ZL10060 MOPLL with IF AGC Amplifier Data Sheet Features November 2005 • Highly integrated mixer/oscillator PLL and IF AGC amplifier for multi band analog/digital terrestrial tuners and/or cable tuners • Low phase noise PLL frequency synthesizer • AGC output level detect with digital controlled TOP threshold • >50 dB Desired/Undesired ratio without pre filtering • Separate analog and digital IF outputs • >41 dB IF AGC Control range • Power down modes to support power reduction initiatives • Four independent GPO • 48 pin QFN Package Ordering Information ZL10060LDG1 48 Pin QFN* Trays ZL10060LDF1 48 Pin QFN* Tape and Reel *Pb Free Matte Tin -20°C to +85°C Description The ZL10060 is a 3 band MOPLL with IF AGC amplifier. It down-converts the RF channel to a standard IF followed by filtering and IF AGC amplification for the digital channel. Each band consists of a low noise preamplifier/mixer and local oscillator with an external varactor tuned tank circuit. An IF level detector is included for control of the RF AGC. The Take Over Point and time constant are both programmable. Applications The ZL10060 has high signal level handling performance providing excellent performance in the presence of high level unwanted signals. • DVB-T receiver systems • ISDB-T receiver systems • DVB-C cable receiver systems • Terrestrial analog receivers All chip control is via I2C bus. If higher performance is required, an alternative part, ZL10063 is available with image reject down conversion. Band Pass Filter Input IF SAW Digital IF SAW Analog Analog IF Digital IF Digital Demod IF AGC PLL GPO AGC Det I2C Control Tuning RF AGC Demod ZL10060 LNA and Tracking Filters RF Analog VCO Tank Circuits Loop Filter Figure 1 - Basic Block Diagram 1 Zarlink Semiconductor Inc. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright 2005, Zarlink Semiconductor Inc. All Rights Reserved. I2C ZL10060 Data Sheet Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 RF Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 SAW Driver Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 AGC Detector and ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 IF AGC Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 VCO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 PLL Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 General Purpose Switching Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.8 I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.0 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Programmable Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Address Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 PLL Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5 Control Register - Byte 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.6 Control Register - Byte 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.7 Control Register - Byte 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.8 Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.0 Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.0 PIn Circuit Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 5.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.0 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.0 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 Zarlink Semiconductor Inc. ZL10060 Data Sheet List of Figures Figure 1 - Basic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 2 - Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Figure 3 - Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 4 - Low Band (VHF1) External Tank Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 5 - Mid Band (VHF3) External Tank Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 6 - High Band (UHF) External Tank Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 7 - Typical Application Circuit (DVB-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Figure 8 - Crystal Oscillator Circuit (4 MHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Figure 9 - Interstage Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure 10 - Noise Figure Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Zarlink Semiconductor Inc. ZL10060 Data Sheet List of Tables Table 1 - Pin Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2 - Programmable Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 3 - Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 4 - Address Bit MA1 and MA0 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 5 - Byte 2- LO Divider (MSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 6 - Byte 3 LO Divider (LSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 7 - Byte 4 PLL Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 8 - Charge Pump Current Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 9 - Reference Divide Ratio Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 10 - Byte 5 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 11 - Band Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 12 - Internal Circuit Block Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 13 - GPPO Output Port Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 14 - Byte 6 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 15 - AGC Decay Current Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 16 - AGC Threshold Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 17 - Byte 7 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 18 - ADC Input Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 19 - Test Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 20 - Read Data Format (MSB is transmitted first) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 21 - AGC Activity Flag Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 22 - ADC Output Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 23 - Optimum CP and LO Trim Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 