D a t a S he et , R e v i s i on 2. 0 , J u l y 20 0 7 TUA 6039F-2, TUA 6037F 3 B and D i gita l / H yb r id T u ner I C wit h inte gr at ed IF A G C amp lifier O mni T un e™ T U A 6 03 9F -2 , O mni T un e™ T U A 6 03 7F Co mmu nicat i on So lutio ns Edition 2007-07-20 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D a t a S he et , R e v i s i on 2. 0 , J u l y 20 0 7 TUA 6039F-2, TUA 6037F 3 B and D i gita l / H yb r id T u ner I C wit h inte gr at ed IF A G C amp lifier O mni T un e™ T U A 6 03 9F -2 , O mni T un e™ T U A 6 03 7F Co mmu nicat i on So lutio ns TUA 6039F-2, TUA 6037F TUA 6039F-2, TUA 6037F Revision History: 2007-07-20 Data Sheet, Revision 2.0 Previous Version: 2007-05-23 Preliminary Data Sheet, Revision 1.0 Page Subjects (major changes since last revision) all Status “Preliminary” and “Confidential” removed. Formatting of document cross-references updated. 9, 11 DMB-TH standard added. 23 Functional Block Diagram of TUA 6037F added. 24 - 27 Functional Description updated for PLL, Loop-Thru and added for ADC. 45 - 46 Table footnotes updated. We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Data Sheet 4 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Table of Contents List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 Product Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.2 2.2.1 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixer/Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAW Filter Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF AGC Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended band limits in MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 10 10 11 11 11 11 11 3 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixer-Oscillator block with SAW filter driver . . . . . . . . . . . . . . . . . . . . . PLL block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF AGC amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C-Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Loop thru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 15 22 24 24 24 25 25 26 26 27 4 4.1 4.2 4.3 4.4 4.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tuner application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for hybrid application . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application circuit for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 28 29 30 31 32 5 5.1 5.1.1 5.1.2 5.1.3 5.2 5.3 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 33 33 35 35 46 52 Data Sheet 5 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7 5.4.8 5.5 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6 5.5.7 5.5.8 Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input admittance (S11) of the LOW band mixer (30 to 200 MHz) . . . . . Input impedance (S11) of the MID band mixer (130 to 500 MHz) . . . . . Input impedance (S11) of the HIGH band mixer (400 to 1000 MHz) . . . Output admittance (S22) of the of the mixers (30 to 60 MHz) . . . . . . . . Input admittance (S11) of the SAW filter driver (30 to 60 MHz) . . . . . . . Output impedance (S22) of the SAW filter driver (30 to 60 MHz) . . . . . Input admittance (S11) of the IF AGC amplifier (30 to 60 MHz) . . . . . . Output impedance (S22) of the IF AGC amplifier (30 to 60 MHz) . . . . . Measurement Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in MID and HIGH bands . . . . . . . . . . . . . . . . Matching circuit for optimum noise figure in LOW band . . . . . . . . . . . . Noise figure (NF) measurement in LOW band . . . . . . . . . . . . . . . . . . . Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . . . Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . . . Cross modulation measurement in MID and HIGH bands . . . . . . . . . . . Ripple susceptibility (RSC) measurement . . . . . . . . . . . . . . . . . . . . . . . 6 Package VQFN-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Data Sheet 6 53 53 53 54 54 55 55 56 56 57 57 57 58 58 59 59 60 60 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Data Sheet ATSC tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DVB-T and analog tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISDB-T tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC/DC Characteristics, TA = 25°C, VCC = 5 V . . . . . . . . . . . . . . . . . . . Bit Allocation Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Address selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reference divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RF AGC take-over point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A to D converter levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Charge pump current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal band selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Defaults at power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 11 12 12 15 33 35 35 46 47 48 48 49 49 50 50 50 51 51 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Data Sheet Pin Configuration of TUA 6039F-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration of TUA 6037F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of TUA 6039F-2 . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of TUA 6037F. . . . . . . . . . . . . . . . . . . . . . . Functional Block Diagram of Loop thru . . . . . . . . . . . . . . . . . . . . . . . . Tuner application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram for hybrid application (DVB-T / PAL). . . . . . . . . . . . . . Circuit diagram for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Circuit diagram for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . . Gain (GV) measurement in MID and HIGH bands. . . . . . . . . . . . . . . . Matching circuit for optimum noise figure in LOW band . . . . . . . . . . . Noise figure (NF) measurement in LOW band. . . . . . . . . . . . . . . . . . . Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . . Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . . Cross modulation measurement in MID and HIGH bands . . . . . . . . . . Ripple susceptibility measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-VQFN-48 Vignette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PG-VQFN-48 Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 13 14 22 23 27 28 29 30 31 32 52 57 57 58 58 59 59 60 60 61 61 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Product Info 1 Product Info General Description The TUA 6039F-2, TUA 6037F device combines a mixer-oscillator function and an IF AGC amplifier with a digitally programmable phase locked loop (PLL) for use in analog and digital terrestrial applications. Features PLL General • • • • • • • • • • • • • Supply voltage 5 Volt Narrowband RF AGC detector for internal tuner with - 5 programmable take over points - 2 programmable time constants - RF AGC buffer output Low phase noise Full ESD protection Qualified according to JEDEC for consumer applications I2C bus 4 pin-programmable I2C addresses High voltage VCO tuning output 4 PNP ports, 1 NPN port/ADC input1) Internal LOW/MID/HIGH band switch X_TAL 4 MHz, X_TAL buffer output 6 reference divider ratios 4 charge pump currents Power management • Bus controlled power down mode Mixer/Oscillator Application • • • • • • • Three band tuner Unbalanced highohmic LOW input Balanced lowohmic MID input Balanced lowohmic HIGH input Two pin oscillators for LOW/MID band Four pin oscillator for HIGH band The IC is suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DMB-TH, DAB, ISDB-T, Open Cable and ATSC tuners. SAW filter driver