INFINEON TUA6039F-2

D a t a S he et , R e v i s i on 2. 0 , J u l y 20 0 7
TUA 6039F-2, TUA 6037F
3 B and D i gita l / H yb r id T u ner I C wit h
inte gr at ed IF A G C amp lifier
O mni T un e™ T U A 6 03 9F -2 ,
O mni T un e™ T U A 6 03 7F
Co mmu nicat i on So lutio ns
Edition 2007-07-20
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of noninfringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
D a t a S he et , R e v i s i on 2. 0 , J u l y 20 0 7
TUA 6039F-2, TUA 6037F
3 B and D i gita l / H yb r id T u ner I C wit h
inte gr at ed IF A G C amp lifier
O mni T un e™ T U A 6 03 9F -2 ,
O mni T un e™ T U A 6 03 7F
Co mmu nicat i on So lutio ns
TUA 6039F-2, TUA 6037F
TUA 6039F-2, TUA 6037F
Revision History:
2007-07-20
Data Sheet, Revision 2.0
Previous Version:
2007-05-23
Preliminary Data Sheet, Revision 1.0
Page
Subjects (major changes since last revision)
all
Status “Preliminary” and “Confidential” removed.
Formatting of document cross-references updated.
9, 11
DMB-TH standard added.
23
Functional Block Diagram of TUA 6037F added.
24 - 27
Functional Description updated for PLL, Loop-Thru and added for ADC.
45 - 46
Table footnotes updated.
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
Data Sheet
4
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Table of Contents
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1
Product Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.2.1
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mixer/Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SAW Filter Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IF AGC Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended band limits in MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10
10
10
11
11
11
11
11
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mixer-Oscillator block with SAW filter driver . . . . . . . . . . . . . . . . . . . . .
PLL block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF AGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IF AGC amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C-Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Loop thru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13
15
22
24
24
24
25
25
26
26
27
4
4.1
4.2
4.3
4.4
4.5
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tuner application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit for hybrid application . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
28
29
30
31
32
5
5.1
5.1.1
5.1.2
5.1.3
5.2
5.3
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bus Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
33
33
35
35
46
52
Data Sheet
5
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
5.4
5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.5
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
Electrical Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input admittance (S11) of the LOW band mixer (30 to 200 MHz) . . . . .
Input impedance (S11) of the MID band mixer (130 to 500 MHz) . . . . .
Input impedance (S11) of the HIGH band mixer (400 to 1000 MHz) . . .
Output admittance (S22) of the of the mixers (30 to 60 MHz) . . . . . . . .
Input admittance (S11) of the SAW filter driver (30 to 60 MHz) . . . . . . .
Output impedance (S22) of the SAW filter driver (30 to 60 MHz) . . . . .
Input admittance (S11) of the IF AGC amplifier (30 to 60 MHz) . . . . . .
Output impedance (S22) of the IF AGC amplifier (30 to 60 MHz) . . . . .
Measurement Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . . .
Gain (GV) measurement in MID and HIGH bands . . . . . . . . . . . . . . . .
Matching circuit for optimum noise figure in LOW band . . . . . . . . . . . .
Noise figure (NF) measurement in LOW band . . . . . . . . . . . . . . . . . . .
Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . . .
Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . . .
Cross modulation measurement in MID and HIGH bands . . . . . . . . . . .
Ripple susceptibility (RSC) measurement . . . . . . . . . . . . . . . . . . . . . . .
6
Package VQFN-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Data Sheet
6
53
53
53
54
54
55
55
56
56
57
57
57
58
58
59
59
60
60
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Data Sheet
ATSC tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DVB-T and analog tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ISDB-T tuners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Definition and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC/DC Characteristics, TA = 25°C, VCC = 5 V . . . . . . . . . . . . . . . . . . .
Bit Allocation Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Address selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference divider ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF AGC take-over point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A to D converter levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Charge pump current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal band selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Defaults at power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description of modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
11
12
12
15
33
35
35
46
47
48
48
49
49
50
50
50
51
51
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Data Sheet
Pin Configuration of TUA 6039F-2. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration of TUA 6037F . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram of TUA 6039F-2 . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram of TUA 6037F. . . . . . . . . . . . . . . . . . . . . . .
Functional Block Diagram of Loop thru . . . . . . . . . . . . . . . . . . . . . . . .
Tuner application block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit diagram for hybrid application (DVB-T / PAL). . . . . . . . . . . . . .
Circuit diagram for ATSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit diagram for DVB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit diagram for ISDB-T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I2C Bus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gain (GV) measurement in LOW band . . . . . . . . . . . . . . . . . . . . . . . .
Gain (GV) measurement in MID and HIGH bands. . . . . . . . . . . . . . . .
Matching circuit for optimum noise figure in LOW band . . . . . . . . . . .
Noise figure (NF) measurement in LOW band. . . . . . . . . . . . . . . . . . .
Noise figure (NF) measurement in MID and HIGH bands . . . . . . . . . .
Cross modulation measurement in LOW band . . . . . . . . . . . . . . . . . .
Cross modulation measurement in MID and HIGH bands . . . . . . . . . .
Ripple susceptibility measurement . . . . . . . . . . . . . . . . . . . . . . . . . . .
PG-VQFN-48 Vignette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PG-VQFN-48 Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
13
14
22
23
27
28
29
30
31
32
52
57
57
58
58
59
59
60
60
61
61
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Product Info
1
Product Info
General Description
The TUA 6039F-2, TUA 6037F device combines a mixer-oscillator function and an IF
AGC amplifier with a digitally programmable phase locked loop (PLL) for use in analog
and digital terrestrial applications.
Features
PLL
General
•
•
•
•
•
•
•
•
•
•
•
•
•
Supply voltage 5 Volt
Narrowband RF AGC detector for
internal tuner with
- 5 programmable take over points
- 2 programmable time constants
- RF AGC buffer output
Low phase noise
Full ESD protection
Qualified according to JEDEC for
consumer applications
I2C bus
4 pin-programmable I2C addresses
High voltage VCO tuning output
4 PNP ports, 1 NPN port/ADC input1)
Internal LOW/MID/HIGH band switch
X_TAL 4 MHz, X_TAL buffer output
6 reference divider ratios
4 charge pump currents
Power management
•
Bus controlled power down mode
Mixer/Oscillator
Application
•
•
•
•
•
•
•
Three band tuner
Unbalanced highohmic LOW input
Balanced lowohmic MID input
Balanced lowohmic HIGH input
Two pin oscillators for LOW/MID band
Four pin oscillator for HIGH band
The IC is suitable for PAL, NTSC,
SECAM, DVB-C, DVB-T, T-DMB,
DMB-TH, DAB, ISDB-T, Open Cable
and ATSC tuners.
SAW filter driver and IF-Amplifier
•
•
•
4 IF pins to connect a 2 pole bandpass
Symmetrical SAW filter driver
Fully balanced IF AGC amplifier
1) ADC function is only available in TUA 6039F-2.
Ordering Information
Type
Ordering Code
Package
TUA 6039F-2
SP000315897
PG-VQFN-48
TUA 6037F
SP000315896
PG-VQFN-48
Data Sheet
9
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Product Description
2
Product Description
The TUA 6039F-2, TUA 6037F ’OmniTune™TUA 6039F-2, OmniTune™TUA 6037F’
device combines a mixer-oscillator block with a digitally programmable phase locked
loop (PLL) and a variable gain IF AGC amplifier for use in TV and VCR tuners, set-topbox and mobile applications. Integrated narrow band RF AGC functions with output
buffer are provided.
The mixer-oscillator block includes three balanced mixers (one mixer with an
unbalanced high-impedance input and two mixers with a balanced low-impedance
input), two 2-pin asymmetrical oscillators for the LOW and the MID band, one 4-pin
symmetrical oscillator for the HIGH band, a reference voltage and a band switch. The
mixer output signal passes a SAW filter driver and an IF AGC amplifier to provide
constant output level ready for A/D sampling.
The PLL block with four pin programmable chip addresses forms a digitally
programmable phase locked loop. With a 4 MHz quartz crystal, the PLL permits precise
setting of the frequency of the tuner oscillator up to 1024 MHz in increments of 31.25,
50, 62.5, 125, 142.86 or 166.7 kHz. The tuning process is controlled by a microprocessor
via an I2C bus. A flag is set when the loop is locked. The lock flag can be read by the
processor via the I2C bus. The device has 5 output ports and a X_TAL output buffer. One
of the ports (P4) can be also used as input for a 5-level A to D converter (only available
in TUA 6039F-2).
2.1
Features
2.1.1
General
•
•
•
•
•
Supply voltage 5 Volt
Narrowband RF AGC detector for internal tuner with
- 5 programmable take over points
- 2 programmable time constants
- RF AGC buffer output
Low phase noise
Full ESD protection
Qualified according to JEDEC for consumer applications
2.1.2
•
•
•
•
•
•
Mixer/Oscillator
High impedance mixer input (common emitter) for LOW band
Low impedance mixer input (common base) for MID band
Low impedance mixer input (common base) for HIGH band
2 pin oscillator for LOW band
2 pin oscillator for MID band
4 pin oscillator for HIGH band
Data Sheet
10
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Product Description
2.1.3
•
•
2.1.4
•
•
PLL
4 pin-programmable I2C addresses
I2C bus protocol compatible with 3.3 V and 5 V micro-controllers up to 400 kHz
High voltage VCO tuning output
4 PNP ports
1 NPN port/ADC input1)
Power down mode
Internal LOW/MID/HIGH band switch
Lock-in flag
6 programmable reference divider ratios (24, 28, 32, 64, 80, 128)
4 programmable charge pump currents
2.2
•
IF AGC Amplifier
Symmetrical variable gain IF output amplifier with low noise, high linearity,
high dynamic range.
