PHILIPS BUK113-50DL

Philips Semiconductors
Objective specification
PowerMOS transistor
Logic level TOPFET
DESCRIPTION
Monolithic overload protected logic
level power MOSFET in a surface
mount plastic envelope, intended as
a general purpose switch for
automotive systems and other
applications.
APPLICATIONS
General controller for driving
lamps
small motors
solenoids
FEATURES
Vertical power DMOS output
stage
Overload protected up to
125˚C ambient
Overload protection by current
limiting and overtemperature
sensing
Latched overload protection
reset by input
5 V logic compatible input level
Control of power MOSFET
and supply of overload
protection circuits
derived from input
Low operating input current
permits direct drive by
micro-controller
ESD protection on all pins
Overvoltage clamping for turn
off of inductive loads
BUK113-50DL
QUICK REFERENCE DATA
SYMBOL
PARAMETER
MIN.
MAX. UNIT
VDS
Continuous drain source voltage
-
50
V
ID
Drain current limiting
4
8
A
PD
Total power dissipation
-
4
W
Tj
Continuous junction temperature
-
150
˚C
RDS(ON)
Drain-source on-state resistance
-
200
mΩ
FUNCTIONAL BLOCK DIAGRAM
DRAIN
O/V
CLAMP
POWER
INPUT
MOSFET
RIG
LOGIC AND
PROTECTION
SOURCE
Fig.1. Elements of the TOPFET.
PINNING - SOT223
PIN
PIN CONFIGURATION
DESCRIPTION
1
input
2
drain
3
source
4
drain (tab)
January 1996
SYMBOL
4
D
TOPFET
I
2
1
1
3
P
S
Rev 1.000
Philips Semiconductors
Objective specification
PowerMOS transistor
Logic level TOPFET
BUK113-50DL
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL
VDS
ID
II
IIRM
PD
Tstg
Tj
PARAMETER
CONDITIONS
1
Continuous drain source voltage
Continuous drain current2
Continuous input current
Non-repetitive peak input current
Total power dissipation
Storage temperature
Continuous junction temperature
clamping
tp ≤ 1 ms
Tsp = 90 ˚C
normal operation
MIN.
MAX.
UNIT
-55
-
50
self limiting
3
10
4
150
150
V
A
mA
mA
W
˚C
˚C
ESD LIMITING VALUE
SYMBOL
PARAMETER
CONDITIONS
VC
Electrostatic discharge capacitor
voltage
Human body model;
C = 250 pF; R = 1.5 kΩ
MIN.
MAX.
UNIT
-
2
kV
OVERVOLTAGE CLAMPING LIMITING VALUES
At a drain source voltage above 50 V the power MOSFET is actively turned on to clamp overvoltage transients.
SYMBOL
PARAMETER
CONDITIONS
EDSM
Non-repetitive clamping energy
EDRM
Repetitive clamping energy
Tb ≤ 25 ˚C; IDM < ID(lim);
inductive load
Tb ≤ 75 ˚C; IDM = 50 mA;
f = 250 Hz
MIN.
MAX.
UNIT
-
100
mJ
-
4
mJ
OVERLOAD PROTECTION LIMITING VALUES
With the protection supply provided via the input pin, TOPFET can protect itself from short circuit loads.
Overload protection operates by means of drain current limiting and activating the overtemperature protection.
SYMBOL
PARAMETER
CONDITIONS
VISP
VDDP
Protection supply voltage3
for valid protection
Protected drain source supply voltage VIS = 5 V
MIN.
MAX.
UNIT
4
-
35
V
V
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
measured to pin 4 solder point
-
12
15
K/W
on PCB of fig. 3
on minimum footprint PCB
-
70
100
-
K/W
K/W
Thermal resistance
Rth j-sp
Junction to solder point
Application information
Rth j-a
Junction to ambient
1 Prior to the onset of overvoltage clamping. For voltages above this value, safe operation is limited by the overvoltage clamping energy.
2 Refer to OVERLOAD PROTECTION CHARACTERISTICS.
3 The input voltage for which the overload protection circuits are functional.
January 1996
2
Rev 1.000
Philips Semiconductors
Objective specification
PowerMOS transistor
Logic level TOPFET
BUK113-50DL
OVERLOAD PROTECTION CHARACTERISTICS
TOPFET switches off to protect itself when there is an overload fault condition.