and IF-Amplifier • • • 4 IF pins to connect a 2 pole bandpass Symmetrical SAW filter driver Fully balanced IF AGC amplifier 1) ADC function is only available in TUA 6039F-2. Ordering Information Type Ordering Code Package TUA 6039F-2 SP000315897 PG-VQFN-48 TUA 6037F SP000315896 PG-VQFN-48 Data Sheet 9 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Product Description 2 Product Description The TUA 6039F-2, TUA 6037F ’OmniTune™TUA 6039F-2, OmniTune™TUA 6037F’ device combines a mixer-oscillator block with a digitally programmable phase locked loop (PLL) and a variable gain IF AGC amplifier for use in TV and VCR tuners, set-topbox and mobile applications. Integrated narrow band RF AGC functions with output buffer are provided. The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, a reference voltage and a band switch. The mixer output signal passes a SAW filter driver and an IF AGC amplifier to provide constant output level ready for A/D sampling. The PLL block with four pin programmable chip addresses forms a digitally programmable phase locked loop. With a 4 MHz quartz crystal, the PLL permits precise setting of the frequency of the tuner oscillator up to 1024 MHz in increments of 31.25, 50, 62.5, 125, 142.86 or 166.7 kHz. The tuning process is controlled by a microprocessor via an I2C bus. A flag is set when the loop is locked. The lock flag can be read by the processor via the I2C bus. The device has 5 output ports and a X_TAL output buffer. One of the ports (P4) can be also used as input for a 5-level A to D converter (only available in TUA 6039F-2). 2.1 Features 2.1.1 General • • • • • Supply voltage 5 Volt Narrowband RF AGC detector for internal tuner with - 5 programmable take over points - 2 programmable time constants - RF AGC buffer output Low phase noise Full ESD protection Qualified according to JEDEC for consumer applications 2.1.2 • • • • • • Mixer/Oscillator High impedance mixer input (common emitter) for LOW band Low impedance mixer input (common base) for MID band Low impedance mixer input (common base) for HIGH band 2 pin oscillator for LOW band 2 pin oscillator for MID band 4 pin oscillator for HIGH band Data Sheet 10 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Product Description 2.1.3 • • 2.1.4 • • PLL 4 pin-programmable I2C addresses I2C bus protocol compatible with 3.3 V and 5 V micro-controllers up to 400 kHz High voltage VCO tuning output 4 PNP ports 1 NPN port/ADC input1) Power down mode Internal LOW/MID/HIGH band switch Lock-in flag 6 programmable reference divider ratios (24, 28, 32, 64, 80, 128) 4 programmable charge pump currents 2.2 • IF AGC Amplifier Symmetrical variable gain IF output amplifier with low noise, high linearity, high dynamic range. 2.1.5 • • • • • • • • • • SAW Filter Driver 4 IF pins to connect a 2 pole bandpass Symmetrical IF preamplifier with low output impedance able to drive a compensated SAW filter (500 Ω//40 pF) Application The IC is suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DMB-TH, DAB, ISDB-T, Open Cable and ATSC tuners. The focus is on digital terrestrial. The AGC stage makes the tuner AGC independent of the Video-IF AGC. 2.2.1 Table 1 Recommended band limits in MHz ATSC tuners RF input Oscillator Band min max min max LOW 55.25 157.25 101 203 MID 163.25 451.25 209 497 HIGH 457.25 861.25 503 907 1) ADC function is only available in TUA 6039F-2. Data Sheet 11 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Product Description Table 2 DVB-T and analog tuners RF input Oscillator Band min max min max LOW 48.25 154.25 87.15 193.15 MID 161.25 439.25 200.15 478.15 HIGH 447.25 863.25 486.15 902.15 Table 3 ISDB-T tuners RF input Oscillator Band min max min max LOW 93 167 150 224 MID 173 467 230 524 HIGH 473 767 530 824 Note: Tuning margin of 3 MHz not included. Data Sheet 12 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 3 Functional Description 3.1 Pin Configuration 48 47 46 45 44 43 42 41 40 39 38 37 n.c. 1 36 GNDRF P4/ADC 2 35 MIXOUT OSCHIGHIN 3 34 SAWIN OSCHIGHOUT 4 33 SAWIN OSCHIGHOUT 5 32 MIXOUT OSCHIGHIN 6 GNDA 7 TUA6039F-2 VQFN-48 package 31 VCC 30 RFAGC n.c. 8 29 P0 SAWOUT 9 28 P1 SAWOUT 10 27 P2 VT 11 26 P3 49 CP 12 13 14 15 16 17 18 19 20 21 22 25 X_TAL_IN 23 24 GND package Figure 1 Data Sheet Pin Configuration of TUA 6039F-2 13 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 48 47 46 45 44 43 42 41 40 39 38 37 GNDRF 1 36 n.c. MIXOUT 2 35 P4 SAWIN 3 34 OSCHIGHIN SAWIN 4 33 OSCHIGHOUT MIXOUT 5 32 OSCHIGHOUT TUA6037F VQFN-48 package VCC 6 RFAGC 7 31 OSCHIGHIN 30 GNDA P0 8 29 n.c. P1 9 28 SAWOUT P2 10 27 SAWOUT P3 11 26 VT 49 X_TAL_IN 12 13 14 15 16 17 18 19 20 25 CP 21 22 23 24 GND package Figure 2 Data Sheet Pin Configuration of TUA 6037F 14 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 3.2 Pin Definition and Functions Table 4 Pin Definition and Functions Pin No.1) Symbol 1 (36) n.c. 2 P4/ADC input2) Equivalent I/O Schematic Average DC voltage at VCC = 5V LOW (35) (P4) HIGH 0V+ 0V+ 0V+ VCE or VCE or VCE or VCC VCC VCC (35) 2 MID 3 (34) OSCHIGHIN 2.3 V 4 (33) OSCHIGHOUT 2.1 V 5 (32) OSCHIGHOUT 6 (31) OSCHIGHIN 7 (30) GNDA 8 (29) n.c. 9 (28) 4 5 3 6 Analog ground 2.1V 2.3 V 0V 0V 0V SAWOUT 2.5 V 2.5 V 2.5 V 10 (27) SAWOUT 2.5 V 2.5 V 2.5 V 9 Data Sheet 10 15 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 5V LOW MID HIGH 11 (26) VT VT VT VT 12 (25) CP 1.4 V 1.4 V 1.4 V 13 (24) IFAMPIN 2.6 V 2.6 V 2.6 V 14 (23) IFAMPIN 2.6 V 2.6 V 2.6 V n.a. n.a. n.a. 16 (21) IFAMPOUT 3.3 V 3.3 V 3.3 V 17 (20) IFAMPOUT 3.3 V 3.3 V 3.3 V 12 11 13 14 15 (22) IFAMPAGC 15 16 Data Sheet 17 16 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Pin No.1) Symbol Equivalent I/O Schematic 18 (19) X_TAL_BUF Average DC voltage at VCC = 5V LOW MID HIGH 4V 4V 4V n.a. n.a. n.a. n.a. n.a. n.a. DC bias 18 XTAL 19 (18) AS 19 20 (17) SCL 20 Data Sheet 17 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Pin No.1) Symbol Equivalent I/O Schematic 21 (16) SDA Average DC voltage at VCC = 5V LOW MID HIGH n.a n.a n.a 21 22 (15) GNDACK Acknowledge ground 0 0 0 23 (14) GNDD Digital ground 0 0 0 24 (13) X_TAL_CAP 0.6 V 0.6 V 0.6 V 25 (12) X_TAL_IN 1.2 V 1.2 V 1.2 V 25 24 26 (11) P3 27 (10) P2 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 26, 27, 28, 29 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 28 (9) P1 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE 29 (8) P0 0 V or 0 V or 0 V or VCC - VCC - VCC VCE VCE VCE Data Sheet 18 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Pin No.1) Symbol 30 (7) RFAGC Equivalent I/O Schematic Average DC voltage at VCC = 5V LOW MID HIGH VRFAGC VRFAGC VRFAGC 30 31 (6) VCC 33 (4) SAWIN 34 (3) SAWIN 32 (5) MIXOUT 35 (2) MIXOUT supply voltage 33 34 32 35 VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC 0.0 V 0.0 V 0.0 V Oscillator 36 (1) GNDRF Data Sheet RF ground 19 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 5V LOW 37 (48) LOWIN MID HIGH 2V 37 38 (47) MIDIN 1V 39 (46) MIDIN 1V 38 39 40 (45) HIGHIN 1V 41 (44) HIGHIN 1V 40 41 VRFAGC VRFAGC VRFAGC 42 (43) RFAGC_BUF 42 Data Sheet 20 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Pin No.1) Symbol Equivalent I/O Schematic Average DC voltage at VCC = 5V LOW 43 (42) OSCLOWOUT 1.8 V 44 (41) OSCLOWIN 2.3 V MID HIGH 0.0 V 0.0 V 43 44 45 (40) GNDOSC Oscillator ground 0.0 V 46 (39) OSCMIDIN 2.3 V 47 (38) OSCMIDOUT 1.8 V 47 46 48 (37) n.c. 49 (49) GND package Exposed pad ground 0.0 V 0.0 V 0.0 V 1) Pin numbering for TUA 6039F-2 (Pin numbering for TUA 6037F in parentheses). 