CYPRESS CY7C2670KV18

CY7C2670KV18
144-Mbit DDR II+ SRAM Two-Word Burst
Architecture (2.5 Cycle Read Latency) with ODT
144-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) with ODT
Features
Configurations
■
144-Mbit density (14 M × 36)
With Read Cycle Latency of 2.5 cycles:
■
550-MHz clock for high bandwidth
CY7C2670KV18 – 4 M × 36
■
Two-word burst for reducing address bus frequency
Functional Description
■
Double data rate (DDR) interfaces (data transferred at
1100 MHz) at 550 MHz
■
Available in 2.5 clock cycle latency
■
Two input clocks (K and K) for precise DDR timing
❐ SRAM uses rising edges only
■
Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
■
Data valid pin (QVLD) to indicate valid data on the output
■
On-die termination (ODT) feature
❐ Supported for D[x:0], BWS[x:0], and K/K inputs
■
Synchronous internally self-timed writes
■
DDR II+ operates with 2.5-cycle read latency when DOFF is
asserted high
■
Operates similar to DDR I device with 1 cycle read latency when
DOFF is asserted low
■
Core VDD = 1.8 V ± 0.1 V; I/O VDDQ = 1.4 V to VDD[1]
❐ Supports both 1.5 V and 1.8 V I/O supply
■
High-speed transceiver logic (HSTL) inputs and variable drive
HSTL output buffers
■
Available in 165-ball fine-pitch ball grid array (FBGA) package
(15 × 17 × 1.4 mm)
■
Offered in non Pb-free package.
■
JTAG 1149.1 compatible test access port
■
Phase locked loop (PLL) for accurate data placement
The CY7C2670KV18 is 1.8-V synchronous pipelined SRAM
equipped with DDR II+ architecture. The DDR II+ consists of an
SRAM core with advanced synchronous peripheral circuitry.
Addresses for read and write are latched on alternate rising
edges of the input (K) clock. Write data is registered on the rising
edges of both K and K. Read data is driven on the rising edges
of K and K. Each address location is associated with two 36-bit
words (CY7C2670KV18) that burst sequentially into or out of the
device.
These devices have an ODT feature supported for D[x:0],
BWS[x:0], and K/K inputs, which helps eliminate external
termination resistors, reduce cost, reduce board area, and
simplify board routing.
Asynchronous inputs include an output impedance matching
input (ZQ). Synchronous data outputs (Q, sharing the same
physical pins as the data inputs D) are tightly matched to the two
output echo clocks CQ/CQ, eliminating the need for separately
capturing data from each individual DDR SRAM in the system
design.
All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the K or K input clocks. Writes are
conducted with on-chip synchronous self-timed write circuitry.
Selection Guide
Description
Maximum operating frequency
Maximum operating current
× 36
550 MHz
450 MHz
Unit
550
450
MHz
1140
980
mA
Note
1. The Cypress QDR II+ devices surpass the QDR consortium specification and can support VDDQ = 1.4 V to VDD.
Cypress Semiconductor Corporation
Document Number: 001-44143 Rev. *H
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised November 1, 2012
CY7C2670KV18
Logic Block Diagram – CY7C2670KV18
Write
Reg
CLK
Gen.
DOFF
VREF
R/W
BWS[3:0]
Read Add. Decode
K
2M x 36 Array
K
Write
Reg
2M x 36 Array
LD
Address
Register
Write Add. Decode
21
A(20:0)
36
Output
Logic
Control
R/W
Read Data Reg.
72
Control
Logic
36
36
Reg.
Reg. 36
Reg.
36
CQ
CQ
36
DQ[35:0]
QVLD
Document Number: 001-44143 Rev. *H
Page 2 of 30
CY7C2670KV18
Contents
Pin Configurations ........................................................... 4
Pin Definitions .................................................................. 5
Functional Overview ........................................................ 6
Read Operations ......................................................... 6
Write Operations ......................................................... 6
Byte Write Operations ................................................. 6
DDR Operation ............................................................ 6
Depth Expansion ......................................................... 7
Programmable Impedance .......................................... 7
Echo Clocks ................................................................ 7
Valid Data Indicator (QVLD) ........................................ 7
On-Die Termination (ODT) .......................................... 7
PLL .............................................................................. 7
Application Example ........................................................ 8
Truth Table ........................................................................ 9
Write Cycle Descriptions ............................................... 10
IEEE 1149.1 Serial Boundary Scan (JTAG) .................. 11
Disabling the JTAG Feature ...................................... 11
Test Access Port ....................................................... 11
Performing a TAP Reset ........................................... 11
TAP Registers ........................................................... 11
TAP Instruction Set ................................................... 11
TAP Controller State Diagram ....................................... 13
TAP Controller Block Diagram ...................................... 14
TAP Electrical Characteristics ...................................... 14
TAP AC Switching Characteristics ............................... 15
TAP Timing and Test Conditions .................................. 16
Identification Register Definitions ................................ 17
Scan Register Sizes ....................................................... 17
Document Number: 001-44143 Rev. *H
Instruction Codes ........................................................... 17
Boundary Scan Order .................................................... 18
Power Up Sequence in DDR II+ SRAM ......................... 19
Power Up Sequence ................................................. 19
PLL Constraints ......................................................... 19
Maximum Ratings ........................................................... 20
Operating Range ............................................................. 20
Neutron Soft Error Immunity ......................................... 20
Electrical Characteristics ............................................... 20
DC Electrical Characteristics ..................................... 20
AC Electrical Characteristics ..................................... 22
Capacitance .................................................................... 22
Thermal Resistance ........................................................ 22
AC Test Loads and Waveforms ..................................... 22
Switching Characteristics .............................................. 23
Switching Waveforms .................................................... 24
Read/Write/Deselect Sequence ................................ 24
Ordering Information ...................................................... 25
Ordering Code Definitions ......................................... 25
Package Diagram ............................................................ 26
Acronyms ........................................................................ 27
Document Conventions ................................................. 27
Units of Measure ....................................................... 27
Document History Page ................................................. 28
Sales, Solutions, and Legal Information ...................... 30
Worldwide Sales and Design Support ....................... 30
Products .................................................................... 30
PSoC Solutions ......................................................... 30
Page 3 of 30
CY7C2670KV18
Pin Configurations
The pin configuration for CY7C2670KV18 follows. [2]
Figure 1. 165-ball FBGA (15 × 17 × 1.4 mm) pinout
CY7C2670KV18 (4 M × 36)
1
2
3
4
5
6
7
8
9
10
11
A
CQ
A
A
R/W
BWS2
K
BWS1
LD
A
A
CQ
B
NC
DQ27
DQ18
A
BWS3
K
BWS0
A
NC
NC
DQ8
C
NC
NC
DQ28
VSS
A
NC
A
VSS
NC
DQ17
DQ7
D
NC
DQ29
DQ19
VSS
VSS
VSS
VSS
VSS
NC
NC
DQ16
E
NC
NC
DQ20
VDDQ
VSS
VSS
VSS
VDDQ
NC
DQ15
DQ6
F
NC
DQ30
DQ21
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
DQ5
G
NC
DQ31
DQ22
VDDQ
VDD
VSS
VDD
VDDQ
NC
NC
DQ14
H
DOFF
VREF
VDDQ
VDDQ
VDD
VSS
VDD
VDDQ
VDDQ
VREF
ZQ
J
NC
NC
DQ32
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ13
DQ4
K
NC
NC
DQ23
VDDQ
VDD
VSS
VDD
VDDQ
NC
DQ12
DQ3
L
NC
DQ33
DQ24
VDDQ
VSS
VSS
VSS
VDDQ
NC
NC
DQ2
M
NC
NC
DQ34
VSS
VSS
VSS
VSS
VSS
NC
DQ11
DQ1
N
NC
DQ35
DQ25
VSS
A
A
A
VSS
NC
NC
DQ10
P
NC
NC
DQ26
A
A
QVLD
A
A
NC
DQ9
DQ0
R
TDO
TCK
A
A
A
ODT
A
A
A
TMS
TDI
Note
2. NC/288M is not connected to the die and can be tied to any voltage level.
Document Number: 001-44143 Rev. *H
Page 4 of 30
CY7C2670KV18
Pin Definitions
Pin Name
I/O
Pin Description
DQ[x:0]
Input Output- Data input output signals. Inputs are sampled on the rising edge of K and K clocks during valid write
Synchronous operations. These pins drive out the requested data when the read operation is active. Valid data is driven
out on the rising edge of both the K and K clocks during read operations. When read access is deselected,
Q[x:0] are automatically tristated.
