CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 PSoC® Programmable System-on-Chip™ PSoC® Programmable System-on-Chip™ Features ■ ■ ■ ■ ■ ■ Pull-up, pull-down, high Z, strong, or open-drain drive modes on all GPIOs ❐ Analog input on all GPIOs ❐ 30 mA analog outputs on GPIOs ❐ Configurable interrupt on all GPIOs ❐ Varied resource options within one PSoC® device group Powerful Harvard-architecture processor ❐ M8C processor speeds up to 24 MHz ❐ 8 × 8 Multiply, 32-bit accumulate ❐ Low power at high speed ❐ Operating voltage: 3.0 V to 5.25 V ❐ Operating voltages down to 1.5 V Using on-chip switched mode pump (SMP) ❐ Industrial temperature range: –40 °C to +85 °C Advanced reconfigurable peripherals (PSoC Blocks) ❐ Up to 12 rail-to-rail analog PSoC blocks provide: • Up to 14-bit ADCs • Up to 9-bit DACs • Programmable gain amplifiers • Programmable filters and comparators • Multiple ADC configurations • Dedicated SAR ADC, up to 142 ksps with sample and hold • Up to 4 synchronized or independent delta-sigma ADCs for advanced applications ❐ Up to 4 limited type E analog blocks provide: • Dual channel capacitive sensing capability • Comparators with programmable DAC reference • Up to 10-bit single-slope ADCs ❐ Up to 12 digital PSoC blocks provide: • 8- to 32-bit timers and counters, 8- and 16-bit pulse-width modulators (PWMs) • Shift register, CRC, and PRS modules • Up to 3 full-duplex UARTs • Up to 6 half-duplex UARTs • Multiple variable data length SPI masters or slaves • Connectable to all GPIOs ❐ Complex peripherals by combining blocks ■ Additional system resources 2 ❐ Up to two hardware I C resources • Each resource implements slave, master, or multi-master modes • Operation between 0 and 400 kHz ❐ Watchdog and Sleep timers ❐ User-configurable low voltage detection ❐ Flexible internal voltage references ❐ Integrated supervisory circuit ❐ On-chip precision voltage reference ■ Complete development tools ❐ Free development software (PSoC Designer™) ❐ Full featured in-circuit emulator, and programmer ❐ Full speed emulation ❐ Flexible and functional breakpoint structure ❐ 128 KB trace memory Logic Block Diagram Port 5 Port 4 Port 3 Port 2 Port 1 Port 0 PSoC CORE System Bus Global Digital Interconnect SRAM 1K Global Analog Interconnect Flash 16K CPU Core (M8C) Sleep and Watchdog Multiple Clock Sources (Includes IMO, ILO, PLL, and ECO) DIGITAL SYSTEM Digital Clocks 2 MACs ANALOG SYSTEM Analog Block Array Digital Block Array Programmable Pin configurations ❐ 25 mA sink, 10 mA drive on all GPIOs Cypress Semiconductor Corporation Document Number: 001-48111 Rev. *K SROM Interrupt Controller Precision, programmable clocking ❐ Internal ±2.5% 24/48 MHz main oscillator ❐ Optional 32.768 kHz crystal for precise on-chip clocks ❐ Optional external oscillator, up to 24 MHz ❐ Internal low speed, low power oscillator for watchdog and sleep functionality Flexible on-chip memory ❐ 16 KB flash program storage 50,000 erase/write cycles ❐ 1-KB SRAM data storage ❐ In-system serial programming (ISSP) ❐ Partial flash updates ❐ Flexible protection modes ❐ EEPROM emulation in flash Analog Drivers 4 Type 2 2 I2C Decimators Blocks POR and LVD System Resets Analog Ref. Analog Input Muxing Internal Voltage Ref. Switch Mode Pump SYSTEM RESOURCES • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised October 1, 2012 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Contents PSoC Functional Overview .............................................. 3 The PSoC Core ........................................................... 3 The Digital System ...................................................... 3 The Analog System ..................................................... 4 System Resources ...................................................... 7 PSoC Device Characteristics ...................................... 7 Getting Started .................................................................. 8 Application Notes ........................................................ 8 Development Kits ........................................................ 8 Training ....................................................................... 8 CYPros Consultants .................................................... 8 Solutions Library .......................................................... 8 Technical Support ....................................................... 8 Development Tools .......................................................... 9 PSoC Designer Software Subsystems ........................ 9 Designing with PSoC Designer ..................................... 10 Select User Modules ................................................. 10 Configure User Modules ............................................ 10 Organize and Connect .............................................. 10 Generate, Verify, and Debug ..................................... 10 Pinouts ............................................................................ 11 20-Pin Part Pinout .................................................... 11 28-Pin Part Pinout ..................................................... 12 44-Pin Part Pinout .................................................... 13 48-Pin Part Pinout ..................................................... 14 56-Pin Part Pinout ..................................................... 15 Register Reference ......................................................... 17 Register Conventions ................................................ 17 Register Mapping Tables .......................................... 17 Document Number: 001-48111 Rev. *K Electrical Specifications ................................................ 32 Absolute Maximum Ratings ....................................... 33 Operating Temperature ............................................. 33 DC Electrical Characteristics ..................................... 34 AC Electrical Characteristics ..................................... 52 Packaging Information ................................................... 62 Packaging Dimensions .............................................. 62 Thermal Impedances ................................................ 66 Capacitance on Crystal Pins .................................... 66 Solder Reflow Specifications ..................................... 66 Development Tool Selection ......................................... 67 Software .................................................................... 67 Development Kits ...................................................... 67 Evaluation Tools ........................................................ 67 Device Programmers ................................................. 68 Accessories (Emulation and Programming) .............. 68 Ordering Information ...................................................... 69 Ordering Code Definitions ......................................... 70 Acronyms ........................................................................ 71 Acronyms Used ......................................................... 71 Reference Documents .................................................... 71 Document Conventions ................................................. 72 Units of Measure ....................................................... 72 Numeric Conventions ................................................ 72 Glossary .......................................................................... 72 Document History Page ................................................. 77 Sales, Solutions, and Legal Information ...................... 78 Worldwide Sales and Design Support ....................... 78 Products .................................................................... 78 PSoC Solutions ......................................................... 78 Page 2 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 PSoC Functional Overview The PSoC family consists of many devices with On-Chip Controllers. These devices are designed to replace multiple traditional MCU based system components with one low cost single chip programmable component. A PSoC device includes configurable analog blocks, digital blocks, and interconnections. This architecture enables the user to create customized peripheral configurations to match the requirements of each individual application. In addition, a fast CPU, Flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages. 32-bit peripherals, which are called user modules. The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. Figure 1. Digital System Block Diagram[1] Port 5 Port 1 Port 3 Port 4 Port 0 Port 2 Digital Clocks From Core To Analog System To System Bus DIGITAL SYSTEM Digital PSoC Block Array Row Input Configuration Row 0 DBC00 DBC01 DCC02 4 DCC03 4 Row Output Configuration The CY8C28xxx group of PSoC devices described in this datasheet have multiple resource configuration options available. Therefore, not every resource mentioned in this datasheet is available for each CY8C28xxx subgroup. The CY8C28x45 subgroup has a full feature set of all resources described. There are six more segmented subgroups that allow designers to use a device with only the resources and functionality necessary for a specific application. See Table 2 on page 8 to determine the resources available for each CY8C28xxx subgroup. The same information is also presented in more detail in the Ordering Information section. 8 8 Row Input Configuration DBC10 DBC11 DCC12 4 DCC13 4 Row 2 DBC20 DBC21 DCC22 4 DCC23 4 GIE[7:0] GIO[7:0] Global Digital Interconnect 8 Row Output Configuration The architecture for this specific PSoC device family, as shown in the Logic Block Diagram on page 1, consists of four main areas: PSoC Core, Digital System, Analog System, and System Resources. The configurable global bus system allows all the device resources to be combined into a complete custom system. PSoC CY8C28xxx family devices have up to six I/O ports that connect to the global digital and analog interconnects, providing access to up to 12 digital blocks and up to 16 analog blocks. Row 1 Row Output Configuration Row Input Configuration 8 GOE[7:0] GOO[7:0] The PSoC Core The PSoC Core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable general Purpose I/O (GPIO). The M8C CPU core is a powerful processor with speeds up to 24 MHz, providing a four MIPS 8-bit Harvard architecture microcontroller. Memory encompasses 16K bytes of Flash for program storage, 1K bytes of SRAM for data storage. The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and watch dog timer (WDT). The 32.768 kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. PSoC GPIOs provide connections to the CPU, and digital and analog resources. Each pin’s drive mode may be selected from 8 options, which allows great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read. The Digital System The Digital System is composed of up to 12 configurable digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to create 8, 16, 24, and Digital peripheral configurations include: ■ PWMs (8- and 16-bit, One-shot and Multi-shot capability) ■ PWMs with Dead band/Kill (8- and 16-bit) ■ Counters (8 to 32 bit) ■ Timers (8 to 32 bit) ■ Full-duplex 8-bit UARTs (up to 3) with selectable parity ■ Half-duplex 8-bit UARTs (up to 6) with selectable parity ■ Variable length SPI slave and master ❐ Up to 6 total slaves and masters (8-bit) ❐ Supports 8 to 16 bit operation ■ I2C slave, master, or multi-master (up to 2 available as System Resources) ■ IrDA (up to 3) ■ Pseudo Random Sequence Generators (8 to 32 bit) ■ Cyclical Redundancy Checker/Generator (16 bit) ■ Shift Register (2 to 32 bit) Note 1. CY8C28x52 devices do not have digital block row 2. They have two digital rows with eight total digital blocks. Document Number: 001-48111 Rev. *K Page 3 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Some of the more common PSoC analog functions (most available as user modules) are: ■ Analog-to-digital converters (6 to 14-bit resolution, up to 4, selectable as Incremental or Delta Sigma) All GPIO P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0] AGNDIn RefIn The Analog System is composed of up to 16 configurable analog blocks, each containing an opamp circuit that allows the creation of complex analog signal flows. Some devices in this PSoC family have an analog multiplex bus that can connect to every GPIO pin. This bus can also connect to the analog system for analysis with comparators and analog-to-digital converters. It can be split into two sections for simultaneous dual-channel processing. Figure 2. Analog System Block Diagram for CY8C28x45 and CY8C28x52 Devices P2[3] Analog Mux Bus The Analog System P2[1] P2[6] P2[4] P2[2] ■ Dedicated 10-bit SAR ADC with sample rates up to 142 ksps ■ Synchronized, simultaneous Delta Sigma ADCs (up to 4) ■ Filters (2 to 8 pole band-pass, low pass, and notch) ■ Amplifiers (up to 4, with selectable gain to 48x) ■ Instrumentation amplifiers (up to 2, with selectable gain to 93x) ■ Comparators (up to 6, with 16 selectable thresholds) ■ DACs (up to 4, with 6 to 9-bit resolution) ■ Multiplying DACs (up to 4, with 6 to 9-bit resolution) ACC00 ACC01 ACC02 ACC03 ■ High current output drivers (up to 4 with 30 mA drive) ASC10 ASD11 ASC12 ASD13 ■ 1.3 V reference (as a System Resource) ASD20 ASC21 ASD22 ASC23 ■ DTMF Dialer ■ Modulators ■ Correlators ■ Peak detectors ■ Many other topologies possible P2[0] Array Input Configuration ACI0[1:0] ACI1[1:0] ACI2[1:0] ACI3[1:0] ACI4[1:0] ACI5[1:0] Block Array ACE00 ACE01 ASE10 ASE11 Analog Reference Interface to Digital System RefHi RefLo AGND Reference Generators AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) Document Number: 001-48111 Rev. *K Page 4 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Figure 3. Analog System Block Diagram for CY8C28x43 Devices Figure 4. Analog System Block Diagram for CY8C28x33 Devices All GPIO All GPIO P0[7] P0[6] P0[5] P0[4] P0[3] P0[2] P0[1] P0[0] P0[7] P0[5] P2[1] P0[4] P0[1] P0[2] P2[3] P2[1] P2[4] P0[0] AGNDIn RefIn Analog Mux Bus P2[3] P2[6] P0[3] Analog Mux Bus AGNDIn RefIn P0[6] P2[2] P2[0] P2[6] P2[4] Array Input Configuration Array Input Configuration ACI0[1:0] ACI0[1:0] ACI1[1:0] ACI2[1:0] ACI1[1:0] ACI4[1:0] ACI5[1:0] ACI3[1:0] Block Array ACC00 ACC01 Block Array ACC00 ACC01 ACC02 ACC03 ASC10 ASD11 ASC10 ASD11 ASC12 ASD13 ASD20 ASC21 ASD20 ASC21 ASD22 ASC23 ACE00 ACE01 ASE10 ASE11 Analog Reference Interface to Digital System Analog Reference Interface to Digital System RefHi RefLo AGND Reference Generators RefHi RefLo AGND Reference Generators AGNDIn RefIn Bandgap AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) M8C Interface (Address Bus, Data Bus, Etc.) Document Number: 001-48111 Rev. *K Page 5 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Figure 5. Analog System Block Diagram for CY8C28x23 Devices Figure 6. Analog System Block Diagram for CY8C28x13 Devices P0[7] All GPIO P0[5] P0[6] P0[4] P0[1] P0[6] Analog Mux Bus P0[7] P0[3] P0[5] P0[4] P0[2] P2[3] P0[0] AGNDIn RefIn P2[1] P0[3] P0[2] P0[1] P0[0] P2[6] Array Input Configuration P2[4] ACI0[1:0] ACI1[1:0] Array Input Configuration ACI0[1:0] Block Array ACI1[1:0] Block Array ACC00 ACC01 ASC10 ASD11 ASD20 ASC21 RefHi RefLo AGND Reference Generators ACE01 ASE10 ASE11 Analog Reference Interface to Digital System Analog Reference Interface to Digital System ACE00 RefHi RefLo AGND Reference Generators AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) AGNDIn RefIn Bandgap M8C Interface (Address Bus, Data Bus, Etc.) Document Number: 001-48111 Rev. *K Page 6 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 System Resources ■ System Resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, multiple decimators, switch mode pump, low voltage detection, and power on reset. Statements describing the merits of each system resource follow: ■ ■ Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers. ■ Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters. Up to four decimators provide custom hardware filters for digital signal processing applications such as Delta-Sigma ADCs and CapSense capacitive sensor measurement. Up to two I2C resources provide 0 to 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported. I2C resources have hardware address detection capability. ■ Low Voltage Detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR (Power On Reset) circuit eliminates the need for a system supervisor. ■ An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs. ■ An integrated switch mode pump (SMP) generates normal operating voltages from a single 1.5 V battery cell, providing a low cost boost converter. PSoC Device Characteristics Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 on page 7 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in this table. Table 1. PSoC Device Characteristics PSoC Part Number Digital I/O Digital Rows Digital Blocks Analog Inputs Analog Outputs Analog Columns Analog Blocks SRAM Size Flash Size CY8C29x66 up to 64 4 16 up to 12 4 4 12 2K 32 K CY8C28xxx up to 44 up to 3 up to 12 up to 44 up to 4 up to 6 up to 12 + 4[2] 1K 16 K CY8C27x43 up to 44 2 8 up to 12 4 4 12 256 16 K CY8C24x94 up to 56 1 4 up to 48 2 2 6 1K 16 K CY8C24x23A up to 24 1 4 up to 12 2 2 6 256 4K CY8C23x33 up to 26 1 4 up to 12 2 2 4 256 8K CY8C22x45 up to 38 2 8 up to 38 0 4 6[2] 1K 16 K CY8C21x45 up to 24 1 4 up to 24 0 4 6[2] 512 8K CY8C21x34 up to 28 1 4 up to 28 0 2 4[2] 512 8K [2] 256 4K 512 8K up to 2 K up to 32 K CY8C21x23 up to 16 1 4 up to 8 0 2 CY8C20x34 up to 28 0 0 up to 28 0 0 3[2,3] 0 [2,3] CY8C20xx6 up to 36 0 0 up to 36 0 4 3 Notes 2. Limited analog functionality. 