2) ADC function is only available in TUA 6039F-2. Data Sheet 21 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 3.3 Functional Block Diagram 48 n.c. 47 46 45 44 43 41 40 39 38 37 36 1 Oscillator LOW P4/ADC 42 2 GNDRF Mixer HIGH P4 ADC 35 3 Oscillator MID Mixer MID Oscillator HIGH Mixer LOW 34 33 4 5 32 RF AGC Buffer SAW Filter Driver 6 7 31 VCC 30 Prog. Divider Lock Detector AGC Detector ADC AGC 8 fdiv ADC P4 PORTS 9 Phase/ Freq Comp Charge Pump 10 Reference Divider Crystal Oscillator Crystal Oscillator Buffer IF AGC Amplifier 15 28 P1 27 P2 26 P3 25 X_TAL_IN I2C Bus 12 14 P0 fref 11 13 29 FL 1/N Divider 16 17 18 19 20 21 22 23 24 TUA6039F-2 Figure 3 Data Sheet Functional Block Diagram of TUA 6039F-2 22 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 48 GNDRF 47 46 45 44 43 42 41 40 39 38 37 1 Mixer HIGH P4 2 3 Mixer MID Oscillator MID Mixer LOW Oscillator HIGH SAW Filter Driver VCC 31 7 AGC Detector 29 P4 fdiv FL 1/N Divider 28 PORTS 9 fref P3 11 Reference Divider Crystal Oscillator Phase/ Freq Comp Charge Pump 27 26 Crystal Oscillator Buffer I2C Bus X_TAL_IN 30 Prog. Divider Lock Detector AGC 8 10 P4 32 RF AGC Buffer 6 P2 35 33 5 P1 n.c. 34 4 P0 36 Oscillator LOW IF AGC Amplifier 25 12 13 14 15 16 17 18 19 20 21 22 23 24 TUA6037F Figure 4 Data Sheet Functional Block Diagram of TUA 6037F 23 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 3.4 Circuit Description 3.4.1 Mixer-Oscillator block with SAW filter driver The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced high-impedance input and two mixers with a balanced low-impedance input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator for the HIGH band, an SAW filter driver, a reference voltage and a band switch. Filters between tuner input and IC separate the TV frequency signals into three bands. The band switching in the tuner front-end is done by using three PNP port outputs. In the selected band the signal passes a tuner input stage with a MOSFET amplifier, a doubletuned bandpass filter and is then fed to the mixer input of the IC which has in case of LOW band a high-impedance input and in case of MID or HIGH band a low-impedance input. The input signal is mixed there with the signal from the activated on chip oscillator to the IF frequency. The IF is filtered by means of an IF filter in between the 2 mixer output pins and the 2 input pins of the following SAW filter driver. The SAW filter driver has a low output impedance to drive the SAW filter directly. 3.4.2 PLL block The oscillator signal is internally DC-coupled as a differential signal to the programmable divider inputs. The signal subsequently passes through a programmable divider with ratio N = 256 through 32767 and is then compared in a digital frequency/phase detector with a reference frequency fref = 31.25, 50, 62.5, 125, 142.86 or 166.67 kHz. This frequency is derived from a low-impedance 4 MHz crystal oscillator (pins XTALIN, XTALCAP) divided by 128, 80, 64, 32, 28 or 24. The reference frequencies will be different with a quartz other than 4 MHz. The phase detector has two outputs which drive four current sources of a charge pump. If the negative edge of the divided VCO signal appears prior to the negative edge of the reference signal, the positive current source pulses for the duration of the phase difference. In the reverse case the negative current source pulses. If the two signals are in phase, the charge pump output (CP) goes into the high-impedance state (PLL is locked). An active low-pass filter integrates the current pulses to generate the tuning voltage for the VCO (internal amplifier, external pull-up resistor at VT and external RC circuitry). The charge pump output is also switched into the high-impedance state if the control bits T2, T1, T0 = 0, 1, 0. Here it should be noted, however, that the tuning voltage can alter over a long period in the high impedance state as a result of self discharge in the peripheral circuity. VT may be switched off by the control bit OS to allow external adjustments. If the VCO is not oscillating the PLL locks to a tuning voltage of 33V (VTH). By means of control bits CP, T0, T1 and T2 the pump current can be switched between four values by software. This programmability permits alteration of the control response Data Sheet 24 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description of the PLL in the locked-in state. In this way different VCO gains can be compensated, for example. Furthermore, in order to obtain best results for phase noise, reference frequency rejection and PLL stability especially in a wideband system like a digital tuner, it is necessary to set the charge pump current to different values depending on the band and frequency used. This is to cope with the variations of the different parameters that set the bandwidth. The selection can be done in the application and requires for each frequency to program not only the divider ratios, but also the band and the best charge pump current. The software controlled ports P0 to P4 are general purpose open-collector outputs. The test bits T2, T1, T0, OS = 0, 1, 0, 1 switch the test signals fdiv / 2 (divided input signal) and fref (i.e. 4 MHz / 64) to P0 and P1 respectively. The lock detector resets the lock flag FL if the width of the charge pump current pulses is greater than the period of the crystal oscillator (i.e. 250 ns). Hence, if FL = 1, the maximum deviation of the input frequency from the programmed frequency is given by ∆f = ± IP ∗ (KVCO / fXTAL) ∗ (C1 + C2) / (C1 ∗ C2) where IP is the charge pump current, KVCO the VCO gain, fXtal the crystal oscillator frequency and C1, C2 the capacitances in the loop filter (see Section 4.2). As the charge pump pulses at i.e. 62.5 kHz (= fref), it takes a maximum of 16 µs for FL to be reset after the loop has lost lock state. Once FL has been reset, it is set only if the charge pump pulse width is less than 250 ns for eight consecutive fref periods. Therefore it takes between 128 and 144 µs for FL to be set after the loop regains lock. 3.4.3 RF AGC The RF AGC stage detects the level of the SAW filter driver output signal. If the detected level is below the RF AGC take-over point, a external capacity will be charged with the source current of 300 nA or 9 µA (release current). If the detected level is above the RF AGC take-over point, the external capacity will be discharged with the sink current of 100 µA (attack current). The integrated current generates the AGC voltage for gain control of the tuners input transistors. The RF AGC take-over and the time constant are selectable by the I2C bus (see Table 13). An integrated RF AGC buffer allows to monitor the AGC voltage without any influence on the tuner gain control. 