CY7C2670KV18  DQ[35:0]
LD
InputSynchronous load. Sampled on the rising edge of the K clock. This input is brought low when a bus
Synchronous cycle sequence is defined. This definition includes address and read/write direction. All transactions
operate on a burst of 2 data. LD must meet the setup and hold times around edge of K.
BWS0,
BWS1,
BWS2,
BWS3
InputByte write select 0, 1, 2, and 3  Active Low. Sampled on the rising edge of the K and K clocks during
Synchronous write operations. Used to select which byte is written into the device during the current portion of the write
operations. Bytes not written remain unaltered.
CY7C2670KV18 BWS0 controls D[8:0], BWS1 controls D[17:9], BWS2 controls D[26:18] and BWS3 controls
D[35:27].
All the byte write selects are sampled on the same edge as the data. Deselecting a byte write select
ignores the corresponding byte of data and it is not written into the device.
A
InputAddress inputs. Sampled on the rising edge of the K clock during active read and write operations. These
Synchronous address inputs are multiplexed for both read and write operations. Internally, the device is organized as
4 M × 36 (2 arrays each of 2 M × 36) for CY7C2670KV18.
R/W
InputSynchronous read or write input. When LD is low, this input designates the access type (read when
Synchronous R/W is high, write when R/W is low) for loaded address. R/W must meet the setup and hold times around
edge of K.
QVLD
Valid output Valid output indicator. The Q Valid indicates valid output data. QVLD is edge aligned with CQ and CQ.
indicator
ODT [3]
On-die termination input. This pin is used for On-Die termination of the input signals. ODT range
On-Die
Termination selection is made during power up initialization. A low on this pin selects a low range that follows RQ/3.33
for 175  < RQ < 350 (where RQ is the resistor tied to ZQ pin)A high on this pin selects a high range
input pin
that follows RQ/1.66 for 175 < RQ < 250 (where RQ is the resistor tied to ZQ pin). When left floating,
a high range termination value is selected by default.
K
Input Clock
Positive input clock input. The rising edge of K is used to capture synchronous inputs to the device and
to drive out data through Q[x:0]. All accesses are initiated on the rising edge of K.
K
Input Clock
Negative input clock input. K is used to capture synchronous data being presented to the device and
to drive out data through Q[x:0].
CQ
Echo Clock
Synchronous echo clock outputs. This is a free running clock and is synchronized to the input clock
(K) of the DDR II+. The timing for the echo clocks is shown in the Switching Characteristics on page 23.
CQ
Echo Clock
Synchronous echo clock outputs. This is a free running clock and is synchronized to the input clock
(K) of the DDR II+. The timing for the echo clocks is shown in the Switching Characteristics on page 23.
ZQ
Input
Output impedance matching input. This input is used to tune the device outputs to the system data bus
impedance. CQ, CQ, and Q[x:0] output impedance are set to 0.2 × RQ, where RQ is a resistor connected
between ZQ and ground. Alternatively, this pin can be connected directly to VDDQ, which enables the
minimum impedance mode. This pin cannot be connected directly to GND or left unconnected.
DOFF
Input
PLL turn off  Active Low. Connecting this pin to ground turns off the PLL inside the device. The timing
in the PLL turned off operation differs from those listed in this data sheet. For normal operation, this pin
can be connected to a pull up through a 10 k or less pull up resistor. The device behaves in DDR I mode
when the PLL is turned off. In this mode, the device can be operated at a frequency of up to 167 MHz
with DDR I timing.
Note
3. On-Die Termination (ODT) feature is supported for D[x:0], BWS[x:0], and K/K inputs.
Document Number: 001-44143 Rev. *H
Page 5 of 30
CY7C2670KV18
Pin Definitions (continued)
Pin Name
I/O
Pin Description
TDO
Output
TCK
Input
Test clock (TCK) pin for JTAG.
TDI
Input
Test data in (TDI) pin for JTAG.
TMS
Input
Test mode select (TMS) pin for JTAG.
NC
N/A
Not connected to the die. Can be tied to any voltage level.
NC/288M
Input
Not connected to the die. Can be tied to any voltage level.
VREF
VDD
VSS
VDDQ
InputReference
Test data out (TDO) pin for JTAG.
Reference voltage input. Static input used to set the reference level for HSTL inputs, outputs, and AC
measurement points.
Power Supply Power supply inputs to the core of the device.
Ground
Ground for the device.
Power Supply Power supply inputs for the outputs of the device.
Functional Overview
The CY7C2670KV18 is synchronous pipelined Burst SRAM
equipped with a DDR interface, which operates with a read
latency of two and half cycles when DOFF pin is tied high. When
DOFF pin is set low or connected to VSS the device behaves in
DDR I mode with a read latency of one clock cycle.
Accesses are initiated on the rising edge of the positive input
clock (K). All synchronous input and output timing is referenced
from the rising edge of the input clocks (K and K).
All synchronous data inputs (D[x:0]) pass through input registers
controlled by the rising edge of the input clocks (K and K). All
synchronous data outputs (Q[x:0]) pass through output registers
controlled by the rising edge of the input clocks (K and K).
All synchronous control (R/W, LD, BWS[X:0]) inputs pass through
input registers controlled by the rising edge of the input clock (K).
Read Operations
The CY7C2670KV18 is organized internally as two arrays of
2 M × 36. Accesses are completed in a burst of 2 sequential
36-bit data words. Read operations are initiated by asserting
R/W high and LD low at the rising edge of the positive input clock
(K). The address presented to the address inputs is stored in the
read address register. Following the next two K clock rise, the
corresponding 36-bit word of data from this address location is
driven onto the Q[35:0] using K as the output timing reference. On
the subsequent rising edge of K, the next 36-bit data word is
driven onto the Q[35:0]. The requested data is valid 0.45 ns from
the rising edge of the input clock (K and K). To maintain the
internal logic, complete each read access. Read accesses are
initiated on every rising edge of the positive input clock (K).
When read access is deselected, the CY7C2670KV18 first
completes the pending read transactions. Synchronous internal
circuitry automatically tristates the output following the next rising
edge of the negative input clock (K). This enables a transition
between devices without the insertion of wait states in a depth
expanded memory.
Write Operations
Write operations are initiated by asserting R/W low and LD low
at the rising edge of the positive input clock (K). The address
presented to address inputs is stored in the write address
register. On the following K clock rise, the data presented to
D[35:0] is latched and stored into the 36-bit write data register,
provided BWS[3:0] are all asserted active. On the subsequent
rising edge of the negative input clock (K) the information
presented to D[35:0] is also stored into the write data register,
provided BWS[3:0] are all asserted active. The 72 bits of data are
then written into the memory array at the specified location. Write
accesses are initiated on every rising edge of the positive input
clock (K). The data flow is pipelined such that 36 bits of data can
be transferred into the device on every rising edge of the input
clocks (K and K).