2.1.5
•
•
•
•
•
•
•
•
•
•
SAW Filter Driver
4 IF pins to connect a 2 pole bandpass
Symmetrical IF preamplifier with low output impedance able to drive a compensated
SAW filter (500 Ω//40 pF)
Application
The IC is suitable for PAL, NTSC, SECAM, DVB-C, DVB-T, T-DMB, DMB-TH, DAB,
ISDB-T, Open Cable and ATSC tuners. The focus is on digital terrestrial.
The AGC stage makes the tuner AGC independent of the Video-IF AGC.
2.2.1
Table 1
Recommended band limits in MHz
ATSC tuners
RF input
Oscillator
Band
min
max
min
max
LOW
55.25
157.25
101
203
MID
163.25
451.25
209
497
HIGH
457.25
861.25
503
907
1) ADC function is only available in TUA 6039F-2.
Data Sheet
11
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Product Description
Table 2
DVB-T and analog tuners
RF input
Oscillator
Band
min
max
min
max
LOW
48.25
154.25
87.15
193.15
MID
161.25
439.25
200.15
478.15
HIGH
447.25
863.25
486.15
902.15
Table 3
ISDB-T tuners
RF input
Oscillator
Band
min
max
min
max
LOW
93
167
150
224
MID
173
467
230
524
HIGH
473
767
530
824
Note: Tuning margin of 3 MHz not included.
Data Sheet
12
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
3
Functional Description
3.1
Pin Configuration
48
47 46 45
44 43 42
41 40 39
38 37
n.c. 1
36 GNDRF
P4/ADC 2
35 MIXOUT
OSCHIGHIN 3
34 SAWIN
OSCHIGHOUT 4
33 SAWIN
OSCHIGHOUT 5
32 MIXOUT
OSCHIGHIN 6
GNDA 7
TUA6039F-2
VQFN-48 package
31 VCC
30 RFAGC
n.c. 8
29 P0
SAWOUT 9
28 P1
SAWOUT 10
27 P2
VT 11
26 P3
49
CP 12
13 14 15 16
17 18 19
20 21 22
25 X_TAL_IN
23 24
GND
package
Figure 1
Data Sheet
Pin Configuration of TUA 6039F-2
13
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
48 47
46 45 44
43 42 41
40 39 38
37
GNDRF 1
36 n.c.
MIXOUT 2
35 P4
SAWIN 3
34 OSCHIGHIN
SAWIN 4
33 OSCHIGHOUT
MIXOUT 5
32 OSCHIGHOUT
TUA6037F
VQFN-48 package
VCC 6
RFAGC 7
31 OSCHIGHIN
30 GNDA
P0 8
29 n.c.
P1 9
28 SAWOUT
P2 10
27 SAWOUT
P3 11
26 VT
49
X_TAL_IN 12
13 14
15 16 17
18 19 20
25 CP
21 22 23 24
GND
package
Figure 2
Data Sheet
Pin Configuration of TUA 6037F
14
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
3.2
Pin Definition and Functions
Table 4
Pin Definition and Functions
Pin
No.1)
Symbol
1 (36)
n.c.
2
P4/ADC input2)
Equivalent I/O Schematic
Average DC voltage
at VCC = 5V
LOW
(35)
(P4)
HIGH
0V+ 0V+ 0V+
VCE or VCE or VCE or
VCC
VCC
VCC
(35)
2
MID
3 (34)
OSCHIGHIN
2.3 V
4 (33)
OSCHIGHOUT
2.1 V
5 (32)
OSCHIGHOUT
6 (31)
OSCHIGHIN
7 (30)
GNDA
8 (29)
n.c.
9 (28)
4
5
3
6
Analog ground
2.1V
2.3 V
0V
0V
0V
SAWOUT
2.5 V
2.5 V
2.5 V
10 (27) SAWOUT
2.5 V
2.5 V
2.5 V
9
Data Sheet
10
15
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Pin
No.1)
Symbol
Equivalent I/O Schematic
Average DC voltage
at VCC = 5V
LOW
MID
HIGH
11 (26) VT
VT
VT
VT
12 (25) CP
1.4 V
1.4 V
1.4 V
13 (24) IFAMPIN
2.6 V
2.6 V
2.6 V
14 (23) IFAMPIN
2.6 V
2.6 V
2.6 V
n.a.
n.a.
n.a.
16 (21) IFAMPOUT
3.3 V
3.3 V
3.3 V
17 (20) IFAMPOUT
3.3 V
3.3 V
3.3 V
12
11
13
14
15 (22) IFAMPAGC
15
16
Data Sheet
17
16
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Pin
No.1)
Symbol
Equivalent I/O Schematic
18 (19) X_TAL_BUF
Average DC voltage
at VCC = 5V
LOW
MID
HIGH
4V
4V
4V
n.a.
n.a.
n.a.
n.a.
n.a.
n.a.
DC bias
18
XTAL
19 (18) AS
19
20 (17) SCL
20
Data Sheet
17
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Pin
No.1)
Symbol
Equivalent I/O Schematic
21 (16) SDA
Average DC voltage
at VCC = 5V
LOW
MID
HIGH
n.a
n.a
n.a
21
22 (15) GNDACK
Acknowledge ground
0
0
0
23 (14) GNDD
Digital ground
0
0
0
24 (13) X_TAL_CAP
0.6 V
0.6 V
0.6 V
25 (12) X_TAL_IN
1.2 V
1.2 V
1.2 V
25
24
26 (11) P3
27 (10) P2
0 V or 0 V or 0 V or
VCC - VCC - VCC VCE
VCE
VCE
26, 27, 28, 29
0 V or 0 V or 0 V or
VCC - VCC - VCC VCE
VCE
VCE
28 (9)
P1
0 V or 0 V or 0 V or
VCC - VCC - VCC VCE
VCE
VCE
29 (8)
P0
0 V or 0 V or 0 V or
VCC - VCC - VCC VCE
VCE
VCE
Data Sheet
18
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Pin
No.1)
Symbol
30 (7)
RFAGC
Equivalent I/O Schematic
Average DC voltage
at VCC = 5V
LOW
MID
HIGH
VRFAGC VRFAGC VRFAGC
30
31 (6)
VCC
33 (4)
SAWIN
34 (3)
SAWIN
32 (5)
MIXOUT
35 (2)
MIXOUT
supply voltage
33
34
32
35
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
VCC
0.0 V
0.0 V
0.0 V
Oscillator
36 (1)
GNDRF
Data Sheet
RF ground
19
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Pin
No.1)
Symbol
Equivalent I/O Schematic
Average DC voltage
at VCC = 5V
LOW
37 (48) LOWIN
MID
HIGH
2V
37
38 (47) MIDIN
1V
39 (46) MIDIN
1V
38
39
40 (45) HIGHIN
1V
41 (44) HIGHIN
1V
40
41
VRFAGC VRFAGC VRFAGC
42 (43) RFAGC_BUF
42
Data Sheet
20
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Pin
No.1)
Symbol
Equivalent I/O Schematic
Average DC voltage
at VCC = 5V
LOW
43 (42) OSCLOWOUT
1.8 V
44 (41) OSCLOWIN
2.3 V
MID
HIGH
0.0 V
0.0 V
43
44
45 (40) GNDOSC
Oscillator ground
0.0 V
46 (39) OSCMIDIN
2.3 V
47 (38) OSCMIDOUT
1.8 V
47
46
48 (37) n.c.
49 (49) GND package Exposed pad ground
0.0 V
0.0 V
0.0 V
1) Pin numbering for TUA 6039F-2 (Pin numbering for TUA 6037F in parentheses).
2) ADC function is only available in TUA 6039F-2.
Data Sheet
21
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
3.3
Functional Block Diagram
48
n.c.
47
46
45
44
43
41
40
39
38
37
36
1
Oscillator
LOW
P4/ADC
42
2
GNDRF
Mixer
HIGH
P4
ADC
35
3
Oscillator
MID
Mixer
MID
Oscillator
HIGH
Mixer
LOW
34
33
4
5
32
RF AGC
Buffer
SAW
Filter
Driver
6
7
31
VCC
30
Prog.
Divider
Lock
Detector
AGC
Detector
ADC
AGC
8
fdiv
ADC
P4
PORTS
9
Phase/
Freq
Comp
Charge
Pump
10
Reference
Divider
Crystal
Oscillator
Crystal
Oscillator
Buffer
IF AGC
Amplifier
15
28
P1
27
P2
26
P3
25
X_TAL_IN
I2C Bus
12
14
P0
fref
11
13
29
FL
1/N
Divider
16
17
18
19
20
21
22
23
24
TUA6039F-2
Figure 3
Data Sheet
Functional Block Diagram of TUA 6039F-2
22
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
48
GNDRF
47
46
45
44
43
42
41
40
39
38
37
1
Mixer
HIGH
P4
2
3
Mixer
MID
Oscillator
MID
Mixer
LOW
Oscillator
HIGH
SAW
Filter
Driver
VCC
31
7
AGC
Detector
29
P4
fdiv
FL
1/N
Divider
28
PORTS
9
fref
P3
11
Reference
Divider
Crystal
Oscillator
Phase/
Freq
Comp
Charge
Pump
27
26
Crystal
Oscillator
Buffer
I2C Bus
X_TAL_IN
30
Prog.
Divider
Lock
Detector
AGC
8
10
P4
32
RF AGC
Buffer
6
P2
35
33
5
P1
n.c.
34
4
P0
36
Oscillator
LOW
IF AGC
Amplifier
25
12
13
14
15
16
17
18
19
20
21
22
23
24
TUA6037F
Figure 4
Data Sheet
Functional Block Diagram of TUA 6037F
23
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
3.4
Circuit Description
3.4.1
Mixer-Oscillator block with SAW filter driver
The mixer-oscillator block includes three balanced mixers (one mixer with an unbalanced
high-impedance input and two mixers with a balanced low-impedance input), two 2-pin
asymmetrical oscillators for the LOW and the MID band, one 4-pin symmetrical oscillator
for the HIGH band, an SAW filter driver, a reference voltage and a band switch.
Filters between tuner input and IC separate the TV frequency signals into three bands.