3.4.4 IF AGC amplifier Coming out of the SAW filter the IF signal is sent through a VGA (Variable Gain Amplifier) which will set the differential IF output signal to the desired level (preferably 1 Vpp). The gain of the VGA is determined by the DC-voltage at pin IFAMPAGC Data Sheet 25 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description 3.4.5 I2C-Bus Interface Data is exchanged between the processor and the PLL via the I2C bus. The clock is generated by the processor (input SCL). Pin SDA functions as an input or output depending on the direction of the data (open collector, external pull-up resistor). Both inputs have a hysteresis and a low-pass characteristic, which enhance the noise immunity of the I2C bus. The data from the processor pass through an I2C bus controller. Depending on their function the data are subsequently stored in registers. If the bus is free, both lines will be in the marking state (SDA, SCL are high). Each telegram begins with the start condition and ends with the stop condition. Start condition: SDA goes low, while SCL remains high. Stop condition: SDA goes high while SCL remains high. All further information transfer takes place during SCL = low, and the data is forwarded to the control logic on the positive clock edge. The table ’Bit Allocation’ (see Table 8) should be referred to for the following description. All telegrams are transmitted byte-by-byte, followed by a ninth clock pulse, during which the control logic returns the SDA line to low (acknowledge condition). The first byte is comprised of seven address bits. These are used by the processor to select the PLL from several peripheral components (address select). The LSB bit (R/W) determines whether data are written into (R/W = 0) or read from (R/W = 1) the PLL. In the data portion of the telegram during a WRITE operation, the MSB bit of the first or third data byte determines whether a divider ratio or control information is to follow. In each case the second byte of the same data type has to follow the first byte. Appropriate setting of the test bits will decide whether the band-switch byte or the auxiliary byte will be transmitted (see Table 11). If the address byte indicates a READ operation, the PLL generates an acknowledge and then shifts out the status byte onto the SDA line. If the processor generates an acknowledge, a further status byte is output; otherwise the data line is released to allow the processor to generate a stop condition. The status word consists of three bits from the A/D converter, the lock flag and the power-on flag. Four different chip addresses can be set by an appropriate DC level at pin AS (see Table 10). While the supply voltage is applied, a power-on reset circuit prevents the PLL from setting the SDA line to low, which would block the bus. The power-on reset flag POR is set at power-on and if VCC falls below 2 V. It will be reset at the end of a READ operation. 3.4.6 Loop thru For the tuner prestage alignment a programmable switch is integrated to bypass the bandpass, the SAW filter driver and the SAW filter. If "Loop thru" is active the mixer output signal in front of the external bandpass is fed into the IF AGC amplifier as shown in Figure 5. Data Sheet 26 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Functional Description Bandpass Loop thru control = bit 0 of Auxiliary byte Loop thru MIXER input IF AGC output IF AGC MIXER SAW Filter SAWDRV Figure 5 Functional Block Diagram of Loop thru This results in a flat frequency response from the mixer input to the IF amplifier output and allows tuner alignment without the need of an external resistor. 3.4.7 ADC1) A built-in 5 level Analog to Digital converter is available on P4/ADC pin. This converter can be used to read out an external AFC information via the I2C-BUS interface. The relationship between the external voltage at P4/ADC pin and the bits A2, A1 and A0 is given in Table 14. P4 output port cannot be used and the corresponding bit needs to be programmed to logic 0 when the ADC is in use. 1) ADC function is only available in TUA 6039F-2. Data Sheet 27 Revision 2.0, 2007-07-20 Antenna input Figure 6 Data Sheet LOW MID HIGH AGC AGC 28 HIGH + 33 V 4 MHz X_Tal Buffer Buffered 4 MHz TUA6039F-2 Tuner Application Power Supply I2C Ports AGC Buffer IF Amplifier AGC VCC AS SDA SCL P0 P1 P2 P3 P4 Tuner application block diagram ~ ~ ~ AGC Detector small external AGC to Channel Decoder 4.1 MID PD CP SAWDriver SAW 30...60 MHz Application R N P IF Bandfilter 4 LOW ~ ~ ~ ~ ~ ~ ~ ~ ~ VCC TUA 6039F-2, TUA 6037F Application Tuner application block diagram Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Application Application circuit for hybrid application +,&+ & S S & *1' *1' 0$&20 (7& 5 N 5 5 0$&20 (7& 5 N 5 5 ; *1' *1' 0,' ; *1' *1' /2: ; *1' 5 4.2 *1' & & & S S S Q & S *1' & 75 0,',1; +,*+,1; 5)$*&B%8) 26&/2:287 3 3 &3 ;B7$/B,1 3 97 Q *1' 5 5 5 5 & & Q Q *1' *1' & Q & ,1 287 287 5 N & S Q 6$: 6,3 ' ;' & Q Q $6 & Q *1' *1' 9&& 5)$*& 3 3 3 3 S 0+] 4 5 & & S S *1' 6& / QF ,) 287 *1' *1' ,)287 *1' *1' 5 *1' ,) Q *1' QS S ;WDOB%XI *1' & *1' QS *1' ; ,)$03$*& Q *1' / *1' & *1' *1' & 5 & 5 Q+ & *1' & ,1 *1' Q & Q 3 5 / & S & 6$:287< Q+ 5 QS 5 5 *1' 5 N 03 9&& 5)$*& QF 5 N 97 78$F-2 94)1 *1'$ N & 26&/2:,1 26&+,*+,1< S 5 N ,& 0,;287< 6$:287; & 9&& *1' / 5 5S6 ;B7$/B&$3 5 Q *1'26& QS *1'' / / & S 5 *1' 6'$ & *1' *1' Q 6$:,1< & S & 0,;287; 6$:,1; & S 26&+,*+287< 5 N 5 N *1'SDF NDJH *1'5) 26&+,*+,1; Q /2:,1 & *1' 26&+,*+287; *1' *1'$& . S S 6'$ N Q & 6& / S & ;B7$/B%8) 5 & Q $6 & ,)$03287< 5 WXUQV %% ' *1' 5 & Q S ,)$03287; S ,)$03$*& & N 3/ADC 26 &0,',1 QF 26&0,'287 3 5 QF 5 N ,)$03,1< QS *1' ,)$03,1; & & S *1' & QS *1' & & +,*+,1< 9&& & S 0,',1< & S *1' & 75 $*&B%8) ' %% & / WXUQV ' %% & / WXUQV 5 *1' QF *1' 6&/ 6'$ - ,ð& %86 75 72.2$ 75$16)250(5 *1' ; ,) Figure 7 Circuit diagram for hybrid application (DVB-T / PAL) Note: TUA 6037F has different pinning and no ADC function. Data Sheet 29 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Application Application circuit for ATSC +,&+ & S S & *1' 0$&20(7& *1' 5 N 0$&20(7& 5 5 5 N ; *1' 5 5 *1' 0,' ; *1' *1' /2: ; *1' 5 4.3 *1' & & & S S S Q 75 0,',1; +,*+,1; ;B7$/B,1 ;B7$/B&$3 *1'' *1'$&. 3 *1' 5 5 5 5 & & Q Q *1' *1' ,1 287 / QS 287 S & Q 6$: 6,3' ;' & Q Q $6 5 5 5 & Q & Q & Q & Q & Q & Q *1' *1' *1' *1' *1' *1' & QS Q+ & S 5 / / QS *1' *1' 9&& 5)$*& 3 3 3 3 & S 0+] 4 5 & & S S ,)287 *1' QF *1' *1' ,)287 *1' ,) *1' 5 *1' ;WDOB%XI Q+ 5 QS S ; ,)$03$*& S *1' 5 & & 9&& *1' / & & 5 N & S 5 5 *1' ,1 *1' *1' *1' 5 N 03 26&/2:,1 *1'26& 97 6'$ / 26&0,',1 3 &3 5 N 97 3 3 N & Q $76& QF & S 5 N 9&& 5)$*& *1' *1' 6'$ *1' 0,;287< 6&/ 5 Q 0,;287; 78$F-2 94)1 *1'$ ;B7$/B%8) & *1' *1'SDFNDJH *1'5) 6$:287< Q /2:,1 6$:287; 5 N & ,& 26&+,*+,1< & S 6$:,1< 5 N *1' S 6$:,1; 26&+,*+287; & S 6&/ & S *1' & Q Q 26&+,*+287< ,)$03287< N & Q & 26&+,*+,1; ,)$03287; 5 S ,)$03$*& *1' 5 WXUQV ' %% & $6 & S S ,)$03,1< & N ,)$03,1; 5 & Q S 5)$*&B%8) 3/ADC 26&/2:287 3 5 QF 5 N QF *1' 26&0,'287 & QS & S *1' & QS *1' & & +,*+,1< 9&& & S 0,',1< & S *1' & 75 $*&B%8) ' %%& / WXUQV ' %%& / WXUQV 5 *1' QF *1' 6&/ 6'$ - ,ð&%86 75 72.2$75$16)250(5 *1' ; ,) Figure 8 Circuit diagram for ATSC Note: TUA 6037F has different pinning and no ADC function. Data Sheet 30 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Application Application circuit for DVB-T +,&+ & S S & *1' *1' 0$&20 (7& 5 N 5 5 0$&20 (7& 5 N 5 5 ; *1' *1' 0,' ; *1' *1' /2: ; *1' 5 4.4 *1' & & & S S S Q *1' & 26&+,*+287; 26&+,*+,1< 75 0, ',1; +,*+,1; 3 6$:287; 3 6$:287< 3 3 QF 97 &3 Q *1' 5 5 & & Q Q *1' *1' ,1 287 287 5 N & S Q & 6$: 6,3 ' ;' & Q Q $6 Q & Q *1' *1' *1' QS 9&& 5)$*& 3 3 3 3 & S 0+] 4 5 & & S S *1' 6& / QF ,) 287 *1' *1' ,)287 *1' *1' 5 *1' ,) & *1' QS S ;WDOB%XI *1' Q *1' / *1' & *1' *1' *1' ; ,)$03$*& 5 Q+ & 5 & Q & Q *1' & ,1 *1' 5 / & Q DVB-T Q+ 5 QS & S *1' 5 5 & 9&& *1' / 5 5 5 & 78$F-2 94)1 ;B7$/B,1 5 N 03 5) $*&B%8) 5 N 97 26 &/2:287 9&& 5)$*& N & ,& *1'$ S 5 N 26 &/2:,1 0,;287< & S 5 S ;B7$/B&$3 5 Q *1'26& QS *1' 6'$ & *1' 26&0,',1 / *1'' / Q *1' 6$:,1< & S & 6$:,1; & S 0,;287; 26&+,*+287< 5 N 5 N 26&+,*+,1; Q *1'SDF NDJH *1'5) & /2:,1 & S *1' *1' 3/ADC *1'$& . S 6'$ S & S 6& / N Q & $6 5 & Q ;B7$/B%8) & ,)$03287< 5 WXUQV %% ' *1' 5 & Q S ,)$03287; S ,)$03$*& & N 26 &0,'287 3 5 QF 5 N ,)$03, 1< QS QF *1' ,)$03, 1; & & S *1' & QS *1' & & +,*+,1< 9&& & S 0, ',1< & S *1' & 75 $*&B%8) ' %% & / WXUQV ' %% & / WXUQV 5 *1' QF *1' 6&/ 6'$ - ,ð& %86 75 72.2$75$16)250(5 *1' ; ,) Figure 9 Circuit diagram for DVB-T Note: TUA 6037F has different pinning and no ADC function. Data Sheet 31 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Application Application circuit for ISDB-T +,&+ & S S & *1' 0$&20(7& *1' 5 N 0$&20(7& 5 5 5 N ; *1' 5 5 *1' 0,' ; *1' *1' /2: ; *1' 5 4.5 *1' & & & S S S Q 75 0,',1; +,*+,1; ;B7$/B,1 ;B7$/B&$3 *1'' *1'$&. 