It remains latched off until reset by the input.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VIS = 5 V
4
6
8
A
VDD = 13 V; VIS = 5 V
-
tbf
-
J
150
165
-
˚C
MIN.
TYP.
MAX.
UNIT
50
55
-
V
Overload protection
ID(lim)
Drain current limiting
Short circuit load protection
EDS(TO)
Overload threshold energy
Overtemperature protection
Tj(TO)
Threshold junction temperature VIS = 5 V
STATIC CHARACTERISTICS
Tb = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
V(CL)DSS
Drain-source clamping voltage
VIS = 0 V; ID = 10 mA
V(CL)DSS
Drain-source clamping voltage
VIS = 0 V; IDM = 200 mA;
tp ≤ 300 µs; δ ≤ 0.01
-
56
70
V
IDSS
Off-state drain current
VDS = 45 V; VIS = 0 V
-
0.5
2
µA
IDSS
Off-state drain current
VDS = 50 V; VIS = 0 V
-
1
20
µA
IDSS
Off-state drain current
VDS = 40 V; VIS = 0 V; Tj = 100 ˚C
-
10
100
µA
RDS(ON)
Drain-source on-state
resistance1
VIS = 5 V; IDM = 1 A;
tp ≤ 300 µs; δ ≤ 0.01
-
150
200
mΩ
INPUT CHARACTERISTICS
Tb = 25 ˚C unless otherwise specified. The supply for the logic and overload protection is taken from the input.
SYMBOL
PARAMETER
CONDITIONS
VIS(TO)
IIS
Input threshold voltage
Input supply current
VDS = 5 V; ID = 1 mA
normal operation;
IISL
Input supply current
protection latched;
VISR
V(CL)IS
RIG
Protection latch reset voltage2
Input clamping voltage
Input series resistance
II = 1.5 mA
to gate of power MOSFET
VIS = 5 V
VIS = 4 V
VIS = 5 V
VIS = 3.5 V
MIN.
TYP.
MAX.
UNIT
1.7
1
6
-
2.2
330
170
500
250
2.2
7.5
33
2.7
450
270
650
400
3.5
-
V
µA
µA
µA
µA
V
V
kΩ
SHADED BOXES
Values shown within shaded boxes are estimated for the objective specification.
These will not be fixed until the evaluation of prototype samples.
1 Continuous input voltage. The specified pulse width is for the drain current.
2 The input voltage below which the overload protection circuits will be reset.
January 1996
3
Rev 1.000
Philips Semiconductors
Objective specification
PowerMOS transistor
Logic level TOPFET
BUK113-50DL
MOUNTING INSTRUCTIONS
PRINTED CIRCUIT BOARD
Dimensions in mm.
Dimensions in mm.
3.8
36
min
1.5
min
18
60
1.5
min
4.5
4.6
9
2.3
6.3
10
(3x)
1.5
min
7
4.6
15
50
Fig.3. PCB for thermal resistance and power rating.
PCB: FR4 epoxy glass (1.6 mm thick),
copper laminate (35 µm thick).
Fig.2. Soldering pattern for surface mounting.
January 1996
4
Rev 1.000
Philips Semiconductors
Objective specification
PowerMOS transistor
Logic level TOPFET
BUK113-50DL
MECHANICAL DATA
Dimensions in mm
Net Mass: 0.11 g
0.95
0.85
handbook, full pagewidth
S
0.1 S
seating plane
6.7
6.3
0.32
0.24
B
3.1
2.9
0.2 M A
4
A
0.10
0.01
16 o
max
16
3.7
3.3
o
1
1.80
max
7.3
6.7
10 o
max
2
3
0.80
0.60
2.3
4.6
0.1 M B
(4x)
MSA035 - 1
Fig.4. SOT223 surface mounting package1.
1 For further information, refer to surface mounting instructions for SOT223 envelope. Epoxy meets UL94 V0 at 1/8".
January 1996
5
Rev 1.000
Philips Semiconductors
Objective specification
PowerMOS transistor
Logic level TOPFET
BUK113-50DL
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
January 1996
6
Rev 1.000