Zarlink Semiconductor Inc. Data Sheet IFOPB IFOP VeeIF VccIF XTAL XCAP VccIF SDB SD VccDIG PUMP DRIVE ZL10060 1 IFIPB IFIP VccOSC VeeOSC LHIPB LHOPB LHOP LHIP LMOPB LMOP LLOPB LLOP ZL10060 SIPB SIP GPP0 GPP1 GPP2 VeeRF LOIP IPREF MIDIP HIIP HIIPB GPP3 IFAGC SAB SA ADC SDA SCL ADD AGCOP CNOPB CNOP CONT VccRF Vee (PACKAGE PADDLE) Figure 2 - Pin Diagram Pin No. Port Name Function 1 IFAGC IF amplifier AGC input 2 SAB SAW filter driver output (analog) 3 SA SAW filter driver output (analog) 4 ADC External ADC input 5 SDA I2C bus serial data input/output 6 SCL I2C bus serial clock input 7 ADD I2C bus address selection input 8 AGCOP AGC output 9 CNOPB Analog converter output 10 CNOP Analog converter output 11 CONT Paddle (Ground) 12 VccRF RF section supply 13 SIPB SAW filter driver input 14 SIP SAW filter driver input 15 GPP0 General purpose switching port 16 GPP1 General purpose switching port Table 1 - Pin Names 5 Zarlink Semiconductor Inc. ZL10060 Pin No. Port Name Data Sheet Function 17 GPP2 General purpose switching port 18 VeeRF RF section ground 19 LOIP Low band input 20 IPREF Reference input for low and mid bands 21 MIDIP Mid band input 22 HIIP High band input 23 HIIPB High band inverse input 24 GPP3 General purpose switching port 25 LLOP Low band local oscillator output 26 LLOPB Low band local oscillator inverse output 27 LMOP Mid band local oscillator output 28 LMOPB Mid band local oscillator inverse output 29 LHIP High band local oscillator input 30 LHOP High band local oscillator output 31 LHOPB High band local oscillator inverse output 32 LHIPB High band local oscillator inverse input 33 VeeOSC Oscillator section ground 34 VccOSC Oscillator supply 35 IFIP IF amplifier input 36 IFIPB IF amplifier inverse input 37 DRIVE Loop amplifier drive output 38 PUMP Loop amplifier charge pump output 39 VccDIG Digital section supply 40 SD SAW filter driver output (digital) 41 SDB SAW filter driver output (digital) 42 VccIF IF amplifier section supply 43 XCAP Reference oscillator feedback input 44 XTAL Reference oscillator crystal drive 45 VccIF IF amplifier section supply 46 VeeIF IF section ground 47 IFOP IF amplifier output 48 IFOPB IF amplifier inverse output Vee Global ground Paddle Table 1 - Pin Names (continued) 6 Zarlink Semiconductor Inc. ZL10060 Data Sheet Figure 3 - Detailed Block Diagram 1.0 Functional Description The ZL10060 is a three-band RF mixer oscillator with on-board frequency synthesizer and IF AGC amplifier, integrating all tuner active circuitry after the tracking filter in a single package. It is intended for use in all band terrestrial tuners, and requires a minimum external component count. It contains all elements required for RF down conversion to a standard IF with the exception of external VCO tank circuits. In normal application the RF input is interfaced to the selected mixer oscillator preamplifier through the tuner prefilter and AGC stages. The ZL10060 provides an RF AGC control signal, which can be used to control the RF gain. The preamplifier output feeds the mixer stage where the required channel is down converted to the IF frequency. The local oscillator frequency for the down conversion is obtained from the on board PLL and local oscillator, with an external varactor tuned tank. The downconverted signal is then passed through an external filter into a SAW filter driver amplifier. This provides two output channels for hybrid analog and digital applications. 7 Zarlink Semiconductor Inc. ZL10060 Data Sheet An AGC IF amplifier is included which provides an output signal to a digital demodulator. The device is controlled through an I2C compatible interface. 1.1 RF Converter The ZL10060 contains three input stages to cover the VHF1, VHF3 and UHF frequency bands. The inputs would normally be driven by front end amplifiers and tracking filters. All three inputs are differential, however, the VHF1 and VHF3 inputs would normally be single ended. These inputs therefore can share a common input reference pin. The UHF input should be driven with a differential signal. The inputs are all high impedance. The differential converter IF output is then passed through an external interstage filter. This can be tuned for 36 MHz for DVB-T applications but can also be used at 44 MHz and 57 MHz to be compatible with other TV standards. The recommended filter circuit is shown in Figure 9. The design of this filter provides an impedance transformation as well as rejection of adjacent channels. A 0.5 dB Chebychev filter with 10 MHz bandwidth is recommended. This gives a flat response across the pass band and takes into account normal component tolerances. 1.2 SAW Driver Amplifier The output of the interstage filter then passes to the SAW filter drive amplifier. This provides further amplification and interfaces to the SAW filter. Two SAW filter drive outputs are provided for hybrid analog and digital applications. Both output stages are identical however the digital output (SD, SDB) should always be used for digital applications as the pin out of the device has been optimized to give the best isolation performance in this configuration. Output selection is programmable however it should be noted that the unselected output is not powered off but operates at a lower power level which means that a signal will still be present on the output. The differential outputs will drive a balanced SAW filter with a tuning inductor to resonate with the SAW filter input capacitance. The SAW filter can also be driven without the tuning inductor but with the addition of 350 ohm resistors to ground on the SAW driver outputs to increase the output drive capability. This will increase total current consumption by 14 mA. 1.3 AGC Detector and ADC The ZL10060 contains a broadband AGC detector circuit which provides an output to provide gain control for the RF frontend