3 *1' *1' 5 5 5 5 & & Q Q *1' *1' / QS ,1 287 287 5 N & S S 6$: 6,3' ;' & Q Q 5 5 & S & Q & Q & Q & Q $6 *1' & Q & Q *1' *1' *1' *1' *1' *1' & QS / QS *1' *1' 9&& 5)$*& 3 3 3 3 & S 0+] 4 5 & & S S QF ,)287 *1' *1' ,)287 *1' ,) *1' 5 *1' ;WDOB%XI 5 Q+ S ; ,)$03$*& 5 *1' 5 & Q+ 5 QS / *1' Q & 9&& *1' / & & ,1 *1' & S 5 5 *1' 5 N 03 26&/2:,1 *1'26& 97 6'$ / 26&0,',1 3 &3 5 N 97 3 3 N & Q ,6'%7 QF & S 5 N 9&& 5)$*& *1' *1' 6'$ *1' 0,;287< 6&/ 5 Q 0,;287; 78$F-2 94)1 *1'$ ;B7$/B%8) & *1' *1'SDFNDJH *1'5) 6$:287< Q /2:,1 6$:287; 5 N & ,& 26&+,*+,1< & S 6$:,1< 5 N *1' S 6$:,1; 26&+,*+287; & S 6&/ & S *1' & Q Q 26&+,*+287< ,)$03287< N & Q & 26&+,*+,1; ,)$03287; 5 S ,)$03$*& *1' 5 WXUQV ' %% & $6 & S S ,)$03,1< & N ,)$03,1; 5 & Q S 5)$*&B%8) 3/ADC 26&/2:287 3 5 QF 5 N QF *1' 26&0,'287 & QS & S *1' & QS *1' & & +,*+,1< 9&& & S 0,',1< & S *1' & 75 $*&B%8) ' %%& / WXUQV ' %%& / WXUQV 5 *1' QF *1' 6&/ 6'$ - ,ð&%86 75 72.2$75$16)250(5 *1' ; ,) Figure 10 Circuit diagram for ISDB-T Note: TUA 6037F has different pinning and no ADC function. Data Sheet 32 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5 Reference 5.1 Electrical Data 5.1.1 Absolute Maximum Ratings Attention: The maximum ratings may not be exceeded under any circumstances, not even momentarily and individually, as permanent damage to the IC will result. Table 5 # Absolute Maximum Ratings Parameter1) Symbol Limit Values min. Unit Remarks max. 1. Supply voltage VCC -0.3 6 V 2. Ambient temperature TA -40 +85 °C 3. Junction temperature TJ +125 °C 4. Storage temperature TStg 5. Thermal resistance junction to ambient2) RTHJA 6. Temperature difference TJC junction to case3) -40 +125 exposed GND pad soldered °C 39 K/W exposed GND pad soldered 3 K exposed GND pad soldered PLL 7. CP 8. 9. VCP -0.3 ICP Bus input/output SDA VSDA -0.3 10. Bus output current SDA ISDA(L) during acknowledge 11. Bus input SCL V mA 6 V 10 mA open collector -0.3 6 V 12. Chip address switch AS VAS -0.3 6 V 13. VCO tuning output (loop VVT filter) -0.3 35 V 14. PNP port output current IPP of P0,P1,P2,P3 -5 0 mA open collector 15. Total port output current ΣIPP of PNP ports -20 0 mA tmax = 0.1 s at 5.5 V Data Sheet VSCL 3 1 33 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values Unit Remarks min. max. 0 5 mA 16. NPN port output current IPN of P4 open collector Mixer-Oscillator 17. Mix inputs LOW band VLOW -0.3 3 V 18. Mix inputs MID/HIGH 19. band VMID/HIGH -0.3 2 V IMID/HIGH -5 6 mA 20. VCO base voltage VB -0.3 3 V LOW, MID and HIGH band oscillators 21. VCO collector voltage VC 6 V LOW, MID and HIGH band oscillators 22. RF AGC output VRFAGC 4 V 23. IRFAGC 1 mA 24. Voltage on all other input and output pins except GNDs Vmax -0.3 -0.3 VCC V 2 kV ESD-Protection4) 25. all pins VESD 1) All values are referred to ground (pin), unless stated otherwise. Currents with a positive sign flow into the pin and currents with a negative sign flow out of pin. 2) Measured in a multi layer board as defined by JEDEC standard. The thermal resistance depends on the PCB board design. 3) Referred to top center of package in free air condition. 4) According to EIA/JESD22-A114-B (HBM incircuit test), as a single device incircuit contact discharge test. Data Sheet 34 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.1.2 Table 6 Operating Range Operating Range # Parameter Symbol Limit Values 1. Supply voltage VCC 4.5 5.5 V nominal 5 V 2. Ambient temperature TA -20 +85 °C exposed GND pad soldered 3. Programmable divider factor N 256 32767 4. LOW mixer input frequency range fMIXV 30 200 MHz 5. MID and HIGH band mixer input frequency range fMIXU 130 1000 MHz 6. LOW oscillator frequency range fOH 65 250 MHz 7. MID band oscillator frequency range fOU 165 530 MHz 8. HIGH band oscillator frequency range fOU 400 950 MHz min. 5.1.3 Table 7 # Unit Remarks max. AC/DC Characteristics AC/DC Characteristics, TA = 25°C, VCC = 5 V Parameter1) Symbol Limit Values min. typ. Unit Test Conditions ■ max. Supply 1. Supply voltage VCC 4.5 5 5.5 V 2. Current consumption in active mode IVCC 84 105 126 mA IVCC 84 105 126 mA MID band IVCC 84 105 126 mA HIGH band 3. 4. Data Sheet 35 LOW band Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. 5. typ. Current Ipd consumption in power down mode Unit Test Conditions ■ max. 12 mA Digital Part PLL Crystal oscillator connections XTAL 6. Crystal frequency fXTAL 7. Crystal resistance 8. Crystal oscillator startup capability 9. XTAL Buffer output fXTALIO frequency 3.2 4.0 4.8 MHz RXTAL 30 300 Ω ZXTAL -1000 10. XTAL Buffer Signal VAC voltage -650 Ω fXTAL = 4 MHz 4.0 MHz fXTAL = 4 MHz 400 mVpp Charge pump output CP 11. Output current, 12. see Table 15 ICPDH ± 455 ± 650 ± 845 µA VCP = 1.4 V ICPH ± 175 ± 250 ± 325 µA VCP = 1.4 V 13. ICPDL ± 87 ± 125 ± 163 µA VCP = 1.4 V 14. ICPL ± 35 ± 50 ± 65 µA VCP = 1.4 V 15. Tristate current ICPZ ±10 nA VCP = 1.4 V, T2,T1,OS = 1,0,1 16. Output voltage VCP 1.9 V loop locked 10 µA VTH = 33 V, T2,T1,OS = 0,0,1 0.9 1.4 Tuning voltage output VT (open collector) 17. Leakage current ITH 18. Output voltage VTL when the loop is closed, (test mode in normal operation) 0.4 32.7 V OS = 0, RLoad = 33 kΩ, tuning supply = 33 V I2C-Bus Bus inputs SCL, SDA Data Sheet 36 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. Unit Test Conditions ■ max. 19. High-level input voltage VIH 2.5 5.5 V VCC = 4.5 to 5.5 V 20. Low-level input voltage VIL 0 1 V VCC = 4.5 to 5.5 V 21. High-level input current IIH 10 µA Vbus = 5.5 V, VCC = 0 V 22. IIH 10 µA Vbus = 5.5 V, VCC = 5.5 V 23. Low-level input current IIL 10 µA Vbus = 1.5 V, VCC = 0 V 24. IIL µA Vbus = 0 V, VCC = 5.5 V -10 Bus output SDA (open collector) 25. Leakage current IOH 10 µA VOH = 5.5 V 26. Low-level output voltage VOL 0.4 V IOL = 3 mA 27. Rise time tr 300 ns 28. Fall time tf 300 ns 400 kHz Edge speed SCL,SDA Clock timing SCL 29. Frequency fSCL 0 100 30. High pulse width tH 0.6 µs 31. Low pulse width tL 1.3 µs 32. Set-up time tsusta 0.6 µs 33. Hold time thsta 0.6 µs 34. Set up time tsusto 0.6 µs 35. Bus free time between a STOP and START condition tbuf 1.3 µs Start condition Stop condition Data transfer Data Sheet 37 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. Unit Test Conditions max. 36. Set-up time tsudat 0.1 µs 37. Hold time thdat 0 µs 38. Input hysteresis SCL, SDA Vhys 39. Pulse width of spikes which are suppressed tsp 200 0 40. Capacitive load for CL each bus line ■ mV 50 ns 400 pF Ports 41. PNP Output saturation voltage VPP,sat = VCC VCE,sat 0.25 0.4 V IPP = 5 mA 42. NPN Output saturation voltage VPN,sat 0.25 0.4 V IPN = 5 mA 43. Port Output leakage current ILEAK,Port 10 µA VCC V 10 µA ADC input (only available in TUA 6039F-2) 44. ADC input voltage VADC 45. High-level input current IADCH 46. Low-level input current IADCL 0 -10 µA Analog Part LOW band mixer and SAW filter driver 47. RF frequency fRF 44.25 48. Voltage gain GV 21 49. Noise figure NF Data Sheet 170.25 MHz picture carrier2) 38 24 27 dB fRF = 48.25 MHz to 154.25 MHz see Section 5.5.1 8 12 dB fRF = 48.25 MHz to 154.25 MHz see Section 5.5.4 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. Unit Test