ONSEMI 74HC374DTR2G

74HC374
Octal 3−State Non−Inverting
D Flip−Flop
High−Performance Silicon−Gate CMOS
The 74HC374 is identical in pinout to the LS374. The device inputs
are compatible with standard CMOS outputs; with pullup resistors,
they are compatible with LSTTL outputs.
Data meeting the setup time is clocked to the outputs with the rising
edge of the clock. The Output Enable input does not affect the states of
the flip−flops, but when Output Enable is high, the outputs are forced
to the high−impedance state; thus, data may be stored even when the
outputs are not enabled.
The HC374 is identical in function to the HC574A which has the
input pins on the opposite side of the package from the output. This
device is similar in function to the HC534A which has inverting
outputs.
Features
•
•
•
•
•
•
•
•
•
Output Drive Capability: 15 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
ESD Performance: HBM > 2000 V; Machine Model > 200 V
Chip Complexity: 266 FETs or 66.5 Equivalent Gates
This is a Pb−Free Device
© Semiconductor Components Industries, LLC, 2007
March, 2007 − Rev. 0
1
http://onsemi.com
MARKING
DIAGRAM
20
20
1
HC
374
ALYW G
G
TSSOP−20
DT SUFFIX
CASE 948E
1
HC374 = Specific Device Code
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
Publication Order Number:
74HC374/D
74HC374
PIN ASSIGNMENT
LOGIC DIAGRAM
D0
D1
D2
DATA
INPUTS
D3
D4
D5
D6
D7
CLOCK
OUTPUT ENABLE
3
2
4
5
7
6
8
9
13
12
14
17
18
11
15
16
19
OUTPUT
ENABLE
Q0
1
20
VCC
2
19
Q7
D0
3
18
D7
D1
4
17
D6
Q1
5
16
Q6
Q2
6
15
Q5
D2
7
14
D5
D3
8
13
D4
Q3
9
12
Q4
10
11
CLOCK
Q0
Q1
Q2
Q3
Q4
NONINVERTING
OUTPUTS
Q5
Q6
GND
Q7
FUNCTION TABLE
1
PIN 20 = VCC
PIN 10 = GND
Inputs
Output
Enable
L
L
L
H
Output
Clock
D
Q
L,H,
X
H
L
X
X
H
L
No Change
Z
X = don’t care
Z = high impedance
ORDERING INFORMATION
Device
74HC374DTR2G
Package
Shipping †
TSSOP−20*
2500 Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
2
74HC374
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
– 0.5 to + 7.0
V
DC Input Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
DC Output Voltage (Referenced to GND)
– 0.5 to VCC + 0.5
V
VCC
DC Supply Voltage (Referenced to GND)
Vin
Vout
Iin
DC Input Current, per Pin
±20
mA
Iout
DC Output Current, per Pin
±35
mA
ICC
DC Supply Current, VCC and GND Pins
±75
mA
PD
Power Dissipation in Still Air,
450
mW
Tstg
Storage Temperature
– 65 to + 150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
(TSSOP Package)
TSSOP Package†
_C
260
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress
ratings only. Functional operation above the Recommended Operating Conditions is not implied.
Extended exposure to stresses above the Recommended Operating Conditions may affect device
reliability.
†Derating — TSSOP Package: − 6.1 mW/_C from 65_ to 125_C
For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
Min
Max
Unit
2.0
6.0
V
0
VCC
V
– 55
+ 125
_C
0
0
0
1000
500
400
ns
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 1)
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
http://onsemi.com
3
74HC374
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
VCC
(V)
– 55 to
25_C
Symbol
Parameter
v 85_C
v 125_C
Unit
VIH
Minimum High−Level Input Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
V
VIL
Maximum Low−Level Input Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.50
0.90
1.35
1.80
0.50
0.90
1.35
1.80
0.50
0.90
1.35
1.80
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.90
4.40
5.90
1.90
4.40
5.90
1.90
4.40
5.90
V
3.0
4.5
6.0
2.48
2.98
5.48
2.34
3.84
5.34
2.20
3.70
5.20
2.0
4.5
6.0
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.40
0.40
0.40
V
Test Conditions
Vin = VIH or VIL
VOL
Maximum Low−Level Output
Voltage
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
Vin = VIH or VIL
|Iout| v 20 mA
Vin = VIH or VIL
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
V
V
Iin
Maximum Input Leakage Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
IOZ
Maximum Three−State
Leakage Current
Output in High−Impedance State
Vin = VIL or VIH
Vout = VCC or GND
6.0
±0.5
±5.0
±10
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4.0
40
40
mA
NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High−Speed CMOS Data Book
(DL129/D).