gain stages. The detector input signal is derived from the signal level in the SAW driver amplifier. The composite signal at this point is the wanted signal plus adjacent channels (N +/- 1, N +/- 2, N +/- 3). The AGC detector threshold point at which the agc output becomes active can be programmed to one of eight levels via the I2C interface. When the composite level reaches the agc threshold, the agc output pin will be active. The AGC attack current is fixed, however, the decay current can be programmed to two levels. The agc output can only drive a high impedance e.g., a dual gate FET. If RF gain control uses a PiN diode then a simple buffer circuit will be required. An AGC flag output is also available through the I2C interface. This indicates when the AGC output is active i.e., less than 4 volts. The agc output level can also be monitored by an on chip 3 bit ADC. Although the ADC is 3 bits, only 5 levels are available. Alternatively the ADC can be programmed to measure the voltage on an external pin (ADC Pin 4). 1.4 IF AGC Amplifier The AGC amplifier amplifies the output of the SAW filter for the digital channel and provides a differential output to the demodulator. The analog gain control signal is normally derived from the demodulator. At least 41 dB of gain control is provided. The AGC amplifier can be powered down independently of the rest of the device if not required. This mode could be used in analog applications to reduce overall power consumption. 8 Zarlink Semiconductor Inc. ZL10060 1.5 Data Sheet VCO Separate VCO’s are provided for each band. The oscillator circuits are on chip however the tank circuitry is external. All three oscillators are differential. The typical external tank circuits are shown in Figures 4, 5 and 6. It is essential to take care to minimize track lengths and parasitics when designing the PCB layout to obtain best performance. The close-in phase noise of the local oscillator can be optimized at the programmed operating frequency by a programming bit which increases bias current in the VCO. . R_bias LLOPB Vvar Cs pF L1 nH LLOP R_bias Figure 4 - Low Band (VHF1) External Tank Circuit R_bias LMOPB Vvar Cs pF L1 nH LMOP R_bias Figure 5 - Mid Band (VHF3) External Tank Circuit 9 Zarlink Semiconductor Inc. ZL10060 Data Sheet Cp LHIPB Cp LHOPB L1 nH Cp R_bias Vvar LHOP Cs pF LHIP Cp R_damp R_bias Figure 6 - High Band (UHF) External Tank Circuit 1.6 PLL Frequency Synthesizer The PLL frequency synthesizer section contains all the elements necessary, with the exception of a frequency reference and loop filter to control a varicap tuned local oscillator, to form a complete PLL frequency synthesized source. The device allows for operation with a high comparison frequency and is fabricated in high speed logic, which enables the generation of a loop with good phase noise performance. It can be operated with comparison frequencies appropriate for frequency offsets as required in digital terrestrial (DTT) receivers. The LO input signal from the selected oscillator section is routed to an internal preamplifier, which provides gain and reverse isolation from the divider signals. The output of the preamplifier interfaces directly to the 15-bit programmable divider, which is of MN+A architecture, with a 16/17 dual modulus prescaler. The A counter is 4-bits, and the M counter is 11 bits. The output of the programmable divider is fed to the phase comparator where it is compared in both phase and frequency domain with the comparison frequency which is derived either from the on-board crystal controlled oscillator, or from an external reference source. In both cases the reference frequency is divided down to the comparison frequency by the reference divider, which is programmable into 1 of 16 ratios. The output of the phase detector feeds a charge pump and loop amplifier section, which when used with an external loop filter, integrates the current pulses into the varactor control voltage. The programmable divider output, Fpd, divided by two and the reference divider output, Fcomp, can be switched to port P0 by programming the device into a test mode. The PLL includes a lock detect circuit. The lock detect output is available by reading the Status byte on the I2C interface 1.7 General Purpose Switching Ports The ZL10060 has four output switching ports. Three of these ports (GPP[3:1]) incorporate a 10 kohm pull up resistor. The remaining port (GPP0) is an open collector switch. These ports can be used for switching external RF input stages for example. Ports GPP[1:0] can also be used as test outputs for debug purposes. 1.8 I2C Interface The ZL10060 is controlled by an I2C data bus and is compatible with both 3.3 V and 5 V control levels. Data and Clock are fed in on the SDA and SCL lines respectively as defined by I2C bus format. The device can either accept data (write mode), or send data (read mode). The LSB of the address byte (R/W) sets the device into write mode if it is low, and read mode if it is high. The device can be programmed to respond to 1 of 4 addresses, 10 Zarlink Semiconductor Inc. ZL10060 Data Sheet which enables the use of more than one device in an I2C bus system. The address is selected by applying a voltage to the ‘ADD’ input. When the device receives a valid address byte, it pulls the SDA line low during the acknowledge period, and during following acknowledge periods after further data bytes are received. When the device is programmed into read mode, the controller accepting the data must pull the SDA line low during all status byte acknowledge periods to read another status byte. If the controller fails to pull the SDA line low during this period, the device generates an internal STOP condition, which inhibits further reading. 2.0 Programming The ZL10060 is fully programmable through the I2C interface. The device can also output data to the controller. 2.1 Programmable Features Feature Description RF programmable divider Programs PLL main divider Reference programmable divider Programs PLL reference divider to set required frequency step Band selection Selects RF input and appropriate LO oscillator. AGC Threshold Sets the Input Power Level Threshold at which the AGC detector starts to generate a control level. AGC Decay Sets the AGC decay current. Charge pump current Selects one of the four charge pump current settings. IF amplifier function The IF amplifier can be enabled independently of other circuit blocks. SAWF output select Select the analog or digital SAW driver output. Ports GPP[3:1] These are configured as NPN buffers with 10 kohm pull-up resistors to Vcc. Logic ‘1’ = on Logic ‘0’ = off; default on power up PORT GPP0 This is configured as a NPN open collector buffer. Logic ‘1’ = on Logic ‘0’ = off; default on power up VCO Trim Adjusts the VCO bias current to provide optimum phase noise performance. ADC input Select Select either the internal AGC detect output level or the external level applied to the ADC input pin. Programmable power The ZL10060 has various power saving modes. Test modes Test modes to monitor and control internal PLL signals. Table 2 - Programmable Features 2.2 Register Map There are a total of 7 write registers, the first of which is the Address register. The control registers are described in detail in the following section. The MSB of each register is written first. After reception and acknowledgement of a correct address (byte 1), the first bit of the following byte determines whether the byte is interpreted as a byte 2 or 4, a logic '0' indicating byte 2, and a logic '1' indicating byte 4. Having 11 Zarlink Semiconductor Inc. ZL10060 Data Sheet interpreted this byte as either byte 2 or 4 the following data byte will be interpreted as byte 3 or 5 respectively. Byte 5 will be followed by byte 6 or a stop condition. Byte 6 will be followed by byte 7 or a stop condition. Byte 7 will be followed by a stop condition or a byte 2 or byte 4 as described above. Further data bytes can be programmed following the above-described protocol. A STOP condition can be generated after any data byte, if however it occurs during a byte transmission, the previous byte data is retained. To facilitate smooth fine tuning, the frequency data bytes are only accepted by the device after all 15 bits of frequency data have been received, or after the generation of a STOP condition. MSB LSB ACK 7 6 5 4 3 2 1 0 Address 1 1 0 0 0 MA1 MA0 0 A Byte 1 Programmable divider 0 D14 D13 D12 D11 D10 D9 D8 A Byte 2W Programmable divider D7 D6 D5 D4 D3 D2 D1 D0 A Byte 3W Control data 1 C1 C0 R4 R3 R2 R1 R0 A Byte 4W Control data BS1 BS0 SL1 SL0 P3 P2 P1 P0 A Byte 5W Control Data LO1 LO0 ATC IFE X AT2 AT1 AT0 A Byte 6W Control Data SAS X AGD ADS T3 T2 T1 T0 A Byte 7W Table 3 - Control Registers A Acknowledge bit MA1, MA0 Address bits D14-D0 Programmable division ratio control bits R4-R0 Reference division ratio select C1, C0 Charge pump current select BS1-BS0 Band select bits SL1-SL0 Power down modes SAS SAWF drive output select P3-P0 P3-P0 port output states ADS ADC input select ATC AGC Decay Current AGD AGC Disable AT2:AT0 AGC Onset threshold Control LO1:LO0 LO trim control bits T3-T0 Test mode control bits IFE IF AGC amplifier enable X Don’t Care 12 Zarlink Semiconductor Inc. ZL10060 Data Sheet Details of the programming registers are shown in the following sections. Default values on power up are also shown. 2.3 Address Register The ZL10060 address (MA1, MA0) are determined by the voltage set at the address pin (ADD) as shown in Table 4. Address Select (Byte 1) MA1 MA0 Address Input Voltage Level 0 0 0 - 0.1Vcc (Connect to Vee) 0 1 0.2Vcc – 0.3Vcc (Open circuit) 1 0 0.4 Vcc – 0.6 Vcc (30KΩ to Vcc) 1 1 0.9 Vcc - 1.0 Vcc (Connect to Vcc) Table 4 - Address Bit MA1 and MA0 Settings 2.4 PLL Registers Bytes 2,3 and 4 are used to program the PLL. Bit Field Name Default Description 7 - 0 Must be set to 0 6:0 D[14:8] 0 MSB bits of LO Divider register. Table 5 - Byte 2- LO Divider (MSB) Bit Field Name Default 7:0 D[7:0] 0 Description LSB bits of LO Divider register. Table 6 - Byte 3 LO Divider (LSB) The LO frequency will not be updated until both Byte 1 and Byte 2 have been programmed. Bit Field Name Default Description 7 - 1 Must be set to 1 6:5 C[1:0] 0 Charge pump current. 4:0 R[4:0] 10011 Reference divider control. Table 7 - Byte 4 PLL Control The charge pump current values are selected from the following table: C1 C0 Current µA 0 0 +-155 Table 8 - Charge Pump Current Selection 13 Zarlink Semiconductor Inc. ZL10060 C1 C0 Data Sheet Current µA 0 1 +-330 1 0 +-690 1 1 +-1450 Default State on power up = 00 Table 8 - Charge Pump Current Selection The reference divider ratio can be selected from the following table: R4 R3 R2 R1 R0 Ratio 0 0 0 1 1 16 0 0 1 0 0 32 0 0 1 0 1 64 0 0 1 1 0 128 0 1 0 1 1 20 0 1 1 0 0 40 0 1 1 0 1 80 0 1 1 1 0 160 1 0 0 1 1 24 1 0 1 0 0 48 1 0 1 0 1 96 1 0 1 1 0 192 1 1 0 1 1 28 1 1 1 0 0 56 1 1 1 0 1 112 1 1 1 1 0 224 Default State on power up = 10011 Table 9 - Reference Divide Ratio Settings 14 Zarlink Semiconductor Inc. ZL10060 2.5 Data Sheet Control Register - Byte 5 Bit Field Name Default Description 7:6 BS[1:0] 11 Band Switching 5:4 SL[1:0] 01 Power-up modes 3:0 P[3:0] 0 General Purpose Output ports Table 10 - Byte 5 Control The band switching is controlled as shown below: BS1 BS0 Band Selected 0 0 LO Band 0 1 MID Band 1 0 HI band 1 1 All off Default state on power up = 11 Table 11 - Band Selection The various power-up modes are shown below. The IF AGC amplifier is controlled separately The I2C interface and crystal oscillator circuit is active in all modes. Power Mode Section Status I2C interface and registers Crystal oscillator PLL & VCO Converter and IF stages Sleep Enabled Enabled Disabled Disabled 0 PLL and VCO enabled Enabled Enabled Enabled Disabled 1 Full Enabled Enabled Enabled Enabled SL1 SL0 0 X 1 1 Table 12 - Internal Circuit Block Control The ZL10060 has four output ports. Ports [3:1] have an internal 10 kohm pull up resistor to Vcc. GPP0 is open collector. Function Bit 0 1 GPP0 output Enable P0 Off (High Impedance) On (Current Sink) GPP1 output Enable P1 Off On (Current Sink) GPP2 output Enable P2 Off On (Current Sink) GPP3 output Enable P3 Off On (Current Sink) Table 13 - GPPO Output Port Control 15 Zarlink Semiconductor Inc. ZL10060 2.6 Data Sheet Control Register - Byte 6 Bit Field Name Default Description 7 LO1 0 VCO Bias Trim 6 LO0 0 Not used 5 ATC 0 AGC Decay current select 4 IFE 0 IF AGC Amplifier enable (1 = On) 3 X 0 Not used 2:0 AT[2:0] 0 AGC Threshold Select Table 14 - Byte 6 Control The VCO bias trim adjusts the VCO bias to give optimum close-in phase noise. In general this should be set to 1 for the lower third of the VCO frequency range. The AGC attack current is fixed at 100 µA however the agc decay current can be programmed to one of two values as shown below. If the PLL is unlocked (FL = 0), then the ATC control is over-ridden and the AGC decay current is set to 10µA. When the PLL locks (FL = 1) the decay current reverts to the programmed ATC value. ATC AGC Decay Current (µA) 0 10.0 1 0.3 Table 15 - AGC Decay Current Setting 16 Zarlink Semiconductor Inc. ZL10060 Data Sheet The AGC threshold can be programmed using the AT[2:0] bits. Note that the programmed value is dBµV peak. AT2 AT1 AT0 AGC Threshold (peak signal in dBµV into detector) 0 0 0 120 0 0 1 118 0 1 0 116 0 1 1 114 1 0 0 112 1 0 1 110 1 1 0 107 1 1 1 104 Default state on power up = 000 Table 16 - AGC Threshold Selection 2.7 Control Register - Byte 7 Bit Field Name Default Description 7 SAS 1 Digital SAW Drive Output Select (1 = Digital) 6 X 0 Not used 5 AGD 1 AGC Detector Enable (0 = Enabled) 4 ADS 0 ADC Input select 3:0 T[3:0] 0 Test Bits Table 17 - Byte 7 Control The ADC input selection is shown in the table below ADS ADC Function 0 AGC Output 1 External ADC input Table 18 - ADC Input Selection The test bits T[3:0] allow internal PLL signals to be monitored and also to manually control charge pump current and AGC detector output. This facilities may be useful during debug. The test bit selection is shown below. The reserved test modes should not be used. T3 T2 T1 T0 Test Mode Description 0 0 0 0 Normal operation 0 0 0 1 Reserved Test Mode 0 0 1 0 AGC Sink, Force Iagc = -100 µA 0 0 1 1 AGC Source, Force Iagc = 10 µA P0 = Output of AGC bias DAC Table 19 - Test Modes 17 Zarlink Semiconductor Inc. ZL10060 Data Sheet T3 T2 T1 T0 Test Mode Description 0 1 0 0 Reserved Test Mode 0 1 0 1 Reserved Test Mode 0 1 1 0 Reserved Test Mode 0 1 1 1 Reserved Test Mode 1 0 0 0 Reserved Test Mode 1 0 0 1 Charge pump sink * Status byte FL set to logic ‘0’ 1 0 1 0 Charge pump source * Status byte FL set to logic ‘0’ 1 0 1 1 Charge pump disabled * Status byte FL set to logic ‘1’ 1 1 0 0 Port P0 = Fpd/2 1 1 0 1 Charge pump sink * Status byte FL set to logic ‘0’ Port P0 = Fcomp 1 1 1 0 Charge pump source * Status byte FL set to logic ‘0’ Port P0 = Fcomp 1 1 1 1 Charge pump disabled * Status byte FL set to logic ‘1’ Port P0 = Fcomp Table 19 - Test Modes (continued) 2.8 Read Mode When the device is in read mode, the status byte read from the device takes the form shown in Table 20. MSB Address Status Byte LSB ACK 7 6 5 4 3 2 1 0 1 1 0 0 0 MA1 MA0 1 A Byte 1 POR FL 1 1 AGF V2 V1 V0 A Byte 2R Table 20 - Read Data Format (MSB is transmitted first) The following describes data read through the read byte; • Bit 7 (POR) is the power-on reset indicator, and this is set to a logic '1' if the Vcc supply to the device has dropped below 3 V (at 25°C), e.g., when the device is initially turned ON. The POR is reset to '0' when the read sequence is terminated by a STOP command. When POR is set high this indicates that the programmed information may have been corrupted and the device reset to power up condition. • Bit 6 (FL) is the PLL lock flag and indicates whether the device is phase locked, a logic '1' is present if the device is locked, and a logic '0' if the device is unlocked. The FL bit is set after 64 consecutive comparison cycles in lock. 18 Zarlink Semiconductor Inc. ZL10060 • Data Sheet Bit 3 (AGF) is the AGC detector flag and indicates whether the AGC detector is active. AGF AGC Activity Flag 0 AGC active, VAGC < 4 V External RF LNA gain is reduced 1 AGC not active, VAGC >4 V External RF LNA gain is at maximum Table 21 - AGC Activity Flag Settings • Bits 2:0 (V2:V0) contain the ADC output data. The ADC output is sampled on the ACK clock of the read address byte. Input Level (V) V2 V1 V0 < 0.32 Vcc 0 0 0 0.32Vcc to 0.48Vcc 0 0 1 0.48Vcc to 0.64Vcc 0 1 0 0.64Vcc to 0.80Vcc 0 1 1 > 0.80Vcc 1 0 0 Table 22 - ADC Output Values 19 Zarlink Semiconductor Inc. 1.5uH L13 IN- gnd Figure 7 - Typical Application Circuit (DVB-T) Driver Output Analog SAW Digital Demodulator IF Output to 1 IN+ X6874D SF1 5 4 4.000MHz 10nF C50 10nF 40 39 38 37 46 45 44 43 48 gnd 47 +5V 150pF C18 gnd 41 +5V 42 IFAGC ADC C51 10nF 10nF C35 47pF nm nm gnd C22 10nF 1nF C27 1nF C26 +5V C23 27pF C28 C19 R27 R26 10nF C33 gnd gnd X1 10nF C1 10nF C15 10nF C37 OP- OP+ C54 10k R7 18k gnd BCW33 IFOPB IFOP VeeIF VccIF XTAL XCAP VccIFO SDB SD VccDIG PUMP 100nF C46 100pF C32 0R R13 gnd TR1 DRIVE R16 20k R8 36 IFINB 100pF 220pF 34 C20 gnd gnd +5V 33 10nF IFIN 2 GND 3 35 IFAGC 1 6R8 R14 2n5H (air) L6 BB555 D3 2p2F 2p2F IC1 ZL1006X ZL10060 2p2F 10nF C34 gnd gnd 3k3 R6 1k R3 2p2F C11 6R8 R15 gnd C13 C12 C14 10nF C30 27pF C16 1k 32 LHIPB C17a SAB 2 VccOSC SA 3 VeeOSC ADC 4 1k SDA 5 31 LHOPB SCL 6 gnd 7 8.2nF LHIP R5 12n5H (air) L4 68pF C10 BB640 D2 LMOP +30V LMOPB 30 LHOP ADD 29 AGCout 8 gnd SIPB SDA SIP GPP0 GPP1 GPP2 VeeRF LOIP RFINB MIDIP HIIP HIIPB C47 gnd 100pF SCL 3k3 GPP3 +5V I2C AGC Out 1k R1 R4 25 LLOP R9 LLOPB C21 CNOPB 9 28 CNOP 10 27 Conti nuity 11 26 VccRF 12 Zarlink Semiconductor Inc. Gnd 20 10nF C49 gnd 0 TP 13 14 15 16 17 18 19 20 gnd 1nF 21 C8 22 23 24 100nH (air) L2 100pF C2 BB640 D1 gnd 3k3 R2 Coil Data 1nF 1nF 100pF 100pF 12pF C39 12pF nm C6 680nH C25 L10 X5 nm nm 18pF 18pF 12pF C48 12pF C38 680nF L9 gnd gnd 1nF C24 +5V 0R X7 0R X6 gnd 1 2 3 X2 X3 gnd gnd nm X4 C4 Interstage Filter GPP0 GPP1 GPP2 C7 C5 C3 C40 GPP3 680nF L11 6 4 +30V +5V IFAGC gnd gnd gnd 10nF C53 L6: 2n5H as 16mm 24 swg En Cu formed into 5/4 turns on 2mm dia space wound L4: 12.5nH as 30mm 24 swg En Cu formed into 2.5 turns on 2mm dia space wound L2: 100nH as 8.5 turns 24 swg (0.56mm) En Cu on 2.5mm dia close wound gnd TP3 + 10uF C56 2u2F gnd + C36 RF IN (VHF 1) RF IN (VHF 3) RF IN (UHF) 1 2 3 4 3.0 PLL loop filter ZL10060 Data Sheet Applications Information A typical applications circuit is shown in the following diagram. ZL10060 Data Sheet The low (VHF1) and Mid (VHF3) bands are single ended however the high band (UHF) should be differential. All IF signals are differential. It is essential to have good RF layout around the RF stages, i.e., RF inputs and the VCOs. Track lengths around the VCO’s should be minimized to reduce track inductance. The layout should be organized to give good isolation between the IF signal paths. In particular good isolation is required between the outputs and inputs of the IF AGC amplifier. Isolation across the SAW filter is also important to ensure rejection of unwanted adjacent signals. This can be achieved by routing input and output tracks on opposite sides of the board. It is also important to have good isolation between the high level IF signal and the crystal oscillator circuit to minimize any interactions. Care should be taken when locating IF tuning inductors to ensure there is no radiation to other parts of the circuit. The crystal oscillator can also provide a clock signal to the demodulator. This can be done by taking the oscillator signal from the crystal series capacitor (27 pF) as shown in the following diagram. Figure 8 - Crystal Oscillator Circuit (4 MHz) 21 Zarlink Semiconductor Inc. ZL10060 Data Sheet The interstage filter between the converter outputs provides some rejection of adjacent channels (N +/- 2).The recommended values are shown in Figure 9. The choice of components is important not only to give a flat response but also to provide an impedance transformation. The specified noise figure for the low and mid bands assumes that there will be a network before the device to provide image rejection. In a tuner this would be part of the input tracking filters but for test purposes a network is shown in Figure 10. R source R source Vcc SAWF Drive Amplifier Input L1 CNOPB SIP Cc C1 L1 L2 C1 Rterm C2 Rterm C1 Cc CNOP IF 0.5 dB BW MHz MHz Rsource Rterm L1 L2 C1 Cc C2 36 12 700 350 560 560 18 12 8.2 Type 0.5 dB Chebycheff SIPB Component values Figure 9 - Interstage Filter 22 Zarlink Semiconductor Inc. ZL10060 50 Data Sheet C1 Vs 1nF L1 MIDIP/LOIP IPREF C2 DUT 1nF Gnd Frequency Band C1 L1 C2 MHz pF nH pF 90 46 20 299 20 LOW 200 156 8 65 8 MID 240 196 8 41 8 MID 500 446 2.1 21 4 LO RF IN MHz LOW Figure 10 - Noise Figure Measurement Conditions The optimum charge pump and LO trim settings for the application circuit shown in Figure 8 are shown in the table below. These give the optimum phase noise performance for the circuit shown. The changes in charge pump current compensate for frequency and VCO gain variations. Frequency Range Charge Pump Setting CP LO Trim LO1 VHF1 50 -110 MHz 01 1 VHF1 100 -160 MHz 10 1 VHF3 160 - 250 MHz 10 1 VHF3 250 - 350 MHz 01 0 VHF3 350 - 450 MHz 10 0 UHF 450 - 500 MHz 00 1 UHF 500 - 700 MHz 01 1 UHF 700 - 800 MHz 10 1 UHF 800 - 850 MHz 11 1 Table 23 - Optimum CP and LO Trim Settings 23 Zarlink Semiconductor Inc. ZL10060 4.0 Pin No. 1 Data Sheet PIn Circuit Information Pin Name IFAGC Port Sense Input Function Schematic IF AGC control IFA G C 3K V REF 3K 2, 3 SAB, SA Output, Output SAW filter driver output A inverse SAW filter driver output A V cc SA 50 4 ADC Input ADC input V cc A D C 5 SDA Bi-directional I2C bus serial data input/output V cc SDA 6 SCL Input I2C bus serial clock input V cc SCL 24 Zarlink Semiconductor Inc. SAB ZL10060 Pin No. 7 Pin Name ADD Port Sense Input Data Sheet Function Schematic I2C address select V cc 63k 3k ADD 21k 8 AGCOP Output AGC output V cc 100 AGCOP 1K 9, 10 CNOPB, Output, CNOP Output Converter Output inverse Converter Output Vcc 500 500 CNOPB CNOP 11 Cont - Paddle - 12 VccRF Supply RF section supply - 13, 14 SIPB SIP Input, Input SAW filter driver input inverse, SAW filter driver input V cc S IP S IP B 15 GPP0 Output 250 1 .1 K Switching port/Test output 1 GPP0 25 Zarlink Semiconductor Inc. ZL10060 Pin No. 16 Pin Name GPP1 Port Sense Output Data Sheet Function Schematic Switching port/Test output 2 V cc 10K GPP1 GPP2 GPP3 17 GPP2 Output Switching port As GPP1 (pin16) 18 VeeRF Supply RF section ground - 19, 20, 21 LOIP IPREF MIDIP Input, Input, Input Low band input, Mid- and Low-band i/p reference, Mid-band input 22, 23 HIIP, HIIPB Input, Input Hi-band input, Hi-band input inverse 24 GPP3 Output Switching Port 25, 26 LLOP, LLOPB Output Low band oscillator output, Low-band oscillator output inverse LO IP IP R E F M ID IP H IIP H IIP B As GPP1 (pin16) LLOP LLOPB 27, 28 LMOP, Output, LMOPB Output Mid-band oscillator output, Mid-band oscillator output inverse LMOP LMOPB 26 Zarlink Semiconductor Inc. ZL10060 Pin No. 29, 30, 31, 32 Pin Name LHIP, LHOP, LHOPB, LHIPB Port Sense Input, Output, Output, Input Data Sheet Function Schematic High band oscillator input, High-band oscillator output, High-band oscillator output inverse, High-band oscillator input inverse Vcc 