP21N50C3
SPI21N50C3, SPA21N50C3
5 Transient thermal impedance
6 Transient thermal impedance FullPAK
ZthJC = f (tp)
ZthJC = f (tp)
parameter: D = tp/T
parameter: D = tp/t
10 0
10 1
K/W
K/W
10 0
ZthJC
ZthJC
10 -1
10 -2
10 -3
10 -4 -7
10
10 -1
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
10
-6
10
-5
10
-4
10
-3
10
-2
s
tp
D = 0.5
D = 0.2
D = 0.1
D = 0.05
D = 0.02
D = 0.01
single pulse
10 -2
10
10 -3 -6
10
0
10
-5
10
-4
10
-3
10
-2
-1
1
s 10
tp
7 Typ. output characteristic
8 Typ. output characteristic
ID = f (VDS); Tj =25°C
ID = f (VDS); Tj =150°C
parameter: tp = 10 µs, VGS
parameter: tp = 10 µs, VGS
70
40
A
A
50
10
Vgs = 20V
Vgs = 7V
Vgs = 6.5V
30
ID
ID
Vgs = 6V
Vgs = 20V
Vgs = 7V
Vgs = 6V
Vgs = 5.5V
25
Vgs = 5V
40
20
Vgs = 5.5V
30
15
Vgs = 5V
20
Vgs = 4.5V
10
Vgs = 4V
Vgs = 4.5V
10
5
Vgs = 4V
0
0
5
10
15
25
V
VDS
Rev. 3.2
page 6
0
0
5
10
15
25
V
VDS
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
9 Typ. drain-source on resistance
10 Drain-source on-state resistance
RDS(on)=f(ID)
RDS(on) = f (Tj)
parameter: Tj=150°C, VGS
parameter : ID = 13.1 A, VGS = 10 V
1.5
1.1
SPP21N50C3
Ω
0.9
RDS(on)
RDS(on)
Vgs = 4V
Vgs = 4.5V
Vgs = 5V
Vgs = 5.5V
Vgs = 6V
Vgs = 20V
Ω
0.8
0.7
0.6
0.9
0.5
0.4
0.3
0.6
98%
0.2
typ
0.1
0.3
0
5
10
15
20
25
30
A
ID
0
-60
40
-20
20
60
100
°C
180
Tj
11 Typ. transfer characteristics
12 Typ. gate charge
ID = f ( VGS ); VDS≥ 2 x ID x RDS(on)max
VGS = f (Q Gate)
parameter: ID = 21 A pulsed
parameter: tp = 10 µs
70
16
A
V
SPP21N50C3
Tj = 25°C
12
VGS
50
ID
Tj = 150°C
0,2 VDS max
10
40
0,8 VDS max
8
30
6
20
4
10
0
0
2
2
4
6
V
10
VGS
Rev. 3.2
page 7
0
0
20
40
60
80
100
nC
140
QGate
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
13 Forward characteristics of body diode
14 Avalanche SOA
IF = f (VSD)
IAR = f (tAR)
parameter: Tj , tp = 10 µs
par.: Tj ≤ 150 °C
10 2
SPP21N50C3
20
A
A
IF
IAR
10 1
Tj(Start)=25°C
10
10 0
Tj = 25 °C typ
Tj(Start)=125°C
5
Tj = 150 °C typ
Tj = 25 °C (98%)
Tj = 150 °C (98%)
10 -1
0
0.4
0.8
1.2
1.6
2
2.4 V
0 -3
10
3
10
-2
10
-1
10
0
10
1
10
2
µs 10
tAR
VSD
15 Avalanche energy
16 Drain-source breakdown voltage
EAS = f (Tj)
V(BR)DSS = f (Tj)
4
par.: ID = 10 A, VDD = 50 V
750
600
600
570
V
V(BR)DSS
mJ
EAS
550
500
450
560
550
540
400
530
350
520
300
510
250
500
200
490
150
480
100
470
50
460
0
20
40
60
80
100
120
°C
160
Tj
Rev. 3.2
SPP21N50C3
450
-60
-20
20
60
100
°C
180
Tj
page 8
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
17 Avalanche power losses
18 Typ. capacitances
PAR = f (f )
C = f (VDS)
parameter: EAR =1mJ
parameter: VGS =0V, f=1 MHz
10 5
500
pF
W
10 4
C
PAR
Ciss
300
10 3
200
10 2
100
10 1
0 4
10
10
5
10
Hz
6
10 0
0
Coss
Crss
100
200
300
V
500
VDS
f
19 Typ. Coss stored energy
Eoss=f(VDS)
10
E oss
µJ
6
4
2
0
0
Rev. 3.1
50 100 150 200 250 300 350 400
V 500
VDS
page 9
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
Definition of diodes switching characteristics
Rev. 3.2
page 10
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
PG-TO220-3-1, PG-TO220-3-21
Rev. 3.2
page 11
2009-12-22
SPP16N50C3
SPI16N50C3, SPA16N50C3
PG-TO220-3 (Fully isolated)
24
Dimensions in mm/ inches
Rev. 3.2
page 12
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
PG-TO262-3-1, PG-TO262-3-21 (I²-PAK)
Rev. 3.2
page 13
2009-12-22
SPP21N50C3
SPI21N50C3, SPA21N50C3
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2007 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of
conditions or characteristics. With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device,
Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,
including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please
contact the nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information
on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with
the express written approval of Infineon Technologies, if a failure of such components can
reasonably be expected to cause the failure of that life-support device or system or to affect
the safety or effectiveness of that device or system. Life support devices or systems are
intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user
or other persons may be endangered.
Rev. 3.2
page 14
2009-12-22