Conditions max. 50. SAWOUT output Vo voltage causing 0.8% of crossmodulation in channel 120 dBµV fRF = 48.25 MHz to 154.25 MHz see Section 5.5.6 51. Input IP3 IIP3 117 dBµV fRF1 = 48.25 MHz, fRF2 = 49.25 MHz, PRF1 = PRF2 52. IIP3 117 dBµV fRF1 = 154.25 MHz, fRF2 = 155.25 MHz, PRF1 = PRF2 53. Local oscillator FM FMI2C caused by I2C communication 54. (N+5) - 1 MHz pulling N+5 - 1 MHz 55. Input impedance 56. Zi = (Rp || 1/jωCp) 2.12 kHz 77 ■ fRF = 154.25 MHz3) 80 dBµV fRFw = 69.25 MHz, fOSC = 108.15 MHz, fRFu = 108.25 MHz4) Rp 1 kΩ Cp 2 pF parallel equivalent circuit at 100 MHz5) see Section 5.4.1 Mid band mixer and SAW filter driver 57. RF frequency fRF 154.25 58. Voltage gain GV 31 59. Noise figure (not corrected for image) NF 34 37 dB fRF = 161.25 MHz to 439.25 MHz see Section 5.5.2 6 10 dB fRF = 161.25 MHz to 439.25 MHz see Section 5.5.5 120 60. SAWOUT output Vo voltage causing 0.8% of crossmodulation in channel Data Sheet 454.25 MHz picture carrier2) 39 dBµV fRF = 161.25 MHz to 439.25 MHz see Section 5.5.7 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. Unit Test Conditions max. 61. Input IP3 IIP3 106 dBµV fRF1 = 161.25 MHz fRF2 = 162.25 MHz, PRF1 = PRF2 62. IIP3 105 dBµV fRF1 = 439.25 MHz fRF2 = 440.25 MHz, PRF1 = PRF2 63. Local oscillator FM FMI2C caused by I2C communication 64. (N+5) - 1 MHz pulling N+5 - 1 MHz 65. Input impedance 66. Zi = (Rs + jωLs) 2.12 kHz 77 ■ fRF = 439.25 MHz3) 80 dBµV fRFw = 359.25 MHz, fOSC = 398.15 MHz, fRFu = 398.25 MHz4) Rs 22 Ω Ls 2.7 nH series equivalent circuit at 300 MHz5) see Section 5.4.2 HIGH band mixer and SAW filter driver 67. RF frequency fRF 399.25 68. Voltage gain GV 31 69. Noise figure (not corrected for image) NF 863.25 MHz picture carrier2) 34 37 dB fRF = 447.25 MHz to 863.25 MHz see Section 5.5.2 6 10 dB fRF = 447.25 MHz to 863.25 MHz see Section 5.5.5 70. SAWOUT output Vo voltage causing 0.8% of crossmodulation in channel 120 dBµV fRF = 447.25 MHz to 863.25 MHz see Section 5.5.7 71. Input IP3 IIP3 105 dBµV fRF1 = 447.25 MHz fRF2 = 448.25 MHz PRF1 = PRF2 72. IIP3 105 dBµV fRF1 = 863.25 MHz fRF2 = 864.25 MHz PRF1 = PRF2 Data Sheet 40 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. 73. Local oscillator FM FMI2C caused by I2C communication 74. (N+5) - 1 MHz pulling N+5 - 1 MHz 75. Input impedance 76. Zi = (Rs + jωLs) Unit Test Conditions max. 2.12 kHz 77 ■ fRF = 863.25 MHz3) 80 dBµV fRFw = 823.25 MHz, fOSC = 862.15 MHz, fRFu = 862.25 MHz4) Rs 25 Ω Ls 2.5 nH series equivalent circuit at 650 MHz5) see Section 5.4.3 LOW band oscillator 77. Oscillator frequency fOSC 78. Phase noise, carrier to noise sideband ΦOSC 80 6) 210 MHz -85 -77 dBc/ ±1 kHz frequency Hz offset, worst case in the frequency range7) 79. -92 -88 dBc/ ±10 kHz frequency Hz offset, worst case in the frequency range8) 80. -112 -108 dBc/ ±100 kHz Hz frequency offset, worst case in the frequency range RSC 81. Ripple susceptibility of VP -50 dBc VRipple = 20 mVpp, fRipple = 100 kHz9) MHz 6) MID band oscillator 82. Oscillator frequency Data Sheet fOSC 201 493 41 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. ■ max. -80 -73 dBc/ ±1 kHz frequency Hz offset, worst case in the frequency range7) 84. -92 -88 dBc/ ±10 kHz frequency Hz offset, worst case in the frequency range8) 85. -112 -108 dBc/ ±100 kHz Hz frequency offset, worst case in the frequency range 86. Ripple RSC susceptibility of VP -60 83. Phase noise, carrier to noise sideband ΦOSC Unit Test Conditions dBc VRipple = 20 mVpp, fRipple = 100 kHz9) 905 MHz 6) -77 -70 dBc/ ±1 kHz frequency Hz offset, worst case in the frequency range7) 89. -90 -86 dBc/ ±10 kHz frequency Hz offset, worst case in the frequency range8) 90. -110 -106 dBc/ ±100 kHz Hz frequency offset, worst case in the frequency range 91. Ripple RSC susceptibility of VP -60 dBc VRipple = 20 mVpp, fRipple = 100 kHz9) 20 dB fIF = 36 MHz to 54 MHz HIGH band oscillator 87. Oscillator frequency fOSC 88. Phase noise, carrier to noise sideband ΦOSC 435 SAW filter driver 92. Voltage gain Data Sheet GV 42 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. Unit Test Conditions ■ max. 93. Output voltage Vo causing 1 dB compression 126 dBµV 94. Input impedance 95. Zi = (Rp || 1/jωCp) Rp 470 Ω Cp 6 pF 96. Output impedance RS 97. Zo = (Rs + jωLs) LS 25 Ω 50 nH series equivalent circuit at 36 MHz5) see Section 5.4.6 parallel equivalent circuit at 36 MHz5) see Section 5.4.5 Rejection at the SAW driver outputs 98. Level of divider INTDIV interferences in the IF signal -66 -60 dBc VOUT = 100 dBµV10) 99. Crystal oscillator interferences rejection -66 -60 dBc VOUT = 100 dBµV11) 100. Reference INTREF frequency rejection -66 -60 dBc VOUT = 100 dBµV12) 101. Channel S02 beat INTS02 -66 -60 dBc fRFpix = 76.25 MHz, VRFpix = 80 dBµV, fIF = 38.9 MHz13) 115 dBµV INTXTAL RF AGC output 102. RF AGC output AGCTOP 103 narrow 103. Source current 1 IAGCfast 9.0 µA 104. Source current 2 IAGCslow 300 nA 105. Peak sink to ground IAGCpeak 100 µA 106. RF AGC output voltage VAGCmax 3.7 V 107. VAGCmin 0 0.25 V 108. RF voltage range to AGCSLIP switch the AGC from active to inactive mode Data Sheet 0.5 43 maximum level, IAGC = 9 µA minimum level dB Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. 109. RF AGC leakage current AGCLEAK 110. RF AGC output voltage AGCOFF typ. -50 Unit Test Conditions ■ max. 50 3.7 nA 0 < VAGC < VCC, AL2, AL1, AL0 = 1, 1, 0 V AGC is disabled, IAGC = 9 µA RF AGC buffer 111. RF AGC buffer output current Imax 112. RF AGC buffer output saturation voltage low Vlow 113. RF AGC buffer output saturation voltage high 1 mA 120 200 mV Iload = 1 mA VCC Vhigh 170 300 mV Iload = 1 mA Gmax 65 dB VIFAGC ≥ 2.0 V dB VIFAGC ≤ 0.2 V IF AGC amplifier 114. Voltage gain 115. Gmin 9 116. Maximum IF input level VIF/IF 102 dBµV min. gain, fIF/IF = 36 MHz (sine), VIFAGC = 0.2 V, VOUT/OUT = 1 Vpp 117. Minimum IF input level VIF/IF 46 max. gain, fIF/IF = 36 MHz (sine), VIFAGC = 2 V, VOUT/OUT = 1 Vpp 118. Input impedance 119. Zi = (RIF/IF || 1/jωCIF/IF) RIF/IF 2 kΩ CIF/IF 1.5 pF 120. Low end cutoff frequency (-1 dB) fL 121. High end cutoff frequency (-1 dB) fH Data Sheet 25 65 44 parallel equivalent circuit at 36 MHz5) see Section 5.4.7 MHz VIF/IF = 60 dBµV, RLOAD ≥ 5 kΩ, C MHz LOAD ≤ 1.5 pF, VOUT/OUT = 1 Vpp at fIF/IF = 36 MHz (sine) Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference # Parameter1) Symbol Limit Values min. typ. Unit Test Conditions max. 122. Intermodulation C/IM3 -56 dBc 123. Third order output intercept point OIP3 138 dBµV fIF/IF1 = 37 MHz, fIF/IF2 = 38 MHz, VIF/IF1 = 90 dBµV, VIF/IF2 = 90 dBµV RLOAD ≥ 5 kΩ, CLOAD ≤ 10 pF, VOUT/OUT = 1 Vpp 124. Signal to noise ratio SNR 43 dB 125. Noise figure 9 126. Output impedance RIF/IF 127. Zo = (RIF/IF + jωLIF/IF) LIF/IF 90 120 ■ 150 fIF/IF1 = 37 MHz, fIF/IF2 = 38 MHz, VIF/IF1 = 90 dBµV, VIF/IF2 = 90 dBµV RLOAD ≥ 5 kΩ, CLOAD ≤ 10 pF, VOUT/OUT = 1 Vpp fIF/IF = 36 MHz (sine), VIF/IF = 60 dBµV, VOUT/OUT = 1 Vpp, BW = 8 MHz dB max. gain Ω series equivalent circuit at 36 MHz5) see Section 5.4.8 nH 1) Values are referred to the application given in Figure 7 and fIF = 36 MHz, unless stated otherwise. 2) The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF). 3) Local oscillator FM modulation resulting from I2C communication is measured at the IF output using a modulation analyzer with a peak to peak detector ((P+ + P-) / 2) and a post detection filter 20 Hz - 100 kHz. The I2C messages are sent to the tuner in such a way that the tuner is addressed but the content of the PLL registers are not altered. The refresh interval between each data set shall be 20 ms to 1 s. 4) (N+5) -1 MHz is defined as the input level of channel N+5, at frequency 1 MHz lower, causing 100 kHz FM sidebands 30 dB below the wanted carrier. 