350 LHOPB 350 LHOP LHIP 33 VeeOSC Supply LO ground - 34 VccOSC Supply LO supply - 35, 36 IFIP, IFIPB IF AGC amp input, IF AGC amp input inverse Input, Input LHIPB IF IP 37, 38 DRIVE, PUMP Output, Output Loop amplifier drive output, Loop amp charge pump output IF IP B Vcc PUMP DRIVE 340 39 VccDIG Supply Digital section supply 40, 41 SD, SDB SAW filter driver output D, SAW filter driver o/p D inverse Output, Output V cc SD 50 42 VccIF Supply SAWF output supply 43 XCAP Input Reference osc feedback input SDB V cc 110 XTAL XCAP 0 .2 m A 44 XTAL Output Reference osc crystal drive 27 Zarlink Semiconductor Inc. See XCAP (pin 43) ZL10060 Pin No. Pin Name Port Sense Data Sheet Function Schematic 45 VccIF Supply IF AGC supply - 46 VeeIF Supply IF AGC ground - 47, 48 IFOP, IFOPB Output, Output IF AGC amp output, IF AGC amp inverse output Vcc IF O P Paddle Vee - - - 28 Zarlink Semiconductor Inc. ZL10060 5.0 Data Sheet Absolute Maximum Ratings All voltages are referred to Vee at 0 V. Characteristic Supply voltage Min. Max. Units -0.3 6 V Conditions dBµV Transient condition only RF input voltage 117 Maximum voltage on SDA, SCL 5.5 V Vcc = 0 to 5.5V Vcc+0.3 V The voltage on any pin must not exceed 6 V 20 mA 150 oC 125 oC Power applied C/W Package paddle soldered to ground Max voltage on all remaining signal pins -0.3 Total port current Storage temperature -55 Junction temperature Package thermal resistance (chip to ambient) 27 o ESD protection 2.0 kV All pins except 9,10 Mil-std 883B method 3015 cat1 1.25 kV Pins 9, 10 only 6.0 Operating Range All voltages are referred to Vee at 0 V. Characteristic Min. Max. Units. Supply voltage 4.5 5.5 V Functional operation, specification not guaranteed Supply voltage 4.75 5.25 V Full specification o Ambient Temperature -20 85 Low Band Input Frequency 50 170 MHz Mid Band Input Frequency 140 460 MHz High Band Input Frequency 400 900 MHz C 29 Zarlink Semiconductor Inc. Conditions ZL10060 7.0 Data Sheet Electrical Characteristics Test conditions (unless otherwise stated). T = 25oC, Vee= 0 V, Vcc = 5 V, IF Frequency = 36 MHz. All signals are differential with the exception of VHF1 and VHF3 inputs. Characteristic Min. Typ. Max. Units Conditions Normal operation 117 140 mA Total Current – UHF band All switching ports off All sections active 110 134 mA Total Current - VHF Bands All switching ports off All sections active except AGC IF amplifier 92 mA UHF Band. Switching ports off 85 mA VHF Bands. Switching ports off Sleep Mode 9 mA Crystal oscillator and data interface enabled 33 mA PLL and crystal oscillator enabled Supply current Composite system to SAW Filter driver outputs VHF1 Band Conversion gain 29 32 35 dB RFin = 54 MHz. Single ended input Conversion gain 29 32 35 dB RFin = 155 MHz. Single ended input 9 11 dB Rs = 50 Ω, SSB with input matching network. See Figure 10. Noise Figure OPIP3 135 146 dBµV Two output tones at 110 dBµV Output level causing 1% cross modulation 113 120 dBµV Note 2 Output level causing 1.5 kHz FM 113 120 dBµV Note 3 2.5 kHz Transmission repetition rate of 20 msec minimum with no change to previously loaded data, at 100 kHz SCL rate I2C bus transmission induced LO frequency modulation N+5 Direct modulation of VCO -40 dBc Local oscillator sidebands induced by an input carrier at 80 dBµV offset from local oscillator by 100 kHz Supply ripple spurious -40 dBc Residual FM induced on local oscillator by 20 mVp-p ripple on Vcc at 500 kHz Local oscillator leakage to any band input dBµV 30 30 Zarlink Semiconductor Inc. ZL10060 Characteristic Min. Typ. IPIP2 134 143 dBµV Two input tones at 87 dBµV at 90 MHz and 66 MHz with local oscillator at 114 MHz IPIP3 112 120 dBµV Desired = 54 MHz at 45 dBµV Undesired = 60 and 72 MHz at 87 dBµV IPIP3 112 119 dBµV Desired = 155 MHz at 45 dBµV Undesired = 161 and 173 MHz at 87 dBµV P1dB 93 106 dBµV 100 Ω 10 nH Output Impedance Max. Data Sheet Units Phase Noise, SSB Conditions PLL Loop Bandwidth ~ 3 kHz fcomp = 166.7 kHz 1 kHz -90 -70 dBc/Hz 10 kHz -95 -86 dBc/Hz 100 kHz -115 -106 dBc/Hz -135 dBc/Hz -50 dBc 10 MHz Reference spurs -90 Phase Noise, SSB Noise Floor Narrow PLL Loop Bandwidth fcomp = 62.5 kHz 10 kHz -97 dBc/Hz 100 kHz -115 dBc/Hz Composite system to SAW Filter driver outputs VHF3 Band Conversion gain 29 32 35 dB RFin = 164 MHz Single ended input Conversion gain 29 32 35 dB RFin = 442 MHz Single ended input 9 11 dB Rs = 50 Ω, SSB with input matching network. See Figure 10. Noise Figure OPIP3 135 146 dBµV Two output tones at 110 dBµV Output level causing 1% cross modulation 113 120 dBµV Note 2 Output level causing 1.5 kHz FM 113 120 dBµV Note 3 31 Zarlink Semiconductor Inc. ZL10060 Characteristic Min. I2C bus transmission induced LO frequency modulation Typ. Max. 2.5 N+5 Direct modulation of VCO - Supply ripple spurious Local oscillator leakage to any band input Data Sheet Units Conditions kHz Transmission repetition rate of 20 msec minimum with no change to previously loaded data, at 100 kHz SCL rate -40 dBc Local oscillator sidebands induced by an input 750 MHz carrier at 80 dBµV offset from local oscillator by 100 kHz. -40 dBc Residual FM induced on local oscillator by 20 mVp-p ripple on Vcc at 500 kHz 30 dBµV IPIP2 134 143 dBµV Two input tones at 89 dBµV at 198 MHz and 398 MHz with local oscillator at 240 MHz IPIP3 112 122 dBµV Desired = 165 MHz at 45 dBµV Undesired = 171 and 183 MHz at 89 dBµV IPIP3 112 119 dBµV Desired = 438 MHz at 45 dBµV Undesired = 444 and 456 MHz at 89 dBµV P1dB -95 107 dBµV 100 Ω 10 nH Output Impedance Phase Noise, SSB PLL Loop Bandwidth ~ 3 kHz fcomp = 166.7 kHz 1 kHz -87 -70 dBc/Hz 10 kHz -92 -86 dBc/Hz 100 kHz -114 -106 dBc/Hz -135 dBc/Hz -50 dBc 10 MHz Reference spurs -90 Phase Noise, SSB Noise Floor Narrow PLL Loop Bandwidth fcomp = 62.5 kHz 10 kHz -94 dBc/Hz 100 kHz -114 dBc/Hz Composite system to SAW Filter driver outputs UHF Band Conversion