3. Two analog blocks and one CapSense®. Document Number: 001-48111 Rev. *K Page 7 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 The devices covered by this datasheet all have the same architecture, specifications, and ratings. However, the amount of some hardware resources varies from device to device within the group. The following table lists resources available for the specific device subgroups covered by this datasheet. Table 2. CY8C28xxx Device Characteristics CapSense Digital Blocks Regular Analog Blocks Limited Analog Blocks HW I2C Decimators Digital I/O CY8C28x03 N 12 0 0 2 0 up to 24 up to 8 0 CY8C28x13 Y 12 0 4 1 2 up to 40 up to 40 0 CY8C28x23 N 12 6 0 2 2 up to 44 up to 10 2 CY8C28x33 Y 12 6 4 1 4 up to 40 up to 40 2 CY8C28x43 N 12 12 0 2 4 up to 44 up to 44 4 CY8C28x45 Y 12 12 4 2 4 up to 44 up to 44 4 CY8C28x52 Y 8 12 4 1 4 up to 24 up to 24 4 PSoC Part Number Getting Started For in depth information, along with detailed programming details, see the PSoC® Technical Reference Manual. For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web. Application Notes Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs. Development Kits PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. Training Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, Analog Inputs Analog Outputs covers a wide variety of topics and skill levels to assist you in your designs. CYPros Consultants Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site. Solutions Library Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly. Technical Support Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736. Notes 4. Has 12 regular analog blocks and four limited Type-E analog blocks. 5. Limited analog functionality. 6. Two analog blocks and one CapSense. Document Number: 001-48111 Rev. *K Page 8 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Development Tools PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes: ■ Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration ■ Extensive user module catalog ■ Integrated source-code editor (C and assembly) ■ Free C compiler with no size restrictions or time limits ■ Built-in debugger ■ In-circuit emulation Built-in support for communication interfaces: 2 ❐ Hardware and software I C slaves and masters ❐ Full-speed USB 2.0 ❐ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7. ■ PSoC Designer Software Subsystems Design Entry In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application. The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application. Document Number: 001-48111 Rev. *K Code Generation Tools The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two. Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing. C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality. Debugger PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest. Online Help System The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer. In-Circuit Emulator A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices. The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation. Page 9 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Designing with PSoC Designer The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is: 1. Select user modules. 2. Configure user modules. 3. Organize and connect. 4. Generate, verify, and debug. Select User Modules PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called “user modules.” User modules make selecting and implementing peripheral devices, both analog and digital, simple. Configure User Modules Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design. Document Number: 001-48111 Rev. *K Organize and Connect Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources. Generate, Verify, and Debug When you are ready to test the hardware configuration or move on to developing code for the project, perform the “Generate Configuration Files” step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed. A complete code development environment lets you to develop and customize your applications in C, assembly language, or both. The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals. Page 10 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Pinouts This section describes, lists, and illustrates the CY8C28xxx PSoC device pins and pinout configurations. The CY8C28xxx PSoC devices are available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a “P”) is capable of Digital I/O. However, VSS, VDD, SMP, and XRES are not capable of Digital I/O. 20-Pin Part Pinout Table 3. 20-Pin Part Pinout (SSOP) Type Pin No. Digital Analog Pin Name 1 I/O I, M, S P0[7] 2 I/O I/O, M, S P0[5] 3 I/O I/O, M, S P0[3] 4 I/O I, M, S P0[1] 5 Output SMP Description Analog column mux and SAR ADC input.[8] S, AI, M, P0[7] S, AIO, M, P0[5] Analog column mux and SAR ADC input. S, AIO, M, P0[3] Analog column output.[8, 9] S, AI, M, P0[1] Analog column mux and SAR ADC input. SMP [8, 9] Analog column output. I2C0 SCL, M, P1[7] Analog column mux and SAR ADC I2C0 SDA, M, P1[5] input.[8] M, P1[3] Switch Mode Pump (SMP) connection to I2C0 SCL, XTALin, M, P1[1] external components. Vss 6 I/O M P1[7] I2C0 Serial Clock (SCL). 7 I/O M P1[5] I2C0 Serial Data (SDA). 8 I/O M P1[3] 9 I/O M P1[1] 10 Power VSS M P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[7]. 12 I/O M P1[2] I2C1 Serial Data (SDA).[10] 13 I/O M P1[4] Optional External Clock Input (EXTCLK). 14 I/O M P1[6] I2C1 Serial Clock (SCL).[10] I/O I, M, S P0[0] Analog column mux and SAR ADC input.[8] 17 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. Analog column output.[8, 11] 18 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. Analog column output.[8, 11] 19 I/O I, M, S P0[6] Analog column mux and SAR ADC input.[8] VDD Supply voltage. Power Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S XRES P1[6], M, I2C1 SCL P1[4], M, EXTCLK P1[2], M, I2C1 SDA P1[0], M, XTALout, I2C0 SDA XRES Active high external reset with internal pull-down. 16 20 SSOP 20 19 18 17 16 15 14 13 12 11 Ground connection. I/O Input 1 2 3 4 5 6 7 8 9 10 Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[7]. 11 15 CY8C28243 20-Pin PSoC Device LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input. Notes 7. These are the ISSP pins, which are not High Z at POR (Power On Reset). See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices for details. 8. CY8C28x52 and CY8C28x23 devices do not have a SAR ADC. Therefore, this pin does not function as a SAR ADC input for these devices. 9. CY8C28x13 and CY8C28x03 devices do not have any analog output buffers. Therefore, this pin does not function as an analog column output for these devices. 10. CY8C28x52, CY8C28x13, and CY8C28x33 devices only have one I2C block. Therefore, this GPIO does not function as an I2C pin for these devices. 11. CY8C28x33, CY8C28x23, CY8C28x13, and CY8C28x03 devices do not have an analog output buffer for this pin. Therefore, this pin does not function as an analog column output for these devices. Document Number: 001-48111 Rev. *K Page 11 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 28-Pin Part Pinout Table 4. 28-Pin Part Pinout (SSOP) Type Description Pin No. Digital Analog Pin Name 1 I/O I, M, S P0[7] Analog column mux and SAR ADC input.[8] 2 I/O I/O, M, S P0[5] Analog column mux and SAR ADC input. Analog column output.[8, 9] 3 I/O I/O, M, S P0[3] Analog column mux and SAR ADC input. Analog column output.[8, 9] 4 I/O I, M, S P0[1] Analog column mux and SAR ADC input.[8] 5 I/O M P2[7] 6 I/O M P2[5] 7 I/O I, M P2[3] Direct switched capacitor block input.[12] 8 I/O I, M P2[1] Direct switched capacitor block input.[12] SMP Switch Mode Pump (SMP) connection to external components. 9 Output 10 I/O M P1[7] I2C0 Serial Clock (SCL). 11 I/O M P1[5] I2C0 Serial Data (SDA). 12 I/O M P1[3] 13 I/O M P1[1] 14 Power VSS M P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[7]. 16 I/O M P1[2] I2C1 Serial Data (SDA).[10] 17 I/O M P1[4] Optional External Clock Input (EXTCLK). 18 I/O M P1[6] I2C1 Serial Clock (SCL).[10] I/O I, M P2[0] Direct switched capacitor block input.[13] 21 I/O I, M P2[2] Direct switched capacitor block input.[13] 22 I/O M P2[4] External Analog Ground (AGND). 23 I/O M P2[6] External Voltage Reference (VRef). 24 I/O I, M, S P0[0] Analog column mux and SAR ADC input.[8] 25 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. Analog column output.[8, 11] 26 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. Analog column output.[8, 11] 27 I/O I, M, S P0[6] Analog column mux and SAR ADC input.[8] VDD Supply voltage. Power SSOP 28 27 26 25 24 23 22 21 20 19 18 17 16 15 Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef P2[4], M, External AGND P2[2], M, AI P2[0], M, AI XRES P1[6], M, I2C1 SCL P1[4], M, EXTCLK P1[2], M, I2C1 SDA P1[0], M, XTALout, I2C0 SDA XRES Active high external reset with internal pull-down. 20 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Ground connection. I/O Input S, AI, M, P0[7] S, AIO, M, P0[5] S, AIO, M, P0[3] S, AI, M, P0[1] M, P2[7] M, P2[5] AI, M, P2[3] AI, M, P2[1] SMP I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] M, P1[3] I2C0 SCL, XTALin, M, P1[1] Vss Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[7]. 15 19 CY8C28403, CY8C28413, CY8C28433, CY8C28445, and CY8C28452 28-Pin PSoC Devices LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input Notes 12. This pin is not a direct switched capacitor block analog input for CY8C28x03 and CY8C28x13 devices. 13. This pin is not a direct switched capacitor block analog input for CY8C28x03, CY8C28x13, CY8C28x23, and CY8C28x33 devices. Document Number: 001-48111 Rev. *K Page 12 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 44-Pin Part Pinout Table 5. 44-Pin Part Pinout (TQFP) 9 10 11 12 13 14 15 16 I/O I/O I/O I/O I/O I/O I/O I/O 17 18 M M M M M M M M P3[7] P3[5] P3[3] P3[1] P1[7] P1[5] P1[3] P1[1] I/O M VSS P1[0] 19 20 21 22 23 24 25 26 I/O I/O I/O I/O I/O I/O I/O M M M M M M M 27 28 29 30 31 32 33 34 35 36 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O M M M M I, M I, M M M I, M, S I/O, M S P4[0] P4[2] P4[4] P4[6] P2[0] P2[2] P2[4] P2[6] P0[0] P0[2] 37 I/O I/O, M, S P0[4] 38 39 40 41 I/O I, M, S Power I/O I, M, S I/O I/O, M, S P0[6] VDD P0[7] P0[5] 42 I/O P0[3] Power Input I/O, M, S P1[2] P1[4] P1[6] P3[0] P3[2] P3[4] P3[6] XRES P2[7], M P0[1], M, AI, S P0[3], M, AIO, S P0[5], M, AIO, S P0[7], M, AI, S Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef P2[5] P2[3] P2[1] P4[7] P4[5] P4[3] P4[1] SMP CY8C28513, CY8C28533, and CY8C28545 44-Pin PSoC Devices Description Direct switched capacitor block input.[12] Direct switched capacitor block input.[12] Switch Mode Pump (SMP) connection to external components. I2C0 Serial Clock (SCL). I2C0 Serial Data (SDA). Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[7]. Ground connection. Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[7]. I2C1 Serial Data (SDA).[10] Optional External Clock Input (EXTCLK). I2C1 Serial Clock (SCL).[10] I2C1 Serial Data (SDA).[10] I2C1 Serial Clock (SCL).[10] M, P2[5] AI, M, P2[3] AI, M, P2[1] M, P4[7] M, P4[5] M, P4[3] M, P4[1] SMP M, P3[7] M, P3[5] M, P3[3] 44 43 42 41 40 39 38 37 36 35 34 Pin Name 1 2 3 4 5 6 7 8 9 10 11 TQFP 33 32 31 30 29 28 27 26 25 24 23 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 Type Digital Analog I/O M I/O I, M I/O I, M I/O M I/O M I/O M I/O M Output P2[4], M, External AGND P2[2], M, AI P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M XRES P3[6], M P3[4], M P3[2], M, I2C1 SCL M, P3[1] I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] M, P1[3] I2C0 SCL, XTALin, M, P1[1] Vss I2C0 SDA, XTALout, M, P1[0] I2C1 SDA, M, P1[2] EXTCLK, M, P1[4] I2C1 SCL, M, P1[6] I2C1 SDA, M, P3[0] Pin No. Active high external reset with internal pull-down. Direct switched capacitor block input.[13] Direct switched capacitor block input.[13] External Analog Ground (AGND). External Voltage Reference (VRef). Analog column mux and SAR ADC input.[8] Analog column mux and SAR ADC input. Analog column output.[8, 11] Analog column mux and SAR ADC input. Analog column output.[8, 11] Analog column mux and SAR ADC input.[8] Supply voltage. Analog column mux and SAR ADC input.[8] Analog column mux and SAR ADC input. Analog column output.[8, 9] Analog column mux and SAR ADC input. Analog column output.[8, 9] Analog column mux and SAR ADC input.[8] 43 I/O I, M, S P0[1] 44 I/O P2[7] LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input. Document Number: 001-48111 Rev. *K Page 13 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 48-Pin Part Pinout Table 6. 48-Pin Part Pinout (QFN[14]) I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O 18 19 P2[3] P2[1] P4[7] P4[5] P4[3] P4[1] SMP Direct switched capacitor block input.[12] Direct switched capacitor block input.[12] Switch Mode Pump (SMP) connection to external components. CY8C28623, CY8C28643, and CY8C28645 48-Pin PSoC Devices P2[5], M P2[7], M P0[1], M, AI, S P0[3], M, AIO, S P0[5], M, AIO, S P0[7], M, AI, S Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef Description AI, M, P2[3] AI, M, P2[1] M, P4[7] M, P4[5] M, P4[3] M, P4[1] SMP M, P3[7] M, P3[5] M, P3[3] M, P3[1] M, P5[3] M M M M M M M M M M P3[7] P3[5] P3[3] P3[1] P5[3] P5[1] P1[7] P1[5] P1[3] P1[1] I/O M VSS P1[0] 20 21 I/O I/O M M P1[2] P1[4] 22 23 24 25 26 27 28 29 I/O I/O I/O I/O I/O I/O I/O M M M M M M M 30 31 32 I/O I/O I/O M M M P1[6] P5[0] P5[2] P3[0] I2C1 Serial Data (SDA).[10] P3[2] I2C1 Serial Clock (SCL).[10] P3[4] P3[6] XRES Active high external reset with internal pull-down. P4[0] P4[2] P4[4] Pin No. 33 I/O M P4[6] 41 34 35 I/O I/O I, M I, M P2[0] P2[2] Direct switched capacitor block input.[13] Direct switched capacitor block input.[13] 42 43 36 I/O M P2[4] External Analog Ground (AGND). 44 37 I/O M P2[6] External Voltage Reference (VRef). 45 38 I/O I, M, S P0[0] Power Input I2C0 Serial Clock (SCL). I2C0 Serial Data (SDA). Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[7]. Ground connection. Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[7]. I2C1 Serial Data (SDA).[10] Optional External Clock Input (EXTCLK). I2C1 Serial Clock (SCL).[10] 1 2 3 4 5 6 7 8 9 10 11 12 QFN (Top View) 36 35 34 33 32 31 30 29 28 27 26 25 P2[4], M, External AGND P2[2], M, AI P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M XRES P3[6], M P3[4], M P3[2], M, I2C1 SCL P3[0], M, I2C1 SDA M, P5[1] I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] M, P1[3] I2C0 SCL, XTALin, M, P1[1] Vss I2C0 SDA, XTALout, M, P1[0] I2C1 SDA, M, P1[2] EXTCLK, M, P1[4] I2C1 SCL, M, P1[6] M, P5[0] M, P5[2] 8 9 10 11 12 13 14 15 16 17 Pin Name 48 47 46 45 44 43 42 41 40 39 38 37 1 2 3 4 5 6 7 Type Digital Analog I/O I, M I/O I, M I/O M I/O M I/O M I/O M Output 13 14 15 16 17 18 19 20 21 22 23 24 Pin No. Type Pin Nam Description e I/O I, M, S P0[6] Analog column mux and SAR ADC input.[8] Power VDD Supply voltage. I/O I, M, S P0[7] Analog column mux and SAR ADC input.[8] I/O I/O, M, S P0[5] Analog column mux and SAR ADC input. Analog column output.[8, 9] I/O I/O, M, S P0[3] Analog column mux and SAR ADC input. Analog column output.[8, 9] I/O I, M, S P0[1] Analog column mux and SAR ADC input.[8] I/O M P2[7] Digital Analog Analog column mux and SAR ADC 46 input.[8] 39 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. 47 Analog column output.[8, 11] 40 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. 48 I/O M Analog column output.[8, 11] LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, and M = Analog Mux Bus Input. P2[5] Note 14. The QFN package has a center pad that must be connected to ground (VSS) Document Number: 001-48111 Rev. *K Page 14 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 56-Pin Part Pinout The 56-pin SSOP part is for the CY8C28000 On-Chip Debug (OCD) PSoC device. Note This part is only used for in-circuit debugging. It is NOT available for production. Table 7. 56-Pin Part Pinout (SSOP) Pin No. Type Digital Analog Pin Name 2 I/O I, M, S P0[7] Analog column mux and SAR ADC input. 3 I/O I/O, M, S P0[5] Analog column mux and SAR ADC input. Analog column output. 4 I/O I/O, M, S P0[3] Analog column mux and SAR ADC input. Analog column output. 5 I/O I, M, S P0[1] Analog column mux and SAR ADC input. 6 I/O M P2[7] 7 I/O M P2[5] 8 I/O I P2[3] Direct switched capacitor block input. Direct switched capacitor block input. 1 NC 9 I/O I P2[1] 10 I/O M P4[7] Description No connection. 11 I/O M P4[5] 12 I/O I, M P4[3] 13 I/O I, M 14 OCD M OCDE OCD even data I/O. 15 OCD M OCDO OCD odd data output. 16 Output P4[1] SMP Switch Mode Pump (SMP) connection to required external components. 17 I/O M P3[7] 18 I/O M P3[5] 19 I/O M P3[3] 20 I/O M P3[1] 21 I/O M P5[3] 22 I/O M P5[1] 23 I/O M P1[7] I2C0 Serial Clock (SCL). 24 I/O M P1[5] I2C0 Serial Data (SDA). 25 NC I/O M P1[3] 27 I/O M P1[1] Crystal Input (XTALin), I2C0 Serial Clock (SCL), ISSP-SCLK[7]. VSS Ground connection. Power NC S, AI, M, P0[7] S, AIO, M, P0[5] S, AIO, M, P0[3] S, AI, M, P0[1] M, P2[7] M, P2[5] AI, M, P2[3] AI, M, P2[1] M, P4[7] M, P4[5] M, P4[3] M, P4[1] OCDE OCDO SMP M, P3[7] M, P3[5] M, P3[3] M, P3[1] M, P5[3] M, P5[1] I2C0 SCL, M, P1[7] I2C0 SDA, M, P1[5] NC M, P1[3] SCLK, I2C0 SCL, XTALIn, M, P1[1] Vss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 SSOP 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 Vdd P0[6], M, AI, S P0[4], M, AIO, S P0[2], M, AIO, S P0[0], M, AI, S P2[6], M, External VRef P2[4], M, External AGND P2[2], M, AI P2[0], M, AI P4[6], M P4[4], M P4[2], M P4[0], M CCLK HCLK XRES P3[6], M P3[4], M P3[2], M, I2C1 SCL P3[0], M, I2C1 SDA P5[2], M P5[0], M P1[6], M, I2C1 SCL P1[4], M, EXTCLK P1[2], M, I2C1 SDA P1[0], M, XTALOut, I2C0 SDA, SDATA NC NC Not for Production No connection. 26 28 CY8C28000 56-Pin PSoC Device 29 NC No connection. 30 NC No connection. 31 I/O M P1[0] Crystal Output (XTALout), I2C0 Serial Data (SDA), ISSP-SDATA[7]. 32 I/O M P1[2] I2C1 Serial Data (SDA). 33 I/O M P1[4] Optional External Clock Input (EXTCLK). 34 I/O M P1[6] I2C1 Serial Clock (SCL). 35 I/O M P5[0] 36 I/O M P5[2] 37 I/O M P3[0] I2C1 Serial Data (SDA). 38 I/O M P3[2] I2C1 Serial Clock (SCL). 39 I/O M P3[4] 40 I/O M P3[6] Document Number: 001-48111 Rev. *K Page 15 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 7. 56-Pin Part Pinout (SSOP) (continued) Pin No. Type Digital 41 Analog Input Pin Name Description XRES Active high external reset with internal pull-down. 42 OCD M HCLK OCD high speed clock output. 43 OCD M CCLK OCD CPU clock output. 44 I/O M P4[0] 45 I/O M P4[2] 46 I/O M P4[4] 47 I/O M P4[6] 48 I/O I, M P2[0] Direct switched capacitor block input. 49 I/O I, M P2[2] Direct switched capacitor block input. 50 I/O M P2[4] External Analog Ground (AGND). 51 I/O M P2[6] External Voltage Reference (VRef). 52 I/O I, M, S P0[0] Analog column mux and SAR ADC input. 53 I/O I/O, M, S P0[2] Analog column mux and SAR ADC input. Analog column output. 54 I/O I/O, M, S P0[4] Analog column mux and SAR ADC input. Analog column output. 55 I/O I, M, S P0[6] Analog column mux and SAR ADC input. VDD Supply voltage. 56 Power LEGEND: A = Analog, I = Input, O = Output, S = SAR ADC Input, M = Analog Mux Bus Input, and OCD = On-Chip Debug. Document Number: 001-48111 Rev. *K Page 16 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Register Reference This section lists the registers of the CY8C28xxx PSoC devices. For detailed register information, reference the PSoC Technical Reference Manual for CY8C28xxx PSoC devices. Register Conventions Register Mapping Tables The register conventions specific to this section are listed in the following table. CY8C28xxx PSoC devices have a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks. The XIO bit in the Flag register (CPU_F) determines which bank of registers CPU instructions access. When the XIO bit is set the registers in Bank 1 are accessed by CPU instructions. When the XIO bit is cleared the registers in Bank 0 are accessed by CPU instructions. Convention Description R Read register or bit(s) W Write register or bit(s) L Logical register or bit(s) C Clearable register or bit(s) # Access is bit specific Document Number: 001-48111 Rev. *K Note In the following register mapping tables, blank fields are reserved and should not be accessed. Page 17 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 8. CY8C28x03 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name Addr (0,Hex) 80 PRT0IE 01 RW DBC20DR1 41 W 81 PRT0GS 02 RW DBC20DR2 42 RW 82 PRT0DM2 03 RW DBC20CR0 43 # PRT1DR 04 RW DBC21DR0 44 PRT1IE 05 RW DBC21DR1 PRT1GS 06 RW PRT1DM2 07 PRT2DR Access Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW # 84 RDI2LT1 C4 RW 45 W 85 RDI2RO0 C5 RW DBC21DR2 46 RW 86 RDI2RO1 C6 RW RW DBC21CR0 47 # 87 RDI2DSM C7 RW 08 RW DCC22DR0 48 # 88 PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 90 CUR_PP D0 RW PRT4IE 11 RW 51 91 STK_PP D1 RW PRT4GS 12 RW 52 92 PRT4DM2 13 RW 53 93 IDX_PP D3 RW PRT5DR 14 RW 54 94 MVR_PP D4 RW PRT5IE 15 RW 55 95 MVW_PP D5 RW PRT5GS 16 RW 56 96 I2C0_CFG D6 RW PRT5DM2 17 RW 57 97 I2C0_SCR D7 # 58 98 I2C0_DR D8 RW 18 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW # 60 A0 INT_MSK0 E0 RW DBC00DR0 20 DBC00DR1 21 W 61 A1 INT_MSK1 E1 RW DBC00DR2 22 RW 62 A2 INT_VC E2 RC DBC00CR0 23 # 63 A3 RES_WDT E3 W DBC01DR0 24 # 64 A4 I2C1_SCR E4 # DBC01DR1 25 W 65 A5 I2C1_MSCR E5 # DBC01DR2 26 RW 66 A6 DBC01CR0 27 # DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # 70 RDI0RI B0 RW F0 DBC10DR1 31 W 71 RDI0SYN B1 RW F1 DBC10DR2 32 RW 72 RDI0IS B2 RW F2 DBC10CR0 33 # 73 RDI0LT0 B3 RW F3 DBC11DR0 34 # 74 RDI0LT1 B4 RW F4 DBC11DR1 35 W 75 RDI0RO0 B5 RW F5 DBC11DR2 36 RW 76 RDI0RO1 B6 RW DBC11CR0 37 # 77 RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW I2C1_DR 67 RW E6 A7 E7 F6 CPU_F F7 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW FB DCC13DR0 3C # 7C RDI1LT1 BC RW FC DCC13DR1 3D W 7D RDI1RO0 BD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F # Access is bit specific. RL F8 FD CPU_SCR1 RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 FE # FF # Page 18 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 9. CY8C28x03 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW DBC20IN 41 RW DBC20OU 42 RW RW DBC20CR1 43 RW 04 RW DBC21FN 44 PRT1DM1 05 RW DBC21IN PRT1IC0 06 RW PRT1IC1 07 PRT2DM0 Name Addr (1,Hex) 80 Access SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW RW 84 RDI2LT1 C4 RW 45 RW 85 RDI2RO0 C5 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW RW DBC21CR1 47 RW 87 RDI2DSM C7 RW 08 RW DCC22FN 48 RW 88 PRT2DM1 09 RW DCC22IN 49 RW 89 C9 PRT2IC0 0A RW DCC22OU 4A RW 8A CA C8 PRT2IC1 0B RW DCC22CR1 4B RW 8B CB PRT3DM0 0C RW DCC23FN 4C RW 8C CC PRT3DM1 0D RW DCC23IN 4D RW 8D CD PRT3IC0 0E RW DCC23OU 4E RW 8E CE PRT3IC1 0F RW DCC23CR1 4F RW 8F PRT4DM0 10 RW 50 90 GDI_O_IN D0 RW PRT4DM1 11 RW 51 91 GDI_E_IN D1 RW PRT4IC0 12 RW 52 92 GDI_O_OU D2 RW PRT4IC1 13 RW 53 93 GDI_E_OU D3 RW PRT5DM0 14 RW 54 94 D4 CF PRT5DM1 15 RW 55 95 D5 PRT5IC0 16 RW 56 96 D6 PRT5IC1 17 RW 57 97 D7 18 58 98 D8 19 59 99 D9 1A 5A 9A DA 1B 5B 9B DB 1C 5C 9C DC 1D 5D 9D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW DBC00FN 20 RW 60 GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW 61 GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW 62 GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW 63 GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW 64 RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW 65 RTC_M A5 RW E5 DBC01OU 26 RW 66 RTC_S A6 RW E6 DBC01CR1 27 RW 67 RTC_CR A7 RW DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW 69 SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW EC DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW ED DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW RDI0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2 DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3 DBC11FN 34 RW 74 RDI0LT1 B4 RW F4 DBC11IN 35 RW 75 RDI0RO0 B5 RW F5 DBC11OU 36 RW 76 RDI0RO1 B6 RW DBC11CR1 37 RW 77 RDIODSM B7 RW DCC12FN 38 RW 78 RDI1RI B8 RW DCC12IN 39 RW 79 RDI1SYN B9 RW DCC12OU 3A RW 7A RDI1IS BA RW DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF # 6A 70 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K # Access is bit specific. E7 F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FD *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 19 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 10. CY8C28x13 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name Addr (0,Hex) 80 PRT0IE 01 RW DBC20DR1 41 W 81 PRT0GS 02 RW DBC20DR2 42 RW 82 PRT0DM2 03 RW DBC20CR0 43 # PRT1DR 04 RW DBC21DR0 44 PRT1IE 05 RW DBC21DR1 PRT1GS 06 RW PRT1DM2 07 PRT2DR Access Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW # 84 RDI2LT1 C4 RW 45 W 85 RDI2RO0 C5 RW DBC21DR2 46 RW 86 RDI2RO1 C6 RW RW DBC21CR0 47 # 87 RDI2DSM C7 RW 08 RW DCC22DR0 48 # 88 PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 90 CUR_PP D0 RW PRT4IE 11 RW 51 91 STK_PP D1 RW PRT4GS 12 RW 52 92 PRT4DM2 13 RW 53 93 IDX_PP D3 RW PRT5DR 14 RW 54 94 MVR_PP D4 RW PRT5IE 15 RW 55 95 MVW_PP D5 RW PRT5GS 16 RW 56 96 I2C0_CFG D6 RW PRT5DM2 17 RW 57 97 I2C0_SCR D7 # 58 98 I2C0_DR D8 RW 18 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW DBC00DR0 20 # 60 DBC00DR1 21 W DBC00DR2 22 RW 62 DBC00CR0 23 # 63 DBC01DR0 24 # 64 A4 DBC01DR1 25 W 65 A5 DBC01DR2 26 RW 66 A6 DEC_CR0* E6 RW DBC01CR0 27 # 67 A7 DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # 70 RDI0RI B0 RW F0 DBC10DR1 31 W 71 RDI0SYN B1 RW F1 DBC10DR2 32 RW 72 RDI0IS B2 RW F2 DBC10CR0 33 # 73 RDI0LT0 B3 RW F3 DBC11DR0 34 # 74 RDI0LT1 B4 RW F4 DBC11DR1 35 W 75 RDI0RO0 B5 RW F5 DBC11DR2 36 RW 76 RDI0RO1 B6 RW DBC11CR0 37 # 77 RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW AMUX_CFG 61 RW DEC0_DH A0 RC INT_MSK0 E0 RW DEC0_DL A1 RC INT_MSK1 E1 RW DEC1_DH A2 RC INT_VC E2 RC DEC1_DL A3 RC RES_WDT E3 W E4 E5 F6 CPU_F F7 RL F8 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW DCC13DR0 3C # 7C RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W 7D RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 20 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 11. CY8C28x13 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW Name Addr (1,Hex) 80 Access SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW ACE_AMD_CR1 83 RW Addr (1,Hex) C0 Access RW DBC20IN 41 RW DBC20OU 42 RW RDI2SYN C1 RW RDI2IS C2 RW DBC20CR1 43 RW RW RDI2LT0 C3 04 RW DBC21FN 44 RW RW RDI2LT1 C4 PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RW RDI2RO0 C5 PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR RW 86 RW RDI2RO1 C6 PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR RW 87 RW RDI2DSM C7 PRT2DM0 08 RW DCC22FN 48 RW RW PRT2DM1 09 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9 PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW CB 8C RW CC 84 Name RDI2RI 88 C8 PRT2IC1 0B RW DCC22CR1 4B RW PRT3DM0 0C RW DCC23FN 4C RW PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 PRT5IC0 16 RW 56 96 PRT5IC1 17 RW 90 DEC1_CR0 CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW DEC1_CR D5 RW 95 RW D6 57 97 18 58 98 MUX_CR0 D8 RW 19 59 99 MUX_CR1 D9 RW 1A 5A MUX_CR2 DA RW 1B 5B 9B MUX_CR3 DB RW 1C 5C 9C IDAC_CR1 DC RW 1D 5D 9D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW DEC_CR5 9A D7 RW DBC00FN 20 RW 60 GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW 61 GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW 62 GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW 63 GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW 64 RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW 65 RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW 66 RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW 67 RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW 68 SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW DCC03CR1 2F RW TMP_DR3 6F RW DBC10FN 30 RW DBC10IN 31 RW SADC_TSCR0 71 DBC10OU 32 RW SADC_TSCR1 DBC10CR1 33 RW ACE_AMD_CR0 DBC11FN 34 RW DBC11IN 35 RW DBC11OU 36 DBC11CR1 DCC12FN 69 AMUX_CFG1 6A RW 6B AE EE AMUX_CLK AF RW EF RDI0RI B0 RW F0 RW RDI0SYN B1 RW F1 72 RW RDI0IS B2 RW F2 73 RW RDI0LT0 B3 RW F3 74 RW RDI0LT1 B4 RW F4 ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW 38 RW RDI1RI B8 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW DCC13FN 3C RW RDI1LT1 BC RW DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF # 70 78 7C Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K # Access is bit specific. F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 21 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 12. CY8C28x23 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 PRT0DM2 03 RW PRT1DR 04 PRT1IE Name RDI2RI Addr (0,Hex) C0 Access RW 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW RDI2SYN C1 RW RDI2IS C2 DBC20CR0 43 # ASC10CR3 83 RW RW RDI2LT0 C3 RW DBC21DR0 44 # ASD11CR0 RW 84 RW RDI2LT1 C4 05 RW DBC21DR1 45 W RW ASD11CR1 85 RW RDI2RO0 C5 PRT1GS 06 RW DBC21DR2 46 RW RW ASD11CR2 86 RW RDI2RO1 C6 PRT1DM2 07 RW DBC21CR0 RW 47 # ASD11CR3 87 RW RDI2DSM C7 PRT2DR 08 RW DCC22DR0 RW 48 # PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA 88 C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 98 I2C0_DR D8 RW 18 58 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # A4 I2C1_SCR E4 # DBC01DR1 25 W ASY_CR 65 # A5 I2C1_MSCR E5 # DBC01DR2 26 RW CMP_CR1 66 RW A6 DEC_CR0* E6 RW DBC01CR0 27 # I2C1_DR 67 RW DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW 6A MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # 6B MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW A7 F6 CPU_F F7 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW FB DCC13DR0 3C # 7C RDI1LT1 BC RW FC DCC13DR1 3D W 7D RDI1RO0 BD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F # Access is bit specific. RL F8 FD CPU_SCR1 RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 FE # FF # Page 22 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 13. CY8C28x23 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW Name Addr (1,Hex) 80 DBC20IN 41 RW 81 DBC20OU 42 RW 82 RW DBC20CR1 43 RW 04 RW DBC21FN 44 PRT1DM1 05 RW DBC21IN PRT1IC0 06 RW PRT1IC1 07 PRT2DM0 Access Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW RW 84 RDI2LT1 C4 RW 45 RW 85 RDI2RO0 C5 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW RW DBC21CR1 47 RW 87 RDI2DSM C7 RW 08 RW DCC22FN 48 RW 88 PRT2DM1 09 RW DCC22IN 49 RW 89 C9 PRT2IC0 0A RW DCC22OU 4A RW 8A CA C8 PRT2IC1 0B RW DCC22CR1 4B RW 8B CB PRT3DM0 0C RW DCC23FN 4C RW 8C CC PRT3DM1 0D RW DCC23IN 4D RW 8D CD PRT3IC0 0E RW DCC23OU 4E RW 8E CE PRT3IC1 0F RW DCC23CR1 4F RW 8F PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 PRT4IC1 13 RW PRT5DM0 14 PRT5DM1 CF 90 GDI_O_IN D0 RW RW GDI_E_IN D1 RW 92 RW GDI_O_OU D2 RW 53 93 RW GDI_E_OU D3 RW RW 54 94 RW DEC0_CR D4 RW 15 RW 55 95 RW DEC1_CR D5 RW PRT5IC0 16 RW 56 96 D6 PRT5IC1 17 RW DEC1_CR0 57 97 D7 18 58 98 D8 19 59 99 1A 5A DEC_CR5 9A D9 RW DA 1B 5B 9B DB 1C 5C 9C DC 1D 5D 9D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW RTC_M A5 RW E5 DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW E6 DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW DCC02FN 28 RW DCC02IN 29 RW DCC02OU 2A RW DCC02CR1 2B RW I2C1_CFG 6B RW DCC03FN 2C RW TMP_DR0 6C RW AC DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW ED DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDI0RI B0 RW F0 DBC10IN 31 RW 71 RDI0SYN B1 RW F1 DBC10OU 32 RW 72 RDI0IS B2 RW F2 DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3 DBC11FN 34 RW 74 RDI0LT1 B4 RW F4 DBC11IN 35 RW 75 RDI0RO0 B5 RW F5 DBC11OU 36 RW 76 RDI0RO1 B6 RW DBC11CR1 37 RW 77 RDIODSM B7 RW DCC12FN 38 RW 78 RDI1RI B8 RW DCC12IN 39 RW 79 RDI1SYN B9 RW DCC12OU 3A RW 7A RDI1IS BA RW DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF # 65 68 CLK_CR2 69 RW 6A Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K # Access is bit specific. E7 A8 IMO_TR E8 RW A9 ILO_TR E9 RW AA BDG_TR EA RW AB ECO_TR EB RW EC F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FD *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 23 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 14. CY8C28x33 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 PRT0DM2 03 RW PRT1DR 04 PRT1IE Name RDI2RI Addr (0,Hex) C0 Access RW 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW RDI2SYN C1 RW RDI2IS C2 DBC20CR0 43 # ASC10CR3 83 RW RW RDI2LT0 C3 RW DBC21DR0 44 # ASD11CR0 RW 84 RW RDI2LT1 C4 05 RW DBC21DR1 45 W RW ASD11CR1 85 RW RDI2RO0 C5 PRT1GS 06 RW DBC21DR2 46 RW RW ASD11CR2 86 RW RDI2RO1 C6 PRT1DM2 07 RW DBC21CR0 RW 47 # ASD11CR3 87 RW RDI2DSM C7 PRT2DR 08 RW DCC22DR0 RW 48 # PRT2IE 09 RW DCC22DR1 49 W 89 C9 PRT2GS 0A RW DCC22DR2 4A RW 8A CA 88 C8 PRT2DM2 0B RW DCC22CR0 4B # 8B CB PRT3DR 0C RW DCC23DR0 4C # 8C CC PRT3IE 0D RW DCC23DR1 4D W 8D CD PRT3GS 0E RW DCC23DR2 4E RW 8E CE PRT3DM2 0F RW DCC23CR0 4F # 8F PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 98 I2C0_DR D8 RW 18 58 CF D2 19 59 99 I2C0_MSCR D9 # 1A 5A 9A INT_CLR0 DA RW 1B 5B 9B INT_CLR1 DB RW 1C 5C 9C INT_CLR2 DC RW 1D 5D 9D INT_CLR3 DD RW 1E 5E 9E INT_MSK3 DE RW 1F 5F 9F INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # 67 DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # 78 RDI1RI B8 RW E4 E5 F6 CPU_F F7 RL F8 DCC12DR1 39 W 79 RDI1SYN B9 RW F9 DCC12DR2 3A RW 7A RDI1IS BA RW FA DCC12CR0 3B # 7B RDI1LT0 BB RW DCC13DR0 3C # 7C RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W 7D RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 24 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 15. CY8C28x33 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW Name Addr (1,Hex) 80 Access DBC20IN 41 RW DBC20OU 42 RW SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW RW DBC20CR1 43 RW ACE_AMD_CR1 83 RW 04 RW DBC21FN 44 RW Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RDI2LT0 C3 RW RDI2LT1 C4 PRT1DM1 05 RW DBC21IN 45 RW ACE_PWM_CR 85 RW RW RDI2RO0 C5 PRT1IC0 06 RW DBC21OU 46 RW ACE_ADC0_CR RW 86 RW RDI2RO1 C6 PRT1IC1 07 RW DBC21CR1 47 RW ACE_ADC1_CR RW 87 RW RDI2DSM C7 PRT2DM0 08 RW DCC22FN 48 RW RW 88 RW PRT2DM1 09 RW DCC22IN 49 RW PRT2IC0 0A RW DCC22OU 4A RW ACE_CLK_CR0 89 RW C9 ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW 84 Name RDI2RI C8 PRT2IC1 0B RW DCC22CR1 4B RW PRT3DM0 0C RW DCC23FN 4C RW CB PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 1C 5C 1D 5D 1E 5E 9E 1F 5F 9F 8C CC 90 DEC3_CR0 CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW 9B MUX_CR3 DB RW 9C IDAC_CR1 DC RW OSC_GO_EN DD RW OSC_CR4 DE RW OSC_CR3 DF RW 9D RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW DCC03CR1 2F RW TMP_DR3 6F RW DBC10FN 30 RW DBC10IN 31 RW SADC_TSCR0 71 DBC10OU 32 RW SADC_TSCR1 DBC10CR1 33 RW ACE_AMD_CR0 DBC11FN 34 RW DBC11IN 35 RW ACE_AMX_IN 75 DBC11OU 36 RW ACE_CMP_CR0 DBC11CR1 37 RW ACE_CMP_CR1 DCC12FN 38 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW DCC13FN 3C RW DCC13IN 3D RW ACE0_CR1 7D RW DCC13OU 3E RW ACE0_CR2 7E DCC13CR1 3F RW ACE0_CR3 7F 65 68 6B AF RW EF RDI0RI B0 RW F0 RW RDI0SYN B1 RW F1 72 RW RDI0IS B2 RW F2 73 RW RDI0LT0 B3 RW F3 RDI0LT1 B4 RW F4 RW RDI0RO0 B5 RW F5 76 RW RDI0RO1 B6 RW 77 RW RDIODSM B7 RW RDI1RI B8 RW RDI1SYN B9 RW RDI1IS BA RW RDI1LT0 BB RW RDI1LT1 BC RW RDI1RO0 BD RW IDAC_CR0 FD RW RW RDI1RO1 BE RW CPU_SCR1 FE # RW RDI1DSM BF RW CPU_SCR0 FF # 74 78 7C Document Number: 001-48111 Rev. *K EE AMUX_CLK 70 Blank fields are Reserved and should not be accessed. AE # Access is bit specific. F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 25 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 16. CY8C28x43 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 PRT1IE 05 RW DBC21DR1 45 W PRT1GS 06 RW DBC21DR2 46 PRT1DM2 07 RW DBC21CR0 PRT2DR 08 RW DCC22DR0 PRT2IE 09 RW DCC22DR1 PRT2GS 0A RW DCC22DR2 Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RW RDI2LT0 C3 RW 84 RW RDI2LT1 C4 RW ASD11CR1 85 RW RDI2RO0 C5 RW RW ASD11CR2 86 RW RDI2RO1 C6 RW 47 # ASD11CR3 87 RW RDI2DSM C7 RW 48 # ASC12CR0 88 RW 49 W ASC12CR1 89 RW C9 4A RW ASC12CR2 8A RW CA C8 PRT2DM2 0B RW DCC22CR0 4B # ASC12CR3 8B RW CB PRT3DR 0C RW DCC23DR0 4C # ASD13CR0 8C RW CC PRT3IE 0D RW DCC23DR1 4D W ASD13CR1 8D RW CD PRT3GS 0E RW DCC23DR2 4E RW ASD13CR2 8E RW CE PRT3DM2 0F RW DCC23CR0 4F # ASD13CR3 8F RW PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 58 ASD22CR0 98 RW I2C0_DR D8 RW 19 59 ASD22CR1 99 RW I2C0_MSCR D9 # 1A 5A ASD22CR2 9A RW INT_CLR0 DA RW 18 CF D2 1B 5B ASD22CR3 9B RW INT_CLR1 DB RW 1C 5C ASC23CR0 9C RW INT_CLR2 DC RW 1D 5D ASC23CR1 9D RW INT_CLR3 DD RW 1E 5E ASC23CR2 9E RW INT_MSK3 DE RW 1F 5F ASC23CR3 9F RW INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC I2C1_SCR E4 # DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC I2C1_MSCR E5 # DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # I2C1_DR 67 RW DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F6 CPU_F F7 DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9 DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW FB DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW FC DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW DCC13CR0 3F # ACB03CR2 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F RW # Access is bit specific. RL F8 FD CPU_SCR1 RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 FE # FF # Page 26 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 17. CY8C28x43 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW DBC20IN 41 RW DBC20OU 42 RW RW DBC20CR1 43 RW 04 RW DBC21FN 44 PRT1DM1 05 RW DBC21IN PRT1IC0 06 RW PRT1IC1 07 PRT2DM0 Name Addr (1,Hex) 80 Access SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW 83 RDI2LT0 C3 RW RW 84 RDI2LT1 C4 RW 45 RW 85 RDI2RO0 C5 RW DBC21OU 46 RW 86 RDI2RO1 C6 RW RW DBC21CR1 47 RW 87 RDI2DSM C7 RW 08 RW DCC22FN 48 RW 88 PRT2DM1 09 RW DCC22IN 49 RW 89 C9 PRT2IC0 0A RW DCC22OU 4A RW 8A CA C8 PRT2IC1 0B RW DCC22CR1 4B RW 8B CB PRT3DM0 0C RW DCC23FN 4C RW 8C CC PRT3DM1 0D RW DCC23IN 4D RW 8D CD PRT3IC0 0E RW DCC23OU 4E RW 8E CE PRT3IC1 0F RW DCC23CR1 4F RW 8F PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 9B 1C 5C 9C 1D 5D OSC_GO_EN DD RW 1E 5E 9E OSC_CR4 DE RW 1F 5F 9F OSC_CR3 DF RW CF 90 DEC3_CR0 GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW MUX_CR3 DB RW 9D DC RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW E5 DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW E6 DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW DCC02FN 28 RW ALT_CR1 68 RW SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW RDI0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2 DBC10CR1 33 RW 73 RDI0LT0 B3 RW F3 DBC11FN 34 RW 74 RDI0LT1 B4 RW F4 DBC11IN 35 RW 75 RDI0RO0 B5 RW F5 DBC11OU 36 RW 76 RDI0RO1 B6 RW DBC11CR1 37 RW 77 RDIODSM B7 RW DCC12FN 38 RW 78 RDI1RI B8 RW DCC12IN 39 RW 79 RDI1SYN B9 RW DCC12OU 3A RW 7A RDI1IS BA RW DCC12CR1 3B RW 7B RDI1LT0 BB RW FB DCC13FN 3C RW 7C RDI1LT1 BC RW FC DCC13IN 3D RW 7D RDI1RO0 BD RW DCC13OU 3E RW 7E RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW 7F RDI1DSM BF RW CPU_SCR0 FF # 70 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K # Access is bit specific. E7 F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FD *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 27 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 18. CY8C28x45 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW Name DBC20DR0 Addr (0,Hex) 40 Access # Name ASC10CR0 Addr (0,Hex) 80 Access RW PRT0IE 01 RW DBC20DR1 PRT0GS 02 RW DBC20DR2 41 W ASC10CR1 81 RW 42 RW ASC10CR2 82 RW PRT0DM2 03 RW DBC20CR0 43 # ASC10CR3 83 PRT1DR 04 RW DBC21DR0 44 # ASD11CR0 PRT1IE 05 RW DBC21DR1 45 W PRT1GS 06 RW DBC21DR2 46 PRT1DM2 07 RW DBC21CR0 PRT2DR 08 RW DCC22DR0 PRT2IE 09 RW DCC22DR1 PRT2GS 0A RW DCC22DR2 Name RDI2RI Addr (0,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RW RDI2LT0 C3 RW 84 RW RDI2LT1 C4 RW ASD11CR1 85 RW RDI2RO0 C5 RW RW ASD11CR2 86 RW RDI2RO1 C6 RW 47 # ASD11CR3 87 RW RDI2DSM C7 RW 48 # ASC12CR0 88 RW 49 W ASC12CR1 89 RW C9 4A RW ASC12CR2 8A RW CA C8 PRT2DM2 0B RW DCC22CR0 4B # ASC12CR3 8B RW CB PRT3DR 0C RW DCC23DR0 4C # ASD13CR0 8C RW CC PRT3IE 0D RW DCC23DR1 4D W ASD13CR1 8D RW CD PRT3GS 0E RW DCC23DR2 4E RW ASD13CR2 8E RW CE PRT3DM2 0F RW DCC23CR0 4F # ASD13CR3 8F RW PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 58 ASD22CR0 98 RW I2C0_DR D8 RW 19 59 ASD22CR1 99 RW I2C0_MSCR D9 # 1A 5A ASD22CR2 9A RW INT_CLR0 DA RW 18 CF D2 1B 5B ASD22CR3 9B RW INT_CLR1 DB RW 1C 5C ASC23CR0 9C RW INT_CLR2 DC RW 1D 5D ASC23CR1 9D RW INT_CLR3 DD RW 1E 5E ASC23CR2 9E RW INT_MSK3 DE RW 1F 5F ASC23CR3 9F RW INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC I2C1_SCR E4 # DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC I2C1_MSCR E5 # DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # I2C1_DR 67 RW DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW SADC_DH 6A RW MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # SADC_DL 6B RW MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW F6 CPU_F F7 RL F8 DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9 DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # ACB03CR2 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F RW # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 28 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 19. CY8C28x45 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW PRT0DM1 01 RW PRT0IC0 02 RW PRT0IC1 03 PRT1DM0 Name DBC20FN Addr (1,Hex) 40 Access RW DBC20IN 41 RW DBC20OU 42 RW RW DBC20CR1 43 RW 04 RW DBC21FN 44 RW PRT1DM1 05 RW DBC21IN 45 RW PRT1IC0 06 RW DBC21OU 46 PRT1IC1 07 RW DBC21CR1 PRT2DM0 08 RW DCC22FN PRT2DM1 09 RW PRT2IC0 0A RW Name Addr (1,Hex) 80 Access RW SADC_TSCMPL 81 RW SADC_TSCMPH 82 RW ACE_AMD_CR1 83 Name RDI2RI Addr (1,Hex) C0 Access RW RDI2SYN C1 RW RDI2IS C2 RW RW RDI2LT0 C3 RW 84 RW RDI2LT1 C4 RW ACE_PWM_CR 85 RW RDI2RO0 C5 RW RW ACE_ADC0_CR 86 RW RDI2RO1 C6 RW 47 RW ACE_ADC1_CR 87 RW RDI2DSM C7 RW 48 RW 88 RW DCC22IN 49 RW ACE_CLK_CR0 89 RW C9 DCC22OU 4A RW ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW CB 8C RW CC C8 PRT2IC1 0B RW DCC22CR1 4B RW PRT3DM0 0C RW DCC23FN 4C RW PRT3DM1 0D RW DCC23IN 4D RW ACE01CR1 8D RW CD PRT3IC0 0E RW DCC23OU 4E RW ACE01CR2 8E RW CE PRT3IC1 0F RW DCC23CR1 4F RW ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 1C 5C 1D 5D 1E 5E 9E 1F 5F 9F 90 DEC3_CR0 CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW 9B MUX_CR3 DB RW 9C IDAC_CR1 DC RW OSC_GO_EN DD RW OSC_CR4 DE RW OSC_CR3 DF RW 9D RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW ALT_CR1 68 RW SADC_CR0 A8 RW IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW SADC_CR1 A9 RW ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW SADC_CR2 AA RW BDG_TR EA RW DCC02CR1 2B RW I2C1_CFG 6B RW SADC_CR3 AB RW ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW SADC_CR4 AC RW MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW I2C0_ADDR AD RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW I2C1_ADDR AE RW EE DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW RDI0RI B0 RW F0 DBC10IN 31 RW SADC_TSCR0 71 RW RDI0SYN B1 RW F1 DBC10OU 32 RW SADC_TSCR1 72 RW RDI0IS B2 RW F2 DBC10CR1 33 RW ACE_AMD_CR0 73 RW RDI0LT0 B3 RW F3 DBC11FN 34 RW RDI0LT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW DCC12FN 38 RW RDI1RI B8 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW DCC13FN 3C RW RDI1LT1 BC RW DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF # 70 74 78 7C Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K # Access is bit specific. F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 29 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 20. CY8C28x52 Register Map Bank 0 Table: User Space Name PRT0DR Addr (0,Hex) 00 Access RW PRT0IE 01 RW PRT0GS 02 RW PRT0DM2 03 PRT1DR Name Addr (0,Hex) 40 Access Name ASC10CR0 Addr (0,Hex) 80 Access RW Name Addr (0,Hex) C0 41 ASC10CR1 81 RW C1 42 ASC10CR2 82 RW C2 RW 43 ASC10CR3 83 RW C3 04 RW 44 ASD11CR0 84 RW C4 PRT1IE 05 RW 45 ASD11CR1 85 RW C5 PRT1GS 06 RW 46 ASD11CR2 86 RW C6 PRT1DM2 07 RW 47 ASD11CR3 87 RW C7 PRT2DR 08 RW 48 ASC12CR0 88 RW C8 PRT2IE 09 RW 49 ASC12CR1 89 RW C9 PRT2GS 0A RW 4A ASC12CR2 8A RW CA Access PRT2DM2 0B RW 4B ASC12CR3 8B RW CB PRT3DR 0C RW 4C ASD13CR0 8C RW CC PRT3IE 0D RW 4D ASD13CR1 8D RW CD PRT3GS 0E RW 4E ASD13CR2 8E RW CE PRT3DM2 0F RW 4F ASD13CR3 8F RW PRT4DR 10 RW 50 ASD20CR0 90 RW CUR_PP D0 RW PRT4IE 11 RW 51 ASD20CR1 91 RW STK_PP D1 RW PRT4GS 12 RW 52 ASD20CR2 92 RW PRT4DM2 13 RW 53 ASD20CR3 93 RW IDX_PP D3 RW PRT5DR 14 RW 54 ASC21CR0 94 RW MVR_PP D4 RW PRT5IE 15 RW 55 ASC21CR1 95 RW MVW_PP D5 RW PRT5GS 16 RW 56 ASC21CR2 96 RW I2C0_CFG D6 RW PRT5DM2 17 RW 57 ASC21CR3 97 RW I2C0_SCR D7 # 58 ASD22CR0 98 RW I2C0_DR D8 RW 19 59 ASD22CR1 99 RW I2C0_MSCR D9 # 1A 5A ASD22CR2 9A RW INT_CLR0 DA RW 18 CF D2 1B 5B ASD22CR3 9B RW INT_CLR1 DB RW 1C 5C ASC23CR0 9C RW INT_CLR2 DC RW 1D 5D ASC23CR1 9D RW INT_CLR3 DD RW 1E 5E ASC23CR2 9E RW INT_MSK3 DE RW 1F 5F ASC23CR3 9F RW INT_MSK2 DF RW DBC00DR0 20 # AMX_IN 60 RW DEC0_DH A0 RC INT_MSK0 E0 RW DBC00DR1 DBC00DR2 21 W AMUX_CFG 61 RW DEC0_DL A1 RC INT_MSK1 E1 RW 22 RW CLK_CR3 62 RW DEC1_DH A2 RC INT_VC E2 RC DBC00CR0 23 # ARF_CR 63 RW DEC1_DL A3 RC RES_WDT E3 W DBC01DR0 24 # CMP_CR0 64 # DEC2_DH A4 RC DBC01DR1 25 W ASY_CR 65 # DEC2_DL A5 RC DBC01DR2 26 RW CMP_CR1 66 RW DEC3_DH A6 RC DEC_CR0* E6 RW DBC01CR0 27 # 67 DEC3_DL A7 RC DEC_CR1* E7 RW DCC02DR0 28 # 68 MUL1_X A8 W MUL0_X E8 W DCC02DR1 29 W 69 MUL1_Y A9 W MUL0_Y E9 W DCC02DR2 2A RW 6A MUL1_DH AA R MUL0_DH EA R DCC02CR0 2B # 6B MUL1_DL AB R MUL0_DL EB R DCC03DR0 2C # TMP_DR0 6C RW ACC1_DR1 AC RW ACC0_DR1 EC RW DCC03DR1 2D W TMP_DR1 6D RW ACC1_DR0 AD RW ACC0_DR0 ED RW DCC03DR2 2E RW TMP_DR2 6E RW ACC1_DR3 AE RW ACC0_DR3 EE RW DCC03CR0 2F # TMP_DR3 6F RW ACC1_DR2 AF RW ACC0_DR2 EF RW DBC10DR0 30 # ACB00CR3 70 RW RDI0RI B0 RW F0 DBC10DR1 31 W ACB00CR0 71 RW RDI0SYN B1 RW F1 DBC10DR2 32 RW ACB00CR1 72 RW RDI0IS B2 RW F2 DBC10CR0 33 # ACB00CR2 73 RW RDI0LT0 B3 RW F3 DBC11DR0 34 # ACB01CR3 74 RW RDI0LT1 B4 RW F4 DBC11DR1 35 W ACB01CR0 75 RW RDI0RO0 B5 RW F5 DBC11DR2 36 RW ACB01CR1 76 RW RDI0RO1 B6 RW DBC11CR0 37 # ACB01CR2 77 RW RDI0DSM B7 RW DCC12DR0 38 # ACB02CR3 78 RW RDI1RI B8 RW E4 E5 F6 CPU_F F7 RL F8 DCC12DR1 39 W ACB02CR0 79 RW RDI1SYN B9 RW F9 DCC12DR2 3A RW ACB02CR1 7A RW RDI1IS BA RW FA DCC12CR0 3B # ACB02CR2 7B RW RDI1LT0 BB RW DCC13DR0 3C # ACB03CR3 7C RW RDI1LT1 BC RW DAC1_D FC RW DCC13DR1 3D W ACB03CR0 7D RW RDI1RO0 BD RW DAC0_D FD RW DCC13DR2 3E RW ACB03CR1 7E RW RDI1RO1 BE RW CPU_SCR1 FE # FF # DCC13CR0 3F # ACB03CR2 Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K 7F RW # Access is bit specific. FB RDI1DSM BF RW CPU_SCR0 *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 30 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 21. CY8C28x52 Register Map Bank 1 Table: Configuration Space Name PRT0DM0 Addr (1,Hex) 00 Access RW Name Addr (1,Hex) 40 Access Name PRT0DM1 01 RW 41 81 PRT0IC0 02 RW 42 82 PRT0IC1 03 RW 43 PRT1DM0 04 RW 44 PRT1DM1 05 RW 45 ACE_PWM_CR 85 RW C5 PRT1IC0 06 RW 46 ACE_ADC0_CR 86 RW C6 PRT1IC1 07 RW 47 ACE_ADC1_CR 87 RW C7 PRT2DM0 08 RW 48 PRT2DM1 09 RW 49 ACE_CLK_CR0 89 RW C9 PRT2IC0 0A RW 4A ACE_CLK_CR1 8A RW CA ACE_CLK_CR3 8B RW ACE_AMD_CR1 Addr (1,Hex) 80 83 Access Name Addr (1,Hex) C0 C1 C2 RW C3 84 C4 88 C8 PRT2IC1 0B RW 4B PRT3DM0 0C RW 4C CB PRT3DM1 0D RW 4D ACE01CR1 8D RW CD PRT3IC0 0E RW 4E ACE01CR2 8E RW CE PRT3IC1 0F RW 4F ASE11CR0 8F RW PRT4DM0 10 RW 50 PRT4DM1 11 RW 51 DEC0_CR0 91 PRT4IC0 12 RW 52 DEC_CR3 92 PRT4IC1 13 RW 53 PRT5DM0 14 RW 54 PRT5DM1 15 RW 55 DEC1_CR0 95 PRT5IC0 16 RW 56 DEC_CR4 96 PRT5IC1 17 RW 57 18 58 19 59 DEC2_CR0 99 1A 5A DEC_CR5 9A 1B 5B 1C 5C 1D 5D 1E 5E 9E 1F 5F 9F 8C CC 90 DEC3_CR0 Access CF GDI_O_IN D0 RW RW GDI_E_IN D1 RW RW GDI_O_OU D2 RW 93 GDI_E_OU D3 RW 94 DEC0_CR D4 RW RW DEC1_CR D5 RW RW DEC2_CR D6 RW 97 DEC3_CR D7 RW 98 MUX_CR0 D8 RW RW MUX_CR1 D9 RW RW MUX_CR2 DA RW 9B MUX_CR3 DB RW 9C IDAC_CR1 DC RW OSC_GO_EN DD RW OSC_CR4 DE RW OSC_CR3 DF RW 9D RW DBC00FN 20 RW CLK_CR0 60 RW GDI_O_IN_CR A0 RW OSC_CR0 E0 RW DBC00IN 21 RW CLK_CR1 61 RW GDI_E_IN_CR A1 RW OSC_CR1 E1 RW DBC00OU 22 RW ABF_CR0 62 RW GDI_O_OU_CR A2 RW OSC_CR2 E2 RW DBC00CR1 23 RW AMD_CR0 63 RW GDI_E_OU_CR A3 RW VLT_CR E3 RW DBC01FN 24 RW CMP_GO_EN 64 RW RTC_H A4 RW VLT_CMP E4 RW DBC01IN 25 RW CMP_GO_EN1 65 RW RTC_M A5 RW ADC0_TR E5 RW DBC01OU 26 RW AMD_CR1 66 RW RTC_S A6 RW ADC1_TR E6 RW DBC01CR1 27 RW ALT_CR0 67 RW RTC_CR A7 RW IDAC_CR2 E7 RW DCC02FN 28 RW ALT_CR1 68 RW A8 IMO_TR E8 RW DCC02IN 29 RW CLK_CR2 69 RW A9 ILO_TR E9 RW DCC02OU 2A RW AMUX_CFG1 6A RW AA BDG_TR EA RW DCC02CR1 2B RW AB ECO_TR EB RW DCC03FN 2C RW TMP_DR0 6C RW AC MUX_CR4 EC RW DCC03IN 2D RW TMP_DR1 6D RW MUX_CR5 ED RW DCC03OU 2E RW TMP_DR2 6E RW DCC03CR1 2F RW TMP_DR3 6F RW AMUX_CLK AF RW EF DBC10FN 30 RW 70 RDI0RI B0 RW F0 DBC10IN 31 RW 71 RDI0SYN B1 RW F1 DBC10OU 32 RW 72 RDI0IS B2 RW F2 DBC10CR1 33 RW RDI0LT0 B3 RW F3 DBC11FN 34 RW RDI0LT1 B4 RW F4 DBC11IN 35 RW ACE_AMX_IN 75 RW RDI0RO0 B5 RW F5 DBC11OU 36 RW ACE_CMP_CR0 76 RW RDI0RO1 B6 RW DBC11CR1 37 RW ACE_CMP_CR1 77 RW RDIODSM B7 RW DCC12FN 38 RW RDI1RI B8 RW DCC12IN 39 RW ACE_CMP_GI_EN 79 RW RDI1SYN B9 RW DCC12OU 3A RW ACE_ALT_CR0 7A RW RDI1IS BA RW DCC12CR1 3B RW ACE_ABF_CR0 7B RW RDI1LT0 BB RW DCC13FN 3C RW RDI1LT1 BC RW DCC13IN 3D RW ACE0_CR1 7D RW RDI1RO0 BD RW IDAC_CR0 FD RW DCC13OU 3E RW ACE0_CR2 7E RW RDI1RO1 BE RW CPU_SCR1 FE # DCC13CR1 3F RW ACE0_CR3 7F RW RDI1DSM BF RW CPU_SCR0 FF # 6B ACE_AMD_CR0 73 RW 74 78 7C Blank fields are Reserved and should not be accessed. Document Number: 001-48111 Rev. *K # Access is bit specific. I2C0_ADDR AD RW AE EE F6 CPU_F F7 RL F8 F9 FLS_PR1 FA RW FB FC *Address has a dual purpose, see “Mapping Exceptions” on page 251 Page 31 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Electrical Specifications This section presents the DC and AC electrical specifications of the CY8C28xxx PSoC devices. For the most up to date electrical specifications, confirm that you have the most recent datasheet by going to the web at http//www.cypress.com. Specifications are valid for -40oC TA 85°C and TJ 100°C, except where noted. Specifications for devices running at greater than 12 MHz are valid for -40°C TA 70°C and TJ 82°C. Figure 7. Voltage versus CPU Frequency 5.25 Vdd Voltage lid ing Va rat on pe i O R eg 4.75 3.00 93 kHz 12 MHz 24 MHz CPU Frequency Document Number: 001-48111 Rev. *K Page 32 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Absolute Maximum Ratings Table 22. Absolute Maximum Ratings Symbol TSTG Description Storage temperature TBAKETEMP Bake temperature tBAKETIME Bake time TA VDD VIO VIOZ IMIO IMAIO Ambient temperature with power applied Supply voltage on VDD relative to VSS DC input voltage DC voltage applied to tri-state Maximum current into any port pin Maximum current into any port pin configured as analog driver Electro static discharge voltage Latch up current ESD LU Min -55 Typ 25 Max +100 Units °C - 125 See package label -40 -0.5 VSS- 0.5 VSS – 0.5 -25 -50 - See Package label 72 Hours – – – – – – +85 +6.0 VDD + 0.5 VDD + 0.5 +50 +50 °C V V V mA mA 2000 – – – – 200 V mA Min -40 -40 Typ – – Max +85 +100 Units °C °C o Notes Higher storage temperatures reduce data retention time. Recommended storage temperature is +25°C ± 25°C. Extended duration storage temperatures above 65°C degrade reliability. C Human Body Model ESD. Operating Temperature Table 23. Operating Temperature Symbol TA TJ Description Ambient temperature Junction temperature Document Number: 001-48111 Rev. *K Notes The temperature rise from ambient to junction is package specific. See Thermal Impedances on page 66. The user must limit the power consumption to comply with this requirement. Page 33 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Electrical Characteristics DC Chip Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40°C TA 85°C, or 3.0 V to 3.6 V and –40°C TA 85°C, respectively. Typical parameters apply to 5 V and 3.3 V at 25°C and are for design guidance only. Table 24. DC Chip Level Specifications Symbol Description VDD Supply voltage IDD Supply current Min 3.00 – Typ – 8 Max 5.25 14 Units V mA IDD3 Supply current – 5 9 mA IDDP Supply current when IMO = 6 MHz using SLIMO mode=1 – 2 3 mA ISB Sleep (Mode) current with POR, LVD, sleep timer, and WDT.[15] – 3 10 A ISBH Sleep (Mode) current with POR, LVD, sleep timer, and WDT at high temperature.[15] – 4 25 A ISBXTL Sleep (Mode) Current with POR, LVD, sleep timer, WDT, and external crystal.[15] – 4 13 A ISBXTLH Sleep (Mode) current with POR, LVD, sleep timer, WDT, and external crystal at high temperature.[15] Current consumed by RTC during sleep – 5 26 A – 0.5 1 µA 1.280 – - 1.300 0.65 0.4 1.320 3 1.5 V mA mA ISBRTC VREF ISXRES Reference voltage (Bandgap) Supply current with XRES asserted 5 V Supply current with XRES asserted 3.3 V Notes Conditions are VDD = 5.0 V, TA = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz. Conditions are VDD = 3.3 V, TA = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz. Conditions are VDD = 3.3 V, TA = 25 °C, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz. Conditions are with internal slow speed oscillator, VDD = 3.3 V, –40 °C TA 55 °C. Conditions are with internal slow speed oscillator, VDD = 3.3 V, 55 °C < TA 85 °C. Conditions are with properly loaded, 1 W max, 32.768 kHz crystal. VDD = 3.3 V, –40 °C TA 55 °C. Conditions are with properly loaded, 1 W max, 32.768 kHz crystal. VDD = 3.3 V, 55 °C < TA 85 °C. Extra current consumed by the RTC during sleep. This number is typical at 25 °C and 5 V. Trimmed for appropriate VDD. Max is peak current after XRES; Typical value is the steady state current value. TA = 25 °C. Note 15. Standby (sleep) current includes all functions (POR, LVD, WDT, Sleep Timer) needed for reliable system operation. This should be compared with devices that have similar functions enabled. Document Number: 001-48111 Rev. *K Page 34 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC GPIO Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 25. DC GPIO Specifications Symbol RPU RPD VOH Description Pull-up resistor Pull-down resistor High output level Min 4 4 VDD – 1.0 Typ 5.6 5.6 – Max 8 8 – VOL Low output level – – 0.75 IOH High level source current 10 – – IOL Low level sink current 25 – – VIL VIH VH IIL CIN Input low level Input high level Input hysteresis Input leakage (absolute value) Capacitive load on pins as input – 2.1 – – – – – 60 1 3.5 0.8 – – – 10 COUT Capacitive load on pins as output – 3.5 10 Document Number: 001-48111 Rev. *K Units Notes k k V IOH = 10 mA, VDD = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined IOH budget. V IOL = 25 mA, VDD = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined IOL budget. mA VOH = VDD – 1.0 V, see the limitations of the total current in the note for VOH. mA VOL = 0.75 V, see the limitations of the total current in the note for VOL. V VDD = 3.0 to 5.25. V VDD = 3.0 to 5.25. mV nA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. pF Package and pin dependent. Temp = 25 °C. Page 35 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Table 26. 5 V DC Operational Amplifier Specifications Symbol VOSOACT Description Input Offset Voltage CT Block (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High VOSOA Input Offset Voltage SC and AGND Opamps (absolute value) TCVOSOA Average Input Offset Voltage Drift IEBOA Input Leakage Current (Port 0 Analog Pins) Input Capacitance (Port 0 Analog Pins) CINOA Min Typ Max Units – – – – 1.6 1.3 1.2 1 8 8 8 6 mV mV mV mV – – – 7.0 200 4.5 35.0 – 9.5 VCMOA 0.0 0.5 – – VDD VDD – 0.5 60 60 60 – – – – – – dB dB dB 60 60 80 – – – – – – dB dB dB VDD – 0.2 VDD – 0.2 VDD – 0.5 – – – – – – V V V – – – – – – 0.2 0.2 0.5 V V V – – – – – – 60 200 400 700 1400 2400 4600 – 300 600 1100 2000 3600 7700 – A A A A A A dB Common Mode Voltage Range Common Mode Voltage Range (high power or high Opamp bias) CMRROA Common Mode Rejection Ratio Power = Low Power = Medium Power = High GOLOA Open Loop Gain Power = Low Power = Medium Power = High VOHIGHOA High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High VOLOWOA Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High ISOA PSRROA Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High Supply Voltage Rejection Ratio Document Number: 001-48111 Rev. *K Notes Applies to High and Low Opamp bias. V/°C pA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V The common-mode input V voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. VSS VIN (VDD – 2.25) or (VDD – 1.25 V) VIN VDD. Page 36 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 27. 3.3 V DC Operational Amplifier Specifications Symbol VOSOACT Description Input Offset Voltage CT Blocks (absolute value) Power = Low, Opamp bias = High Power = Medium, Opamp bias = High Power = High, Opamp bias = High VOSOA Input Offset Voltage SC and AGND (absolute value) TCVOSOA Average Input Offset Voltage Drift IEBOA Input Leakage Current (Port 0 Analog Pins) Input Capacitance (Port 0 Analog Pins) CINOA Min Typ Max Units – – – – 1.65 1.32 – 1 8 8 – 6 mV mV mV mV – – – 7.0 200 4.5 35.0 – 9.5 VCMOA 0.2 – VDD – 0.2 50 50 50 – – – – – – dB dB dB 60 60 80 – – – – – – dB dB dB VDD – 0.2 VDD – 0.2 VDD – 0.2 – – – – – – V V V – – – – – – 0.2 0.2 0.2 V V V – – – – – – 50 200 400 700 1400 2400 4600 80 300 600 1000 2000 3600 7500 – A A A A A A dB Common Mode Voltage Range CMRROA Common Mode Rejection Ratio Power = Low Power = Medium Power = High GOLOA Open Loop Gain Power = Low Power = Medium Power = High VOHIGHOA High Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High is 5 V only VOLOWOA Low Output Voltage Swing (internal signals) Power = Low Power = Medium Power = High ISOA Supply Current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High PSRROA Supply Voltage Rejection Ratio Document Number: 001-48111 Rev. *K Notes Applies to High and Low Opamp bias. V/°C pA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer. VSS VIN (VDD – 2.25 V) or (VDD – 1.25 V) VIN VDD. Page 37 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Type-E Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E Analog PSoC blocks. Table 28. 5 V DC Type-E Operational Amplifier Specifications Symbol Description Input offset voltage (absolute value) VOSOA Min – – Typ 2.5 2.5 Max 15 20 Units mV mV – – – 10 200 4.5 – – 9.5 0.0 – – 10 VDD 30 V/°C nA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V A Min – – Typ 2.5 2.5 Max 15 20 TCVOSOA Average input offset voltage drift IEBOA[16] Input leakage current (Port 0 Analog Pins) Input capacitance (Port 0 Analog Pins) CINOA – – – 10 200 4.5 – – 9.5 VCMOA ISOA 0 – – 10 VDD 30 TCVOSOA Average input offset voltage drift IEBOA[16] Input leakage current (Port 0 Analog Pins) Input capacitance (Port 0 Analog Pins) CINOA VCMOA ISOA Common mode voltage range Amplifier supply current Notes For 0.2 V < VIN < VDD – 1.2 V. For VIN = 0 to 0.2 V and VIN > VDD – 1.2 V. Table 29. 3.3 V DC Type-E Operational Amplifier Specifications Symbol Description Input offset voltage (absolute value) VOSOA Common mode voltage range Amplifier supply current Units Notes mV For 0.2 V < VIN < VDD – 1.2 V. mV For VIN = 0 to 0.2 V and VIN > VDD – 1.2 V. V/°C nA Gross tested to 1 A. pF Package and pin dependent. Temp = 25 °C. V A DC Low Power Comparator Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only. Table 30. DC Low Power Comparator Specifications Symbol VREFLPC VOSLPC ISLPC Description Low power comparator (LPC) reference voltage range LPC voltage offset LPC supply current Min 0.2 Typ – Max VDD – 1 Units V – – 2.5 10 30 40 mV A Notes Note 16. Atypical behavior: IEBOA of Port 0 Pin 0 is below 1 nA at 25 °C; 50 nA over temperature. Use Port 0 Pins 1-7 for the lowest leakage of 200 nA. Document Number: 001-48111 Rev. *K Page 38 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Analog Output Buffer Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 31. 5 V DC Analog Output Buffer Specifications Symbol Description Min Typ Max Units Notes – – 200 pF This specification applies to the external circuit that is being driven by the analog output buffer. 3 +6 – 12 20 VDD – 1.0 mV V/°C V 1 1 – – – – – – V V – – 0.5 × VDD – 1.3 0.5 × VDD – 1.3 V V 1.1 2.6 64 5.1 8.8 – mA mA dB CL Load capacitance VOSOB TCVOSOB VCMOB ROUTOB Input offset voltage (Absolute Value) – Average input offset voltage drift – Common-mode input voltage range 0.5 Output resistance – Power = Low – Power = High High output voltage swing (Load = 32 to VDD/2) Power = Low 0.5 × VDD + 1.3 Power = High 0.5 × VDD + 1.3 Low output voltage swing (Load = 32 to VDD/2) Power = Low – Power = High – Supply current including bias cell (No Load) Power = Low – Power = High – Supply voltage rejection ratio 53 VOHIGHOB VOLOWOB ISOB PSRROB Document Number: 001-48111 Rev. *K (0.5 × VDD – 1.0) VOUT (0.5 × VDD + 0.9). Page 39 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 32. 3.3 V DC Analog Output Buffer Specifications Symbol CL Description Load Capacitance VOSOB TCVOSOB VCMOB ROUTOB Min Typ Max Units Notes – – 200 pF This specification applies to the external circuit that is being driven by the analog output buffer. 3 +6 – 12 20 VDD – 1.0 mV V/°C V 1 1 – – – – – – V V – – 0.5 × VDD – 1.0 0.5 × VDD – 1.0 V V 0.8 2.0 2.0 4.3 mA mA 64 – dB Input Offset Voltage (Absolute Value) – Average Input Offset Voltage Drift – Common-Mode Input Voltage Range 0.5 Output Resistance Power = Low – Power = High – VOHIGHOB High Output Voltage Swing (Load = 1 k to VDD/2) Power = Low 0.5 × VDD + 1.0 Power = High 0.5 × VDD + 1.0 VOLOWOB Low Output Voltage Swing (Load = 1 k to VDD/2) – Power = Low – Power = High ISOB Supply current including bias cell (No – Load) – Power = Low Power = High PSRROB Supply voltage rejection ratio 47 Document Number: 001-48111 Rev. *K (0.5 × VDD – 1.0) VOUT (0.5 × VDD + 0.9). Page 40 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Switch Mode Pump Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 33. DC Switch Mode Pump (SMP) Specifications Symbol VPUMP 5 V Description 5 V output voltage Min 4.75 Typ 5.0 Max 5.25 Units Notes V Configuration of footnote.[17] Average, neglecting ripple. SMP trip voltage is set to 5.0 V. V Configuration of footnote.[17] Average, neglecting ripple. SMP trip voltage is set to 3.25 V. Configuration of footnote.[17] SMP trip voltage is set to 3.25 V. mA SMP trip voltage is set to 5.0 V. mA V Configuration of footnote.[17] SMP trip voltage is set to 5.0 V. V Configuration of footnote.[17] SMP trip voltage is set to 3.25 V. V Configuration of footnote.[17] VPUMP 3 V 3 V output voltage 3.00 3.25 3.60 IPUMP VBAT5 V Available output current VBAT = 1.5 V, VPUMP = 3.25 V VBAT = 1.8 V, VPUMP = 5.0 V Input voltage range from battery 8 5 1.8 – – – – – 5.0 VBAT3 V Input voltage range from battery 1.5 – 3.3 VBATSTART 2.6 – – VPUMP_Line Minimum input voltage from battery to start pump Line regulation (over VBAT range) – 5 – VPUMP_Load Load regulation – 5 – VPUMP_Ripple – 100 – E3 Output voltage ripple (depends on capacitor/load) Efficiency 35 50 – % FPUMP DCPUMP Switching frequency Switching duty cycle – – 1.3 50 – – MHz % %VO Configuration of footnote.[17] VO is the “VDD Value for PUMP Trip” specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 50. %VO Configuration of footnote.[17] VO is the “VDD Value for PUMP Trip” specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 40 on page 50. mVpp Configuration of footnote.[17] Load is 5mA. Configuration of footnote.[17] Load is 5 mA. SMP trip voltage is set to 3.25 V. Figure 8. Basic Switch Mode Pump Circuit D1 Vdd L1 V BAT + V PUMP C1 SMP Battery PSoC TM Vss Note 17. L1 = 2 uH inductor, C1 = 10 uF capacitor, D1 = Schottky diode. See Figure 8. Document Number: 001-48111 Rev. *K Page 41 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Analog Reference Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power levels for RefHi and RefLo refer to the Analog Reference Control register. AGND is measured at P2[4] in AGND bypass mode. Each Analog Continuous Time PSoC block adds a maximum of 10mV additional offset error to guaranteed AGND specifications from the local AGND buffer. Reference control power can be set to medium or high unless otherwise noted. Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the Analog Reference. Some coupling of the digital signal may appear on the AGND. Table 34. 5-V DC Analog Reference Specifications Reference ARF_CR [5:3] 0b000 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High Reference Description Min Typ Max Units Ref high VDD/2 + Bandgap VDD/2 + 1.214 VDD/2 + 1.279 VDD/2 + 1.341 V VAGND AGND VDD/2 VDD/2 – 0.018 VDD/2 – 0.004 VDD/2 + 0.01 V VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.328 VDD/2 – 1.301 VDD/2 – 1.273 V Ref high VDD/2 + Bandgap VDD/2 + 0.228 VDD/2 + 1.284 VDD/2 + 1.344 V VAGND AGND VDD/2 VDD/2 – 0.015 VDD/2 – 0.002 VDD/2 + 0.011 V VREFLO Ref low VDD/2 – Bandgap VDD/2 – 1.329 VDD/2 – 1.303 VDD/2 – 1.275 V Ref high VDD/2 + Bandgap VDD/2 + 1.224 VDD/2 + 1.287 VDD/2 + 1.345 V AGND VDD/2 VDD/2 – 0.014 VDD/2 – 0.001 VDD/2 + 0.012 V Ref low VDD/2 – Bandgap VDD/2 – 1.328 VDD/2 – 1.304 VDD/2 – 1.275 V Ref high VDD/2 + Bandgap VDD/2 + 1.226 VDD/2 + 1.288 VDD/2 + 1.346 V AGND VDD/2 VDD/2 – 0.014 VDD/2 – 0.001 VDD/2 + 0.012 V Ref low VDD/2 – Bandgap VDD/2 – 1.328 VDD/2 – 1.304 VDD/2 – 1.276 V RefPower = High VREFHI Opamp bias = Low RefPower = VREFHI Medium Opamp bias = High V AGND VREFLO RefPower = VREFHI Medium Opamp bias = Low V AGND VREFLO Note 18. AGND tolerance includes the offsets of the local buffer in the PSoC block. Document Number: 001-48111 Rev. *K Page 42 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b001 Reference Power Settings Symbol Description Min Typ Max Units Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] VDD/2, P2[6] = 1.3 V) – 0.055 – 0.019 + 0.019 V VAGND AGND P2[4] – VREFLO Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] + 0.005 + 0.035 VDD/2, P2[6] = 1.3 V) – 0.030 V Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] – 0.015 + 0.021 VDD/2, P2[6] = 1.3 V) – 0.05 V RefPower = High VREFHI Opamp bias = High RefPower = High VREFHI Opamp bias = Low P2[4] AGND P2[4] Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] VDD/2, P2[6] = 1.3 V) – 0.033 + 0.001 + 0.031 V Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] VDD/2, P2[6] = 1.3 V) – 0.048 – 0.013 + 0.022 V AGND P2[4] – Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] VDD/2, P2[6] = 1.3 V) – 0.034 – 0.001 + 0.031 V Ref high P2[4]+P2[6] (P2[4] = P2[4] + P2[6] P2[4] + P2[6] P2[4] + P2[6] VDD/2, P2[6] = 1.3 V) – 0.047 – 0.012 + 0.023 V VREFHI RefPower = Medium Opamp bias = Low V AGND VREFLO RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO RefPower = VREFHI Medium V Opamp bias = Low AGND VREFLO Document Number: 001-48111 Rev. *K P2[4] P2[4] P2[4] P2[4] VAGND VREFLO P2[4] P2[4] VREFLO RefPower = VREFHI Medium Opamp bias = High V AGND 0b010 Reference P2[4] P2[4] P2[4] – P2[4] AGND P2[4] Ref low P2[4]–P2[6] (P2[4] = P2[4] – P2[6] P2[4] – P2[6] P2[4] – P2[6] – 0.002 + 0.030 VDD/2, P2[6] = 1.3 V) – 0.036 V Ref high VDD VDD V AGND VDD/2 VDD – 0.028 VDD – 0.010 VDD/2 – VDD/2 – 0.014 0.002 VDD/2 + 0.012 V Ref low VSS VSS Ref high VDD AGND VDD/2 VDD – 0.021 VDD – 0.007 VDD/2 – VDD/2 – 0.014 0.001 Ref low VSS VSS Ref high VDD AGND VDD/2 VDD – 0.019 VDD – 0.006 VDD/2 – VDD/2 – 0.014 0.001 Ref low VSS VSS VSS + 0.004 V Ref high VDD VDD V AGND VDD/2 VDD – 0.017 VDD – 0.005 VDD/2 – VDD/2 – 0.014 0.001 VDD/2 + 0.013 V Ref low VSS VSS VSS + 0.003 V VSS + 0.004 VSS + 0.002 VSS + 0.002 VSS + 0.001 P2[4] – VSS + 0.008 V VDD V VDD/2 + 0.012 V VSS + 0.005 V VDD V VDD/2 + 0.012 V Page 43 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b011 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO 0b100 Reference Description Min Typ Max Units Ref high 3 × Bandgap 3.736 3.887 4.030 V AGND 2 × Bandgap 2.525 2.598 2.667 V Ref low Bandgap 1.265 1.302 1.335 V Ref high 3 × Bandgap 3.747 3.894 4.034 V AGND 2 × Bandgap 2.528 2.601 2.668 V Ref low Bandgap 1.264 1.302 1.335 V VREFHI RefPower = Medium V Opamp bias = High AGND VREFLO Ref high 3 × Bandgap 3.749 3.897 4.035 V AGND 2 × Bandgap 2.529 2.602 2.668 V Ref low Bandgap 1.264 1.302 1.335 V VREFHI RefPower = Medium V Opamp bias = Low AGND VREFLO Ref high 3 × Bandgap 3.751 3.899 4.037 V AGND 2 × Bandgap 2.530 2.603 2.669 V Ref low Bandgap 1.264 1.302 1.335 RefPower = High VREFHI Opamp bias = High Ref high 2 × Bandgap + P2[6] 2.483 – P2[6] 2.578 – P2[6] 2.669 – P2[6] (P2[6] = 1.3 V) V VAGND AGND 2 × Bandgap V VREFLO Ref low 2 × Bandgap – P2[6] 2.512 – P2[6] 2.602 – P2[6] 2.684 – P2[6] (P2[6] = 1.3 V) V Ref high 2 × Bandgap + P2[6] 2.495 – P2[6] 2.586 – P2[6] 2.673 – P2[6] (P2[6] = 1.3 V) V VAGND AGND 2 × Bandgap VREFLO Ref low 2 × Bandgap – P2[6] 2.510 – P2[6] 2.602 – P2[6] 2.685 – P2[6] (P2[6] = 1.3 V) V Ref high 2 × Bandgap + P2[6] 2.498 – P2[6] 2.589 – P2[6] 2.674 – P2[6] (P2[6] = 1.3 V) V AGND 2 × Bandgap V Ref low 2 × Bandgap – P2[6] 2.509 – P2[6] 2.601 – P2[6] 2.685 – P2[6] (P2[6] = 1.3 V) V Ref high 2 × Bandgap + P2[6] 2.500 – P2[6] 2.591 – P2[6] 2.675 – P2[6] (P2[6] = 1.3 V) V AGND 2 × Bandgap Ref low 2 × Bandgap – P2[6] 2.508 – P2[6] 2.601 – P2[6] 2.686 – P2[6] (P2[6] = 1.3 V) RefPower = High VREFHI Opamp bias = Low RefPower = VREFHI Medium Opamp bias = High V AGND VREFLO VREFHI RefPower = Medium Opamp bias = Low V AGND VREFLO Document Number: 001-48111 Rev. *K 2.525 2.528 2.529 2.530 2.598 2.601 2.601 2.603 V 2.666 2.668 V 2.668 2.669 V V Page 44 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b101 Reference Power Settings Symbol Description Min Typ Max Units Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.218 P2[4] + 1.283 P2[4] + 1.344 V VAGND AGND P2[4] P2[4] – VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.329 P2[4] – 1.297 P2[4] – 1.265 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.225 P2[4] + 1.287 P2[4] + 1.346 V RefPower = High VREFHI Opamp bias = High RefPower = High VREFHI Opamp bias = Low P2[4] AGND P2[4] P2[4] VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.330 P2[4] – 1.301 P2[4] – 1.271 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.226 P2[4] + 1.288 P2[4] + 1.346 V AGND P2[4] P2[4] – Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.330 P2[4] – 1.302 P2[4] – 1.272 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.227 P2[4] + 1.289 P2[4] + 1.347 V VREFLO VREFHI RefPower = Medium Opamp bias = Low V AGND VREFLO RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO P2[4] P2[4] VAGND RefPower = VREFHI Medium Opamp bias = High V AGND 0b110 Reference P2[4] P2[4] P2[4] – P2[4] AGND P2[4] P2[4] Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.331 P2[4] – 1.303 P2[4] – 1.273 P2[4] V – Ref high 2 × Bandgap 2.506 2.597 2.674 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.006 VSS + 0.014 V Ref high 2 × Bandgap 2.508 2.595 2.675 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.003 VSS + 0.008 V RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO Ref high 2 × Bandgap 2.508 2.595 2.676 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.002 VSS + 0.005 V RefPower = VREFHI Medium V Opamp bias = Low AGND VREFLO Ref high 2 × Bandgap 2.508 2.596 2.677 V AGND Bandgap 1.263 1.302 1.336 V Ref low VSS VSS VSS + 0.001 VSS + 0.003 V Document Number: 001-48111 Rev. *K Page 45 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 34. 5-V DC Analog Reference Specifications (continued) Reference ARF_CR [5:3] 0b111 Reference Power Settings Symbol RefPower = High VREFHI Opamp bias = High V AGND VREFLO RefPower = High VREFHI Opamp bias = Low V AGND VREFLO Reference Description Min Typ Max Units Ref high 3.2 × Bandgap 4.056 4.155 4.222 V AGND 1.6 × Bandgap 2.012 2.083 2.168 V Ref low VSS VSS VSS + 0.01 VSS + 0.035 V Ref high 3.2 × Bandgap 4.061 4.153 4.223 V AGND 1.6 × Bandgap 2.023 2.082 2.145 V Ref low VSS VSS VSS + 0.006 VSS + 0.022 V VREFHI RefPower = Medium V Opamp bias = High AGND VREFLO Ref high 3.2 × Bandgap 4.063 4.154 4.224 V AGND 1.6 × Bandgap 2.020 2.083 2.152 V Ref low VSS VSS VSS + 0.006 VSS + 0.024 V VREFHI RefPower = Medium V Opamp bias = Low AGND VREFLO Ref high 3.2 × Bandgap 4.061 4.154 4.225 V AGND 1.6 × Bandgap 2.026 2.081 2.140 V Ref low VSS VSS VSS + 0.004 VSS + 0.017 V Table 35. 3.3-V DC Analog Reference Specifications Reference Reference Power ARF_CR Settings [5:3] 0b000 Symbol RefPower = High VREFHI Opamp bias = High VAGND Reference Description Min Typ Max Units Ref high VDD/2 + Bandgap VDD/2 + 1.223 VDD/2 + 1.283 VDD/2 + 1.343 V AGND VDD/2 VDD/2 – 0.013 VDD/2 – 0.003 VDD/2 + 0.005 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.297 VDD/2 – 1.270 V Ref high VDD/2 + Bandgap VDD/2 + 1.228 VDD/2 + 1.288 VDD/2 + 1.345 V AGND VDD/2 VDD/2 – 0.008 VDD/2 – 0.002 VDD/2 + 0.005 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.298 VDD/2 – 1.271 V RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO Ref high VDD/2 + Bandgap VDD/2 + 1.232 VDD/2 + 1.290 VDD/2 + 1.346 V AGND VDD/2 VDD/2 – 0.008 VDD/2 – 0.001 VDD/2 + 0.006 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.299 VDD/2 – 1.272 V RefPower = VREFHI Medium V AGND Opamp bias = Low VREFLO Ref high VDD/2 + Bandgap VDD/2 + 1.233 VDD/2 + 1.291 VDD/2 + 1.347 V AGND VDD/2 VDD/2 – 0.006 VDD/2 VDD/2 + 0.006 V Ref low VDD/2 – Bandgap VDD/2 – 1.322 VDD/2 – 1.299 VDD/2 – 1.272 V VREFLO RefPower = High VREFHI Opamp bias = Low VAGND VREFLO Document Number: 001-48111 Rev. *K Page 46 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 35. 3.3-V DC Analog Reference Specifications (continued) Reference Reference Power ARF_CR Settings [5:3] 0b001 Symbol RefPower = High VREFHI Opamp bias = High Description Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) VAGND AGND VREFLO Ref low Min Typ Max Units P2[4] + P2[6] – P2[4] + P2[6] – 0.045 0.017 P2[4] + P2[6] + V 0.016 P2[4] P2[4] P2[4] P2[4] P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.019 P2[4] – P2[6] + 0.004 P2[4] – P2[6] + V 0.023 Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] – P2[4] + P2[6] – 0.036 0.012 P2[4] + P2[6] + V 0.013 VAGND AGND P2[4] P2[4] P2[4] P2[4] VREFLO Ref low P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.021 P2[4] – P2[6] – 0.001 P2[4] – P2[6] + V 0.021 Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] – P2[4] + P2[6] – 0.034 0.011 P2[4] + P2[6] + V 0.013 AGND P2[4] P2[4] P2[4] P2[4] Ref low P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.023 P2[4] – P2[6] – 0.002 P2[4] – P2[6] + V 0.016 Ref high P2[4]+P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] + P2[6] – P2[4] + P2[6] – 0.033 0.009 P2[4] + P2[6] + V 0.014 AGND P2[4] P2[4] P2[4] P2[4] Ref low P2[4]–P2[6] (P2[4] = VDD/2, P2[6] = 0.5 V) P2[4] – P2[6] – 0.024 P2[4] – P2[6] – 0.003 P2[4] – P2[6] + V 0.020 Ref high VDD VDD – 0.042 VDD – 0.008 VDD AGND VDD/2 VDD/2 – 0.035 VDD/2 – 0.001 VDD/2 + 0.031 V Ref low VSS VSS VSS + 0.003 VSS + 0.0165 V V Ref high VDD VDD – 0.035 VDD – 0.005 VDD AGND VDD/2 VDD/2 – 0.031 VDD/2 – 0.001 VDD/2 + 0.028 V RefPower = High VREFHI Opamp bias = Low RefPower = VREFHI Medium Opamp bias = High VAGND VREFLO RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO 0b010 Reference RefPower = High VREFHI Opamp bias = High VAGND VREFLO RefPower = High VREFHI Opamp bias = Low VAGND VREFLO – – – – V V Ref low VSS VSS VSS + 0.002 VSS + 0.012 V RefPower = VREFHI Medium V Opamp bias = High AGND VREFLO Ref high VDD VDD – 0.044 VDD – 0.005 VDD V AGND VDD/2 VDD/2 – 0.052 VDD/2 VDD/2 + 0.046 V Ref low VSS VSS VSS + 0.002 VSS + 0.014 V RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO Ref high VDD VDD – 0.036 VDD – 0.004 VDD V VDD/2 + 0.029 V 0b011 All power settings. Not allowed for 3.3 V. 0b100 All power settings. Not allowed for 3.3 V. AGND VDD/2 VDD/2 – 0.032 VDD/2 Ref low VSS VSS VSS + 0.001 VSS + 0.012 V – – – – – – – – – – – – – – Document Number: 001-48111 Rev. *K Page 47 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 35. 3.3-V DC Analog Reference Specifications (continued) Reference Reference Power ARF_CR Settings [5:3] 0b101 Symbol RefPower = High VREFHI Opamp bias = High Min Units AGND P2[4] P2[4] P2[4] P2[4] – VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.323 P2[4] – 1.293 P2[4] –1.262 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.232 P2[4] + 1.29 P2[4] + 1.344 V VAGND AGND P2[4] P2[4] P2[4] P2[4] VREFLO Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.296 P2[4] – 1.267 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.233 P2[4] + 1.291 P2[4] + 1.345 V AGND P2[4] P2[4] P2[4] P2[4] Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.298 P2[4] – 1.269 V Ref high P2[4] + Bandgap (P2[4] = VDD/2) P2[4] + 1.234 P2[4] + 1.292 P2[4] +1.345 V AGND P2[4] P2[4] P2[4] P2[4] – Ref low P2[4] – Bandgap (P2[4] = VDD/2) P2[4] – 1.324 P2[4] – 1.299 P2[4] – 1.270 V Ref high 2 × Bandgap 2.504 2.595 2.672 AGND Bandgap 1.262 1.301 1.336 V Ref low VSS VSS VSS + 0.006 VSS + 0.013 V Ref high 2 × Bandgap 2.506 2.593 2.674 V AGND Bandgap 1.262 1.301 1.336 V RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO RefPower = High VREFHI Opamp bias = High VAGND VREFLO RefPower = High VREFHI Opamp bias = Low VAGND VREFLO P2[4] + 1.286 Max VAGND VREFLO P2[4] + 1.226 Typ P2[4] + Bandgap (P2[4] = VDD/2) RefPower = VREFHI Medium Opamp bias = High VAGND 0b111 Description Ref high RefPower = High VREFHI Opamp bias = Low 0b110 Reference P2[4] + 1.343 V – – V Ref low VSS VSS VSS + 0.003 VSS + 0.008 V RefPower = VREFHI Medium Opamp bias = High VAGND VREFLO Ref high 2 × Bandgap 2.506 2.594 2.675 V AGND Bandgap 1.262 1.301 1.335 V Ref low VSS VSS VSS + 0.002 VSS + 0.007 V RefPower = VREFHI Medium Opamp bias = Low VAGND VREFLO Ref high 2 × Bandgap 2.507 2.595 2.675 V AGND Bandgap 1.262 1.301 1.335 V Ref low VSS VSS VSS + 0.001 VSS + 0.005 V All power settings. Not allowed for 3.3 V. – – – – – – – DC Analog PSoC Block Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 36. DC Analog PSoC Block Specifications Symbol RCT CSC Description Resistor Unit Value (Continuous Time) Capacitor Unit Value (Switch Cap) Document Number: 001-48111 Rev. *K Min – – Typ 12.24 80 Max – – Units k fF Notes Page 48 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Analog Mux Bus Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 37. DC Analog Mux Bus Specifications Symbol RSW RVSS Description Switch Resistance to Common Analog Bus Resistance of Initialization Switch to VSS Min – – Typ – – Max 400 800 Units Notes VDD 3.0 V DC SAR10 ADC Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 38. DC SAR10 ADC Specifications Symbol INLSAR10 DNLSAR10 ISAR10 IVREFSAR10 VVREFSAR10 VOSSAR10 SARIMP Description Integral nonlinearity for VREF 3 V Integral nonlinearity for VREF < 3 V Differential nonlinearity for VREF 3 V Differential nonlinearity for VREF > 3 V Active current consumption Input current into P2[5] when configured as the SAR10 ADC's VREF input. Input reference voltage at P2[5] when configured as the SAR10 ADC's external voltage reference. Offset voltage SAR input impedence Min –2.5 –5 –1.5 –4 0.08 – Typ – – – – 0.5 – Max 2.5 5 1.5 4 0.497 0.5 Units LSB LSB LSB LSB mA mA 2.7 – VDD – 0.3 V V 5 – 7.7 1.64 10 – mV M Notes 10-bit resolution 10-bit resolution 10-bit resolution 10-bit resolution The internal voltage reference buffer is disabled in this configuration. When VREF is buffered inside the SAR10 ADC, the voltage level at P2[5] (when configured as the external reference voltage) must always be at least 300 mV less than the chip supply voltage level on the VDD pin. (VVREFSAR10 < (VDD – 300 mV)). Frequency dependant = 1/ Fs °C. 142.9 kHz (maximum) and Cin = 4.28 pF (typical) Table 39. DC IDAC Specifications Min Typ Max Units IDAC_DNL Symbol Differential nonlinearity –5.0 2.0 5.0 LSB IDAC_INL Integral nonlinearity –5.0 2.0 5.0 LSB IDAC_Gain Gain per bit – Range 1 (91 µA) 283 357 447 nA Gain per bit – Range 2 (318 µA) 985 1250 1532 nA Gain per bit – Range 3 (637 µA) 1959 2500 3056 nA Offset at Code 0 vs LSB Ideal – Range 1 (91 µA) 2.0% 20% % Offset at Code 0 vs LSB Ideal – Range 2 (318 µA) 1.0% 10% % Offset at Code 0 vs LSB Ideal – Range 3 (637 µA) 1.0% 10% % IDACOffset Description Document Number: 001-48111 Rev. *K Notes Valid for all 3 current ranges Valid for all 3 current ranges Measured at full scale Measured as a % of LSB (Current @ Code 0)/(LSB Ideal Current) Page 49 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC POR and LVD Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the PSoC Technical Reference Manual for CY8C28xxx PSoC devices, for more information on the VLT_CR register. Table 40. DC POR and LVD Specifications Symbol VPPOR0R VPPOR1R VPPOR2R VPPOR0 VPPOR1 VPPOR2 VPH0 VPH1 VPH2 VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7 VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7 Description VDD Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VDD Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b VDD Value for LVD Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b VDD Value for PUMP Trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b Min Typ Max Units – – – 2.91 4.39 4.55 2.985 4.49 4.65 V V V – – – 2.82 4.39 4.55 2.90 4.49 4.64 V V V – – – 92 0 0 – – – mV mV mV 2.83 2.93 3.04 3.90 4.38 4.54 4.62 4.71 2.91 3.01 3.12 3.99 4.47 4.63 4.71 4.80 3.00[19] 3.10 3.21 4.09 4.58 4.74[20] 4.83 4.92 V V V V V V V V 2.93 3.00 3.16 4.09 4.53 4.61 4.70 4.88 3.01 3.08 3.24 4.17 4.62 4.71 4.80 4.98 3.10 3.17 3.33 4.28 4.74 4.82 4.91 5.10 V V V V V V V V Notes VDD must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog. VDD must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from Watchdog. Notes 19. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply. 20. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply. Document Number: 001-48111 Rev. *K Page 50 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC Programming Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 41. DC Programming Specifications Symbol VDDP Description VDD for programming and erase Min 4.5 Typ 5 Max 5.5 VDDLV VDDHV Low VDD for verify 3 3.1 3.2 High VDD for verify 5.1 5.2 5.3 VDDIWRITE Supply Voltage for Flash write operation 3 – 5.25 IDDP VILP – – 5 – 25 0.8 2.2 – – V – – 0.21 mA – – 1.5 mA – – 0.75 V VDD – 1.0 – VDD V 50,000[21] 1,800,000 – – – – – – 10 – – Years Supply Current During Programming or Verify Input Low Voltage During Programming or Verify VIHP Input High Voltage During Programming or Verify IILP Input Current when Applying Vilp to P1[0] or P1[1] During Programming or Verify IIHP Input Current when Applying Vihp to P1[0] or P1[1] During Programming or Verify VOLV Output Low Voltage During Programming or Verify VOHV Output High Voltage During Programming or Verify FlashENPB Flash Endurance (per block) FlashENT Flash Endurance (total)[22] FlashDR Flash Data Retention Units Notes V This specification applies to the functional requirements of external programmer tools. V This specification applies to the functional requirements of external programmer tools. V This specification applies to the functional requirements of external programmer tools. V This specification applies to this device when it is executing internal flash writes. mA V Driving internal pull-down resistor. Driving internal pull-down resistor. Erase/write cycles per block. Erase/write cycles. Must be programmed and read at the same voltage to meet this. Notes 21. The 50,000 cycle Flash endurance per block will only be guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V. 22. A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information. Document Number: 001-48111 Rev. *K Page 51 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 DC I2C Specifications Table 42 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 42. DC I2C Specifications[23] Symbol VILI2C Input low level Description VIHI2C Input high level Min – – 0.7 × VDD Typ Max – 0.3 × VDD – 0.25 × VDD – – Units V V V Notes 3.0 V VDD 3.6 V 4.75 V VDD 5.25 V 3.0 V VDD 5.25 V AC Electrical Characteristics AC Chip-Level Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 43. AC Chip-Level Specifications Symbol FIMO Description Internal Main Oscillator Frequency Min 23.4 Typ 24 Max 24.6[24] Units MHz FIMO6 Internal Main Oscillator Frequency for 6 MHz 5.5 6 6.5[24] MHz FCPU1 CPU Frequency (5 V Nominal) 0.091 24 24.6[24] MHz FCPU2 CPU Frequency (3.3 V Nominal) 0.091 12 12.3[25] MHz FBLK5 FBLK33 F32K1 Digital PSoC Block Frequency Digital PSoC Block Frequency Internal Low Speed Oscillator Frequency External Crystal Oscillator 0 0 15 – 24 32 49.2[24, 26] 24.6[26] 64 MHz MHz kHz – 32.768 – kHz Internal Low Speed Oscillator Untrimmed Frequency 5 – 100 kHz – 0.5 0.5 23.986 – – – 10 50 MHz ms ms External Crystal Oscillator Startup to 1% External Crystal Oscillator Startup to 100 ppm – 1700 2620 ms – 2800 3800 ms External Reset Pulse Width 24 MHz Duty Cycle 10 40 – 50 – 60 s % F32K2 F32K_U FPLL PLL Frequency tPLLSLEW PLL Lock Time tPLLSLEWSLO PLL Lock Time for Low Gain Setting Notes Trimmed. Utilizing factory trim values. SLIMO Mode = 0. Trimmed for 5 V or 3.3 V operation using factory trim values. SLIMO Mode = 1. Trimmed. Utilizing factory trim values. SLIMO mode = 0. Trimmed. Utilizing factory trim values. SLIMO mode = 0. 4.75 V< VDD <5.25 V 3.0 V<VDD<3.6 V Trimmed. Utilizing factory trim values. Accuracy is capacitor and crystal dependent. 50% duty cycle. After a reset and before the m8c starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference manual for details on timing this. Multiple (x732) of crystal frequency. W TOS TOSACC tXRST DC24M The crystal oscillator frequency is within 100 ppm of its final value by the end of the Tosacc period. Correct operation assumes a properly loaded 1 µW maximum drive level 32.768 kHz crystal. 3.0 V VDD 5.5 V, –40 °C TA 85 °C. Note 23. All GPIOs meet the DC GPIO VIL and VIH specifications found in the DC GPIO Specifications sections. The I2C GPIO pins also meet the above specs. Document Number: 001-48111 Rev. *K Page 52 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 43. AC Chip-Level Specifications (continued) Symbol DCILO Fout48M Description Internal Low Speed Oscillator Duty Cycle 48 MHz Output Frequency FMAX Maximum Frequency of Signal on Row Input or Row Output. SRPOWERUP Supply Ramp Time tPOWERUP Time for POR Release to Code Execution tjit_IMO [27] 24 MHz IMO cycle-to-cycle jitter (RMS) 24 MHz IMO long term N cycle-to-cycle jitter (RMS) 24 MHz IMO period jitter (RMS) tjit_PLL [27] 24 MHz IMO cycle-to-cycle jitter (RMS) 24 MHz IMO long term N cycle-to-cycle jitter (RMS) 24 MHz IMO period jitter (RMS) Min 20 Typ 50 Max 80 Units % Notes 46.8 48.0 49.2[24,25] MHz – – 12.3 MHz 0 – – 16 – 100 s ms – – 200 300 1300 1300 ps ps N = 32 – – – 200 200 400 800 1100 2800 ps ps ps N = 32 – 200 1400 ps Trimmed. Utilizing factory trim values. Figure 9. PLL Lock Timing Diagram PLL Enable TPLLSLEW 24 MHz FPLL PLL Gain 0 Figure 10. PLL Lock for Low Gain Setting Timing Diagram PLL Enable TPLLSLEWLOW 24 MHz FPLL PLL Gain 1 Notes 24. 4.75 V < VDD < 5.25 V. 25. 3.0 V < VDD < 3.6 V. See application note Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V. 26. See the individual user module datasheets for information on maximum frequencies for user modules. 27. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information. Document Number: 001-48111 Rev. *K Page 53 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Figure 11. External Crystal Oscillator Startup Timing Diagram 32K Select 32 kHz TOS F32K2 AC GPIO Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 44. AC GPIO Specifications Symbol FGPIO tRiseF tFallF tRiseS tFallS Description GPIO Operating Frequency Rise Time, Normal Strong Mode, Cload = 50 pF Fall Time, Normal Strong Mode, Cload = 50 pF Rise Time, Slow Strong Mode, Cload = 50 pF Fall Time, Slow Strong Mode, Cload = 50 pF Min 0 3 2 10 10 Typ – – – 27 22 Max 12.3 18 18 – – Units MHz ns ns ns ns Notes Normal Strong Mode VDD = 4.5 to 5.25 V, 10% – 90% VDD = 4.5 to 5.25 V, 10% – 90% VDD = 3 to 5.25 V, 10% – 90% VDD = 3 to 5.25 V, 10% – 90% Figure 12. GPIO Timing Diagram 90% GPIO Pin Output Voltage 10% TRiseF TRiseS TFallF TFallS AC Operational Amplifier Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block. Power = High and Opamp bias = High is not supported at 3.3 V. Table 45. 5 V AC Operational Amplifier Specifications Symbol tROA tSOA Description Rising Settling Time from 80% of V to 0.1% of V (Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = High Falling Settling Time from 20% of V to 0.1% of V (Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = High Document Number: 001-48111 Rev. *K Min Typ Max Units – – – – – – 3.9 0.72 0.62 s s s – – – – – – 5.9 0.92 0.72 s s s Notes Page 54 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 45. 5 V AC Operational Amplifier Specifications (continued) Symbol SRROA SRFOA BWOA ENOA Description Rising Slew Rate (20% to 80%)(Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = High Falling Slew Rate (80% to 20%)(Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = High Gain Bandwidth Product Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = High Noise at 1 kHz Power = Medium, Opamp bias = High Min Typ Max Units 0.15 1.7 6.5 – – – – – – V/s V/s V/s 0.01 0.5 4.0 – – – – – – V/s V/s V/s 0.75 3.1 5.4 – – – – 100 – – – – MHz MHz MHz nV/rt-Hz Min Typ Max Units – – – – 3.92 0.72 s s – – – – 5.41 0.72 s s 0.31 2.7 – – – – V/s V/s 0.24 1.8 – – – – V/s V/s 0.67 2.8 – – – 100 – – – MHz MHz nV/rt-Hz Notes Table 46. 3.3 V AC Operational Amplifier Specifications Symbol tROA tSOA SRROA SRFOA BWOA ENOA Description Rising Settling Time from 80% of V to 0.1% of V (Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Falling Settling Time from 20% of V to 0.1% of V (Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Rising Slew Rate (20% to 80%)(Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Falling Slew Rate (80% to 20%)(Active Probe Loading, Unity Gain) Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Gain Bandwidth Product Power = Low, Opamp bias = Low Power = Medium, Opamp bias = High Noise at 1 kHz Power = Medium, Opamp bias = High Document Number: 001-48111 Rev. *K Notes Page 55 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor. Figure 13. Typical AGND Noise with P2[4] Bypass VnAGND Emerald = 2*Vbg -90 -100 -110 E0.0 E0.01 -120 E0.1 E1.0 E10.0 -130 -140 -150 0.001 0.01 0.1 1 10 100 At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level. Figure 14. Typical Opamp Noise nV/rtHz 10000 PH_BH PH_BL PM_BL PL_BL 1000 100 10 0.001 Document Number: 001-48111 Rev. *K 0.01 0.1 Freq (kHz) 1 10 100 Page 56 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 AC Type-E Operational Amplifier Specifications Table 47 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only. The Operational Amplifiers covered by these specifications are components of the Limited Type E Analog PSoC blocks. Table 47. AC Type-E Operational Amplifier Specifications Symbol tCOMP Description Comparator Mode Response Time Min – Typ 75 Max 100 Units ns Notes 50 mV overdrive. AC Low Power Comparator Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, 3.0 V to 3.6 V and –40 °C TA 85 °C, or 2.4 V to 3.0 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only. Table 48. AC Low Power Comparator Specifications Symbol tRLPC Description LPC Response Time Document Number: 001-48111 Rev. *K Min – Typ – Max 50 Units s Notes 50 mV overdrive. Page 57 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 AC Digital Block Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 49. AC Digital Block Specifications Function All functions Timer Counter Dead Band CRCPRS (PRS Mode) CRCPRS (CRC Mode) SPIM SPIS Tranmitter Receiver Description Block Input Clock Frequency VDD 4.75 V VDD < 4.75 V Input Clock Frequency No Capture, VDD 4.75 V No Capture, VDD < 4.75 V With Capture Capture Pulse Width Input Clock Frequency No Enable Input, VDD 4.75 V No Enable Input, VDD < 4.75 V With Enable Input Enable Input Pulse Width Kill Pulse Width Asynchronous Restart Mode Synchronous Restart Mode Disable Mode Input Clock Frequency VDD 4.75 V VDD < 4.75 V Input Clock Frequency VDD 4.75 V VDD < 4.75 V Input Clock Frequency Input Clock Frequency Input Clock (SCLK) Frequency Width of SS_Negated Between Transmissions Input Clock Frequency VDD 4.75 V, 2 Stop Bits VDD 4.75 V, 1 Stop Bit VDD < 4.75 V Input Clock Frequency VDD 4.75 V, 2 Stop Bits VDD 4.75 V, 1 Stop Bit VDD < 4.75 V Min Typ Max Units – – – – 49 25 MHz MHz – – – 50[28] – – – – 49 25 25 – MHz MHz MHz ns – – – 50[28] – – – – 49 25 25 – MHz MHz MHz ns 20 50[28] 50[28] – – – – – – ns ns ns – – – – 49 25 MHz MHz – – – – – – 49 25 25 MHz MHz MHz – – 8.2 MHz – 50[13] – – 4.1 – MHz ns – – – – – – 49 25 25 MHz MHz MHz – – – – – – 49 25 25 MHz MHz MHz Notes The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2. The input clock is the SPI SCLK in SPIS mode. The baud rate is equal to the input clock frequency divided by 8. The baud rate is equal to the input clock frequency divided by 8. Note 28. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period). Document Number: 001-48111 Rev. *K Page 58 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 AC Analog Output Buffer Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 50. 5 V AC Analog Output Buffer Specifications Symbol tROB tSOB SRROB SRFOB BWOB BWOB Description Rising Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High Falling Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load Power = Low Power = High Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load Power = Low Power = High Small Signal Bandwidth, 20mVpp, 3dB BW, 100 pF Load Power = Low Power = High Large Signal Bandwidth, 1 Vpp, 3dB BW, 100 pF Load Power = Low Power = High Min Typ Max Units – – – – 2.5 2.9 s s – – – – 2.3 2.3 s s 0.65 0.65 – – – – V/s V/s 0.65 0.65 – – – – V/s V/s 0.8 0.8 – – – – MHz MHz 300 300 – – – – kHz kHz Min Typ Max Units – – – – 3.8 3.8 s s – – – – 3.2 2.9 s s 0.5 0.5 – – – – V/s V/s 0.5 0.5 – – – – V/s V/s 0.64 0.64 – – – – MHz MHz 200 200 – – – – kHz kHz Notes Table 51. 3.3 V AC Analog Output Buffer Specifications Symbol tROB tSOB SRROB SRFOB BWOB BWOB Description Rising Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High Falling Settling Time to 0.1%, 1 V Step, 100 pF Load Power = Low Power = High Rising Slew Rate (20% to 80%), 1 V Step, 100 pF Load Power = Low Power = High Falling Slew Rate (80% to 20%), 1 V Step, 100 pF Load Power = Low Power = High Small Signal Bandwidth, 20mVpp, 3dB BW, 100 pF Load Power = Low Power = High Large Signal Bandwidth, 1 Vpp, 3dB BW, 100 pF Load Power = Low Power = High Document Number: 001-48111 Rev. *K Notes Page 59 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 AC SAR10 ADC Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 52. AC SAR10 ADC Specifications Symbol FINSAR10 FSSAR10 Description Input clock frequency for SAR10 ADC Sample rate for SAR10 ADC SAR10 ADC Resolution = 10 bits Min – – Typ – – Max 2.0 142.9 Units MHz ksps Notes For 10-bit resolution, the sample rate is the ADC's input clock divided by 14. AC External Clock Specifications The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 53. 5 V AC External Clock Specifications Symbol Description Min Typ Max Units FOSCEXT Frequency 0.093 – 24.6 MHz – High Period 20.6 – 5300 ns – Low Period 20.6 – – ns – Power-up IMO to Switch 150 – – s Notes Table 54. 3.3 V AC External Clock Specifications Min Typ Max Units FOSCEXT Symbol Frequency with CPU Clock divide by 1[29] Description 0.093 – 12.3 MHz FOSCEXT Frequency with CPU Clock divide by 2 or greater[30] 0.186 – 24.6 MHz – High Period with CPU Clock divide by 1 41.7 – 5300 ns – Low Period with CPU Clock divide by 1 41.7 – – ns – Power-up IMO to Switch 150 – – s Notes AC Programming Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 55. AC Programming Specifications Symbol tRSCLK tFSCLK tSSCLK tHSCLK FSCLK tERASEB tWRITE tDSCLK Description Rise Time of SCLK Fall Time of SCLK Data Setup Time to Falling Edge of SCLK Data Hold Time from Falling Edge of SCLK Frequency of SCLK Flash Erase Time (Block) Flash Block Write Time Data Out Delay from Falling Edge of SCLK Document Number: 001-48111 Rev. *K Min 1 1 40 40 0 – – – Typ – – – – – 10 40 – Max 20 20 – – 8 – – 55 Units ns ns ns ns MHz ms ms ns VDD 3.6 Notes Page 60 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Table 55. AC Programming Specifications Symbol tDSCLK3 tERASEALL Description Data Out Delay from Falling Edge of SCLK Flash Erase Time (Bulk) Min – – Typ – 40 tPROGRAM_HOT tPROGRAM_COLD Flash Block Erase + Flash Block Write Time Flash Block Erase + Flash Block Write Time – – – – Max 75 – Units Notes ns 3.0 VDD 3.6 ms Erase all blocks and protection fields at once. 100[31] ms 0 °C Tj 100 °C 200[31] ms –40 °C Tj 0 °C AC I2C Specifications The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C TA 85 °C, or 3.0 V to 3.6 V and –40 °C TA 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only. Table 56. AC Characteristics of the I2C SDA and SCL Pins Symbol FSCLI2C tHDSTAI2C tLOWI2C tHIGHI2C tSUSTAI2C tHDDATI2C tSUDATI2C tSUSTOI2C tBUFI2C tSPI2C Standard Mode Fast Mode Min Max Min Max SCL clock frequency 0 100 0 400 Hold time (repeated) START condition. After this 4.0 – 0.6 – period, the first clock pulse is generated. LOW period of the SCL clock 4.7 – 1.3 – HIGH period of the SCL clock 4.0 – 0.6 – Setup time for a repeated START condition 4.7 – 0.6 – Data hold time 0 – 0 – Data setup time 250 – 100[32] – Setup time for STOP condition 4.0 – 0.6 – Bus free time between a STOP and START 4.7 – 1.3 – condition Pulse width of spikes are suppressed by the – – 0 50 input filter. Description Units Notes kHz s s s s s ns s s ns Figure 15. Definition for Timing for Fast/Standard Mode on the I2C Bus I2C_SDA TSUDATI2C THDSTAI2C TSPI2C THDDATI2CTSUSTAI2C TBUFI2C I2C_SCL THIGHI2C TLOWI2C S START Condition TSUSTOI2C Sr Repeated START Condition P S STOP Condition Notes 29. Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements. 30. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met. 31. For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note, AN2015 at http://ww.cypress.com under Application Notes for more information. 32. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement TSUDATI2C 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line trmax + TSUDATI2C = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released. Document Number: 001-48111 Rev. *K Page 61 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Packaging Information This section illustrates the packaging specifications for the CY8C28xxx PSoC devices, along with the thermal impedances for each package and the typical package capacitance on crystal pins. Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of the emulation tools' dimensions, refer to the Emulator Pod Dimension drawings at http://www.cypress.com.. Packaging Dimensions Figure 16. 20-pin SSOP (210 Mils) Package Outline, 51-85077 51-85077 *E Document Number: 001-48111 Rev. *K Page 62 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Figure 17. 28-pin SSOP (210 Mils) Package Outline, 51-85079 51-85079 *E Figure 18. 44-pin TQFP (10 × 10 × 1.4 mm) Package Outline, 51-85064 51-85064 *E Document Number: 001-48111 Rev. *K Page 63 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Figure 19. 48-pin QFN (7 × 7 × 1.0 mm) Package Outline, 001-45616 001-45616 *D Important Note For information on the preferred dimensions for mounting QFN packages, see the following application note, “Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com. Document Number: 001-48111 Rev. *K Page 64 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Figure 20. 56-pin SSOP (300 Mils) Package Outline, 51-85062 51-85062 *F Document Number: 001-48111 Rev. *K Page 65 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Thermal Impedances Table 57. Thermal Impedances per Package Package 20-SSOP 28-SSOP 44-TQFP 48-QFN[34] 56-SSOP Typical JA [33] 80.8 °C/W 45.4 °C/W 24.0 °C/W 16.7 °C/W 67.5 °C/W Capacitance on Crystal Pins Table 58. Typical Package Capacitance on Crystal Pins Package 20-SSOP 28-SSOP 44-TQFP 48-QFN 56-SSOP Package Capacitance Pin9 = 0.0056 pF Pin11 = 0.006048 pF Pin13 = 0.006796 pF Pin15 = 0.006755 pF Pin16 = 0.009428 pF Pin18 = 0.008635 pF Pin17 = 0.008493 pF Pin19 = 0.008742 pF Pin27 = 0.007916 pF Pin31 = 0.007132 pF Solder Reflow Specifications Table 59 shows the solder reflow temperature limits that must not be exceeded. Table 59. Solder Reflow Specifications Maximum Peak Temperature (TC) Maximum Time above TC – 5 °C 20-SSOP 260 °C 30 seconds 28-SSOP 260 °C 30 seconds 44-TQFP 260 °C 30 seconds 48-QFN 260 °C 30 seconds 56-SSOP 260 °C 30 seconds Package Notes 33. TJ = TA + POWER × JA 34. To achieve the thermal impedance specified for the QFN package, refer to Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com for PCB requirements. 35. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications. Document Number: 001-48111 Rev. *K Page 66 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Development Tool Selection This section presents the development tools available for all current PSoC device families including the CY8C28xxx family. Software PSoC Designer Evaluation Tools At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com. All evaluation tools can be purchased from the Cypress Online Store. PSoC Programmer Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com. Development Kits All development kits can be purchased from the Cypress Online Store. CY3215-DK Basic Development Kit The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface allows users to run, halt, and single step the processor and view the content of specific memory locations. Advanced emulation features are supported in PSoC Designer. The kit includes: CY3210-MiniProg1 The CY3210-MiniProg1 kit allows a user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes: ■ MiniProg Programming Unit ■ MiniEval Socket Programming and Evaluation Board ■ 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample ■ 28-Pin CY8C27443-24PXI PDIP PSoC Device Sample ■ PSoC Designer Software CD ■ Getting Started Guide ■ USB 2.0 Cable CY3210-PSoCEval1 The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes: ■ PSoC Designer Software CD ■ Evaluation Board with LCD Module ■ ICE-Cube In-Circuit Emulator ■ MiniProg Programming Unit ■ Pod kit for CY8C29x66 PSoC Family ■ 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2) ■ Cat-5 Adapter ■ PSoC Designer Software CD ■ Mini-Eval Programming Board ■ Getting Started Guide ■ 110 ~ 240 V Power Supply, Euro-Plug Adapter ■ USB 2.0 Cable ■ ISSP Cable ■ USB 2.0 Cable and Blue Cat-5 Cable ■ 2 CY8C29466-24PXI 28-PDIP Chip Samples Document Number: 001-48111 Rev. *K Page 67 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Device Programmers software. The latest PSoC ISSP software for this kit can be downloaded from http://www.cypress.com. The kit includes: All device programmers can be purchased from the Cypress Online Store. ■ CY3207 Programmer Unit CY3207ISSP In-System Serial Programmer (ISSP) ■ PSoC ISSP Software CD The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. ■ 110 ~ 240 V Power Supply, Euro-Plug Adapter ■ USB 2.0 Cable Note The CY3207ISSP programmer needs the PSoC ISSP software. It is not compatible with the PSoC Programmer Accessories (Emulation and Programming) Table 60. Emulation and Programming Accessories Part # Pin Package Pod Kit[36] Foot Kit[37] CY8C28243-24PVXI 20-SSOP CY3250-28XXX CY3250-20SSOP-FK CY8C28403-24PVXI CY8C28413-24PVXI CY8C28433-24PVXI CY8C28445-24PVXI CY8C28452-24PVXI 28-SSOP CY3250-28XXX CY3250-28SSOP-FK CY8C28513-24AXI CY8C28533-24AXI CY8C28545-24AXI 44-TQFP CY3250-28XXX CY8C28623-24LTXI CY8C28643-24LTXI CY8C28645-24LTXI 48-QFN CY3250-28XXXQFN CY3250-48QFN-FK CY3250-44TQFP-FK Adapter[38] Adapters can be found at http://www.emulation.com. Notes 36. Pod kit contains an emulation pod, a flex-cable (connects the pod to the ICE), two feet, and device samples. 37. Foot kit includes surface mount feet that can be soldered to the target PCB. 38. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com. Document Number: 001-48111 Rev. *K Page 68 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Ordering Information XRES Pin RAM (KBytes) Flash (KBytes) Analog Outputs Analog Inputs Digital I/O Pins 10-bit SAR ADC Decimators HW I2C Limited Analog Blocks Regular Analog Blocks Digital Blocks CapSense Temperature Range Ordering Code Package The following table lists the CY8C28xxx PSoC devices key package features and ordering codes. 28-Pin (210-Mil) SSOP CY8C28403-24PVXI –40 °C to 85 °C N 12 0 0 2 0 Y 24 8 0 16 1 Y 28-Pin (210-Mil) SSOP (Tape and Reel) CY8C28403-24PVXIT –40 °C to 85 °C N 12 0 0 2 0 Y 24 8 0 16 1 Y 28-Pin (210-Mil) SSOP CY8C28413-24PVXI –40 °C to 85 °C Y 12 0 4 1 2 Y 24 24 0 16 1 Y 28-Pin (210-Mil) SSOP (Tape and Reel) CY8C28413-24PVXIT –40 °C to 85 °C Y 12 0 4 1 2 Y 24 24 0 16 1 Y 44-Pin TQFP CY8C28513-24AXI –40 °C to 85 °C Y 12 0 4 1 2 Y 40 40 0 16 1 Y 44-Pin TQFP (Tape and CY8C28513-24AXIT Reel) –40 °C to 85 °C Y 12 0 4 1 2 Y 40 40 0 16 1 Y 48-Pin Sawn QFN CY8C28623-24LTXI –40 °C to 85 °C N 12 6 0 2 2 N 44 10 2 16 1 Y 48-Pin Sawn QFN (Tape and Reel) CY8C28623-24LTXIT –40 °C to 85 °C N 12 6 0 2 2 N 44 10 2 16 1 Y 28-Pin (210-Mil) SSOP CY8C28433-24PVXI –40 °C to 85 °C Y 12 6 4 1 4 Y 24 24 2 16 1 Y 28-Pin (210-Mil) SSOP (Tape and Reel) CY8C28433-24PVXIT –40 °C to 85 °C Y 12 6 4 1 4 Y 24 24 2 16 1 Y 44-Pin TQFP CY8C28533-24AXI –40 °C to 85 °C Y 12 6 4 1 4 Y 40 40 2 16 1 Y 44-Pin TQFP (Tape and CY8C28533-24AXIT Reel) –40 °C to 85 °C Y 12 6 4 1 4 Y 40 40 2 16 1 Y 20-Pin (210-Mil) SSOP CY8C28243-24PVXI –40 °C to 85 °C N 12 12 0 2 4 Y 16 16 4 16 1 Y 20-Pin (210-Mil) SSOP (Tape and Reel) CY8C28243-24PVXIT –40 °C to 85 °C N 12 12 0 2 4 Y 16 16 4 16 1 Y 48-Pin Sawn QFN CY8C28643-24LTXI –40 °C to 85 °C N 12 12 0 2 4 Y 44 44 4 16 1 Y 48-Pin Sawn QFN (Tape and Reel) CY8C28643-24LTXIT –40 °C to 85 °C N 12 12 0 2 4 Y 44 44 4 16 1 Y 28-Pin (210-Mil) SSOP CY8C28445-24PVXI –40 °C to 85 °C Y 12 12 4 2 4 Y 24 24 4 16 1 Y 28-Pin (210-Mil) SSOP (Tape and Reel) CY8C28445-24PVXIT –40 °C to 85 °C Y 12 12 4 2 4 Y 24 24 4 16 1 Y 44-Pin TQFP CY8C28545-24AXI –40 °C to 85 °C Y 12 12 4 2 4 Y 40 40 4 16 1 Y –40 °C to 85 °C Y 12 12 4 2 4 Y 40 40 4 16 1 Y 44-Pin TQFP (Tape and CY8C28545-24AXIT Reel) 48-Pin Sawn QFN CY8C28645-24LTXI –40 °C to 85 °C Y 12 12 4 2 4 Y 44 44 4 16 1 Y 48-Pin Sawn QFN (Tape and Reel) CY8C28645-24LTXIT –40 °C to 85 °C Y 12 12 4 2 4 Y 44 44 4 16 1 Y 28-Pin (210-Mil) SSOP CY8C28452-24PVXI –40 °C to 85 °C Y 8 12 4 1 4 N 24 24 4 16 1 Y 28-Pin (210-Mil) SSOP (Tape and Reel) CY8C28452-24PVXIT –40 °C to 85 °C Y 8 12 4 1 4 N 24 24 4 16 1 Y 56-Pin SSOP OCD CY8C28000-24PVXI –40 °C to 85 °C Y 12 12 4 2 4 Y 44 44 4 16 1 Y Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE). Document Number: 001-48111 Rev. *K Page 69 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Ordering Code Definitions CY 8 C 28 xxx - SP xxxx Package Type: PVX = SSOP Pb-free LTX = QFN Pb-free AX = TQFP Pb-free Thermal Rating: C = Commercial I = Industrial E = Extended CPU Speed: 24 MHz Part Number Family Code Technology Code: C = CMOS Marketing Code: 8 = PSoC Company ID: CY = Cypress Document Number: 001-48111 Rev. *K Page 70 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Acronyms Acronyms Used Table 61 lists the acronyms that are used in this document. Table 61. Acronyms Used in this Datasheet Acronym AC Description Acronym Description alternating current MIPS million instructions per second ADC analog-to-digital converter OCD on-chip debug API application programming interface PCB printed circuit board complementary metal oxide semiconductor PDIP plastic dual-in-line package CPU central processing unit PGA programmable gain amplifier CRC cyclic redundancy check PLL phase-locked loop continuous time POR power on reset CMOS CT DAC DC digital-to-analog converter direct current PPOR PRS precision power on reset pseudo-random sequence DTMF dual-tone multi-frequency PSoC® ECO external crystal oscillator PWM pulse width modulator electrically erasable programmable read-only memory QFN quad flat no leads real time clock EEPROM GPIO general purpose I/O RTC ICE in-circuit emulator SAR IDE integrated development environment SC SLIMO Programmable System-on-Chip successive approximation switched capacitor ILO internal low speed oscillator IMO internal main oscillator SMP slow IMO switch mode pump I/O input/output SOIC small-outline integrated circuit IrDA infrared data association SPITM serial peripheral interface ISSP in-system serial programming SRAM static random access memory LCD liquid crystal display SROM supervisory read only memory LED light-emitting diode SSOP shrink small-outline package LPC low power comparator UART universal asynchronous receiver / transmitter LVD low voltage detect USB MAC multiply-accumulate WDT universal serial bus watchdog timer MCU microcontroller unit XRES external reset Reference Documents CY8CPLC20, CY8CLED16P01, CY8C29x66, CY8C27x43, CY8C24x94, CY8C24x23, CY8C24x23A, CY8C22x13, CY8C21x34, CY8C21x23, CY7C64215, CY7C603xx, CY8CNP1xx, and CYWUSB6953 PSoC® Programmable System-on-Chip Technical Reference Manual (TRM) (001-14463) Design Aids – Reading and Writing PSoC® Flash – AN2015 (001-40459) Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 (001-17397) Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503) Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com. Document Number: 001-48111 Rev. *K Page 71 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Document Conventions Units of Measure Table 62 lists the unit sof measures. Table 62. Units of Measure Symbol Unit of Measure Symbol Unit of Measure kB 1024 bytes µs microsecond dB decibels ms millisecond °C degree Celsius ns nanosecond fF femto farad ps picosecond pF picofarad µV microvolts kHz kilohertz MHz megahertz mVpp rt-Hz mV millivolts millivolts peak-to-peak root hertz nV nanovolts k kilohm V volts ohm µW microwatts W watt µA microampere mA milliampere mm millimeter nA nanoampere ppm parts per million pA pikoampere % mH millihenry percent Numeric Conventions Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimals. Glossary active high 5. A logic signal having its asserted state as the logic 1 state. 6. A logic signal having the logic 1 state as the higher voltage of the two states. analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more. analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation. API (Application Programming Interface) A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications. asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal. Bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference. Document Number: 001-48111 Rev. *K Page 72 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Glossary (continued) bandwidth 1. The frequency range of a message or information processing system measured in hertz. 2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum. bias 1. A systematic deviation of a value from a reference value. 2. The amount by which the average of a set of values departs from a reference value. 3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device. block 1. A functional unit that performs a single function, such as an oscillator. 2. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block. buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written. 2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device. 3. An amplifier used to lower the output impedance of a system. bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns. 2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0]. 3. One or more conductors that serve as a common connection for a group of related devices. clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks. comparator An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements. compiler A program that translates a high level language, such as C, into machine language. configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to ‘1’. crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components. cyclic redundancy A calculation used to detect errors in data communications, typically performed using a linear check (CRC) feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression. data bus A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions. debugger A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory. dead band A period of time when neither of two or more signals are in their active state or in transition. Document Number: 001-48111 Rev. *K Page 73 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Glossary (continued) digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI. digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The analogto-digital (ADC) converter performs the reverse operation. duty cycle The relationship of a clock period high time to its low time, expressed as a percent. emulator Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system. external reset (XRES) An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state. flash An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off. Flash block The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes. frequency The number of cycles or events per unit of time, for a periodic function. gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB. I2C A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode. ICE The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer). input/output (I/O) A device that introduces data into or extracts data from a system. interrupt A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed. interrupt service routine (ISR) A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution. jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams. 2. The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles. low-voltage detect A circuit that senses VDD and provides an interrupt to the system when VDD falls lower than a (LVD) selected threshold. Document Number: 001-48111 Rev. *K Page 74 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Glossary (continued) M8C An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space. master device A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the slave device. microcontroller An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor. mixed-signal The reference to a circuit containing both analog and digital techniques and components. modulator A device that imposes a signal on a carrier. noise 1. A disturbance that affects a signal and that may distort the information carried by the signal. 2. The random variations of one or more characteristics of any entity such as voltage, current, or data. oscillator A circuit that may be crystal controlled and is used to generate a clock frequency. parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity). phase-locked loop (PLL) An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal. pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names. port A group of pins, usually eight. power on reset (POR) A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is one type of hardware reset. PSoC® Cypress Semiconductor’s PSoC® is a registered trademark and Programmable System-onChip™ is a trademark of Cypress. PSoC Designer™ The software for Cypress’ Programmable System-on-Chip technology. pulse width An output in the form of duty cycle which varies as a function of the applied measurand modulator (PWM) RAM An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in. register A storage device with a specific capacity, such as a bit or byte. reset A means of bringing a system back to a know state. See hardware reset and software reset. Document Number: 001-48111 Rev. *K Page 75 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Glossary (continued) ROM An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in. serial 1. Pertaining to a process in which all events occur one after the other. 2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel. settling time The time it takes for an output signal or value to stabilize after the input has changed from one value to another. shift register A memory storage device that sequentially shifts a word either left or right to output a stream of serial data. slave device A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device. SRAM An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device. SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash. stop bit A signal following a character or block that prepares the receiving device to receive the next character or block. synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. 2. A system whose operation is synchronized by a clock signal. tri-state A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net. UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits. user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function. user space The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program. VDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V. VSS A name for a power net meaning "voltage source." The most negative power supply signal. watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time. Document Number: 001-48111 Rev. *K Page 76 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Document History Page Document Title: CY8C28243, CY8C28403, CY8C28413, CY8C28433, CY8C28445, CY8C28452, CY8C28513, CY8C28533, CY8C28545, CY8C28623, CY8C28643, CY8C28645 PSoC® Programmable System-on-Chip™ Document Number: 001-48111 Origin of Submission Revision ECN Description of Change Change Date ** 2593460 BTK/PYRS 10/20/08 New document (Revision **). *A 2652217 BTK/PYRS 02/02/09 Extensive updates to content. Added registers maps. Updated Getting Started section Updated Development Tools section Added some SAR10 ADC specifications. Added more analog system figures *B 2675937 BTK 03/18/09 Updated DC Analog Reference Specifications tables Minor content updates *C 2679015 HMI 03/26/2009 Post to external web. *D 2750217 TDU 08/10/09 Updates to Electrical Specifications section Minor content updates *E 2768143 TDU 09/23/09 Updated DC Operational Amplifier, DC Analog Reference, DC SAR10ADC, and DC POR specifications; Added Figure 15 and Figure 16; Updated AC TypeE-Operational and AC SAR10ADC specifications *F 2805324 ALH 11/11/09 Added Contents page. Updated Electrical Specifications. *G 2902396 NJF 03/30/2010 Updated Cypress website links. Added TBAKETEMP and TBAKETIME parameters in Absolute Maximum Ratings. Updated DC SAR10 ADC Specifications. Modified Note 23. Removed AC Analog Mux Bus Specifications, Third Party Tools and Build a PSoC Emulator into your Board. Updated Packaging Information and Ordering Code Definitions. Updated links in Sales, Solutions, and Legal Information. *H 3063584 NJF 10/20/10 Added PSoC Device Characteristics table . Added DC I2C Specifications table. Added F32K_U max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Analog reference tables. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I2C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update. *I 3148779 NJF 01/20/11 Added Footnote # 34 to Thermal Impedances section. Table 7. 56-Pin Part Pinout (SSOP) (page 15) - Pin#28 - Pin Name changed to"VSS". Table 5. 44-Pin Part Pinout (TQFP) (page 13) - Pin#17 - Pin Type changed to"Power”. Under DC SAR10 ADC Specifications table, for parameter VVREFSAR10, Max value changed from 4.95 V to VDD – 0.3 V. Updated Table 59, “Solder Reflow Specifications,” on page 66 as per spec 25-00090. *J 3598237 LURE/XZNG 04/24/2012 Changed the PWM description string from “8- to 32-bit” to “8- and 16-bit”. *K 3758002 GULA 10/01/2012 Updated Packaging Information (spec 001-45616 (Changed revision from *B to *D), spec 51-85062 (Changed revision from *D to *F)). Document Number: 001-48111 Rev. *K Page 77 of 78 CY8C28243, CY8C28403, CY8C28413 CY8C28433, CY8C28445, CY8C28452 CY8C28513, CY8C28533, CY8C28545 CY8C28623, CY8C28643, CY8C28645 Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. Products Automotive Clocks & Buffers Interface Lighting & Power Control PSoC Solutions cypress.com/go/automotive cypress.com/go/clocks psoc.cypress.com/solutions cypress.com/go/interface PSoC 1 | PSoC 3 | PSoC 5 cypress.com/go/powerpsoc cypress.com/go/plc Memory Optical & Image Sensing cypress.com/go/memory cypress.com/go/image PSoC Touch Sensing cypress.com/go/psoc cypress.com/go/touch USB Controllers Wireless/RF cypress.com/go/USB cypress.com/go/wireless © Cypress Semiconductor Corporation, 2008-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-48111 Rev. *K Revised October 1, 2012 Page 78 of 78 PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.