5) Impedance measured with differential 2-port measurement at input or output. Input and output pins directly connected to measurement equipment with 50 Ω strip lines. 6) Limits are related to the tank circuit used in the application board (see Figure 7). Frequency bands may be adjusted by the choice of external components. 7) For wide loop filter application (see Figure 9). 8) For narrow loop filter application (see Figure 8). Data Sheet 45 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 9) The supply ripple susceptibility is a sideband measurement using a spectrum analyzer connected to the IF output. An unmodulated RF signal with a level of 80 dBµV is applied to the test board RF input. A sinewave signal with a defined frequency is superposed onto the supply voltage (see Figure 19). The specified value is the worst case in the frequency range. 10) This is the level of divider interferences close to the IF frequency. For example channel S3: fOSC = 158.15 MHz, 1/4 fOSC = 39.5375 MHz. The rejection has to be better than 60 dB for a SAW driver output level of 100 dBµV. 11) Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has to be better than 60 dB for a SAW driver output level of 100 dBµV. 12) The reference frequency rejection is the level of reference frequency sidebands according to the application circuit (166.67 kHz for DVB-T standard, 142.86 kHz for ISDB-T standard or 62.5 kHz for ATSC standard) related to the carrier. The rejection has to be better than 60 dB for a SAW driver output level of 100 dBµV. In hybrid application the rejection is valid for the digital reference frequency (166.67 kHz for DVB-T/PAL standard, or 142.86 kHz for ISDB-T/NTSC standard), but any lower analog reference frequency may reduce this rejection. 13) Channel S02 beat is the interfering product of fRFpix, fIF and fOSC of channel S02, fBEAT = 37.35 MHz. The possible mechanisms are fOSC - 2 x fIF or 2 x fRFpix - fOSC. 5.2 Bus Interface Table 8 Bit Allocation Read/Write Name Byte Bits MSB bit6 bit5 bit4 bit3 Ack bit2 bit1 LSB Write Data (for TUA 6039F-2 and for TUA 6037F) Address Byte ADB 1 1 0 0 0 MA1 MA0 R/W=0 A Divider Byte 1 DB1 0 N14 N13 N12 N11 N10 N9 N8 A Divider Byte 2 DB2 N7 N6 N5 N4 N3 N2 N1 N0 A Control byte CB 1 CP T2 Bandswitch byte BB Auxiliary byte 1) AB XTB ATC T1 T0 OS A P4 P3 P2 P1 P0 A 0 0 LP A AL2 AL1 AL0 0 1 1 0 0 0 POR FL 1 1 1 0 0 POR FL 1 1 RSA RSB Read data (for TUA 6039F-2) Address byte ADB Status byte SB NBD AGC MA1 MA0 R/W=1 A2 A1 A0 A A Read data (for TUA 6037F) Address byte ADB Status byte SB 0 MA1 MA0 R/W=1 AGC NBD 1 1 A A 1) AB replaces BB when T2, T1, T0 = 0, 1, 1, see Table 11. Data Sheet 46 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference Table 9 Symbol Description of Symbols Description A Acknowledge MA0, MA1 Address selection bits, see Table 10 N14 to N0 programmable divider bits: N = 214 x N14 + 213 x N13 + ... + 23 x N3 + 22 x N2 + 21 xN1 + N0 CP charge pump current bit: bit = 0: charge pump current = 50 µA or 125 µA bit = 1: charge pump current = 250 µA (default) or 650 µA, see Table 15 T0, T1, T2 test bits, Table 11 RSA, RSB reference divider bits, see Table 12 OS tuning amplifier control bit: bit = 0: enable VT; bit = 1: disable VT (default) XTB disable XTAL buffer control bit: bit = 0: enable XTAL buffer (default); bit = 1: disable XTAL buffer P0, P1, P2, PNP ports control bits: P3 bit = 0: Port is inactive, high impedance state (default) bit = 1: Port is active, VOUT = VCC-VCE,sat P4 NPN port control bit: bit = 0: Port is inactive, high impedance state (default) bit = 1: Port is active, VOUT = VCE,sat ATC RF AGC time constant bit: bit = 0: IAGC = 300 nA; ∆t = 2s with C = 160 nF (default) bit = 1: IAGC = 9 µA; ∆t = 50ms with C = 160 nF AL0, AL1, AL2 RF AGC take-over point bits, see Table 13 LP Loop through: bit = 0: disable loop through (default); bit = 1: enable loop through POR Power-on reset flag, bit = 1 at power-on FL PLL lock flag, bit = 1: loop is locked NBD Narrow Band detector flag, bit =1 when SAWOUT level is above RF AGC take-over point AGC internal AGC flag, bit = 1 when internal AGC is active (level below 3V) A0, A1, A2 digital output of the 5-level ADC (only available in TUA 6039F-2) Data Sheet 47 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference Table 10 Address selection Voltage at AS MA1 MA0 (0 to 0.1) x VCC 0 0 open circuit or (0.2 to 0.3) x VCC 0 1 (0.4 to 0.6) x VCC 1 0 (0.9 to 1) x VCC 1 1 Table 11 Test modes Mode T2 T1 T0 OS Normal mode (XMODE = 0 ), charge pump currents 50 µA and 250 µA selectable 0 0 0 0 Normal mode (XMODE = 0), charge pump currents 50 µA and 250 µA selectable (default) 0 0 1 0 Normal mode (XMODE = 0), CP test tristate, CP currents off, VT disabled 0 0 x 1 Port test output: P0 = NB 0 1 0 0 1) Port test output: P0 = fdiv / 2, P1 = fref 0 1 0 1 byte AB will follow (otherwise byte BB will follow) 0 1 1 0 byte AB will follow (otherwise byte BB will follow), CP test tristate, CP currents off, VT disabled 0 1 1 1 CP test sink 1 0 0 0 CP test source 1 0 1 0 CP test tristate, CP currents off, VT active 1 0 x 1 Extended mode (XMODE = 1), charge pump currents 50 µA and 250 µA selectable 1 1 0 0 Extended mode (XMODE = 1), charge pump currents 125 µA and 650 µA selectable 1 1 1 0 Extended mode (XMODE = 1), CP test tristate, CP currents off, VT disabled 1 1 x 1 1) XMODE = internal flag for extended mode Data Sheet 48 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference Table 12 Reference divider ratios fref1) Reference divider ratio Mode T2 T1 RSA RSB 80 50 kHz normal 0 0 0 0 128 31.25 kHz normal 0 0 0 1 24 166.67 kHz x x x 1 0 64 62.5 kHz x x x 1 1 32 125 kHz extended 1 1 0 0 28 142.86 kHz extended 1 1 0 1 1) With a 4 MHz quartz. Table 13 RF AGC take-over point SAW driver output Remark level, symmetrical mode AL2 AL1 AL0 115 dBµV 0 0 0 115 dBµV 0 0 1 0 1 0 109 dBµV 0 1 1 106 dBµV 1 0 0 1 0 1 External RF AGC Disable RF AGC buffer 1 1 0 Disabled 2) 1 1 1 112 dBµV default mode at POR 103 dBµV IRFAGC = 0 VRFAGC = high 1) 1) The RF AGC detector is disabled. Both the sinking and sourcing current from the IC is disabled. The RF AGC output goes into a high impedance state and an external RF AGC source can be connected in parallel and will not be influenced. The RF AGC buffer is disabled. 2) The RF AGC detector is disabled, VRFAGC is set to high voltage VRFAGC = 3.7 V. Data Sheet 49 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference Table 14 A to D converter levels1) Voltage at ADC1) A2 A1 A0 (0 to 0.15) * VCC 0 0 0 (0.15 to 0.3) * VCC 0 0 1 (0.3 to 0.45) * VCC 0 1 0 (0.45 to 0.6) * VCC 0 1 1 (0.6 to 1) * VCC 1 0 0 1) No erratic codes in the transition. Table 15 Charge pump current Charge pump current Mode 50 µA CP T2 T1 0 0 x1) 0 250 µA (default) normal 50 µA 1 0 125 µA extended 250 µA 650 µA 0 1 T0 x 0 1 1 1 1 0 1 1) x = don‘t care. Table 16 Internal band selection Band Mixer LOW P0, P1 Oscillator 1) P0, P1 MID P1, P0 P1, P0 HIGH (default) P0, P1 P0, P1 Power down mode P0, P1 P0, P1 1) Means: (P0 AND NOT P1); that is: LOW mixer is switched on if (P0 = 1 and P1 = 0). 1) ADC function is only available in TUA 6039F-2. Data Sheet 50 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference Table 17 Defaults at power-on reset Name Byte Bits MSB bit6 bit5 bit4 bit3 bit2 bit1 LSB 1 1 Write Data Address Byte ADB 0 0 0 MA1 MA0 R/W=0 1) Divider byte 1 DB1 0 x x x x x x Divider byte 2 DB2 x x x x x x x x x Control byte CB 1 1 0 0 1 0 0 1 Bandswitch byte BB 0 0 0 0 0 0 0 0 Auxiliary byte AB 0 0 1 0 0 0 0 0 1) x = don‘t care. Table 18 Mode Description of modes Description normal Reference divider ratios 24, 64, 80, 128 selectable. Charge pump currents 50, 250 µA selectable. Auxiliary byte to follow Control byte (T2 = 0, T1 = 1, T0 = 1), otherwise Bandswitch byte to follow Control byte. extended Reference divider ratios 24, 28, 32, 64 selectable. Charge pump currents 50, 125, 250, 650 µA selectable. Auxiliary byte to follow Control byte (T2 = 0, T1 = 1, T0 = 1), otherwise Bandswitch byte to follow Control byte. Data Sheet 51 Revision 2.0, 2007-07-20 1 Figure 11 Data Sheet 52 Ack. 3rd ADB= address byte DB1= programmable divider byte 1 DB2= pardonable divider byte 2 CB= Control byte BB= Bandswitch byte AB= Auxiliary byte Stop= stop condition Start-ADB-CB-BB-DB1-DB2-Stop Start-ADB-CB-AB-DB1-DB2-Stop Start-ADB-DB1-DB2-Stop Start-ADB-CB-BB-Stop Start-ADB-CB-AB-Stop Start-ADB-DB1-DB2-CB-BB-CB-AB-Stop Ack. 4th Start-ADB-DB1-DB2-CB-AB-Stop Abbreviations: Ack. 2nd Start= start condition SCL: MA MA R/W Ack. 1st Start-ADB-DB1-DB2-CB-BB-Stop Telegram examples: SDA: 1 Addressing Ack. Stop 5.3 Note: Start TUA 6039F-2, TUA 6037F Reference I2C Bus Timing Diagram I2C Bus Timing Diagram Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.4 Electrical Diagrams 5.4.1 Input admittance (S11) of the LOW band mixer (30 to 200 MHz) 0.8 2 0.5 0.6 0.7 1 1.5 0.9 Y0 = 20 mA/V 0.4 3 0.3 4 0.2 5 0.1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.9 0.8 1.5 2 3 4 5 10 20 20 0 30 MHz 20 10 0.1 200 MHz 5 0.2 4 0.3 3 0.7 0.8 0.9 1 1.5 0.6 2 0.5 0.4 5.4.2 Input impedance (S11) of the MID band mixer (130 to 500 MHz) 1.5 1 0.9 0.8 0.5 2 0.6 0.7 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 10 0.1 500 MHz 20 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 20 0 130 MHz 20 0.1 10 0.2 5 4 0.3 3 Data Sheet 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 53 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.4.3 Input impedance (S11) of the HIGH band mixer (400 to 1000 MHz) 1 0.9 0.5 2 0.6 1.5 0.7 0.8 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 1000 MHz 10 0.1 20 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 20 0.4 0.3 0 0.2 0.1 400 MHz 20 0.1 10 0.2 5 4 0.3 3 5.4.4 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 Output admittance (S22) of the of the mixers (30 to 60 MHz) 0.8 2 0.5 0.6 0.7 0.9 1.5 1 Y0 = 20 mA/V 0.4 3 0.3 4 0.2 5 0.1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.9 0.8 1.5 2 3 4 5 10 20 20 10 0 36 MHz 20 0.1 5 0.2 4 0.3 3 54 0.7 0.8 0.9 1 1.5 0.6 2 0.5 0.4 Data Sheet Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.4.5 Input admittance (S11) of the SAW filter driver (30 to 60 MHz) 0.8 2 0.5 0.6 0.7 1 1.5 0.9 Y0 = 20 mA/V 0.4 3 0.3 4 0.2 5 0.1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.9 0.8 1.5 2 3 4 5 10 20 20 0 36 MHz 20 10 0.1 5 0.2 4 0.3 3 0.7 0.8 0.9 1 1.5 0.6 2 0.5 0.4 5.4.6 Output impedance (S22) of the SAW filter driver (30 to 60 MHz) 1.5 1 0.9 0.8 0.5 2 0.6 0.7 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 36 MHz 10 0.1 20 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 20 0 20 0.1 10 0.2 5 4 0.3 3 Data Sheet 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 55 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.4.7 Input admittance (S11) of the IF AGC amplifier (30 to 60 MHz) 0.8 0.7 1 2 0.5 0.6 1.5 0.9 Y0 = 20 mA/V 0.4 3 0.3 4 0.2 5 0.1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.9 0.8 1.5 2 3 4 5 10 20 20 0 36 MHz 20 10 0.1 5 0.2 4 0.3 3 0.7 0.8 0.9 1 1.5 0.6 2 0.5 0.4 5.4.8 Output impedance (S22) of the IF AGC amplifier (30 to 60 MHz) 1.5 1 0.9 0.8 0.5 2 0.6 0.7 Z0 = 50 Ω 0.4 3 0.3 4 5 0.2 10 36 MHz 0.1 20 10 5 4 3 2 1.5 0.8 0.9 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 20 0 20 0.1 10 0.2 5 4 0.3 3 Data Sheet 1.5 1 0.9 0.8 0.7 0.6 2 0.5 0.4 56 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.5 Measurement Circuits 5.5.1 Gain (GV) measurement in LOW band LOWIN SAWOUT 50 Ω Vmeas 50 Ω V RMS Voltmeter Vi Device under Test Transformer N1 V0 N2 C 50 Ω spectrum analyser V'meas SAWOUT N1 : N2 = 10 : 2 turns Figure 12 • • • • Gain (GV) measurement in LOW band Zi >> 50 Ω => Vi = 2 x Vmeas = 80 dBµV Vi = Vmeas + 6dB = 80 dBµV V0 = V’meas + 17 dB (transformer ratio N1:N2 and transformer loss) Gv = 20 log(V0 / Vi) 5.5.2 Gain (GV) measurement in MID and HIGH bands MIDIN SAWOUT HIGHIN 50 Ω Vmeas RMS Voltmeter V 50 Ω Vi Balun 1:1 Device under Test Transformer N1 N2 V0 C V'meas MIDIN SAWOUT HIGHIN 50 Ω spectrum analyser N1 : N2 = 10 : 2 turns Figure 13 • • • Gain (GV) measurement in MID and HIGH bands Vi = Vmeas = 70 dBµV V0 = V’meas + 17 dB (transformer ratio N1:N2 and transformer loss Gv = 20 log(V0 / Vi) + 1 dB (1 dB = insertion loss of balun) Data Sheet 57 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.5.3 Matching circuit for optimum noise figure in LOW band 15p 22p 1n 1n In In Out Out 7 turns wire Ε 0.5 mm coil Ε 5.5 mm 22p 50 Ω semi rigid cable 300 mm long 96 pF/m 33dB/100m 22p For fRF = 50 MHz For fRF = 150 MHz loss = 0 dB loss = 1.3 dB image suppression = 16 dB image suppression = 13 dB Figure 14 5.5.4 Matching circuit for optimum noise figure in LOW band Noise figure (NF) measurement in LOW band Noise Source IN OUT Matching Circuit LOWIN SAWOUT Transformer Device under Test N1 N2 Noise Figure Meter C SAWOUT N1 : N2 = 10 : 2 turns NF = NFmeas - loss of matching circuit (dB) Figure 15 Data Sheet Noise figure (NF) measurement in LOW band 58 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.5.5 Noise figure (NF) measurement in MID and HIGH bands Noise Source MIDIN SAWOUT HIGHIN Balun 1:1 Noise Figure Meter Transformer Device under Test N1 N2 C MIDIN SAWOUT HIGHIN N1 : N2 = 10 : 2 turns loss of balun = 1 dB NF = NFmeas - loss of balun (dB) Figure 16 5.5.6 Noise figure (NF) measurement in MID and HIGH bands Cross modulation measurement in LOW band V'meas unwanted signal source AM = 80%, 1 kHz A 50 Ω C Hybrid 50 Ω B wanted signal source Figure 17 • • • 50 Ω V RMS Voltmeter D LOWIN SAWOUT Device under Test Transformer Vo N1 N2 IF filter C 50 Ω modulation analyser SAWOUT N1 : N2 = 10 : 2 turns 50 Ω Cross modulation measurement in LOW band V’meas = V0 - 17 dB (transformer ratio N1:N2 and transformer loss) wanted output signal at fpix, Vo = 100 dBµV unwanted output signal at fsnd Data Sheet 59 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Reference 5.5.7 Cross modulation measurement in MID and HIGH bands V'meas unwanted signal source AM = 80%, 1 kHz A 50 Ω MIDIN SAWOUT HIGHIN C Balun 1:1 Hybrid 50 Ω B wanted signal source Figure 18 • • • V 50 Ω RMS Voltmeter Device under Test Transformer N1 N2 IF filter Vo C MIDIN SAWOUT HIGHIN D 50 Ω modulation analyser N1 : N2 = 10 : 2 turns 50 Ω Cross modulation measurement in MID and HIGH bands V’meas = V0 - 17 dB (transformer ratio N1:N2 and transformer loss) wanted output signal at fpix, Vo = 100 dBµV unwanted output signal at fsnd 5.5.8 Ripple susceptibility (RSC) measurement IC supply 240 Stabilizer DC Supply 5k 1u 1u Ripple 50 Figure 19 Data Sheet 2* 22uF Ripple susceptibility measurement 60 Revision 2.0, 2007-07-20 TUA 6039F-2, TUA 6037F Package VQFN-48 6 Package VQFN-48 Figure 20 PG-VQFN-48 Vignette Figure 21 PG-VQFN-48 Outline Drawing You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. Dimensions in mm SMD = Surface Mounted Device Data Sheet 61 Revision 2.0, 2007-07-20 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG