BCW32LT1G General Purpose Transistors NPN Silicon Features http://onsemi.com • These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant COLLECTOR 3 1 BASE MAXIMUM RATINGS Rating Symbol Value Unit Collector-Emitter Voltage VCEO 32 Vdc Collector-Base Voltage VCBO 32 Vdc Emitter-Base Voltage VEBO 5.0 Vdc IC 100 mAdc Collector Current − Continuous 2 EMITTER 3 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1 2 SOT−23 (TO−236AB) CASE 318 STYLE 6 THERMAL CHARACTERISTICS Characteristic Symbol Value Unit Total Device Dissipation FR-5 Board(1) TA = 25°C Derate above 25°C PD 1.8 mW/°C Thermal Resistance, Junction−to−Ambient RqJA 556 °C/W PD 300 mW 2.4 mW/°C RqJA 417 °C/W TJ, Tstg −55 to +150 °C Total Device Dissipation Alumina Substrate,(2) TA = 25°C Derate above 25°C Thermal Resistance, Junction−to−Ambient Junction and Storage Temperature mW MARKING DIAGRAM 225 1. FR−5 = 1.0 0.75 0.062 in. 2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina. D2 M G G 1 D2 = Device Code M = Date Code* G = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation and/or overbar may vary depending upon manufacturing location. ORDERING INFORMATION Device Package Shipping† BCW32LT1G SOT−23 (Pb−Free) 3000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. © Semiconductor Components Industries, LLC, 2009 August, 2009 − Rev. 2 1 Publication Order Number: BCW32LT1/D BCW32LT1G ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Collector −Emitter Breakdown Voltage (IC = 2.0 mAdc, VEB = 0) V(BR)CEO 32 − − Vdc Collector −Base Breakdown Voltage (IC = 10 mAdc, IE = 0) V(BR)CBO 32 − − Vdc Emitter−Base Breakdown Voltage (IE = 10 mAdc, IC = 0) V(BR)EBO 5.0 − − Vdc − − − − 100 10 nAdc mAdc 200 − 450 − − 0.25 0.55 − 0.70 Cobo − − 4.0 pF NF − − 10 dB OFF CHARACTERISTICS Collector Cutoff Current (VCB = 32 Vdc, IE = 0) (VCB = 32 Vdc, IE = 0, TA = 100°C) ICBO ON CHARACTERISTICS DC Current Gain (IC = 2.0 mAdc, VCE = 5.0 Vdc) hFE − Collector −Emitter Saturation Voltage (IC = 10 mAdc, IB = 0.5 mAdc) VCE(sat) Base −Emitter On Voltage (IC = 2.0 mAdc, VCE = 5.0 Vdc) VBE(on) Vdc Vdc SMALL−SIGNAL CHARACTERISTICS Output Capacitance (IE = 0, VCB = 10 Vdc, f = 1.0 MHz) Noise Figure (IC = 0.2 mAdc, VCE = 5.0 Vdc, RS = 2.0 kW, f = 1.0 kHz, BW = 200 Hz) TYPICAL NOISE CHARACTERISTICS (VCE = 5.0 Vdc, TA = 25°C) 20 100 BANDWIDTH = 1.0 Hz RS = 0 50 300 mA 10 In, NOISE CURRENT (pA) en, NOISE VOLTAGE (nV) IC = 1.0 mA 100 mA 7.0 5.0 10 mA 3.0 20 300 mA 100 mA 10 5.0 2.0 1.0 30 mA 0.5 30 mA 10 mA 0.2 2.0 BANDWIDTH = 1.0 Hz RS ≈ ∞ IC = 1.0 mA 0.1 10 20 50 100 200 500 1k f, FREQUENCY (Hz) 2k 5k 10k 10 Figure 1. Noise Voltage 20 50 100 200 500 1k f, FREQUENCY (Hz) Figure 2. Noise Current http://onsemi.com 2 2k 5k 10k BCW32LT1G NOISE FIGURE CONTOURS (VCE = 5.0 Vdc, TA = 25°C) BANDWIDTH = 1.0 Hz RS , SOURCE RESISTANCE (OHMS) RS , SOURCE RESISTANCE (OHMS) 500k 200k 100k 50k 20k 10k 5k 2.0 dB 2k 1k 500 3.0 dB 4.0 dB 6.0 dB 10 dB 200 100 50 1M 500k BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 1.0 dB 5k 2.0 dB 2k 1k 500 5.0 dB 200 100 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 700 1k 8.0 dB 10 20 Figure 3. Narrow Band, 100 Hz 500k RS , SOURCE RESISTANCE (OHMS) 3.0 dB 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 700 1k Figure 4. Narrow Band, 1.0 kHz 10 Hz to 15.7 kHz 200k 100k 50k Noise Figure is defined as: 20k NF + 20 log10 10k 5k 1.0 dB 2k 1k 500 3.0 dB 5.0 dB 8.0 dB S 10 20 30 50 70 100 200 300 500 700 Ǔ en2 ) 4KTRS ) In 2RS2 1ń2 4KTRS en = Noise Voltage of the Transistor referred to the input. (Figure 3) I = Noise Current of the Transistor referred to the input. n (Figure 4) K = Boltzman’s Constant (1.38 x 10−23 j/°K) T = Temperature of the Source Resistance (°K) R = Source Resistance (W) 2.0 dB 200 100 50 ǒ 1k IC, COLLECTOR CURRENT (mA) Figure 5. Wideband http://onsemi.com 3 BCW32LT1G TYPICAL STATIC CHARACTERISTICS h FE, DC CURRENT GAIN 400 TJ = 125°C 25°C 200 -55°C 100 80 60 VCE = 1.0 V VCE = 10 V 40 0.004 0.006 0.01 0.02 0.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 IC, COLLECTOR CURRENT (mA) 3.0 5.0 7.0 10 20 30 50 70 100 100 1.0 TJ = 25°C IC, COLLECTOR CURRENT (mA) VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 6. DC Current Gain 0.8 IC = 1.0 mA 0.6 10 mA 50 mA 100 mA 0.4 0.2 0 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 IB, BASE CURRENT (mA) TA = 25°C PULSE WIDTH = 300 ms 80 DUTY CYCLE ≤ 2.0% 200 mA 40 100 mA 20 0 5.0 10 0 20 5.0 10 15 20 25 30 35 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) θV, TEMPERATURE COEFFICIENTS (mV/ °C) TJ = 25°C V, VOLTAGE (VOLTS) 1.2 1.0 VBE(sat) @ IC/IB = 10 0.6 VBE(on) @ VCE = 1.0 V 0.4 0.2 VCE(sat) @ IC/IB = 10 0 0.2 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) 40 Figure 8. Collector Characteristics 1.4 0.1 400 mA 300 mA 60 Figure 7. Collector Saturation Region 0.8 IB = 500 mA 50 1.6 0.8 25°C to 125°C 0 *qVC for VCE(sat) - 55°C to 25°C -0.8 25°C to 125°C -1.6 qVB for VBE -2.4 0.1 100 *APPLIES for IC/IB ≤ hFE/2 Figure 9. “On” Voltages 0.2 - 55°C to 25°C 0.5 1.0 2.0 5.0 10 20 IC, COLLECTOR CURRENT (mA) Figure 10. Temperature Coefficients http://onsemi.com 4 50 100 BCW32LT1G TYPICAL DYNAMIC CHARACTERISTICS 10 TJ = 25°C f = 1.0 MHz C, CAPACITANCE (pF) 7.0 Cib 5.0 Cob 3.0 2.0 1.0 0.05 0.1 0.2 0.5 1.0 2.0 5.0 VR, REVERSE VOLTAGE (VOLTS) Figure 11. Capacitance http://onsemi.com 5 10 20 50 BCW32LT1G PACKAGE DIMENSIONS SOT−23 (TO−236) CASE 318−08 ISSUE AN NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318−01 THRU −07 AND −09 OBSOLETE, NEW STANDARD 318−08. D SEE VIEW C 3 HE E 1 2 e b DIM A A1 b c D E e L L1 HE 0.25 q A L A1 L1 VIEW C MIN 0.89 0.01 0.37 0.09 2.80 1.20 1.78 0.10 0.35 2.10 MILLIMETERS NOM MAX 1.00 1.11 0.06 0.10 0.44 0.50 0.13 0.18 2.90 3.04 1.30 1.40 1.90 2.04 0.20 0.30 0.54 0.69 2.40 2.64 MIN 0.035 0.001 0.015 0.003 0.110 0.047 0.070 0.004 0.014 0.083 INCHES NOM 0.040 0.002 0.018 0.005 0.114 0.051 0.075 0.008 0.021 0.094 MAX 0.044 0.004 0.020 0.007 0.120 0.055 0.081 0.012 0.029 0.104 STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR SOLDERING FOOTPRINT* 0.95 0.037 0.95 0.037 2.0 0.079 0.9 0.035 0.8 0.031 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative BCW32LT1/D