The band switching in the tuner front-end is done by using three PNP port outputs. In the
selected band the signal passes a tuner input stage with a MOSFET amplifier, a doubletuned bandpass filter and is then fed to the mixer input of the IC which has in case of
LOW band a high-impedance input and in case of MID or HIGH band a low-impedance
input. The input signal is mixed there with the signal from the activated on chip oscillator
to the IF frequency. The IF is filtered by means of an IF filter in between the 2 mixer
output pins and the 2 input pins of the following SAW filter driver. The SAW filter driver
has a low output impedance to drive the SAW filter directly.
3.4.2
PLL block
The oscillator signal is internally DC-coupled as a differential signal to the programmable
divider inputs. The signal subsequently passes through a programmable divider with
ratio N = 256 through 32767 and is then compared in a digital frequency/phase detector
with a reference frequency fref = 31.25, 50, 62.5, 125, 142.86 or 166.67 kHz. This
frequency is derived from a low-impedance 4 MHz crystal oscillator (pins XTALIN,
XTALCAP) divided by 128, 80, 64, 32, 28 or 24. The reference frequencies will be
different with a quartz other than 4 MHz.
The phase detector has two outputs which drive four current sources of a charge pump.
If the negative edge of the divided VCO signal appears prior to the negative edge of the
reference signal, the positive current source pulses for the duration of the phase
difference. In the reverse case the negative current source pulses. If the two signals are
in phase, the charge pump output (CP) goes into the high-impedance state (PLL is
locked). An active low-pass filter integrates the current pulses to generate the tuning
voltage for the VCO (internal amplifier, external pull-up resistor at VT and external RC
circuitry). The charge pump output is also switched into the high-impedance state if the
control bits T2, T1, T0 = 0, 1, 0. Here it should be noted, however, that the tuning voltage
can alter over a long period in the high impedance state as a result of self discharge in
the peripheral circuity. VT may be switched off by the control bit OS to allow external
adjustments.
If the VCO is not oscillating the PLL locks to a tuning voltage of 33V (VTH).
By means of control bits CP, T0, T1 and T2 the pump current can be switched between
four values by software. This programmability permits alteration of the control response
Data Sheet
24
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
of the PLL in the locked-in state. In this way different VCO gains can be compensated,
for example. Furthermore, in order to obtain best results for phase noise, reference
frequency rejection and PLL stability especially in a wideband system like a digital tuner,
it is necessary to set the charge pump current to different values depending on the band
and frequency used. This is to cope with the variations of the different parameters that
set the bandwidth. The selection can be done in the application and requires for each
frequency to program not only the divider ratios, but also the band and the best charge
pump current.
The software controlled ports P0 to P4 are general purpose open-collector outputs. The
test bits T2, T1, T0, OS = 0, 1, 0, 1 switch the test signals fdiv / 2 (divided input signal)
and fref (i.e. 4 MHz / 64) to P0 and P1 respectively.
The lock detector resets the lock flag FL if the width of the charge pump current pulses
is greater than the period of the crystal oscillator (i.e. 250 ns). Hence, if FL = 1, the
maximum deviation of the input frequency from the programmed frequency is given by
∆f = ± IP ∗ (KVCO / fXTAL) ∗ (C1 + C2) / (C1 ∗ C2)
where IP is the charge pump current, KVCO the VCO gain, fXtal the crystal oscillator
frequency and C1, C2 the capacitances in the loop filter (see Section 4.2). As the charge
pump pulses at i.e. 62.5 kHz (= fref), it takes a maximum of 16 µs for FL to be reset after
the loop has lost lock state.
Once FL has been reset, it is set only if the charge pump pulse width is less than 250 ns
for eight consecutive fref periods. Therefore it takes between 128 and 144 µs for FL to be
set after the loop regains lock.
3.4.3
RF AGC
The RF AGC stage detects the level of the SAW filter driver output signal. If the detected
level is below the RF AGC take-over point, a external capacity will be charged with the
source current of 300 nA or 9 µA (release current). If the detected level is above the RF
AGC take-over point, the external capacity will be discharged with the sink current of
100 µA (attack current). The integrated current generates the AGC voltage for gain
control of the tuners input transistors. The RF AGC take-over and the time constant are
selectable by the I2C bus (see Table 13).
An integrated RF AGC buffer allows to monitor the AGC voltage without any influence
on the tuner gain control.
3.4.4
IF AGC amplifier
Coming out of the SAW filter the IF signal is sent through a VGA (Variable Gain Amplifier)
which will set the differential IF output signal to the desired level (preferably 1 Vpp). The
gain of the VGA is determined by the DC-voltage at pin IFAMPAGC
Data Sheet
25
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
3.4.5
I2C-Bus Interface
Data is exchanged between the processor and the PLL via the I2C bus. The clock is
generated by the processor (input SCL). Pin SDA functions as an input or output
depending on the direction of the data (open collector, external pull-up resistor). Both
inputs have a hysteresis and a low-pass characteristic, which enhance the noise
immunity of the I2C bus.
The data from the processor pass through an I2C bus controller. Depending on their
function the data are subsequently stored in registers. If the bus is free, both lines will be
in the marking state (SDA, SCL are high). Each telegram begins with the start condition
and ends with the stop condition. Start condition: SDA goes low, while SCL remains high.
Stop condition: SDA goes high while SCL remains high. All further information transfer
takes place during SCL = low, and the data is forwarded to the control logic on the
positive clock edge.
The table ’Bit Allocation’ (see Table 8) should be referred to for the following description.
All telegrams are transmitted byte-by-byte, followed by a ninth clock pulse, during which
the control logic returns the SDA line to low (acknowledge condition). The first byte is
comprised of seven address bits. These are used by the processor to select the PLL from
several peripheral components (address select). The LSB bit (R/W) determines whether
data are written into (R/W = 0) or read from (R/W = 1) the PLL.
In the data portion of the telegram during a WRITE operation, the MSB bit of the first or
third data byte determines whether a divider ratio or control information is to follow. In
each case the second byte of the same data type has to follow the first byte. Appropriate
setting of the test bits will decide whether the band-switch byte or the auxiliary byte will
be transmitted (see Table 11).
If the address byte indicates a READ operation, the PLL generates an acknowledge and
then shifts out the status byte onto the SDA line. If the processor generates an
acknowledge, a further status byte is output; otherwise the data line is released to allow
the processor to generate a stop condition. The status word consists of three bits from
the A/D converter, the lock flag and the power-on flag.
Four different chip addresses can be set by an appropriate DC level at pin AS (see
Table 10).
While the supply voltage is applied, a power-on reset circuit prevents the PLL from
setting the SDA line to low, which would block the bus. The power-on reset flag POR is
set at power-on and if VCC falls below 2 V. It will be reset at the end of a READ operation.
3.4.6
Loop thru
For the tuner prestage alignment a programmable switch is integrated to bypass the
bandpass, the SAW filter driver and the SAW filter. If "Loop thru" is active the mixer
output signal in front of the external bandpass is fed into the IF AGC amplifier as shown
in Figure 5.
Data Sheet
26
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Functional Description
Bandpass
Loop thru control = bit 0 of Auxiliary byte
Loop thru
MIXER
input
IF AGC
output
IF AGC
MIXER
SAW
Filter
SAWDRV
Figure 5
Functional Block Diagram of Loop thru
This results in a flat frequency response from the mixer input to the IF amplifier output
and allows tuner alignment without the need of an external resistor.
3.4.7
ADC1)
A built-in 5 level Analog to Digital converter is available on P4/ADC pin. This converter
can be used to read out an external AFC information via the I2C-BUS interface. The
relationship between the external voltage at P4/ADC pin and the bits A2, A1 and A0 is
given in Table 14. P4 output port cannot be used and the corresponding bit needs to be
programmed to logic 0 when the ADC is in use.
1) ADC function is only available in TUA 6039F-2.
Data Sheet
27
Revision 2.0, 2007-07-20
Antenna
input
Figure 6
Data Sheet
LOW
MID
HIGH
AGC
AGC
28
HIGH
+ 33 V
4 MHz
X_Tal
Buffer
Buffered
4 MHz
TUA6039F-2
Tuner Application
Power
Supply
I2C
Ports
AGC
Buffer
IF Amplifier
AGC
VCC
AS
SDA
SCL
P0
P1
P2
P3
P4
Tuner application block diagram
~
~
~
AGC
Detector
small
external
AGC
to Channel
Decoder
4.1
MID
PD
CP
SAWDriver
SAW
30...60 MHz
Application
R
N
P
IF Bandfilter
4
LOW
~
~
~
~
~ ~
~ ~
~
VCC
TUA 6039F-2, TUA 6037F
Application
Tuner application block diagram
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Application
Application circuit for hybrid application
+,&+
&
S
S
&
*1'
*1'
0$&20 (7& 5
N
5
5
0$&20 (7&
5
N
5
5
;
*1'
*1'
0,'
;
*1'
*1'
/2:
;
*1'
5
4.2
*1'
&
& &
S
S
S Q
& S
*1'
&
75 0,',1;
+,*+,1;
5)$*&B%8)
26&/2:287
3
3
&3
;B7$/B,1
3
97
Q
*1'
5
5
5
5
&
&
Q
Q
*1'
*1'
& Q
&
,1
287
287
5
N
&
S
Q
6$:
6,3 '
;'
&
Q
Q
$6
&
Q
*1'
*1'
9&&
5)$*&
3
3
3
3
S
0+]
4
5
&
&
S
S
*1'
6& /
QF
,) 287
*1'
*1'
,)287
*1'
*1'
5
*1'
,)
Q
*1'
QS
S
;WDOB%XI
*1'
&
*1'
QS
*1'
;
,)$03$*&
Q
*1' /
*1'
&
*1'
*1'
&
5
&
5
Q+
&
*1'
&
,1
*1'
Q
& Q
3
5
/
& S
&
6$:287<
Q+
5
QS
5 5
*1'
5
N
03
9&&
5)$*&
QF
5
N
97
78$F-2 94)1
*1'$
N
&
26&/2:,1
26&+,*+,1<
S
5
N
,&
0,;287<
6$:287;
&
9&&
*1'
/
5
5S6
;B7$/B&$3
5
Q
*1'26&
QS
*1''
/
/
& S
5
*1'
6'$
&
*1'
*1'
Q
6$:,1<
& S
&
0,;287;
6$:,1;
& S
26&+,*+287<
5 N
5 N
*1'SDF NDJH
*1'5)
26&+,*+,1;
Q
/2:,1
&
*1'
26&+,*+287;
*1'
*1'$& .