When the write access is deselected, the device ignores all
inputs after the pending write operations have been completed.
Byte Write Operations
Byte write operations are supported by the CY7C2670KV18. A
write operation is initiated as described in the Write Operations
section. The bytes that are written are determined by BWS0,
BWS1, BWS2, BWS3, which are sampled with each set of 36-bit
data words. Asserting the appropriate Byte Write Select input
during the data portion of a write latches the data being
presented and writes it into the device. Deasserting the Byte
Write Select input during the data portion of a write enables the
data stored in the device for that byte to remain unaltered. This
feature is used to simplify read, modify, or write operations to a
byte write operation.
DDR Operation
The CY7C2670KV18 enables high performance operation
through high clock frequencies (achieved through pipelining) and
DDR mode of operation. The CY7C2670KV18 requires two No
Operation (NOP) cycle during transition from a read to a write
cycle. At higher frequencies, some applications require third
NOP cycle to avoid contention.
If a read occurs after a write cycle, address and data for the write
are stored in registers. The write information is stored because
Document Number: 001-44143 Rev. *H
Page 6 of 30
CY7C2670KV18
the SRAM cannot perform the last word write to the array without
conflicting with the read. The data stays in this register until the
next write cycle occurs. On the first write cycle after the read(s),
the stored data from the earlier write is written into the SRAM
array. This is called a Posted write.
If a read is performed on the same address on which a write is
performed in the previous cycle, the SRAM reads out the most
current data. The SRAM does this by bypassing the memory
array and reading the data from the registers.
Depth Expansion
Depth expansion requires replicating the LD control signal for
each bank. All other control signals can be common between
banks as appropriate.
Programmable Impedance
Connect an external resistor, RQ, between the ZQ pin on the
SRAM and VSS to enable the SRAM to adjust its output driver
impedance. The value of RQ is five times the value of the
intended line impedance driven by the SRAM. The allowable
range of RQ to guarantee impedance matching with a tolerance
of ±15 percent is between 175  and 350 , with VDDQ = 1.5 V.
The output impedance is adjusted every 1024 cycles upon power
up to account for drifts in supply voltage and temperature.
Echo Clocks
Echo clocks are provided on the DDR II+ to simplify data capture
on high-speed systems. Two echo clocks are generated by the
DDR II+. CQ is referenced with respect to K and CQ is
referenced with respect to K. These are free running clocks and
are synchronized to the input clock of the DDR II+. The timing for
the echo clocks is shown in the Switching Characteristics on
page 23.
Document Number: 001-44143 Rev. *H
Valid Data Indicator (QVLD)
QVLD is provided on the DDR II+ to simplify data capture on
high-speed systems. The QVLD is generated by the DDR II+
device along with data output. This signal is also edge aligned
with the echo clock and follows the timing of any data pin. This
signal is asserted half a cycle before valid data arrives.
On-Die Termination (ODT)
These devices have an On-Die Termination feature for Data
inputs (D[x:0]), Byte Write Selects (BWS[x:0]), and Input Clocks (K
and K). The termination resistors are integrated within the chip.
The ODT range selection is enabled through ball R6 (ODT pin).
The ODT termination tracks value of RQ where RQ is the resistor
tied to the ZQ pin. ODT range selection is made during power up
initialization. A low on this pin selects a low range that follows
RQ/3.33 for 175 < RQ < 350 (where RQ is the resistor tied
to ZQ pin)A high on this pin selects a high range that follows
RQ/1.66 for 175 < RQ < 250 (where RQ is the resistor tied
to ZQ pin). When left floating, a high range termination value is
selected by default. For a detailed description of ODT
implementation, refer to the application note, AN42468, On-Die
Termination for QDRII+/DDRII+ SRAMs.
PLL
These chips use a PLL that is designed to function between
120 MHz and the specified maximum clock frequency. During
power up, when the DOFF is tied high, the PLL is locked after
20 s of stable clock. The PLL can also be reset by slowing or
stopping the input clock K and K for a minimum of 30 ns.
However, it is not necessary to reset the PLL to lock to the
desired frequency. The PLL automatically locks 20 s after a
stable clock is presented. Disable the PLL by applying ground to
the DOFF pin. When the PLL is turned off, the device behaves
in DDR I mode (with one cycle latency and a longer access time).
Page 7 of 30
CY7C2670KV18
Application Example
Figure 2 shows two DDR II+ used in an application.
Figure 2. Application Example
DQ
A
SRAM#1
LD R/W BWS
ZQ
ODT
CQ/CQ
K K
R = 250ohms
DQ
A
SRAM#2
LD R/W BWS
ZQ
ODT
R = 250ohms
CQ/CQ
K K
DQ
Addresses
BUS
LD
MASTER
R/W
(CPU or ASIC)
BWS
Source CLK
Source CLK
Echo Clock1/Echo Clock1
Echo Clock2/Echo Clock2
ODT
Document Number: 001-44143 Rev. *H
Page 8 of 30
CY7C2670KV18
Truth Table
The truth table for CY7C2670KV18 follows. [4, 5, 6, 7, 8, 9]
Operation
K
LD
R/W
Write cycle:
Load address; wait one cycle;
input write data on consecutive K and K rising edges.
L–H
L
L
D(A) at K(t + 1) 
D(A+1) at K(t + 1) 
Read cycle: (2.5-cycle Latency)
Load address; wait two and half cycles;
read data on consecutive K and K rising edges.
L–H
L
H
Q(A) at K(t + 2)
Q(A+1) at K(t + 3) 
NOP: No Operation
L–H
H
X
High Z
High Z
Stopped
X
X
Previous State
Previous State
Standby: Clock Stopped
DQ
DQ
Notes
4. X = “Don’t Care,” H = Logic HIGH, L = Logic LOW, represents rising edge.
5. Device powers up deselected with the outputs in a tristate condition.
6. “A” represents address location latched by the devices when transaction was initiated. A + 1 represents the address sequence in the burst.
7. “t” represents the cycle at which a read/write operation is started. t + 1 and t + 2 are the first and second clock cycles succeeding the “t” clock cycle.
8. Data inputs are registered at K and K rising edges. Data outputs are delivered on K and K rising edges as well.
9. It is recommended that K = K = HIGH when clock is stopped. This is not essential, but permits most rapid restart by overcoming transmission line charging symmetrically.
Document Number: 001-44143 Rev. *H
Page 9 of 30
CY7C2670KV18
Write Cycle Descriptions
The write cycle description table for CY7C2670KV18 follows. [10, 11]
BWS0
BWS1
BWS2
BWS3
K
K
Comments
L
L
L
L
L–H
–
During the data portion of a write sequence, all four bytes (D[35:0]) are written into
the device.
L
L
L
L
–
L
H
H
H
L–H
L
H
H
H
–
H
L
H
H
L–H
H
L
H
H
–
H
H
L
H
L–H
H
H
L
H
–
H
H
H
L
L–H
H
H
H
L
–
H
H
H
H
L–H
H
H
H
H
–
L–H During the data portion of a write sequence, all four bytes (D[35:0]) are written into
the device.
–
During the data portion of a write sequence, only the lower byte (D[8:0]) is written
into the device. D[35:9] remains unaltered.
L–H During the data portion of a write sequence, only the lower byte (D[8:0]) is written
into the device. D[35:9] remains unaltered.
–
During the data portion of a write sequence, only the byte (D[17:9]) is written into the
device. D[8:0] and D[35:18] remains unaltered.
L–H During the data portion of a write sequence, only the byte (D[17:9]) is written into the
device. D[8:0] and D[35:18] remains unaltered.
–
During the data portion of a write sequence, only the byte (D[26:18]) is written into
the device. D[17:0] and D[35:27] remains unaltered.
L–H During the data portion of a write sequence, only the byte (D[26:18]) is written into
the device. D[17:0] and D[35:27] remains unaltered.
–
During the data portion of a write sequence, only the byte (D[35:27]) is written into
the device. D[26:0] remains unaltered.
L–H During the data portion of a write sequence, only the byte (D[35:27]) is written into
the device. D[26:0] remains unaltered.
–
No data is written into the device during this portion of a write operation.
L–H No data is written into the device during this portion of a write operation.
Notes
10. X = “Don’t Care,” H = Logic HIGH, L = Logic LOW, represents rising edge.
11. Is based on a write cycle that was initiated in accordance with the Write Cycle Descriptions table. BWS0, BWS1, WS2, and BWS3 can be altered on different portions
of a write cycle, as long as the setup and hold requirements are achieved.
Document Number: 001-44143 Rev. *H
Page 10 of 30
CY7C2670KV18
IEEE 1149.1 Serial Boundary Scan (JTAG)
These SRAMs incorporate a serial boundary scan Test Access
Port (TAP) in the FBGA package. This part is fully compliant with
IEEE Standard 1149.1-2001. The TAP operates using JEDEC
standard 1.8 V I/O logic levels.
Disabling the JTAG Feature
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied low
(VSS) to prevent clocking of the device. TDI and TMS are
internally pulled up and may be unconnected. They may
alternatively be connected to VDD through a pull up resistor. TDO
is left unconnected. Upon power up, the device comes up in a
reset state, which does not interfere with the operation of the
device.
Test Access Port
Test Clock
The test clock is used only with the TAP controller. All inputs are
captured on the rising edge of TCK. All outputs are driven from
the falling edge of TCK.
Test Mode Select (TMS)
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. Unconnect this pin if
the TAP is not used. The pin is pulled up internally, resulting in a
logic HIGH level.
Test Data-In (TDI)
The TDI pin is used to serially input information into the registers
and is connected to the input of any of the registers. The register
between TDI and TDO is chosen by the instruction that is loaded
into the TAP instruction register. For information on loading the
instruction register, see the TAP Controller State Diagram on
page 13. TDI is internally pulled up and can be unconnected if
the TAP is unused in an application. TDI is connected to the most
significant bit (MSB) on any register.
Test Data-Out (TDO)
The TDO output pin is used to serially clock data out from the
registers. The output is active, depending upon the current state
of the TAP state machine (see Instruction Codes on page 17).
The output changes on the falling edge of TCK. TDO is
connected to the least significant bit (LSB) of any register.
Performing a TAP Reset
A Reset is performed by forcing TMS high (VDD) for five rising
edges of TCK. This Reset does not affect the operation of the
SRAM and is performed while the SRAM is operating. At power
up, the TAP is reset internally to ensure that TDO comes up in a
High Z state.
TAP Registers
Registers are connected between the TDI and TDO pins to scan
the data in and out of the SRAM test circuitry. Only one register
is selected at a time through the instruction registers. Data is
serially loaded into the TDI pin on the rising edge of TCK. Data
is output on the TDO pin on the falling edge of TCK.
Document Number: 001-44143 Rev. *H
Instruction Register
Three-bit instructions are serially loaded into the instruction
register. This register is loaded when it is placed between the TDI
and TDO pins, as shown in TAP Controller Block Diagram on
page 14. Upon power up, the instruction register is loaded with
the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state, as described
in the previous section.
When the TAP controller is in the Capture-IR state, the two least
significant bits are loaded with a binary ‘01’ pattern to enable fault
isolation of the board level serial test path.
Bypass Register
Skip certain chips to save time when serially shifting data through
registers. The bypass register is a single-bit register that is
placed between TDI and TDO pins. This enables shifting of data
through the SRAM with minimal delay. The bypass register is set
low (VSS) when the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all of the input and
output pins on the SRAM. Several No Connect (NC) pins are also
included in the scan register to reserve pins for higher density
devices.
The boundary scan register is loaded with the contents of the
RAM input and output ring when the TAP controller is in the
Capture-DR state and is then placed between the TDI and TDO
pins when the controller is moved to the Shift-DR state. The
EXTEST, SAMPLE/PRELOAD, and SAMPLE Z instructions are
used to capture the contents of the input and output ring.
The Boundary Scan Order on page 18 shows the order in which
the bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected to
TDI, and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired into
the SRAM and can be shifted out when the TAP controller is in
the Shift-DR state. The ID register has a vendor code and other
information described in Identification Register Definitions on
page 17.
TAP Instruction Set
Eight different instructions are possible with the three-bit
instruction register. All combinations are listed in Instruction
Codes on page 17. Do not use three of these instructions that
are listed as RESERVED. The other five instructions are
described in this section in detail.
Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI and
TDO. During this state, instructions are shifted through the
instruction register through the TDI and TDO pins. To execute
the instruction after it is shifted in, move the TAP controller into
the Update-IR state.
Page 11 of 30
CY7C2670KV18
IDCODE
The IDCODE instruction loads a vendor-specific, 32-bit code into
the instruction register. It also places the instruction register
between the TDI and TDO pins and shifts the IDCODE out of the
device when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register at
power up or whenever the TAP controller is supplied a
Test-Logic-Reset state.
SAMPLE Z
The SAMPLE Z instruction connects the boundary scan register
between the TDI and TDO pins when the TAP controller is in a
Shift-DR state. The SAMPLE Z command puts the output bus
into a High Z state until the next command is supplied during the
Update IR state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the input and output pins is captured
in the boundary scan register.
The TAP controller clock only operates at a frequency up to
20 MHz, while the SRAM clock operates more than an order of
magnitude faster. Because there is a large difference in the clock
frequencies, it is possible that during the Capture-DR state, an
input or output undergoes a transition. The TAP tries to capture
a signal while in transition (metastable state). This does not harm
the device, but there is no guarantee as to the value that is
captured. Repeatable results may not be possible.
To guarantee that the boundary scan register captures the
correct value of a signal, stabilize the SRAM signal long enough
to meet the TAP controller’s capture setup plus hold times (tCS
and tCH). The SRAM clock input might not be captured correctly
if there is no way in a design to stop (or slow) the clock during a
SAMPLE/PRELOAD instruction. If this is an issue, it is still
possible to capture all other signals and simply ignore the value
of the CK and CK captured in the boundary scan register.
After the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the boundary
scan register between the TDI and TDO pins.
Document Number: 001-44143 Rev. *H
PRELOAD places an initial data pattern at the latched parallel
outputs of the boundary scan register cells before the selection
of another boundary scan test operation.
The shifting of data for the SAMPLE and PRELOAD phases
occurs concurrently when required, that is, while the data
captured is shifted out, the preloaded data is shifted in.
BYPASS
When the BYPASS instruction is loaded in the instruction register
and the TAP is placed in a Shift-DR state, the bypass register is
placed between the TDI and TDO pins. The advantage of the
BYPASS instruction is that it shortens the boundary scan path
when multiple devices are connected together on a board.
EXTEST
The EXTEST instruction drives the preloaded data out through
the system output pins. This instruction also connects the
boundary scan register for serial access between the TDI and
TDO in the Shift-DR controller state.
EXTEST OUTPUT BUS TRISTATE
IEEE Standard 1149.1 mandates that the TAP controller be able
to put the output bus into a tristate mode.
The boundary scan register has a special bit located at bit 108.
When this scan cell, called the ‘extest output bus tristate’, is
latched into the preload register during the Update-DR state in
the TAP controller, it directly controls the state of the output
(Q-bus) pins, when the EXTEST is entered as the current
instruction. When high, it enables the output buffers to drive the
output bus. When low, this bit places the output bus into a High Z
condition.
This bit is set by entering the SAMPLE/PRELOAD or EXTEST
command, and then shifting the desired bit into that cell, during
the Shift-DR state. During Update-DR, the value loaded into that
shift-register cell latches into the preload register. When the
EXTEST instruction is entered, this bit directly controls the output
Q-bus pins. Note that this bit is preset high to enable the output
when the device is powered up, and also when the TAP controller
is in the Test-Logic-Reset state.
Reserved
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
Page 12 of 30
CY7C2670KV18
TAP Controller State Diagram
The state diagram for the TAP controller follows. [12]
1
TEST-LOGIC
RESET
0
0
TEST-LOGIC/
IDLE
1
SELECT
DR-SCAN
1
1
SELECT
IR-SCAN
0
0
1
1
CAPTURE-DR
CAPTURE-IR
0
0
SHIFT-DR
0
SHIFT-IR
1
1
EXIT1-DR
1
EXIT1-IR
0
0
PAUSE-IR
1
0
1
EXIT2-DR
0
EXIT2-IR
1
1
UPDATE-IR
UPDATE-DR
1
1
0
PAUSE-DR
0
0
0
1
0
Note
12. The 0/1 next to each state represents the value at TMS at the rising edge of TCK.
Document Number: 001-44143 Rev. *H
Page 13 of 30
CY7C2670KV18
TAP Controller Block Diagram
0
Bypass Register
2
Selection
Circuitry
TDI
1
0
Selection
Circuitry
Instruction Register
31
30
29
.
.
2
1
0
1
0
TDO
Identification Register
108
.
.
.
.
2
Boundary Scan Register
TCK
TAP Controller
TMS
TAP Electrical Characteristics
Over the Operating Range
Parameter [13, 14, 15]
Description
Test Conditions
Min
Max
Unit
VOH1
Output high voltage
IOH =2.0 mA
1.4
–
V
VOH2
Output high voltage
IOH =100 A
1.6
–
V
VOL1
Output low voltage
IOL = 2.0 mA
–
0.4
V
VOL2
Output low voltage
IOL = 100 A
–
0.2
V
VIH
Input high voltage
–
VIL
Input low voltage
–
IX
Input and output load current
GND  VI  VDD
0.65 × VDD VDD + 0.3
V
–0.3
0.35 × VDD
V
–5
5
A
Notes
13. These characteristics pertain to the TAP inputs (TMS, TCK, TDI and TDO). Parallel load levels are specified in the Electrical Characteristics on page 20.
14. Overshoot: VIH(AC) < VDDQ + 0.3 V (Pulse width less than tCYC/2), Undershoot: VIL(AC) > 0.3 V (Pulse width less than tCYC/2).
15. All voltage referenced to ground.
Document Number: 001-44143 Rev. *H
Page 14 of 30
CY7C2670KV18
TAP AC Switching Characteristics
Over the Operating Range
Parameter [16, 17]
Description
Min
Max
Unit
50
–
ns
TCK clock frequency
–
20
MHz
TCK clock high
20
–
ns
TCK clock low
20
–
ns
tTCYC
TCK clock cycle time
tTF
tTH
tTL
Setup Times
tTMSS
TMS setup to TCK clock rise
5
–
ns
tTDIS
TDI setup to TCK clock rise
5
–
ns
tCS
Capture setup to TCK rise
5
–
ns
Hold Times
tTMSH
TMS hold after TCK clock rise
5
–
ns
tTDIH
TDI hold after clock rise
5
–
ns
tCH
Capture hold after clock rise
5
–
ns
tTDOV
TCK clock low to TDO valid
–
10
ns
tTDOX
TCK clock low to TDO invalid
0
–
ns
Output Times
Notes
16. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register.
17. Test conditions are specified using the load in TAP AC Test Conditions. tR/tF = 1 ns.
Document Number: 001-44143 Rev. *H
Page 15 of 30
CY7C2670KV18
TAP Timing and Test Conditions
Figure 3 shows the TAP timing and test conditions. [18]
Figure 3. TAP Timing and Test Conditions
0.9 V
ALL INPUT PULSES
1.8 V
0.9 V
50 
TDO
0V
Z0 = 50 
(a)
CL = 20 pF
tTH
GND
tTL
Test Clock
TCK
tTMSH
tTMSS
tTCYC
Test Mode Select
TMS
tTDIS
tTDIH
Test Data In
TDI
Test Data Out
TDO
tTDOV
tTDOX
Note
18. Test conditions are specified using the load in TAP AC Test Conditions. tR/tF = 1 ns.
Document Number: 001-44143 Rev. *H
Page 16 of 30
CY7C2670KV18
Identification Register Definitions
Value
Instruction Field
Description
CY7C2670KV18
Revision number (31:29)
000
Cypress device ID (28:12)
11010111000100011
Cypress JEDEC ID (11:1)
00000110100
ID register presence (0)
1
Version number.
Defines the type of SRAM.
Allows unique identification of SRAM vendor.
Indicates the presence of an ID register.
Scan Register Sizes
Register Name
Bit Size
Instruction
3
Bypass
1
ID
32
Boundary scan
109
Instruction Codes
Instruction
Code
Description
EXTEST
000
Captures the input and output ring contents.
IDCODE
001
Loads the ID register with the vendor ID code and places the register between TDI and TDO.
This operation does not affect SRAM operation.
SAMPLE Z
010
Captures the input and output contents. Places the boundary scan register between TDI and
TDO. Forces all SRAM output drivers to a High Z state.
RESERVED
011
Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD
100
Captures the input and output ring contents. Places the boundary scan register between TDI
and TDO. Does not affect the SRAM operation.
RESERVED
101
Do Not Use: This instruction is reserved for future use.
RESERVED
110
Do Not Use: This instruction is reserved for future use.
BYPASS
111
Places the bypass register between TDI and TDO. This operation does not affect SRAM
operation.
Document Number: 001-44143 Rev. *H
Page 17 of 30
CY7C2670KV18
Boundary Scan Order
Bit #
Bump ID
Bit #
Bump ID
Bit #
Bump ID
Bit #
Bump ID
0
6R
28
10G
56
6A
84
1J
1
6P
29
9G
57
5B
85
2J
2
6N
30
11F
58
5A
86
3K
3
7P
31
11G
59
4A
87
3J
4
7N
32
9F
60
5C
88
2K
5
7R
33
10F
61
4B
89
1K
6
8R
34
11E
62
3A
90
2L
7
8P
35
10E
63
2A
91
3L
8
9R
36
10D
64
1A
92
1M
9
11P
37
9E
65
2B
93
1L
10
10P
38
10C
66
3B
94
3N
11
10N
39
11D
67
1C
95
3M
12
9P
40
9C
68
1B
96
1N
13
10M
41
9D
69
3D
97
2M
14
11N
42
11B
70
3C
98
3P
15
9M
43
11C
71
1D
99
2N
16
9N
44
9B
72
2C
100
2P
17
11L
45
10B
73
3E
101
1P
18
11M
46
11A
74
2D
102
3R
19
9L
47
10A
75
2E
103
4R
20
10L
48
9A
76
1E
104
4P
21
11K
49
8B
77
2F
105
5P
22
10K
50
7C
78
3F
106
5N
23
9J
51
6C
79
1G
107
5R
24
9K
52
8A
80
1F
108
Internal
25
10J
53
7A
81
3G
26
11J
54
7B
82
2G
27
11H
55
6B
83
1H
Document Number: 001-44143 Rev. *H
Page 18 of 30
CY7C2670KV18
Power Up Sequence in DDR II+ SRAM
PLL Constraints
DDR II+ SRAMs must be powered up and initialized in a
predefined manner to prevent undefined operations.
■
PLL uses K clock as its synchronizing input. The input must
have low phase jitter, which is specified as tKC Var.
■
The PLL functions at frequencies down to 120 MHz.
■
If the input clock is unstable and the PLL is enabled, then the
PLL may lock onto an incorrect frequency, causing unstable
SRAM behavior. To avoid this, provide 20 s of stable clock to
relock to the desired clock frequency.
Power Up Sequence
■
Apply power and drive DOFF either high or low (all other inputs
can be high or low).
❐ Apply VDD before VDDQ.
❐ Apply VDDQ before VREF or at the same time as VREF.
❐ Drive DOFF high.
■
Provide stable DOFF (high), power and clock (K, K) for 20 s
to lock the PLL.
~
~
Figure 4. Power Up Waveforms
K
K
~
~
Unstable Clock
> 20μs Stable clock
Start Normal
Operation
Clock Start (Clock Starts after V DD / V DDQ Stable)
VDD / VDDQ
DOFF
Document Number: 001-44143 Rev. *H
V DD / V DDQ Stable (< +/- 0.1V DC per 50ns )
Fix HIGH (or tie to VDDQ)
Page 19 of 30
CY7C2670KV18
Maximum Ratings
Operating Range
Exceeding maximum ratings impair the useful life of the device.
These user guidelines are not tested.
Range
Industrial
Storage temperature ................................ –65 °C to +150 °C
Ambient
Temperature (TA)
VDD [20]
VDDQ [20]
–40 °C to +85 °C
1.8 ± 0.1 V
1.4 V to
VDD
Ambient temperature
with power applied ................................... –55 °C to +125 °C
Supply voltage on VDD relative to GND .......–0.5 V to +2.9 V
Neutron Soft Error Immunity
Supply voltage on VDDQ relative to GND ...... –0.5 V to +VDD
DC applied to outputs in High Z ........–0.5 V to VDDQ + 0.3 V
DC input voltage [19] ........................... –0.5 V to VDD + 0.3 V
Parameter
Description
Test
Conditions
Typ
Max*
Unit
LSBU
Logical
single-bit
upsets
25 °C
197
216
FIT/
Mb
LMBU
Logical
multi-bit
upsets
25 °C
0
0.01
FIT/
Mb
SEL
Single event
latch up
85 °C
0
0.1
FIT/
Dev
Current into outputs (Low) .......................................... 20 mA
Static discharge voltage
(MIL-STD-883, M 3015) .......................................... > 2001 V
Latch up current ..................................................... > 200 mA
* No LMBU or SEL events occurred during testing; this column represents a
statistical 2, 95% confidence limit calculation. For more details refer to the
Application Note AN54908 “Accelerated Neutron SER Testing and Calculation
of Terrestrial Failure Rates”.
Electrical Characteristics
Over the Operating Range
DC Electrical Characteristics
Over the Operating Range
Parameter [21]
Min
Typ
Max
Unit
VDD
Power supply voltage
1.7
1.8
1.9
V
VDDQ
I/O supply voltage
1.4
1.5
VDD
V
VOH
Output high voltage
Note 22
VDDQ/2 – 0.12
–
VDDQ/2 + 0.12
V
VOL
Output low voltage
Note 23
VDDQ/2 – 0.12
–
VDDQ/2 + 0.12
V
VOH(LOW)
Output high voltage
IOH =0.1 mA, Nominal impedance
VDDQ – 0.2
–
VDDQ
V
VOL(LOW)
Output low voltage
IOL = 0.1 mA, Nominal impedance
VSS
–
0.2
V
VIH
Input high voltage
VREF + 0.1
–
VDDQ + 0.15
V
VIL
Input low voltage
IX
Input leakage current
IOZ
Output leakage current
VREF
Description
Input reference voltage
Test Conditions
[24]
–0.15
–
VREF – 0.1
V
GND  VI  VDDQ
2
–
2
A
GND  VI  VDDQ, Output disabled
2
–
2
A
0.68
0.75
0.95
V
Typical Value = 0.75 V
Notes
19. Overshoot: VIH(AC) < VDDQ + 0.3 V (Pulse width less than tCYC/2), Undershoot: VIL(AC) > 0.3 V (Pulse width less than tCYC/2).
20. Power up: assumes a linear ramp from 0 V to VDD(min) within 200 ms. During this time VIH < VDD and VDDQ < VDD.
21. All voltage referenced to ground.
22. Outputs are impedance controlled. IOH = –(VDDQ/2)/(RQ/5) for values of 175  < RQ < 350 .
23. Outputs are impedance controlled. IOL = (VDDQ/2)/(RQ/5) for values of 175  < RQ < 350 .
24. VREF(min) = 0.68 V or 0.46 VDDQ, whichever is larger, VREF(max) = 0.95 V or 0.54 VDDQ, whichever is smaller.
Document Number: 001-44143 Rev. *H
Page 20 of 30
CY7C2670KV18
Electrical Characteristics (continued)
Over the Operating Range
DC Electrical Characteristics (continued)
Over the Operating Range
Parameter [21]
IDD
[25]
ISB1
Description
Test Conditions
Min
Typ
Max
Unit
VDD operating supply
VDD = Max, IOUT = 0 mA, 550 MHz (× 36)
f = fMAX = 1/tCYC
450 MHz (× 36)
–
–
1140
mA
–
–
980
mA
Automatic power down
current
Max VDD,
550 MHz (× 36)
Both Ports Deselected,
450 MHz (× 36)
VIN  VIH or VIN  VIL,
f = fMAX = 1/tCYC,
Inputs Static
–
–
500
mA
–
–
460
mA
Note
25. The operation current is calculated with 50% read cycle and 50% write cycle.
Document Number: 001-44143 Rev. *H
Page 21 of 30
CY7C2670KV18
AC Electrical Characteristics
Over the Operating Range
Parameter [26]
Description
Test Conditions
Min
Typ
Max
Unit
VIH
Input high voltage
VREF + 0.2
–
VDDQ + 0.24
V
VIL
Input low voltage
–0.24
–
VREF – 0.2
V
Max
Unit
4
pF
4
pF
Capacitance
Parameter [27]
Description
CIN
Input capacitance
CO
Output capacitance
Test Conditions
TA = 25 C, f = 1 MHz, VDD = 1.8 V, VDDQ = 1.5 V
Thermal Resistance
Parameter [27]
Description
JA
Thermal resistance
(junction to ambient)
JC
Thermal resistance
(junction to case)
165-ball FBGA Unit
Package
Test Conditions
Test conditions follow standard test With Still Air (0 m/s)
methods and procedures for With Air flow (1 m/s)
measuring thermal impedance, in
accordance with EIA/JESD51.
12.55
°C/W
10.90
2.49
°C/W
AC Test Loads and Waveforms
Figure 5. AC Test Loads and Waveforms
VREF = 0.75 V
VREF
0.75 V
VREF
OUTPUT
Z0 = 50 
Device
Under
Test
ZQ
RL = 50 
R = 50 
ALL INPUT PULSES
1.25 V
0.75 V
OUTPUT
Device
Under
VREF = 0.75 V Test ZQ
RQ =
250 
(a)
0.75 V
INCLUDING
JIG AND
SCOPE
5 pF
[28]
0.25 V
Slew Rate = 2 V/ns
RQ =
250 
(b)
Notes
26. Overshoot: VIH(AC) < VDDQ + 0.3 V (Pulse width less than tCYC/2), Undershoot: VIL(AC) > 0.3 V (Pulse width less than tCYC/2).
27. Tested initially and after any design or process change that may affect these parameters.
28. Unless otherwise noted, test conditions assume signal transition time of 2 V/ns, timing reference levels of 0.75 V, VREF = 0.75 V, RQ = 250 , VDDQ = 1.5 V, input pulse
levels of 0.25 V to 1.25 V, and output loading of the specified IOL/IOH and load capacitance shown in (a) of Figure 5.
Document Number: 001-44143 Rev. *H
Page 22 of 30
CY7C2670KV18
Switching Characteristics
Over the Operating Range
Parameters [29, 30]
Cypress Consortium
Parameter Parameter
tPOWER
tCYC
tKHKH
tKH
tKHKL
tKL
tKLKH
tKHKH
tKHKH
Setup Times
tSA
tAVKH
tSC
tIVKH
tSCDDR
tIVKH
550 MHz
Description
VDD(typical) to the first access [31]
K clock cycle time
Input clock (K/K) high
Input clock (K/K) low
K clock rise to K clock rise (rising edge to rising edge)
Address setup to K clock rise
Control setup to K clock rise (RPS, WPS)
DDR control setup to clock (K/K) Rise (BWS0, BWS1,
BWS2, BWS3)
450 MHz
Unit
Min
Max
Min
Max
1
1.81
0.4
0.4
0.77
–
8.4
–
–
–
1
2.2
0.4
0.4
0.94
–
8.4
–
–
–
tCYC
tCYC
ns
0.23
0.23
0.18
–
–
–
0.275
0.275
0.22
–
–
–
ns
ns
ns
ms
ns
tDVKH
tSD
Hold Times
tHA
tKHAX
tHC
tKHIX
tHCDDR
tKHIX
D[X:0] setup to clock (K/K) rise
0.18
–
0.22
–
ns
Address hold after K clock rise
Control hold after K clock rise (RPS, WPS)
DDR control hold after clock (K/K) rise (BWS0, BWS1,
BWS2, BWS3)
0.23
0.23
0.18
–
–
–
0.275
0.275
0.22
–
–
–
ns
ns
ns
tKHDX
tHD
Output Times
tCO
tCHQV
tDOH
tCHQX
D[X:0] hold after clock (K/K) rise
0.18
–
0.22
–
ns
K/K clock rise to data valid
Data output hold after output K/K clock rise (active to
active)
K/K clock rise to echo clock valid
Echo clock hold after K/K clock rise
Echo clock high to data valid
Echo clock high to data invalid
Output clock (CQ/CQ) high [32]
CQ clock rise to CQ clock rise (rising edge to rising
edge) [32]
Clock (K/K) rise to high Z (active to high Z) [33, 34]
Clock (K/K) rise to low Z [33, 34]
Echo clock high to QVLD valid [35]
–
–0.45
0.45
–
–
–0.45
0.45
–
ns
ns
–
–0.45
–
–0.15
0.655
0.655
0.45
–
0.15
–
–
–
–
–0.45
–
–0.15
0.85
0.85
0.45
–
0.15
–
–
–
ns
ns
ns
ns
ns
ns
–
–0.45
–0.15
0.45
–
0.15
–
–0.45
–0.15
0.45
–
0.15
ns
ns
ns
–
20
30
0.15
–
–
–
20
30
0.15
–
–
ns
s
ns
tCCQO
tCQOH
tCQD
tCQDOH
tCQH
tCQHCQH
tCHCQV
tCHCQX
tCQHQV
tCQHQX
tCQHCQL
tCQHCQH
tCHZ
tCHQZ
tCLZ
tCHQX1
tQVLD
tCQHQVLD
PLL Timing
tKC Var
tKC Var
tKC lock
tKC lock
tKC Reset
tKC Reset
Clock phase jitter
PLL lock time (K)
K static to PLL reset [36]
Notes
29. Unless otherwise noted, test conditions assume signal transition time of 2 V/ns, timing reference levels of 0.75 V, VREF = 0.75 V, RQ = 250 , VDDQ = 1.5 V, input pulse
levels of 0.25 V to 1.25 V, and output loading of the specified IOL/IOH and load capacitance shown in (a) of Figure 5 on page 22.
30. When a part with a maximum frequency above 400 MHz is operating at a lower clock frequency, it requires the input timings of the frequency range in which it is being
operated and outputs data with the output timings of that frequency range.
31. This part has an internal voltage regulator; tPOWER is the time that the power is supplied above VDD min initially before a read or write operation can be initiated.
32. These parameters are extrapolated from the input timing parameters (tCYC/2 – 250 ps, where 250 ps is the internal jitter). These parameters are only guaranteed by
design and are not tested in production.
33. tCHZ, tCLZ are specified with a load capacitance of 5 pF as in (b) of Figure 5 on page 22. Transition is measured 100 mV from steady-state voltage.
34. At any voltage and temperature tCHZ is less than tCLZ and tCHZ less than tCO.
35. tQVLD specification is applicable for both rising and falling edges of QVLD signal.
36. Hold to >VIH or <VIL.
Document Number: 001-44143 Rev. *H
Page 23 of 30
CY7C2670KV18
Switching Waveforms
Read/Write/Deselect Sequence
Figure 6. Waveform for 2.5 Cycle Read Latency [37, 38, 39]
NOP
1
READ
2
READ
3
NOP
5
NOP
4
WRITE
7
NOP
6
WRITE
8
READ
9
NOP
10
NOP
11
12
K
t KH
t KHKH
tCYC
t KL
K
LD
tSC t HC
R/W
A
A0
t SA t HA
A1
A2
t QVLD
t QVLD
A3
A4
t QVLD
QVLD
tHD
t HD
tSD
Q00
DQ
tCLZ
(Read Latency = 2.5 Cycles)
Q01 Q10 Q11
t DOH
tCO
t CCQO
tSD
D20 D21
D30
D31
Q40
tCHZ
t CQD
t CQDOH
t CQOH
CQ
t CQOH
t CCQO
tCQH
tCQHCQH
CQ
DON’T CARE
UNDEFINED
Notes
37. Q00 refers to output from address A0. Q01 refers to output from the next internal burst address following A0, that is, A0 + 1.
38. Outputs are disabled (High Z) one clock cycle after a NOP.
39. In this example, if address A4 = A3, then data Q40 = D30 and Q41 = D31. Write data is forwarded immediately as read results. This note applies to the whole diagram.
Document Number: 001-44143 Rev. *H
Page 24 of 30
CY7C2670KV18
Ordering Information
The following table contains only the parts that are currently available. If you do not see what you are looking for, contact your local
sales representative. For more information, visit the Cypress website at www.cypress.com and refer to the product summary page at
http://www.cypress.com/products
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives and distributors. To find the office
closest to you, visit us at http://www.cypress.com/go/datasheet/offices.
Speed
(MHz)
Ordering Code
Package
Diagram
Package Type
Operating
Range
450
CY7C2670KV18-450BZI
51-85195 165-ball FBGA (15 × 17 × 1.4 mm)
Industrial
550
CY7C2670KV18-550BZI
51-85195 165-ball FBGA (15 × 17 × 1.4 mm)
Industrial
Ordering Code Definitions
CY 7
C 2670 K V18 - XXX BZ
X
I
Temperature Grade:
I = Industrial
Pb-free
Package Type: BZ = 165-ball FBGA
Frequency Range: XXX = 450 MHz or 550 MHz
V18 = 1.8 V
Die Revision
Part Identifier
Technology Code: C = CMOS
Marketing Code: 7 = SRAM
Company ID: CY = Cypress
Document Number: 001-44143 Rev. *H
Page 25 of 30
CY7C2670KV18
Package Diagram
Figure 7. 165-ball FBGA (15 × 17 × 1.4 mm) (0.50 Ball Diameter) Package Outline, 51-85195
51-85195 *C
Document Number: 001-44143 Rev. *H
Page 26 of 30
CY7C2670KV18
Acronyms
Acronym
Document Conventions
Description
BWS
byte write select
DDR
double data rate
DLL
delay lock loop
FBGA
fine-pitch ball grid array
HSTL
high-speed transceiver logic
I/O
input/output
JTAG
Joint Test Action Group
LSB
Units of Measure
Symbol
Unit of Measure
°C
degree Celsius
FIT/Dev
failure in time per device
FIT/Mb
failure in time per mega bit
MHz
megahertz
µA
microampere
least significant bit
µs
microsecond
LSBU
logical single-bit upsets
mA
milliampere
LMBU
logical multi-bit upsets
mm
millimeter
MSB
most significant bit
ms
millisecond
ODT
on-die termination
ns
nanosecond
PLL
phase locked loop

ohm
QDR
quad data rate
%
percent
SEL
single event latch up
pF
picofarad
SRAM
static random access memory
TAP
test access port
V
volt
TCK
test clock
W
watt
TDI
test data-in
TDO
test data-out
TMS
test mode select
Document Number: 001-44143 Rev. *H
Page 27 of 30
CY7C2670KV18
Document History Page
Document Title: CY7C2670KV18, 144-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) with ODT
Document Number: 001-44143
Rev.
ECN No.
Submission
Date
Orig. of
Change
**
2010348
See ECN
VKN /
AESA
New data sheet.
*A
2557594
08/26/08
VKN /
PYRS
Updated Identification Register Definitions (Changed Revision Number (31:29)
from 001 to 000).
Updated Power Up Sequence in DDR II+ SRAM (Updated description and
Figure 4).
Updated Electrical Characteristics (Updated DC Electrical Characteristics
(Updated maximum values of IDD and ISB1 parameters)).
Updated Thermal Resistance (Replaced values of JA and JC parameters
from TBD to respective Thermal Values for all Packages).
Updated Switching Characteristics (Changed maximum value of tKC Var
parameter from 0.2 ns to 0.15 ns for 500 MHz frequency).
*B
2806011
11/12/09
VKN /
PYRS
Included Neutron Soft Error Immunity.
Updated Capacitance (Changed value of Input Capacitance (CIN) from 2 pF to
4 pF, changed value of Output Capacitance (CO) from 3 pF to 4 pF).
Updated Switching Characteristics (Changed maximum values of tCO, tCCQO,
tCHZ parameters to 450 ps for 550 MHz, 500 MHz and 450 MHz frequencies,
changed minimum values of tDOH, tCQOH, tCLZ parameters to –450 ps for
550 MHz, 500 MHz and 450 MHz frequencies).
Modified Ordering Information (By including parts that are available, and added
disclaimer at the top of Ordering Information table).
Updated Package Diagram.
*C
3024181
09/07/2010
NJY
Changed status from Preliminary to Final.
Updated Ordering Information and added Ordering Code Definitions.
Added Acronyms, and Units of Measure.
Updated links in Sales, Solutions, and Legal Information.
*D
3243383
04/28/2011
NJY
Updated Ordering Information (Updated part numbers).
Updated in new template.
*E
3275033
06/06/2011
NJY
No technical updates.
*F
3449231
11/28/2011
PRIT
Updated Ordering Information (Updated part numbers).
Updated Package Diagram.
Document Number: 001-44143 Rev. *H
Description of Change
Page 28 of 30
CY7C2670KV18
Document History Page (continued)
Document Title: CY7C2670KV18, 144-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) with ODT
Document Number: 001-44143
Rev.
ECN No.
Submission
Date
*G
3600600
04/26/2012
*H
3800190
11/01/2012
Document Number: 001-44143 Rev. *H
Orig. of
Change
Description of Change
AVIA / PRIT Updated Features (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Configurations (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Functional Description (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Selection Guide (Removed 500 MHz, 400 MHz frequencies related
information, removed CY7C2666KV18, CY7C2677KV18, CY7C2668KV18
related information).
Removed Logic Block Diagram – CY7C2666KV18.
Removed Logic Block Diagram – CY7C2677KV18.
Removed Logic Block Diagram – CY7C2668KV18.
Updated Pin Configurations (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Pin Definitions (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Functional Overview (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Truth Table (Removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Removed Write Cycle Descriptions (Corresponding to CY7C2666KV18 and
CY7C2668KV18).
Removed Write Cycle Descriptions (Corresponding to CY7C2677KV18).
Updated Identification Register Definitions (Removed CY7C2666KV18,
CY7C2677KV18, CY7C2668KV18 related information).
Updated Electrical Characteristics (Removed 500 MHz, 400 MHz frequencies
related information, removed CY7C2666KV18, CY7C2677KV18,
CY7C2668KV18 related information).
Updated Switching Characteristics (Removed 500 MHz, 400 MHz frequencies
related information).
PRIT
No technical updates. Completing sunset review.
Page 29 of 30
CY7C2670KV18
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office
closest to you, visit us at Cypress Locations.
Products
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
PSoC Solutions
cypress.com/go/automotive
psoc.cypress.com/solutions
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 5
cypress.com/go/interface
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
Optical & Image Sensing
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/go/memory
cypress.com/go/image
cypress.com/go/psoc
cypress.com/go/touch
cypress.com/go/USB
cypress.com/go/wireless
© Cypress Semiconductor Corporation, 2008-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document Number: 001-44143 Rev. *H
Revised November 1, 2012
Page 30 of 30
QDR RAMs and Quad Data Rate RAMs comprise a new family of products developed by Cypress, IDT, NEC, Renesas, and Samsung. All products and company names mentioned in this document
may be the trademarks of their respective holders.
Similar pages
CY7C1623KV18:144-Mbit DDR-II SIO SRAM Two-Word Burst Architecture Datasheet.pdf
CYPRESS CY7C1523KV18_13
CY7C15632KV18 72-Mbit QDR II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) Datasheet.pdf
CY7C1392KV18, CY7C1393KV18:18-Mbit DDR II SIO SRAM Two-Word Burst Architecture Datasheet.pdf
CY7C2268KV18, CY7C2270KV18 36-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) with ODT Datasheet.pdf
CY7C1423KV18/CY7C1424KV18, 36-MBIT DDR II SIO SRAM TWO-WORD BURST ARCHITECTURE Datasheet.pdf
CY7C1565KV18 72-Mbit QDR® II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) Datasheet.pdf
CY7C2168KV18, CY7C2170KV18:18-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) with ODT Datasheet.pdf
CY7C2163KV18/CY7C2165KV18, 18-MBIT QDR® II+ SRAM FOUR-WORD BURST ARCHITECTURE (2.5 CYCLE READ LATENCY) WITH ODT Datasheet.pdf
CY7C1523KV18 72-Mbit DDR II SIO SRAM Two-Word Burst Architecture Datasheet.pdf
CY7C2263KV18, CY7C2265KV18 36-Mbit QDR® II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) with ODT Datasheet.pdf
CY7C2268XV18, CY7C2270XV18:36-Mbit DDR II+ Xtreme SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) with ODT Datasheet.pdf
CYPRESS CY7C15632KV18
CYPRESS CY7C1620KV18
CYPRESS CY7C25702KV18
CY7C1318KV18, CY7C1320KV18:18-Mbit DDR II SRAM Two-Word Burst Architecture Datasheet.pdf
CY7C1312KV18, CY7C1314KV18 18-Mbit QDR® II SRAM Two-Word Burst Architecture Datasheet.pdf
CYPRESS CY7C1392KV18_12
CY7C25632KV18, CY7C25652KV18:72-Mbit QDR®II+ SRAM Four-Word Burst Architecture (2.5 Cycle Read Latency) with ODT Datasheet.pdf
CY7C1548KV18, CY7C1550KV18:72-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.0 Cycle Read Latency) Datasheet.pdf
CY7C1268KV18, CY7C1270KV18 36-Mbit DDR II+ SRAM Two-Word Burst Architecture (2.5 Cycle Read Latency) Datasheet.pdf
CYPRESS CY7C1548KV18