http://onsemi.com
4
74HC374
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
VCC
(V)
– 55 to
25_C
v 85_C
v 125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
2.0
3.0
4.5
6.0
6
15
30
35
5
10
24
28
4
8
20
24
MHz
tPLH
tPHL
Maximum Propagation Delay, Input Clock to Q
(Figures 1 and 5)
2.0
3.0
4.5
6.0
125
80
25
21
155
110
31
26
190
130
38
32
ns
tPLZ
tPHZ
Maximum Propagation Delay, Output Enable to Q
(Figures 3 and 6)
2.0
3.0
4.5
6.0
150
100
30
26
190
125
38
33
225
150
45
38
ns
tPLZ
tPHZ
Maximum Propagation Delay, Output Enable to Q
(Figures 3 and 6)
2.0
3.0
4.5
6.0
150
100
30
26
190
125
38
33
225
150
45
38
ns
tTLH
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 5)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
16
110
36
22
19
ns
Cin
Maximum Input Capacitance
10
10
10
pF
Cout
Maximum Three−State Output Capacitance
(Output in High−Impedance State)
15
15
15
pF
NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON
Semiconductor High−Speed CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
34
Power Dissipation Capacitance (Per Enabled Output)*
pF
* Used to determine the no−load dynamic power consumption: PD = CPD VCC2 f + ICC VCC . For load considerations, see Chapter 2 of the
ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
5
74HC374
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
VCC
(V)
Figure
– 55 to 25_C
Min
v 85_C
Max
Min
Max
v 125_C
Min
Max
Unit
tsu
Minimum Setup Time, Data to Clock
3
2.0
3.0
4.5
6.0
50
40
10
9
65
50
13
11
75
60
15
13
ns
th
Minimum Hold Time, Clock to Data
3
2.0
3.0
4.5
6.0
5.0
5.0
5.0
5.0
5.0
50
5.0
5.0
5.0
5.0
5.0
5.0
ns
tw
Minimum Pulse Width, Clock
1
2.0
3.0
4.5
6.0
60
23
12
10
75
27
15
13
90
32
18
15
ns
Maximum Input Rise and Fall Times
1
2.0
3.0
4.5
6.0
tr, tf
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
SWITCHING WAVEFORMS
tr
CLOCK
tf
VCC
90%
50%
10%
OUTPUT
ENABLE
VCC
50%
GND
GND
tW
1/fmax
tPLH
Q
Q
90%
Q
tTLH
tPLZ
tPZH
tPHZ
50%
tPHL
50%
10%
tPZL
50%
Figure 2.
VALID
VCC
DATA
50%
GND
th
tsu
VCC
CLOCK
50%
GND
Figure 3.
http://onsemi.com
6
10%
VOL
90%
VOH
HIGH
IMPEDANCE
tTHL
Figure 1.
HIGH
IMPEDANCE
74HC374
TEST CIRCUITS
TEST POINT
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
DEVICE
UNDER
TEST
C L*
C L*
*Includes all probe and jig capacitance
*Includes all probe and jig capacitance
Figure 4.
D0
3
Q
D2
7
D
C
Clock
Figure 5.
D1
4
D
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
1 kW
OUTPUT
Q
D3
8
D
C
Q
D4
13
D
C
Q
D5
14
D
C
Q
D6
17
D
C
Q
D7
18
D
C
Q
D
C
Q
C
11
Output 1
Enable
2
Q0
5
Q1
6
Q2
9
Q3
12
Q4
Figure 6. Expanded Logic Diagram
http://onsemi.com
7
15
Q5
16
Q6
19
Q7
74HC374
PACKAGE DIMENSIONS
TSSOP−20
CASE 948E−02
ISSUE C
20X
0.15 (0.006) T U
2X
L
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
K
K1
S
J J1
11
B
−U−
PIN 1
IDENT
SECTION N−N
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
PLANE
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
8
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
−−− 0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
74HC374
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
74HC373/D