S
S
6'$
N
Q
&
6& /
S
&
;B7$/B%8)
5
&
Q
$6
&
,)$03287<
5
WXUQV
%% '
*1'
5
&
Q
S
,)$03287;
S
,)$03$*&
&
N
3/ADC
26 &0,',1
QF 26&0,'287
3
5
QF
5
N
,)$03,1<
QS
*1'
,)$03,1;
&
&
S
*1'
&
QS
*1'
&
&
+,*+,1<
9&&
&
S
0,',1<
&
S
*1'
&
75 $*&B%8)
'
%% &
/
WXUQV
'
%% &
/
WXUQV
5
*1'
QF
*1'
6&/
6'$
-
,ð& %86
75
72.2$ 75$16)250(5
*1'
;
,)
Figure 7
Circuit diagram for hybrid application (DVB-T / PAL)
Note: TUA 6037F has different pinning and no ADC function.
Data Sheet
29
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Application
Application circuit for ATSC
+,&+
&
S
S
&
*1'
0$&20(7&
*1'
5
N
0$&20(7&
5
5
5
N
;
*1'
5
5
*1'
0,'
;
*1'
*1'
/2:
;
*1'
5
4.3
*1'
&
& &
S
S
S Q
75
0,',1;
+,*+,1;
;B7$/B,1
;B7$/B&$3
*1''
*1'$&.
3
*1'
5
5
5
5
&
&
Q
Q
*1'
*1'
,1
287
/
QS
287
S
&
Q
6$:
6,3'
;'
&
Q
Q
$6
5
5 5
& Q
& Q
& Q
& Q
&
Q
&
Q
*1'
*1'
*1'
*1'
*1'
*1'
&
QS
Q+
& S
5
/
/
QS
*1'
*1'
9&&
5)$*&
3
3
3
3
&
S
0+]
4
5
&
&
S
S
,)287
*1'
QF
*1'
*1'
,)287
*1'
,)
*1'
5
*1'
;WDOB%XI
Q+
5
QS
S
;
,)$03$*&
S
*1'
5
&
&
9&&
*1'
/
&
&
5
N
& S
5 5
*1'
,1
*1'
*1'
*1'
5
N
03
26&/2:,1
*1'26&
97
6'$
/
26&0,',1
3
&3
5
N
97
3
3
N
& Q
$76&
QF
& S
5
N
9&&
5)$*&
*1'
*1'
6'$
*1'
0,;287<
6&/
5
Q
0,;287;
78$F-2 94)1
*1'$
;B7$/B%8)
&
*1'
*1'SDFNDJH
*1'5)
6$:287<
Q
/2:,1
6$:287;
5 N
&
,&
26&+,*+,1<
& S
6$:,1<
5 N
*1'
S
6$:,1;
26&+,*+287;
& S
6&/
& S
*1'
& Q
Q
26&+,*+287<
,)$03287<
N
&
Q
&
26&+,*+,1;
,)$03287;
5
S
,)$03$*&
*1'
5
WXUQV
'
%%
&
$6
& S
S
,)$03,1<
&
N
,)$03,1;
5
&
Q
S
5)$*&B%8)
3/ADC
26&/2:287
3
5
QF
5
N
QF
*1'
26&0,'287
& QS
&
S
*1'
&
QS
*1'
&
&
+,*+,1<
9&&
&
S
0,',1<
&
S
*1'
&
75
$*&B%8)
'
%%&
/
WXUQV
'
%%&
/
WXUQV
5
*1'
QF
*1'
6&/
6'$
-
,ð&%86
75
72.2$75$16)250(5
*1'
;
,)
Figure 8
Circuit diagram for ATSC
Note: TUA 6037F has different pinning and no ADC function.
Data Sheet
30
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Application
Application circuit for DVB-T
+,&+
&
S
S
&
*1'
*1'
0$&20 (7&
5
N
5
5
0$&20 (7& 5
N
5
5
;
*1'
*1'
0,'
;
*1'
*1'
/2:
;
*1'
5
4.4
*1'
&
& &
S
S
S Q
*1'
&
26&+,*+287;
26&+,*+,1<
75 0, ',1;
+,*+,1;
3
6$:287;
3
6$:287<
3
3
QF
97
&3
Q
*1'
5
5
&
&
Q
Q
*1'
*1'
,1
287
287
5
N
&
S
Q
&
6$:
6,3 '
;'
&
Q
Q
$6
Q
&
Q
*1'
*1'
*1'
QS
9&&
5)$*&
3
3
3
3
&
S
0+]
4
5
&
&
S
S
*1'
6& /
QF
,) 287
*1'
*1'
,)287
*1'
*1'
5
*1'
,)
&
*1'
QS
S
;WDOB%XI
*1'
Q
*1' /
*1'
&
*1'
*1'
*1'
;
,)$03$*&
5
Q+
&
5
&
Q
& Q
*1'
&
,1
*1'
5
/
& Q
DVB-T
Q+
5
QS
& S
*1'
5
5
&
9&&
*1'
/
5
5 5
&
78$F-2 94)1
;B7$/B,1
5
N
03
5) $*&B%8)
5
N
97
26 &/2:287
9&&
5)$*&
N
&
,&
*1'$
S
5
N
26 &/2:,1
0,;287<
& S
5
S
;B7$/B&$3
5
Q
*1'26&
QS
*1'
6'$
&
*1'
26&0,',1
/
*1''
/
Q
*1'
6$:,1<
& S
&
6$:,1;
& S
0,;287;
26&+,*+287<
5 N
5 N
26&+,*+,1;
Q
*1'SDF NDJH
*1'5)
&
/2:,1
& S
*1'
*1'
3/ADC
*1'$& .
S
6'$
S
&
S
6& /
N
Q
&
$6
5
&
Q
;B7$/B%8)
&
,)$03287<
5
WXUQV
%% '
*1'
5
&
Q
S
,)$03287;
S
,)$03$*&
&
N
26 &0,'287
3
5
QF
5
N
,)$03, 1<
QS
QF *1'
,)$03, 1;
&
&
S
*1'
&
QS
*1'
&
&
+,*+,1<
9&&
&
S
0, ',1<
&
S
*1'
&
75 $*&B%8)
'
%% &
/
WXUQV
'
%% &
/
WXUQV
5
*1'
QF
*1'
6&/
6'$
-
,ð& %86
75
72.2$75$16)250(5
*1'
;
,)
Figure 9
Circuit diagram for DVB-T
Note: TUA 6037F has different pinning and no ADC function.
Data Sheet
31
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Application
Application circuit for ISDB-T
+,&+
&
S
S
&
*1'
0$&20(7&
*1'
5
N
0$&20(7&
5
5
5
N
;
*1'
5
5
*1'
0,'
;
*1'
*1'
/2:
;
*1'
5
4.5
*1'
&
& &
S
S
S Q
75
0,',1;
+,*+,1;
;B7$/B,1
;B7$/B&$3
*1''
*1'$&.
3
*1'
*1'
5
5
5
5
&
&
Q
Q
*1'
*1'
/
QS
,1
287
287
5
N
&
S
S
6$:
6,3'
;'
&
Q
Q
5 5
& S
& Q
& Q
& Q
& Q
$6
*1'
&
Q
&
Q
*1'
*1'
*1'
*1'
*1'
*1'
&
QS
/
QS
*1'
*1'
9&&
5)$*&
3
3
3
3
&
S
0+]
4
5
&
&
S
S
QF
,)287
*1'
*1'
,)287
*1'
,)
*1'
5
*1'
;WDOB%XI
5
Q+
S
;
,)$03$*&
5
*1'
5
&
Q+
5
QS
/
*1'
Q
&
9&&
*1'
/
&
&
,1
*1'
& S
5 5
*1'
5
N
03
26&/2:,1
*1'26&
97
6'$
/
26&0,',1
3
&3
5
N
97
3
3
N
& Q
,6'%7
QF
& S
5
N
9&&
5)$*&
*1'
*1'
6'$
*1'
0,;287<
6&/
5
Q
0,;287;
78$F-2 94)1
*1'$
;B7$/B%8)
&
*1'
*1'SDFNDJH
*1'5)
6$:287<
Q
/2:,1
6$:287;
5 N
&
,&
26&+,*+,1<
& S
6$:,1<
5 N
*1'
S
6$:,1;
26&+,*+287;
& S
6&/
& S
*1'
& Q
Q
26&+,*+287<
,)$03287<
N
&
Q
&
26&+,*+,1;
,)$03287;
5
S
,)$03$*&
*1'
5
WXUQV
'
%%
&
$6
& S
S
,)$03,1<
&
N
,)$03,1;
5
&
Q
S
5)$*&B%8)
3/ADC
26&/2:287
3
5
QF
5
N
QF
*1'
26&0,'287
& QS
&
S
*1'
&
QS
*1'
&
&
+,*+,1<
9&&
&
S
0,',1<
&
S
*1'
&
75
$*&B%8)
'
%%&
/
WXUQV
'
%%&
/
WXUQV
5
*1'
QF
*1'
6&/
6'$
-
,ð&%86
75
72.2$75$16)250(5
*1'
;
,)
Figure 10
Circuit diagram for ISDB-T
Note: TUA 6037F has different pinning and no ADC function.
Data Sheet
32
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5
Reference
5.1
Electrical Data
5.1.1
Absolute Maximum Ratings
Attention: The maximum ratings may not be exceeded under any circumstances,
not even momentarily and individually, as permanent damage to the IC
will result.