gain 35 38 41 dB 32 Zarlink Semiconductor Inc. RFin = 450 MHz ZL10060 Characteristic Conversion gain Data Sheet Min. Typ. Max. Units 35 38 41 dB RFin = 866 MHz 6 8 dB Rs = 50 Ω, No image correction Noise Figure Conditions OPIP3 135 146 dBµV Two output tones at 110 dBµV Output level causing 1% cross modulation 113 120 dBµV Note 2 Output level causing 1.5 kHz FM 113 120 dBµV Note 3 2.5 kHz Transmission repetition rate of 20 msec minimum with no change to previously loaded data, at 100 kHz SCL rate I2C bus transmission induced LO frequency modulation N+5 Direct modulation of VCO -30 dBc Local oscillator sidebands induced by an input 750 MHz carrier at 80 dBµV offset from local oscillator by 100 kHz Supply ripple spurious -40 dBc Residual FM induced on local oscillator by 20 mVp-p ripple on Vcc at 500 kHz Local oscillator leakage to any band input 60 dBµV IPIP2 125 159 dBµV Two input tones at 89 dBµV at 198 MHz and 398 MHz with local oscillator at 240 MHz IPIP3 108 115 dBµV Desired = 438 MHz at 45 dBµV Undesired = 444 and 456 MHz at 85 dBµV IPIP3 108 112 dBµV Desired = 858 MHz at 45 dBµV Undesired = 864 and 876 MHz at 85 dBµV P1dB 91 99 dBµV 100 Ω 10 nH Output Impedance Phase Noise, SSB PLL Loop Bandwidth ~ 3 kHz fcomp = 166.7 kHz 1 kHz -78 -70 dBc/Hz 10 kHz -89 -84 dBc/Hz 100 kHz -113 -106 dBc/Hz -135 dBc/Hz -50 dBc 10 MHz Reference spurs -80 33 Zarlink Semiconductor Inc. Noise Floor ZL10060 Characteristic Min. Typ. Max. Data Sheet Units Phase Noise, SSB Conditions Narrow PLL Loop Bandwidth fcomp = 62.5 kHz 10 kHz -91 dBc/Hz 100 kHz -113 dBc/Hz AGC Detector and ADC Operating frequency range 16 AGC Threshold Level 72 dBµV 120 ADC leakage current 60 -60 AGC source current AGC sink current VADC = 4.0 V nA VADC = 0.5V See Table 15 10 13.3 µA 0.25 0.33 0.43 µA -65 -100 -145 µA 1 20 AGCOP output voltage range AGC attack current, triggered by detected level exceeding AGC attack point µsec 1 AGC input level response AT[2:0] = 0 nA 6.8 AGC sink current 90% rise and fall time AGCOP output impedance MHz 0.5 4 dB Change in input level for AGC sink current to change from high impedance to 90% of maximum value, with AGC operative MΩ AGC inactive V Minimum gain required V Maximum gain required External AGC voltage 0.5 Vcc-0.4 V Maximum external voltage range which can be applied to AGCOP when disabled AGCOP leakage current -50 50 nA Over normal operating range V See Table 22 V See Table 22 V AGF flag set to 1 ADC step size, LSB 0.16Vc c ADC step size accuracy 0.01Vc c AGCout_flag High threshold AGCout_flag Low threshold Vcc0.66 Vcc0.76 34 Zarlink Semiconductor Inc. AGF flag set to 0 ZL10060 Characteristic Min. Typ. Max. Data Sheet Units Conditions IF amplifier Supply Current 25 Frequency range 16 Input impedance 1.5 Gain (Voltage conversion gain, differential source to maximum load as defined below) 2 72 MHz 2.8 kΩ 1.5 pF 61 66 70 dB VIFAGC = 3.0 V 48 57 65 dB VIFAGC = 2.2 V 21 25 29 dB VIFAGC = 1.2 V 8 17 22 dB VIFAGC = 0.5 V 6.3 8.5 Noise Figure AGC range 41 48 AGC control slope 25 31 AGC input current Gain variation within channel OPIP3 mA 130 Rs=50 Ω dB 38 dB/V 50 µA 0.25 dB dBµV 141 Output impedance 120 Ω Maximum load condition 4.7 kΩ 15 pF 1.2≤VAGC≤2.2 Channel bandwidth 8 MHz within operating frequency range, with maximum load as defined below Two output tones at 109 dBµV within output channel Gain range = 21 dB to maximum Differential load I2C BUS SDA SCL Input high voltage 2.55 5.5 V Input low voltage 0 1.4 V 10 µA Vin=5.5 V, Vcc=5.25 V 10 µA Vin=5.5 V, Vcc=0 V µA Vin= 0 V, Vcc=5.25 V Input current High Input Current Low Hysteresis SDA output voltage SCL clock rate -10 0.4 V 0.4 V Isink=3 mA 0.6 V Isink=6 mA 100 kHz 35 Zarlink Semiconductor Inc. ZL10060 Characteristic Min. Typ. Max. Data Sheet Units ADD (address) select Conditions See Table 4 Input high current 1 mA Vin=VccD Input low current -0.5 mA Vin=Vee PLL Synthesizer Charge pump output current See Table 8 VPUMP=2 V Charge pump output leakage Charge pump drive output current +-3 ±10 nA Note 4 mA VDRIVE=0.7 V 16 MHz Application as in Figure 13 with 4 MHz crystal 150 Ω 4 MHz parallel resonant crystal 0.5 Crystal frequency 4 Recommended crystal series ESR 25 External reference input frequency 4 20 MHz Sine wave coupled through 10 nF capacitor 0.2 2 Vpp Sine wave coupled through 10nF capacitor Vpp Recommended level for optimum phase noise at 4 MHz External reference drive level 70 0.5 Phase detector comparison frequency RF division ratio 31.25 250 240 32767 kHz Switching ports GPP3-GPP0 Sink current Pull up resistor GPP3- GPP1 Leakage current 10 mA Vport = 0.4 kΩ 10 10 µA Vport = Vcc, Port P0 only Note 1: 0 dBm =107 dBµV. All input levels are specified as voltage that would be present if input signal generator was terminated in 50 ohms Note 2: Wanted signal (picture carrier) = 101 dBmV at output. Undesired signal (sound carrier) at 5.25 MHz offset modulated with 1 kHz 80% AM. Increase undesired signal to give 1% AM on wanted signal. Note 3: Wanted signal at 101 dBmV. Unwanted signal at 5.25 MHz offset modulated with 1 kHz 50% AM. Increase undesired signal to give 1.5 kHz FM on wanted signal Note 4: Current into PUMP pin with 20 µA current from DRIVE pin 36 Zarlink Semiconductor Inc. D D2 A D1 A1 E1 E E2 L b e SEATING PLANE Package Code c Zarlink Semiconductor 2003 All rights reserved. ISSUE 1 ACN DATE APPRD. 25-02-2004 Previous package codes For more information about all Zarlink products visit our Web Site at www.zarlink.com Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively “Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink. This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request. Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips. Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc. Copyright Zarlink Semiconductor Inc. All Rights Reserved. TECHNICAL DOCUMENTATION - NOT FOR RESALE