ONSEMI 74HC574DTR2G

74HC574
Octal 3−State Noninverting
D Flip−Flop
High−Performance Silicon−Gate CMOS
The 74HC574 is identical in pinout to the LS574. The device inputs
are compatible with standard CMOS outputs; with pull−up resistors,
they are compatible with LSTTL outputs.
Data meeting the set−up time is clocked to the outputs with the
rising edge of the Clock. The Output Enable input does not affect the
states of the flip−flops but when Output Enable is high, all device
outputs are forced to the high−impedance state. Thus, data may be
stored even when the outputs are not enabled.
The HC574 is identical in function to the HC374A but has the
flip−flop inputs on the opposite side of the package from the outputs to
facilitate PC board layout.
Features
•
•
•
•
•
•
•
•
Output Drive Capability: 15 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
ESD Performance: HBM > 2000 V; Machine Model > 200 V
Chip Complexity: 266 FETs or 66.5 Equivalent Gates
This is a Pb−Free Device
© Semiconductor Components Industries, LLC, 2007
March, 2007 − Rev. 1
1
http://onsemi.com
MARKING
DIAGRAMS
20
HC
574
ALYW G
G
TSSOP−20
DT SUFFIX
CASE 948E
20
1
1
HC574
A
L
Y
W
G
= Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 3 of this data sheet.
Publication Order Number:
74HC574/D
74HC574
OUTPUT
ENABLE
D0
1
20
VCC
2
19
Q0
D1
3
18
Q1
D2
4
17
Q2
D3
5
16
Q3
OE
L
L
L
H
FUNCTION TABLE
Inputs
D4
6
15
Q4
D5
7
14
Q5
D6
8
13
Q6
D7
9
12
Q7
10
11
CLOCK
GND
D
Q
L,H,
X
H
L
X
X
H
L
No Change
Z
X = Don’t Care
Z = High Impedance
Figure 1. Pin Assignment
D0
D1
D2
DATA
INPUTS
D3
D4
D5
D6
D7
CLOCK
OUTPUT ENABLE
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
Q0
Q1
Q2
Q3
Q4
NONINVERTING
OUTPUTS
Q5
Q6
Q7
11
PIN 20 = VCC
PIN 10 = GND
1
Figure 2. Logic Diagram
Design Criteria
Value
Units
Internal Gate Count*
66.5
ea.
Internal Gate Propagation Delay
1.5
ns
Internal Gate Power Dissipation
5.0
mW
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Speed Power Product
0.0075
*Equivalent to a two−input NAND gate.
http://onsemi.com
2
pJ
Output
Clock
74HC574
MAXIMUM RATINGS
Symbol
VCC
Parameter
Value
Unit
*0.5 to )7.0
V
*0.5 to VCC )0.5
V
*0.5 to VCC )0.5
V
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
(Note 1)
IIK
DC Input Diode Current
$20
mA
IOK
DC Output Diode Current
$35
mA
IO
DC Output Sink Current
$35
mA
ICC
DC Supply Current per Supply Pin
$75
mA
IGND
DC Ground Current per Ground Pin
$75
mA
TSTG
Storage Temperature Range
*65 to )150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
TJ
Junction Temperature under Bias
qJA
Thermal Resistance
PD
Power Dissipation in Still Air at 85_C
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
ILatchup
_C
_C
TSSOP
128
_C/W
TSSOP
450
mW
Level 1
Oxygen Index: 30% − 35%
ESD Withstand Voltage
Latchup Performance
260
)150
UL 94 V−0 @ 0.125 in
Human Body Model (Note 2)
Machine Model (Note 3)
>2000
>200
V
Above VCC and Below GND at 85_C (Note 4)
$300
mA
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. IO absolute maximum rating must be observed.
2. Tested to EIA/JESD22−A114−A.
3. Tested to EIA/JESD22−A115−A.
4. Tested to EIA/JESD78.
5. For high frequency or heavy load considerations, see the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
VI, VO
Parameter
DC Supply Voltage
(Referenced to GND)
DC Input Voltage, Output Voltage
(Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time (Figure 3)
Min
Max
Unit
2.0
6.0
V
0
VCC
V
*55
)125
_C
0
0
0
1000
500
400
ns
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
6. Unused inputs may not be left open. All inputs must be tied to a high− or low−logic input voltage level.
ORDERING INFORMATION
Device
74HC574DTR2G
Package
Shipping †
TSSOP−20*
2500 / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
3
74HC574
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Symbol
Parameter
Test Conditions
VCC
(V)
Guaranteed Limit
*55 to 25_C
v85_C
v125_C
Unit
VIH
Minimum High−Level Input
Voltage
Vout = VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage
Vout = 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.2
3.7
5.2
V
VOL
Maximum Low−Level Output
Voltage
Vin = VIL
|Iout| v 20 mA
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
V
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.4
0.4
0.4
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
Vin = VIL
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
Iin
Maximum Input Leakage
Current
Vin = VCC or GND
6.0
$0.1
$1.0
$1.0
mA
IOZ
Maximum Three−State
Leakage Current
Output in High−Impedance State
Vin = VIL or VIH
Vout = VCC or GND
6.0
$0.5
$5.0
$10
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4.0
40
40
mA
7. Information on typical parametric values can be found in the ON Semiconductor High−Speed CMOS Data Book (DL129/D).
http://onsemi.com
4
74HC574
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF; Input tr = tf = 6.0 ns)
Symbol
VCC
(V)
Parameter
Guaranteed Limit
*55 to 25_C
v85_C
v125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 3 and 6)
2.0
3.0
4.5
6.0
6.0
15
30
35
4.8
10
24
28
4.0
8.0
20
24
MHz
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q
(Figures 3 and 6)
2.0
3.0
4.5
6.0
160
105
32
27
200
145
40
34
240
190
48
41
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Output Enable to Q
(Figures 4 and 7)
2.0
3.0
4.5
6.0
150
100
30
26
190
125
38
33
225
150
45
38
ns
tPZL,
tPZH
Maximum Propagation Delay, Output Enable to Q
(Figures 4 and 7)
2.0
3.0
4.5
60
140
90
28
24
175
120
35
30
210
140
42
36
ns
tTLH,
tTHL
Maximum Output Transition Time, any Output
(Figures 3 and 6)
2.0
3.0
4.5
6.0
60
27
12
10
75
32
15
13
90
36
18
15
ns
Cin
Maximum Input Capacitance
10
10
10
pF
Cout
Maximum Three−State Output Capacitance, Output in High−Impedance
State
15
15
15
pF
8. For propagation delays with loads other than 50 pF, and information on typical parametric values, see the ON Semiconductor High−Speed
CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
Power Dissipation Capacitance (Per Enabled Output)*
24
pF
*Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC . For load considerations, see the ON
Semiconductor High−Speed CMOS Data Book (DL129/D).
TIMING REQUIREMENTS (CL = 50 pF; Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
VCC
– 55 to 25_C
Figure
(V)
Min
Max
v 85_C
Min
Max
v 125_C
Min
Max
Unit
tsu
Minimum Setup Time, Data to Clock
5
2.0
3.0
4.6
6.0
50
40
10
9.0
65
50
13
11
75
60
15
13
ns
th
Minimum Hold Time, Clock to Data
5
2.0
3.0
4.5
6.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
ns
tw
Minimum Pulse Width, Clock
3
2.0
3.0
4.5
6.0
75
60
15
13
95
80
19
16
110
90
22
19
ns
Maximum Input Rise and Fall Times
3
2.0
3.0
4.5
6.0
tr, tf
http://onsemi.com
5
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
74HC574
tr
CLOCK
SWITCHING WAVEFORMS
tf
3.0 V
VCC
90%
50%
10%
tw
1.3 V
GND
1/fmax
tPLH
Q
tPZH
90%
50%
10%
HIGH
IMPEDANCE
1.3 V
Q
tPHL
GND
tPLZ
tPZL
tPHZ
Q
tTLH
10%
VOL
90%
VOH
HIGH
IMPEDANCE
tTHL
Figure 3.
Figure 4.
TEST POINT
OUTPUT
VALID
DATA
VCC
50%
tsu
DEVICE
UNDER
TEST
GND
th
CL*
VCC
CLOCK
50%
GND
*Includes all probe and jig capacitance.
Figure 5.
Figure 6.
D0
D1
D2
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
1 kW
CL*
D3
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
D4
D5
*Includes all probe and jig capacitance.
D6
2
C
Q
D
19
3
C
Q
D
18
4
C
Q
D
17
5
C
Q
D
16
6
C
Q
D
15
7
C
Q
D
14
8
C
Q
D
13
9
C
Q
D
12
Figure 7. Test Circuit
D7
CLOCK
OUTPUT ENABLE
11
1
Figure 8. Expanded Logic Diagram
http://onsemi.com
6
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
74HC574
PACKAGE DIMENSIONS
TSSOP−20
CASE 948E−02
ISSUE C
20X
0.15 (0.006) T U
2X
L
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
K
K1
S
J J1
11
B
−U−
PIN 1
IDENT
SECTION N−N
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
PLANE
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
7
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
−−− 0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
74HC574
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
74HC574/D