Table 5
#
Absolute Maximum Ratings
Parameter1)
Symbol
Limit Values
min.
Unit Remarks
max.
1.
Supply voltage
VCC
-0.3
6
V
2.
Ambient temperature
TA
-40
+85
°C
3.
Junction temperature
TJ
+125
°C
4.
Storage temperature
TStg
5.
Thermal resistance
junction to ambient2)
RTHJA
6.
Temperature difference TJC
junction to case3)
-40
+125
exposed GND pad
soldered
°C
39
K/W
exposed GND pad
soldered
3
K
exposed GND pad
soldered
PLL
7.
CP
8.
9.
VCP
-0.3
ICP
Bus input/output SDA
VSDA
-0.3
10. Bus output current SDA ISDA(L)
during acknowledge
11. Bus input SCL
V
mA
6
V
10
mA
open collector
-0.3
6
V
12. Chip address switch AS VAS
-0.3
6
V
13. VCO tuning output (loop VVT
filter)
-0.3
35
V
14. PNP port output current IPP
of P0,P1,P2,P3
-5
0
mA
open collector
15. Total port output current ΣIPP
of PNP ports
-20
0
mA
tmax = 0.1 s at 5.5 V
Data Sheet
VSCL
3
1
33
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
Unit Remarks
min.
max.
0
5
mA
16. NPN port output current IPN
of P4
open collector
Mixer-Oscillator
17. Mix inputs LOW band
VLOW
-0.3
3
V
18. Mix inputs MID/HIGH
19. band
VMID/HIGH
-0.3
2
V
IMID/HIGH
-5
6
mA
20. VCO base voltage
VB
-0.3
3
V
LOW, MID and
HIGH band
oscillators
21. VCO collector voltage
VC
6
V
LOW, MID and
HIGH band
oscillators
22. RF AGC output
VRFAGC
4
V
23.
IRFAGC
1
mA
24. Voltage on all other
input and output pins
except GNDs
Vmax
-0.3
-0.3
VCC
V
2
kV
ESD-Protection4)
25. all pins
VESD
1) All values are referred to ground (pin), unless stated otherwise.
Currents with a positive sign flow into the pin and currents with a negative sign flow out of pin.
2) Measured in a multi layer board as defined by JEDEC standard.
The thermal resistance depends on the PCB board design.
3) Referred to top center of package in free air condition.
4) According to EIA/JESD22-A114-B (HBM incircuit test), as a single device incircuit contact discharge test.
Data Sheet
34
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.1.2
Table 6
Operating Range
Operating Range
#
Parameter
Symbol
Limit Values
1.
Supply voltage
VCC
4.5
5.5
V
nominal 5 V
2.
Ambient temperature
TA
-20
+85
°C
exposed GND pad
soldered
3.
Programmable divider
factor
N
256
32767
4.
LOW mixer input
frequency range
fMIXV
30
200
MHz
5.
MID and HIGH band
mixer input frequency
range
fMIXU
130
1000
MHz
6.
LOW oscillator
frequency range
fOH
65
250
MHz
7.
MID band oscillator
frequency range
fOU
165
530
MHz
8.
HIGH band oscillator
frequency range
fOU
400
950
MHz
min.
5.1.3
Table 7
#
Unit Remarks
max.
AC/DC Characteristics
AC/DC Characteristics, TA = 25°C, VCC = 5 V
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
■
max.
Supply
1.
Supply voltage
VCC
4.5
5
5.5
V
2.
Current
consumption in
active mode
IVCC
84
105
126
mA
IVCC
84
105
126
mA
MID band
IVCC
84
105
126
mA
HIGH band
3.
4.
Data Sheet
35
LOW band
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
5.
typ.
Current
Ipd
consumption in
power down mode
Unit Test Conditions
■
max.
12
mA
Digital Part
PLL
Crystal oscillator connections XTAL
6.
Crystal frequency
fXTAL
7.
Crystal resistance
8.
Crystal oscillator
startup capability
9.
XTAL Buffer output fXTALIO
frequency
3.2
4.0
4.8
MHz
RXTAL
30
300
Ω
ZXTAL
-1000
10. XTAL Buffer Signal VAC
voltage
-650 Ω
fXTAL = 4 MHz
4.0
MHz fXTAL = 4 MHz
400
mVpp
Charge pump output CP
11. Output current,
12. see Table 15
ICPDH
± 455 ± 650 ± 845 µA
VCP = 1.4 V
ICPH
± 175 ± 250 ± 325 µA
VCP = 1.4 V
13.
ICPDL
± 87
± 125 ± 163 µA
VCP = 1.4 V
14.
ICPL
± 35
± 50
± 65 µA
VCP = 1.4 V
15. Tristate current
ICPZ
±10
nA
VCP = 1.4 V,
T2,T1,OS = 1,0,1
16. Output voltage
VCP
1.9
V
loop locked
10
µA
VTH = 33 V,
T2,T1,OS = 0,0,1
0.9
1.4
Tuning voltage output VT (open collector)
17. Leakage current
ITH
18. Output voltage
VTL
when the loop is
closed, (test mode
in normal
operation)
0.4
32.7 V
OS = 0,
RLoad = 33 kΩ,
tuning supply =
33 V
I2C-Bus
Bus inputs SCL, SDA
Data Sheet
36
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
■
max.
19. High-level input
voltage
VIH
2.5
5.5
V
VCC = 4.5 to 5.5 V
20. Low-level input
voltage
VIL
0
1
V
VCC = 4.5 to 5.5 V
21. High-level input
current
IIH
10
µA
Vbus = 5.5 V,
VCC = 0 V
22.
IIH
10
µA
Vbus = 5.5 V,
VCC = 5.5 V
23. Low-level input
current
IIL
10
µA
Vbus = 1.5 V,
VCC = 0 V
24.
IIL
µA
Vbus = 0 V,
VCC = 5.5 V
-10
Bus output SDA (open collector)
25. Leakage current
IOH
10
µA
VOH = 5.5 V
26. Low-level output
voltage
VOL
0.4
V
IOL = 3 mA
27. Rise time
tr
300
ns
28. Fall time
tf
300
ns
400
kHz
Edge speed SCL,SDA
Clock timing SCL
29. Frequency
fSCL
0
100
30. High pulse width
tH
0.6
µs
31. Low pulse width
tL
1.3
µs
32. Set-up time
tsusta
0.6
µs
33. Hold time
thsta
0.6
µs
34. Set up time
tsusto
0.6
µs
35. Bus free time
between a STOP
and START
condition
tbuf
1.3
µs
Start condition
Stop condition
Data transfer
Data Sheet
37
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
max.
36. Set-up time
tsudat
0.1
µs
37. Hold time
thdat
0
µs
38. Input hysteresis
SCL, SDA
Vhys
39. Pulse width of
spikes which are
suppressed
tsp
200
0
40. Capacitive load for CL
each bus line
■
mV
50
ns
400
pF
Ports
41. PNP Output
saturation
voltage
VPP,sat =
VCC VCE,sat
0.25
0.4
V
IPP = 5 mA
42. NPN Output
saturation
voltage
VPN,sat
0.25
0.4
V
IPN = 5 mA
43. Port Output
leakage current
ILEAK,Port
10
µA
VCC
V
10
µA
ADC input (only available in TUA 6039F-2)
44. ADC input voltage VADC
45. High-level input
current
IADCH
46. Low-level input
current
IADCL
0
-10
µA
Analog Part
LOW band mixer and SAW filter driver
47. RF frequency
fRF
44.25
48. Voltage gain
GV
21
49. Noise figure
NF
Data Sheet
170.25 MHz picture carrier2)
38
24
27
dB
fRF = 48.25 MHz to
154.25 MHz
see Section 5.5.1
8
12
dB
fRF = 48.25 MHz to
154.25 MHz
see Section 5.5.4
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
max.
50. SAWOUT output
Vo
voltage causing
0.8% of
crossmodulation in
channel
120
dBµV fRF = 48.25 MHz to
154.25 MHz
see Section 5.5.6
51. Input IP3
IIP3
117
dBµV fRF1 = 48.25 MHz,
fRF2 = 49.25 MHz,
PRF1 = PRF2
52.
IIP3
117
dBµV fRF1 = 154.25 MHz,
fRF2 = 155.25 MHz,
PRF1 = PRF2
53. Local oscillator FM FMI2C
caused by I2C
communication
54. (N+5) - 1 MHz
pulling
N+5
- 1 MHz
55. Input impedance
56. Zi = (Rp || 1/jωCp)
2.12 kHz
77
■
fRF = 154.25 MHz3)
80
dBµV fRFw = 69.25 MHz,
fOSC = 108.15 MHz,
fRFu = 108.25 MHz4)
Rp
1
kΩ
Cp
2
pF
parallel equivalent
circuit at 100 MHz5)
see Section 5.4.1
Mid band mixer and SAW filter driver
57. RF frequency
fRF
154.25
58. Voltage gain
GV
31
59. Noise figure
(not corrected for
image)
NF
34
37
dB
fRF = 161.25 MHz
to 439.25 MHz
see Section 5.5.2
6
10
dB
fRF = 161.25 MHz
to 439.25 MHz
see Section 5.5.5
120
60. SAWOUT output
Vo
voltage causing
0.8% of
crossmodulation in
channel
Data Sheet
454.25 MHz picture carrier2)
39
dBµV fRF = 161.25 MHz
to 439.25 MHz
see Section 5.5.7
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
max.
61. Input IP3
IIP3
106
dBµV fRF1 = 161.25 MHz
fRF2 = 162.25 MHz,
PRF1 = PRF2
62.
IIP3
105
dBµV fRF1 = 439.25 MHz
fRF2 = 440.25 MHz,
PRF1 = PRF2
63. Local oscillator FM FMI2C
caused by I2C
communication
64. (N+5) - 1 MHz
pulling
N+5
- 1 MHz
65. Input impedance
66. Zi = (Rs + jωLs)
2.12 kHz
77
■
fRF = 439.25 MHz3)
80
dBµV fRFw = 359.25 MHz,
fOSC = 398.15 MHz,
fRFu = 398.25 MHz4)
Rs
22
Ω
Ls
2.7
nH
series equivalent
circuit at 300 MHz5)
see Section 5.4.2
HIGH band mixer and SAW filter driver
67. RF frequency
fRF
399.25
68. Voltage gain
GV
31
69. Noise figure
(not corrected for
image)
NF
863.25 MHz picture carrier2)
34
37
dB
fRF = 447.25 MHz
to 863.25 MHz
see Section 5.5.2
6
10
dB
fRF = 447.25 MHz
to 863.25 MHz
see Section 5.5.5
70. SAWOUT output
Vo
voltage causing
0.8% of
crossmodulation in
channel
120
dBµV fRF = 447.25 MHz
to 863.25 MHz
see Section 5.5.7
71. Input IP3
IIP3
105
dBµV fRF1 = 447.25 MHz
fRF2 = 448.25 MHz
PRF1 = PRF2
72.
IIP3
105
dBµV fRF1 = 863.25 MHz
fRF2 = 864.25 MHz
PRF1 = PRF2
Data Sheet
40
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
73. Local oscillator FM FMI2C
caused by I2C
communication
74. (N+5) - 1 MHz
pulling
N+5
- 1 MHz
75. Input impedance
76. Zi = (Rs + jωLs)
Unit Test Conditions
max.
2.12 kHz
77
■
fRF = 863.25 MHz3)
80
dBµV fRFw = 823.25 MHz,
fOSC = 862.15 MHz,
fRFu = 862.25 MHz4)
Rs
25
Ω
Ls
2.5
nH
series equivalent
circuit at 650 MHz5)
see Section 5.4.3
LOW band oscillator
77. Oscillator
frequency
fOSC
78. Phase noise,
carrier to noise
sideband
ΦOSC
80
6)
210
MHz
-85
-77
dBc/ ±1 kHz frequency
Hz
offset, worst case
in the frequency
range7)
79.
-92
-88
dBc/ ±10 kHz frequency
Hz
offset, worst case
in the frequency
range8)
80.
-112
-108 dBc/ ±100 kHz
Hz
frequency offset,
worst case in the
frequency range
RSC
81. Ripple
susceptibility of VP
-50
dBc
VRipple = 20 mVpp,
fRipple = 100 kHz9)
MHz
6)
MID band oscillator
82. Oscillator
frequency
Data Sheet
fOSC
201
493
41
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
■
max.
-80
-73
dBc/ ±1 kHz frequency
Hz
offset, worst case
in the frequency
range7)
84.
-92
-88
dBc/ ±10 kHz frequency
Hz
offset, worst case
in the frequency
range8)
85.
-112
-108 dBc/ ±100 kHz
Hz
frequency offset,
worst case in the
frequency range
86. Ripple
RSC
susceptibility of VP
-60
83. Phase noise,
carrier to noise
sideband
ΦOSC
Unit Test Conditions
dBc
VRipple = 20 mVpp,
fRipple = 100 kHz9)
905
MHz
6)
-77
-70
dBc/ ±1 kHz frequency
Hz
offset, worst case
in the frequency
range7)
89.
-90
-86
dBc/ ±10 kHz frequency
Hz
offset, worst case
in the frequency
range8)
90.
-110
-106 dBc/ ±100 kHz
Hz
frequency offset,
worst case in the
frequency range
91. Ripple
RSC
susceptibility of VP
-60
dBc
VRipple = 20 mVpp,
fRipple = 100 kHz9)
20
dB
fIF = 36 MHz to
54 MHz
HIGH band oscillator
87. Oscillator
frequency
fOSC
88. Phase noise,
carrier to noise
sideband
ΦOSC
435
SAW filter driver
92. Voltage gain
Data Sheet
GV
42
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
■
max.
93. Output voltage
Vo
causing
1 dB compression
126
dBµV
94. Input impedance
95. Zi = (Rp || 1/jωCp)
Rp
470
Ω
Cp
6
pF
96. Output impedance RS
97. Zo = (Rs + jωLs)
LS
25
Ω
50
nH
series equivalent
circuit at 36 MHz5)
see Section 5.4.6
parallel equivalent
circuit at 36 MHz5)
see Section 5.4.5
Rejection at the SAW driver outputs
98. Level of divider
INTDIV
interferences in the
IF signal
-66
-60
dBc
VOUT = 100 dBµV10)
99. Crystal oscillator
interferences
rejection
-66
-60
dBc
VOUT = 100 dBµV11)
100. Reference
INTREF
frequency rejection
-66
-60
dBc
VOUT = 100 dBµV12)
101. Channel S02 beat INTS02
-66
-60
dBc
fRFpix = 76.25 MHz,
VRFpix = 80 dBµV,
fIF = 38.9 MHz13)
115
dBµV
INTXTAL
RF AGC output
102. RF AGC output
AGCTOP
103
narrow
103. Source current 1
IAGCfast
9.0
µA
104. Source current 2
IAGCslow
300
nA
105. Peak sink to ground IAGCpeak
100
µA
106. RF AGC output
voltage
VAGCmax
3.7
V
107.
VAGCmin
0
0.25 V
108. RF voltage range to AGCSLIP
switch the AGC
from active to
inactive mode
Data Sheet
0.5
43
maximum level,
IAGC = 9 µA
minimum level
dB
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
109. RF AGC leakage
current
AGCLEAK
110. RF AGC output
voltage
AGCOFF
typ.
-50
Unit Test Conditions
■
max.
50
3.7
nA
0 < VAGC < VCC,
AL2, AL1, AL0 =
1, 1, 0
V
AGC is disabled,
IAGC = 9 µA
RF AGC buffer
111. RF AGC buffer
output current
Imax
112. RF AGC buffer
output saturation
voltage low
Vlow
113. RF AGC buffer
output saturation
voltage high
1
mA
120
200
mV
Iload = 1 mA
VCC Vhigh
170
300
mV
Iload = 1 mA
Gmax
65
dB
VIFAGC ≥ 2.0 V
dB
VIFAGC ≤ 0.2 V
IF AGC amplifier
114. Voltage gain
115.
Gmin
9
116. Maximum IF input
level
VIF/IF
102
dBµV min. gain,
fIF/IF = 36 MHz
(sine),
VIFAGC = 0.2 V,
VOUT/OUT = 1 Vpp
117. Minimum IF input
level
VIF/IF
46
max. gain,
fIF/IF = 36 MHz
(sine),
VIFAGC = 2 V,
VOUT/OUT = 1 Vpp
118. Input impedance
119. Zi = (RIF/IF ||
1/jωCIF/IF)
RIF/IF
2
kΩ
CIF/IF
1.5
pF
120. Low end cutoff
frequency (-1 dB)
fL
121. High end cutoff
frequency (-1 dB)
fH
Data Sheet
25
65
44
parallel equivalent
circuit at 36 MHz5)
see Section 5.4.7
MHz VIF/IF = 60 dBµV,
RLOAD ≥ 5 kΩ,
C
MHz LOAD ≤ 1.5 pF,
VOUT/OUT = 1 Vpp at
fIF/IF = 36 MHz
(sine)
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
#
Parameter1)
Symbol
Limit Values
min.
typ.
Unit Test Conditions
max.
122. Intermodulation
C/IM3
-56
dBc
123. Third order output
intercept point
OIP3
138
dBµV fIF/IF1 = 37 MHz,
fIF/IF2 = 38 MHz,
VIF/IF1 = 90 dBµV,
VIF/IF2 = 90 dBµV
RLOAD ≥ 5 kΩ,
CLOAD ≤ 10 pF,
VOUT/OUT = 1 Vpp
124. Signal to noise ratio SNR
43
dB
125. Noise figure
9
126. Output impedance RIF/IF
127. Zo = (RIF/IF + jωLIF/IF) LIF/IF
90
120
■
150
fIF/IF1 = 37 MHz,
fIF/IF2 = 38 MHz,
VIF/IF1 = 90 dBµV,
VIF/IF2 = 90 dBµV
RLOAD ≥ 5 kΩ,
CLOAD ≤ 10 pF,
VOUT/OUT = 1 Vpp
fIF/IF = 36 MHz
(sine),
VIF/IF = 60 dBµV,
VOUT/OUT = 1 Vpp,
BW = 8 MHz
dB
max. gain
Ω
series equivalent
circuit at 36 MHz5)
see Section 5.4.8
nH
1) Values are referred to the application given in Figure 7 and fIF = 36 MHz, unless stated otherwise.
2) The RF frequency range is defined by the oscillator frequency range and the intermediate frequency (IF).
3) Local oscillator FM modulation resulting from I2C communication is measured at the IF output using a
modulation analyzer with a peak to peak detector ((P+ + P-) / 2) and a post detection filter 20 Hz - 100 kHz. The
I2C messages are sent to the tuner in such a way that the tuner is addressed but the content of the PLL registers
are not altered. The refresh interval between each data set shall be 20 ms to 1 s.
4) (N+5) -1 MHz is defined as the input level of channel N+5, at frequency 1 MHz lower, causing 100 kHz FM
sidebands 30 dB below the wanted carrier.
5) Impedance measured with differential 2-port measurement at input or output. Input and output pins directly
connected to measurement equipment with 50 Ω strip lines.
6) Limits are related to the tank circuit used in the application board (see Figure 7). Frequency bands may be
adjusted by the choice of external components.
7) For wide loop filter application (see Figure 9).
8) For narrow loop filter application (see Figure 8).
Data Sheet
45
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
9) The supply ripple susceptibility is a sideband measurement using a spectrum analyzer connected to the IF
output. An unmodulated RF signal with a level of 80 dBµV is applied to the test board RF input. A sinewave
signal with a defined frequency is superposed onto the supply voltage (see Figure 19). The specified value is
the worst case in the frequency range.
10) This is the level of divider interferences close to the IF frequency. For example channel S3: fOSC = 158.15 MHz,
1/4 fOSC = 39.5375 MHz. The rejection has to be better than 60 dB for a SAW driver output level of 100 dBµV.
11) Crystal oscillator interference means the 4 MHz sidebands caused by the crystal oscillator. The rejection has
to be better than 60 dB for a SAW driver output level of 100 dBµV.
12) The reference frequency rejection is the level of reference frequency sidebands according to the application
circuit (166.67 kHz for DVB-T standard, 142.86 kHz for ISDB-T standard or 62.5 kHz for ATSC standard)
related to the carrier. The rejection has to be better than 60 dB for a SAW driver output level of 100 dBµV. In
hybrid application the rejection is valid for the digital reference frequency (166.67 kHz for DVB-T/PAL standard,
or 142.86 kHz for ISDB-T/NTSC standard), but any lower analog reference frequency may reduce this
rejection.
13) Channel S02 beat is the interfering product of fRFpix, fIF and fOSC of channel S02, fBEAT = 37.35 MHz. The possible
mechanisms are fOSC - 2 x fIF or 2 x fRFpix - fOSC.
5.2
Bus Interface
Table 8
Bit Allocation Read/Write
Name
Byte
Bits
MSB bit6
bit5
bit4
bit3
Ack
bit2
bit1
LSB
Write Data (for TUA 6039F-2 and for TUA 6037F)
Address Byte
ADB
1
1
0
0
0
MA1 MA0 R/W=0
A
Divider Byte 1
DB1
0
N14
N13
N12
N11
N10
N9
N8
A
Divider Byte 2
DB2
N7
N6
N5
N4
N3
N2
N1
N0
A
Control byte
CB
1
CP
T2
Bandswitch byte BB
Auxiliary byte
1)
AB
XTB
ATC
T1
T0
OS
A
P4
P3
P2
P1
P0
A
0
0
LP
A
AL2
AL1
AL0
0
1
1
0
0
0
POR
FL
1
1
1
0
0
POR
FL
1
1
RSA RSB
Read data (for TUA 6039F-2)
Address byte
ADB
Status byte
SB
NBD AGC
MA1 MA0 R/W=1
A2
A1
A0
A
A
Read data (for TUA 6037F)
Address byte
ADB
Status byte
SB
0
MA1 MA0 R/W=1
AGC NBD
1
1
A
A
1) AB replaces BB when T2, T1, T0 = 0, 1, 1, see Table 11.
Data Sheet
46
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
Table 9
Symbol
Description of Symbols
Description
A
Acknowledge
MA0, MA1
Address selection bits, see Table 10
N14 to N0
programmable divider bits:
N = 214 x N14 + 213 x N13 + ... + 23 x N3 + 22 x N2 + 21 xN1 + N0
CP
charge pump current bit:
bit = 0: charge pump current = 50 µA or 125 µA
bit = 1: charge pump current = 250 µA (default) or 650 µA, see Table 15
T0, T1, T2
test bits, Table 11
RSA, RSB
reference divider bits, see Table 12
OS
tuning amplifier control bit:
bit = 0: enable VT; bit = 1: disable VT (default)
XTB
disable XTAL buffer control bit:
bit = 0: enable XTAL buffer (default); bit = 1: disable XTAL buffer
P0, P1, P2, PNP ports control bits:
P3
bit = 0: Port is inactive, high impedance state (default)
bit = 1: Port is active, VOUT = VCC-VCE,sat
P4
NPN port control bit:
bit = 0: Port is inactive, high impedance state (default)
bit = 1: Port is active, VOUT = VCE,sat
ATC
RF AGC time constant bit:
bit = 0: IAGC = 300 nA; ∆t = 2s with C = 160 nF (default)
bit = 1: IAGC = 9 µA; ∆t = 50ms with C = 160 nF
AL0, AL1,
AL2
RF AGC take-over point bits, see Table 13
LP
Loop through:
bit = 0: disable loop through (default); bit = 1: enable loop through
POR
Power-on reset flag, bit = 1 at power-on
FL
PLL lock flag, bit = 1: loop is locked
NBD
Narrow Band detector flag, bit =1 when SAWOUT level is above RF AGC
take-over point
AGC
internal AGC flag, bit = 1 when internal AGC is active (level below 3V)
A0, A1, A2 digital output of the 5-level ADC (only available in TUA 6039F-2)
Data Sheet
47
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
Table 10
Address selection
Voltage at AS
MA1
MA0
(0 to 0.1) x VCC
0
0
open circuit or (0.2 to 0.3) x VCC
0
1
(0.4 to 0.6) x VCC
1
0
(0.9 to 1) x VCC
1
1
Table 11
Test modes
Mode
T2
T1
T0
OS
Normal mode (XMODE = 0 ),
charge pump currents 50 µA and 250 µA selectable
0
0
0
0
Normal mode (XMODE = 0),
charge pump currents 50 µA and 250 µA selectable (default)
0
0
1
0
Normal mode (XMODE = 0),
CP test tristate, CP currents off, VT disabled
0
0
x
1
Port test output: P0 = NB
0
1
0
0
1)
Port test output: P0 = fdiv / 2, P1 = fref
0
1
0
1
byte AB will follow (otherwise byte BB will follow)
0
1
1
0
byte AB will follow (otherwise byte BB will follow),
CP test tristate, CP currents off, VT disabled
0
1
1
1
CP test sink
1
0
0
0
CP test source
1
0
1
0
CP test tristate, CP currents off, VT active
1
0
x
1
Extended mode (XMODE = 1),
charge pump currents 50 µA and 250 µA selectable
1
1
0
0
Extended mode (XMODE = 1),
charge pump currents 125 µA and 650 µA selectable
1
1
1
0
Extended mode (XMODE = 1),
CP test tristate, CP currents off, VT disabled
1
1
x
1
1) XMODE = internal flag for extended mode
Data Sheet
48
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
Table 12
Reference divider ratios
fref1)
Reference divider ratio
Mode
T2
T1
RSA
RSB
80
50 kHz
normal
0
0
0
0
128
31.25 kHz
normal
0
0
0
1
24
166.67 kHz
x
x
x
1
0
64
62.5 kHz
x
x
x
1
1
32
125 kHz
extended
1
1
0
0
28
142.86 kHz
extended
1
1
0
1
1) With a 4 MHz quartz.
Table 13
RF AGC take-over point
SAW driver output Remark
level,
symmetrical mode
AL2
AL1
AL0
115 dBµV
0
0
0
115 dBµV
0
0
1
0
1
0
109 dBµV
0
1
1
106 dBµV
1
0
0
1
0
1
External RF AGC
Disable RF AGC buffer
1
1
0
Disabled 2)
1
1
1
112 dBµV
default mode at POR
103 dBµV
IRFAGC = 0
VRFAGC = high
1)
1) The RF AGC detector is disabled. Both the sinking and sourcing current from the IC is disabled. The RF AGC
output goes into a high impedance state and an external RF AGC source can be connected in parallel and will
not be influenced. The RF AGC buffer is disabled.
2) The RF AGC detector is disabled, VRFAGC is set to high voltage VRFAGC = 3.7 V.
Data Sheet
49
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
Table 14
A to D converter levels1)
Voltage at ADC1)
A2
A1
A0
(0 to 0.15) * VCC
0
0
0
(0.15 to 0.3) * VCC
0
0
1
(0.3 to 0.45) * VCC
0
1
0
(0.45 to 0.6) * VCC
0
1
1
(0.6 to 1) * VCC
1
0
0
1) No erratic codes in the transition.
Table 15
Charge pump current
Charge pump current
Mode
50 µA
CP
T2
T1
0
0
x1)
0
250 µA (default)
normal
50 µA
1
0
125 µA
extended
250 µA
650 µA
0
1
T0
x
0
1
1
1
1
0
1
1) x = don‘t care.
Table 16
Internal band selection
Band
Mixer
LOW
P0, P1
Oscillator
1)
P0, P1
MID
P1, P0
P1, P0
HIGH (default)
P0, P1
P0, P1
Power down mode
P0, P1
P0, P1
1) Means: (P0 AND NOT P1); that is: LOW mixer is switched on if (P0 = 1 and P1 = 0).
1) ADC function is only available in TUA 6039F-2.
Data Sheet
50
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
Table 17
Defaults at power-on reset
Name
Byte
Bits
MSB
bit6
bit5
bit4
bit3
bit2
bit1
LSB
1
1
Write Data
Address Byte
ADB
0
0
0
MA1
MA0
R/W=0
1)
Divider byte 1
DB1
0
x
x
x
x
x
x
Divider byte 2
DB2
x
x
x
x
x
x
x
x
x
Control byte
CB
1
1
0
0
1
0
0
1
Bandswitch byte
BB
0
0
0
0
0
0
0
0
Auxiliary byte
AB
0
0
1
0
0
0
0
0
1) x = don‘t care.
Table 18
Mode
Description of modes
Description
normal
Reference divider ratios 24, 64, 80, 128 selectable.
Charge pump currents 50, 250 µA selectable.
Auxiliary byte to follow Control byte (T2 = 0, T1 = 1, T0 = 1),
otherwise Bandswitch byte to follow Control byte.
extended
Reference divider ratios 24, 28, 32, 64 selectable.
Charge pump currents 50, 125, 250, 650 µA selectable.
Auxiliary byte to follow Control byte (T2 = 0, T1 = 1, T0 = 1),
otherwise Bandswitch byte to follow Control byte.
Data Sheet
51
Revision 2.0, 2007-07-20
1
Figure 11
Data Sheet
52
Ack. 3rd
ADB= address byte
DB1= programmable divider byte 1
DB2= pardonable divider byte 2
CB= Control byte
BB= Bandswitch byte
AB= Auxiliary byte
Stop= stop condition
Start-ADB-CB-BB-DB1-DB2-Stop
Start-ADB-CB-AB-DB1-DB2-Stop
Start-ADB-DB1-DB2-Stop
Start-ADB-CB-BB-Stop
Start-ADB-CB-AB-Stop
Start-ADB-DB1-DB2-CB-BB-CB-AB-Stop
Ack. 4th
Start-ADB-DB1-DB2-CB-AB-Stop
Abbreviations:
Ack. 2nd
Start= start condition
SCL:
MA MA R/W
Ack. 1st
Start-ADB-DB1-DB2-CB-BB-Stop
Telegram examples:
SDA:
1
Addressing
Ack.
Stop
5.3
Note:
Start
TUA 6039F-2, TUA 6037F
Reference
I2C Bus Timing Diagram
I2C Bus Timing Diagram
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.4
Electrical Diagrams
5.4.1
Input admittance (S11) of the LOW band mixer (30 to 200 MHz)
0.8
2
0.5
0.6
0.7
1
1.5
0.9
Y0 = 20 mA/V
0.4
3
0.3
4
0.2
5
0.1
10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1
0.9
0.8
1.5
2
3
4
5
10
20
20
0
30 MHz
20
10
0.1
200 MHz
5
0.2
4
0.3
3
0.7
0.8
0.9
1
1.5
0.6
2
0.5
0.4
5.4.2
Input impedance (S11) of the MID band mixer (130 to 500 MHz)
1.5
1
0.9
0.8
0.5
2
0.6
0.7
Z0 = 50 Ω
0.4
3
0.3
4
5
0.2
10
0.1
500 MHz
20
10
5
4
3
2
1.5
0.8
0.9
1
0.7
0.6
0.5
0.4
0.3
0.2
0.1
20
0
130 MHz
20
0.1
10
0.2
5
4
0.3
3
Data Sheet
1.5
1
0.9
0.8
0.7
0.6
2
0.5
0.4
53
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.4.3
Input impedance (S11) of the HIGH band mixer (400 to 1000 MHz)
1
0.9
0.5
2
0.6
1.5
0.7
0.8
Z0 = 50 Ω
0.4
3
0.3
4
5
0.2
1000 MHz
10
0.1
20
10
5
4
3
2
1.5
0.8
0.9
1
0.7
0.6
0.5
20
0.4
0.3
0
0.2
0.1
400 MHz
20
0.1
10
0.2
5
4
0.3
3
5.4.4
1.5
1
0.9
0.8
0.7
0.6
2
0.5
0.4
Output admittance (S22) of the of the mixers (30 to 60 MHz)
0.8
2
0.5
0.6
0.7
0.9
1.5
1
Y0 = 20 mA/V
0.4
3
0.3
4
0.2
5
0.1
10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1
0.9
0.8
1.5
2
3
4
5
10
20
20
10
0
36 MHz
20
0.1
5
0.2
4
0.3
3
54
0.7
0.8
0.9
1
1.5
0.6
2
0.5
0.4
Data Sheet
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.4.5
Input admittance (S11) of the SAW filter driver (30 to 60 MHz)
0.8
2
0.5
0.6
0.7
1
1.5
0.9
Y0 = 20 mA/V
0.4
3
0.3
4
0.2
5
0.1
10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1
0.9
0.8
1.5
2
3
4
5
10
20
20
0
36 MHz
20
10
0.1
5
0.2
4
0.3
3
0.7
0.8
0.9
1
1.5
0.6
2
0.5
0.4
5.4.6
Output impedance (S22) of the SAW filter driver (30 to 60 MHz)
1.5
1
0.9
0.8
0.5
2
0.6
0.7
Z0 = 50 Ω
0.4
3
0.3
4
5
0.2
36 MHz
10
0.1
20
10
5
4
3
2
1.5
0.8
0.9
1
0.7
0.6
0.5
0.4
0.3
0.2
0.1
20
0
20
0.1
10
0.2
5
4
0.3
3
Data Sheet
1.5
1
0.9
0.8
0.7
0.6
2
0.5
0.4
55
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.4.7
Input admittance (S11) of the IF AGC amplifier (30 to 60 MHz)
0.8
0.7
1
2
0.5
0.6
1.5
0.9
Y0 = 20 mA/V
0.4
3
0.3
4
0.2
5
0.1
10
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1
0.9
0.8
1.5
2
3
4
5
10
20
20
0
36 MHz
20
10
0.1
5
0.2
4
0.3
3
0.7
0.8
0.9
1
1.5
0.6
2
0.5
0.4
5.4.8
Output impedance (S22) of the IF AGC amplifier (30 to 60 MHz)
1.5
1
0.9
0.8
0.5
2
0.6
0.7
Z0 = 50 Ω
0.4
3
0.3
4
5
0.2
10
36 MHz
0.1
20
10
5
4
3
2
1.5
0.8
0.9
1
0.7
0.6
0.5
0.4
0.3
0.2
0.1
20
0
20
0.1
10
0.2
5
4
0.3
3
Data Sheet
1.5
1
0.9
0.8
0.7
0.6
2
0.5
0.4
56
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.5
Measurement Circuits
5.5.1
Gain (GV) measurement in LOW band
LOWIN SAWOUT
50 Ω
Vmeas
50 Ω
V
RMS
Voltmeter
Vi
Device
under
Test
Transformer
N1
V0
N2
C
50 Ω
spectrum
analyser
V'meas
SAWOUT
N1 : N2 = 10 : 2 turns
Figure 12
•
•
•
•
Gain (GV) measurement in LOW band
Zi >> 50 Ω => Vi = 2 x Vmeas = 80 dBµV
Vi = Vmeas + 6dB = 80 dBµV
V0 = V’meas + 17 dB (transformer ratio N1:N2 and transformer loss)
Gv = 20 log(V0 / Vi)
5.5.2
Gain (GV) measurement in MID and HIGH bands
MIDIN
SAWOUT
HIGHIN
50 Ω
Vmeas
RMS
Voltmeter
V
50 Ω
Vi
Balun
1:1
Device
under
Test
Transformer
N1
N2
V0
C
V'meas
MIDIN
SAWOUT
HIGHIN
50 Ω
spectrum
analyser
N1 : N2 = 10 : 2 turns
Figure 13
•
•
•
Gain (GV) measurement in MID and HIGH bands
Vi = Vmeas = 70 dBµV
V0 = V’meas + 17 dB (transformer ratio N1:N2 and transformer loss
Gv = 20 log(V0 / Vi) + 1 dB (1 dB = insertion loss of balun)
Data Sheet
57
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.5.3
Matching circuit for optimum noise figure in LOW band
15p
22p
1n
1n
In
In
Out
Out
7 turns
wire Ε 0.5 mm
coil Ε 5.5 mm
22p
50 Ω semi rigid cable
300 mm long
96 pF/m
33dB/100m
22p
For fRF = 50 MHz
For fRF = 150 MHz
loss = 0 dB
loss = 1.3 dB
image suppression = 16 dB
image suppression = 13 dB
Figure 14
5.5.4
Matching circuit for optimum noise figure in LOW band
Noise figure (NF) measurement in LOW band
Noise
Source
IN
OUT
Matching
Circuit
LOWIN SAWOUT
Transformer
Device
under
Test
N1
N2
Noise
Figure
Meter
C
SAWOUT
N1 : N2 = 10 : 2 turns
NF = NFmeas - loss of matching circuit (dB)
Figure 15
Data Sheet
Noise figure (NF) measurement in LOW band
58
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.5.5
Noise figure (NF) measurement in MID and HIGH bands
Noise
Source
MIDIN
SAWOUT
HIGHIN
Balun
1:1
Noise
Figure
Meter
Transformer
Device
under
Test
N1
N2
C
MIDIN
SAWOUT
HIGHIN
N1 : N2 = 10 : 2 turns
loss of balun = 1 dB
NF = NFmeas - loss of balun (dB)
Figure 16
5.5.6
Noise figure (NF) measurement in MID and HIGH bands
Cross modulation measurement in LOW band
V'meas
unwanted
signal source
AM = 80%, 1 kHz
A
50 Ω
C
Hybrid
50 Ω
B
wanted
signal
source
Figure 17
•
•
•
50 Ω
V
RMS
Voltmeter
D
LOWIN SAWOUT
Device
under
Test
Transformer
Vo
N1
N2
IF filter
C
50 Ω
modulation
analyser
SAWOUT
N1 : N2 = 10 : 2 turns
50 Ω
Cross modulation measurement in LOW band
V’meas = V0 - 17 dB (transformer ratio N1:N2 and transformer loss)
wanted output signal at fpix, Vo = 100 dBµV
unwanted output signal at fsnd
Data Sheet
59
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Reference
5.5.7
Cross modulation measurement in MID and HIGH bands
V'meas
unwanted
signal source
AM = 80%, 1 kHz
A
50 Ω
MIDIN
SAWOUT
HIGHIN
C
Balun
1:1
Hybrid
50 Ω
B
wanted
signal
source
Figure 18
•
•
•
V
50 Ω
RMS
Voltmeter
Device
under
Test
Transformer
N1
N2
IF filter
Vo
C
MIDIN
SAWOUT
HIGHIN
D
50 Ω
modulation
analyser
N1 : N2 = 10 : 2 turns
50 Ω
Cross modulation measurement in MID and HIGH bands
V’meas = V0 - 17 dB (transformer ratio N1:N2 and transformer loss)
wanted output signal at fpix, Vo = 100 dBµV
unwanted output signal at fsnd
5.5.8
Ripple susceptibility (RSC) measurement
IC supply
240
Stabilizer
DC Supply
5k
1u
1u
Ripple
50
Figure 19
Data Sheet
2* 22uF
Ripple susceptibility measurement
60
Revision 2.0, 2007-07-20
TUA 6039F-2, TUA 6037F
Package VQFN-48
6
Package VQFN-48
Figure 20
PG-VQFN-48 Vignette
Figure 21
PG-VQFN-48 Outline Drawing
You can find all of our packages, sorts of packing and others in our
Infineon Internet Page “Products”: http://www.infineon.com/products.
Dimensions in mm
SMD = Surface Mounted Device
Data Sheet
61
Revision 2.0, 2007-07-20
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG