ICS9220 Integrated Circuit Systems, Inc. TM TM Programmable Rambus XDR Clock Generator General Description Features The ICS9220 clock generator provides Programmable TM clock signals to support the Rambus XDR memory subsystem and Redwood logic interface. The ICS9220 has been optimized for 100MHz reference input that may or may not be modulated for spread spectrum. The ICS9220 provides 2 differential clock pairs in a space saving 28-pin TSSOP package and provides an off-theshelf high-performance interface solution. • • Figure 1 shows the major components of the ICS9220 XDR Clock Generator. These include the a PLL, a Bypass Multiplexer and two differential output buffers. The outputs can be disabled by a logic low on the OE pin. An output is enabled by the combination of the OE pin being high, and 1 in its SMBus Output control register bit. The PLL receives a reference clock, CLK_INT/C and outputs a clock signal at a frequency equal to the input frequency times a multiplier. Table 2 shows the multipliers selectable via the SMBus interface. This clock signal is then fed to the differential output buffers to drive the enabled clocks. Disabled outputs are set to Hi-Z. The Bypass mode routes the input clock, CLK_INT/C, directly to the differential output buffers, bypassing the PLL. • • • • • 300 - 700 MHz clock source 2 open-drain differential output drives with short term jitter < 40ps Spread spectrum compatible Reference clock is differential or single-ended 100MHz SMBus programmability for: - frequency multiplier - output enable - operating mode Support systems where XDR subsystem is asynchronous to other system clocks 2.5V power supply Up to four ICS9220 devices can be cascaded on the same SMBus. Table 3 shows the SMBus addressing and control for the four devices. Block Diagram Pin Configuration OE RegA BYPASS#/PLL CLK_INT CLK_INC Bypass MUX ODCLK_T0 ODCLK_C0 OE RegB ODCLK_T1 ODCLK_C1 PLL SMBCLK SMBDAT AS1 AS2 AVDD2.5 AGND IREFY AGND CLK_INT CLK_INC VDD2.5 GND SMBCLK SMBDAT OE AS1 AS2 BYPASS#/PLL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ICS9220 OE 28 27 26 25 24 23 22 21 20 19 18 17 16 15 VDD2.5 GND GND ODCLK_T0 ODCLK_C0 GND VDD2.5 VDD2.5 GND ODCLK_T1 ODCLK_C1 GND GND VDD2.5 28-Pin 4.4mm TSSOP 1227G—11/05/07 XDR is a trademark of Rambus ICS9220 Pin Descriptions PIN # 1 2 PIN NAME AVDD2.5 AGND PIN TYPE PWR PWR 3 IREFY OUT 4 5 6 7 8 9 10 AGND CLK_INT CLK_INC VDD2.5 GND SMBCLK SMBDAT PWR IN IN PWR PWR IN I/O 11 OE IN 12 13 AS1 AS2 IN IN 14 BYPASS#/PLL IN 15 16 17 VDD2.5 GND GND PWR PWR PWR 18 ODCLK_C1 OUT 19 ODCLK_T1 OUT 20 21 22 23 GND VDD2.5 VDD2.5 GND PWR PWR PWR PWR 24 ODCLK_C0 OUT 25 ODCLK_T0 OUT 26 27 28 GND GND VDD2.5 PWR PWR PWR DESCRIPTION 2.5V Analog Power pin for Core PLL Analog Ground pin for Core PLL This pin establishes the reference current for the differential clock pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. Analog Ground pin for Core PLL "True" reference clock input. "Complementary" reference clock input. Power supply, nominal 2.5V Ground pin. Clock pin of SMBUS circuitry, 5V tolerant Data pin of SMBUS circuitry, 5V tolerant Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs Default SMBus Address Select. Default SMBus Address Select. Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode Power supply, nominal 2.5V Ground pin. Ground pin. "Complementary" side of open drain differential clock output. This open drain output needs an external resistor network.. "True" side of open drain differential clock output. This open drain output needs an external resistor network.. Ground pin. Power supply, nominal 2.5V Power supply, nominal 2.5V Ground pin. "Complementary" side of open drain differential clock output. This open drain output needs an external resistor network.. "True" side of open drain differential clock output. This open drain output needs an external resistor network.. Ground pin. Ground pin. Power supply, nominal 2.5V 1227G—11/05/07 2 ICS9220 General SMBus serial interface information for the ICS9220 How to Write: How to Read: Controller (host) sends a start bit. Controller (host) sends the write address per table 3 ICS clock will acknowledge Controller (host) sends the begining byte location = N ICS clock will acknowledge Controller (host) sends the data byte count = X ICS clock will acknowledge Controller (host) starts sending Byte N through Byte N + X -1 • ICS clock will acknowledge each byte one at a time • Controller (host) sends a Stop bit • • • • • • • • • • • • • • • • • • • • • • Index Block Write Operation Controlle r (Host) starT bit T Controller (host) will send start bit. Controller (host) sends the write address per table 3 ICS clock will acknowledge Controller (host) sends the begining byte location = N ICS clock will acknowledge Controller (host) will send a separate start bit. Controller (host) sends the read address per table 3 ICS clock will acknowledge ICS clock will send the data byte count = X ICS clock sends Byte N + X -1 ICS clock sends Byte 0 through byte X Controller (host) will need to acknowledge each byte Controllor (host) will send a not acknowledge bit Controller (host) will send a stop bit Index Block Read Operation ICS (Sla ve/Re ce ive r) T Slave Address table 3 WR W Rite Controlle r (Host) starT bit ICS (Sla ve/Re ce ive r) Slave Address table 3 WR W Rite ACK ACK Beginning Byte = N Beginning Byte = N ACK ACK Data Byte Count = X RT ACK Slave Address table 3 RD ReaD Beginning Byte N ACK X Byte ACK Data Byte Count = X ACK Beginning Byte N Byte N + X - 1 ACK X Byte ACK P Repeat starT stoP bit Byte N + X - 1 N P 1227G—11/05/07 3 Not acknowledge stoP bit ICS9220 SMBus Table: Output Enable Control Register Byte 0 Pin # Name Control Function Type 0 1 PWD Bit 7 - Test Mode Reserved For Vendor RW Disable Enable 0 Bit 6 - Reserved Reserved RW - - 0 Bit 5 - Reserved Reserved RW - - 0 Bit 4 - Reserved Reserved RW - - 0 Bit 3 - Reserved Reserved RW - - 0 Bit 2 - Reserved Reserved RW - - 0 Bit 1 - ODCLK_T/C1 Output Control RW Disable Enable 1 Bit 0 - ODCLK_T/C0 Output Control RW Disable Enable 1 Name Control Function Type 0 1 PWD - - 0 SMBus Table: Address Control Register Byte 1 Pin # Bit 7 - Reserved Reserved R Bit 6 - AS2 SMBus Address Select R Bit 5 - AS1 SMBus Address Select R Bit 4 - Reserved Reserved R - - 0 Bit 3 - Reserved Reserved R - - 0 Bit 2 - Reserved Reserved R - - 0 Bit 1 - Reserved Reserved R - - 0 Bit 0 - Reserved Reserved R - - 0 Control Function Type 0 1 PWD R - - 0 R - - 0 x See Table 3 x SMBus Table: Vendor & Revision ID Register Byte 2 Pin # Name Bit 7 - RID 3 Bit 6 - RID 2 Bit 5 - RID 1 R - - 0 Bit 4 - RID 0 R - - 0 Bit 3 - VID 3 R - - 0 Bit 2 - VID 2 R - - 0 Bit 1 - VID 1 R - - 0 Bit 0 - VID 0 R - - 1 Revision ID Vendor ID 1227G—11/05/07 4 ICS9220 SMBus Table: Reserved Register Byte 3 Pin # Name Control Function Type 0 1 PWD Bit 7 - Reserved Reserved RW - - 0 Bit 6 - Reserved Reserved RW - - 0 Bit 5 - Reserved Reserved RW - - 0 Bit 4 - Reserved Reserved RW - - 0 Bit 3 - Reserved Reserved RW - - 0 Bit 2 - Reserved Reserved RW - - 0 Bit 1 - Reserved Reserved RW - - 0 Bit 0 - Reserved Reserved RW - - 0 Name Control Function Type 0 1 PWD SMBus Table: Reserved Register Byte 4 Pin # Bit 7 - Reserved Reserved RW - - 0 Bit 6 - Reserved Reserved RW - - 0 Bit 5 - Reserved Reserved RW - - 0 Bit 4 - Reserved Reserved RW - - 0 Bit 3 - Reserved Reserved RW - - 0 Bit 2 - Reserved Reserved RW - - 0 Bit 1 - Reserved Reserved RW - - 0 Bit 0 - Reserved Reserved RW - - 0 SMBus Table: VCO Frequency Control Register Byte 5 Name Control Function Type 0 1 PWD Bit 7 - Pin # Post Divider PLL Post Divide RW Divide by 2 Divide by 4 1 Bit 6 - Reserved Reserved RW - - 0 Bit 5 - Reserved Reserved RW - - 0 Bit 4 - Reserved Reserved RW - - 0 Bit 3 - M DIV3 Bit 2 - M DIV2 Bit 1 - M DIV1 Bit 0 - M DIV0 RW M Divider Programming b(3:0) RW RW RW 1227G—11/05/07 5 The decimal representation of M and N Divider in Byte 5 and 6 will configure the PLL VCO frequency. VCO frequency = 100 x {[NDIV(5:0)+2]/[MDIV(3:0)+2]} 0 0 1 0 ICS9220 SMBus Table: VCO Frequency Control Register Byte 6 Pin # Name Control Function Type 0 1 PWD Bit 7 - Reserved RW - - 0 Bit 6 - Reserved RW - - 0 Bit 5 - N DIV5 RW Bit 4 - N DIV4 Bit 3 - N DIV3 Bit 2 - N DIV2 RW Bit 1 - N DIV1 RW Bit 0 - N DIV0 RW N Divider Programming b(5:0) RW RW 0 The decimal representation of M and N Divider in Byte 5 and 6 will configure the PLL VCO frequency. VCO frequency = 100 x {[NDIV(5:0)+2]/[MDIV(3:0)+2]} 0 1 0 1 0 SMBus Table: Byte Count Register Byte 7 Pin # Name Control Function Type 0 1 PWD Bit 7 Reserved 0 Bit 6 Reserved 0 Bit 5 Reserved 0 Bit 4 - BC4 Bit 3 - BC3 Bit 2 - BC2 Bit 1 - BC1 RW Bit 0 - BC0 RW RW RW Byte Count Programming 1227G—11/05/07 6 RW 0 Writing to this register will configure how many bytes will be read back, default is 07 = 7 bytes 0 1 1 1 ICS9220 PLL Multiplier Table 2 shows the frequency multipliers in the PLL, selectable by programming the MULT0, MULT1 and MULT2 bits in the SMBus Multiplier Control register. Power up default is 4. Table 2. PLL Multiplier Programming Selection PostDiv M N OUTPUT VCO B5b7 B5b(3:0) B6b(5:0) ASIC Multiplier 6 8 300.00000 4 1200.0000 6 18 Byte 5 Hex 84 325.00000 4 1300.0000 4 13 82 0B 1300.00 1950.00 2600.00 350.00000 4 1400.0000 6 21 84 13 1400.00 2100.00 2800.00 366.66667 4 1466.6667 6 22 84 14 1466.67 2200.00 2933.33 375.00000 4 1500.0000 4 15 82 0D 1500.00 2250.00 3000.00 383.33333 4 1533.3333 6 23 84 15 1533.33 2300.00 3066.67 400.00000 4 1600.0000 6 24 84 16 1600.00 2400.00 3200.00 416.66667 4 1666.6667 6 25 84 17 1666.67 2500.00 3333.33 425.00000 2 850.0000 4 17 02 0F 1700.00 2550.00 3400.00 433.33333 2 866.6667 6 26 04 18 1733.33 2600.00 3466.67 450.00000 2 900.0000 6 27 04 19 1800.00 2700.00 3600.00 466.66667 2 933.3333 6 28 04 1A 1866.67 2800.00 3733.33 475.00000 2 950.0000 4 19 02 11 1900.00 2850.00 3800.00 483.33333 2 966.6667 6 29 04 1B 1933.33 2900.00 3866.67 500.00000 2 1000.0000 6 30 04 1C 2000.00 3000.00 4000.00 516.66667 2 1033.3333 6 31 04 1D 2066.67 3100.00 4133.33 533.33333 2 1066.6667 6 32 04 1E 2133.33 3200.00 4266.67 550.00000 2 1100.0000 6 33 04 1F 2200.00 3300.00 4400.00 566.66667 2 1133.3333 6 34 04 20 2266.67 3400.00 4533.33 583.33333 2 1166.6667 6 35 04 21 2333.33 3500.00 4666.67 600.00000 2 1200.0000 6 36 04 22 2400.00 3600.00 4800.00 616.66667 2 1233.3333 6 37 04 23 2466.67 3700.00 4933.33 633.33333 2 1266.6667 6 38 04 24 2533.33 3800.00 5066.67 25 26 2600.00 3900.00 5200.00 2666.67 4000.00 5333.33 2 1300.0000 6 39 04 650.00000 2 1333.3333 6 40 04 666.66667 NOTE: All output values based on 100.000000MHz input clock 1227G—11/05/07 7 Byte 6 Hex 4 10 1200.00 1800.00 2400.00 ICS9220 Device ID and SMBus Device Address The device ID (SMB_A(2:1)) is part of the SMBus device address. The least significant bit of the address designates a write or read operation. Table 3 shows the addresses for four ICS9220 devices on the same SMBus. Table 3. SMBus Device Addresses ICS 9220 Device Operation Hex Address Write D8 0 1 2 3 Read D9 Write DA Read DB Write DC Read DD Write DE Read DF 8 bit SMBus De vice Addre ss Including Oper. Control Function AS2 AS1 0 0 Wr#/Rd 0 1 0 1 0 1 11011 1 0 0 1 1 1 0 1 Operating Modes Table 4: Operating Modes Byte 1 Byte 0 OE BYPASS#/ PLL Bit 7 Bit 1 Bit 0 L X X X X H X 1 X X H L 0 X X H H 0 0 0 Z Z H H 0 0 1 Z CLK_INT/C H H 0 1 0 CLK_INT/C Z H H 0 1 1 CLK_INT/C CLK_INT/C ODCLK_T/C1 ODCLK_T/C0 Z Z Reserved for Vendor Test CLK_INT/C Notes 1 Bypass Mode 2 Power up default mode 1227G—11/05/07 8 ICS9220 Absolute Maximum Ratings Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 4.0 V Logic Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . GND –0.5 V to VDD +0.5 V Ambient Operating Temperature . . . . . . . . . . 0°C to +85°C Storage Temperature . . . . . . . . . . . . . . . . . . . . –65°C to +150°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. DC Characteristics - Inputs TA = 0°C to +85°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Supply Voltage VDD2.5, AVDD 2.375 2.625 V High-level input voltage VIHCLK 0.6 0.95 V -0.15 0.15 V 0.2 0.55 V 0.15 V 0.35 0.5VDD2.5 V VTH + 0.3 2.625 V -0.15 VTH - 0.3 V 1.4 2.625 V -0.15 0.8 V Low-level input voltage VILCLK Crossing point voltage VIXCLK Difference in crossing point voltage VIXCLK Input threshold voltage VTH High-level input voltage for single-ended CLK_IN VIHSE Low-level input voltage for single-ended CLK_IN VILSE High-level input voltage VIH Low-level input voltage VIL High-level input voltage - SMBus Low-level input voltage - SMBus VIHSMB VILSMB CLK_INT, CLK_INC 1 Singled-ended CLK_IN OE, AS1, AS2, BYPASS#/PLL SMBCLK, SMBDAT 1.4 -0.15 2 3.465 0.8 V V Notes: 1 When using singled-ended clock input, VTH is supplied to CLK_INTC as shown in Figure 2. Duty cycle of singled-ended CLK_IN is measured at VTH. 2 This range of SMBus input high voltages allows the 9220 to co-exist with 3.3V, 2.5V and 1.8V devices on the same SMBus. 1227G—11/05/07 9 ICS9220 DC Characteristics - Outputs TA = 0°C to +85°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated) PARAMETER SYMBOL CONDITIONS MIN TYP Power within spec to outputs tPU Power up latency within spec MAX UNITS 3 ms 3 ms State transition latency1 tCO SMBus or Mode Select transition to outputs valid and within spec Differential output crossing voltage VOX Measured as shown in Fig. 3 0.9 1.1 V Output Voltage Swing (peak-to-peak singled ended) VCOS Measured as shown in Fig. 3. Excludes over and undershoot. 300 350 mV Absolute output low voltage VOL, ABS Measured at ODCLK_T/C pins 0.85 Reference Voltage for swing control current VISET VDD = 2.3V, VOUT = 1V 0.98 Ratio of output low current to reference current at typical VDD2.5 IOL/IREF IREF is equal to VISET/RRC. Tolerance of RRC <=+/-1%. 6.8 Minimum current at VOLABS IOL, ABS Low-level output voltage SMBus Low-level output current SMBus Tristate output current VOLSMB IOLSMB IOZ Measured at ODCLK_T/C pins with termination per Figure 3. IOL = 4 mA VOL= 0.8 V Differential clock output pins V 1.02 V 7.2 - 45 - mA 6 - 0.4 50 V mA µΑ 7 Notes: 1 There is no output latency or glitches if a value written to an output register is the same as its current contents. AC Characteristics-Outputs TA = 0°C to +85°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated) SYMBOL CONDITION MIN TYP PARAMETER1 Short term jitter (over 1 to 6 clock cycles) tJ2 Phase noise spectral purity L20 MAX UNITS f = 300 to 636 MHz - 36 40 ps f = 635 to 800 MHz - 26 30 ps -128 ps fOFFSET = 20MHz, fOUT = 400MHz Duty cycle DC 45 55 % Output rise and fall times tR, tF 20% to 80% of output voltage 140 300 ps Difference between output rise and fall time on same pin of a single device tR-F 20% to 80% of output voltage - 100 ps Dynamic output impedance ZOUT2 V OL = 0.9 V 1000 - Ω Notes: 1 Guaranteed by design and characterization, not 100% tested in production 2 Zout is defined at the output pins. 1227G—11/05/07 10 ICS9220 AC Characteristics-Inputs TA = 0°C to +85°C; Supply Voltage AVDD2.5, VDD2.5 = 2.5 V +/- 0.125V (unless otherwise stated) PARAMETER SYMBOL CONDITION MIN TYP 1 CLK_INT/CLK_INC cycle time Cycle-to-Cycle Jitter tCYCLEIN 9 MAX UNITS 11 ns 185 ps 10 2 Input clock duty cycle tcyc-tcyc dtin over 10,000 cycles 40 60 % CLK_INT/CLK_INC rise and fall time tR, tF 20% to 80% of input voltage 175 700 ps Difference between input rise and fall time on same pin of a single device tR-F 20% to 80% of input voltage - 150 ps Spread spectrum modulation frequency fINM3 33 kHz Triangular modulation 30 0.6 % Non-triangular modulation 0.54 % 4 V/ns Spread spectrum modulation index mINDEX3 Input clock slew rate tsl(I) 20% to 80% of input voltage 5 1 Input Capacitance CINCLK CLK_INT, CLK_INC 7 pF Input Capacitance5 CLK_INT cycle time CIN VI = VDD2.5 or GND 10 pF tCYCLETST Bypass Mode 4 40 ns SMBus clock frequency fSMB 10 100 kHz Notes: 1 Measured at (VIH(nom) - VIL(nom))/2 and is the absolute value of the worst case deviation. 2 Measured at crossing points for differential clock input or at VTH for single- ended clock input. 3 If input modulation is used. Input modulation is not necessary. 4 The amount of allowed spreading for non-triangular modulation is determined by the induced downstream tracking skew. 5 Capacitance measured at f = 1 MHz, DC bias = 0.9V, VAC <100mV. Thermal Characteristics Parameter Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case Thermal Resistance Junction to Top of Case Maximum Case Temp Symbol Conditions θJA θJA θJA θJC Still air 1 m/s air flow 3 m/s air flow ΨJT Still Air Min. Typ. Max. 120 95 80 20 °C/W °C/W °C/W °C/W °C/W 4.5 120 1227G—11/05/07 11 Units °C ICS9220 Clock Output Drivers Figure 2 shows the clock driver equivalent circuit. The differential driver produces a specified voltage swing on the channel by switching the currents going into ODCLK_T and ODCLK_C. The external resistor RRC at the IREFY pin sets the maximum current. The minimum current is zero. The voltage at the IREFY pin, VIREFY, is by design equal to 1 V nominally, and the driver current is seven times the current flowing through RRC. So, the output low current can be estimated as IOL = 7/ RRC. The driver output characteristics are defined together with the external resistors, R1, R2, and R3. The output clock signals are specified at the measurement points indicated in Figure 2. Table 5 shows example values for the resistors. R1, R2, and R3 and the clock driver output impedance, ZOUT, must match the impedance of the channel, ZCH , to minimize secondary reflections. ZOUT is specified as 1000 Ohms, minimum to accomplish this. The effective impedance can be estimated by: (1000R1/(1000+R1)+R2) R3/(1000R1/(1000+R1)+R2+R3) Pull-up resistor RT terminates the transmission line at the load to minimize clock signal reflection signal reflections. Table 5 shows the resistor values for establishing and effective source termination impedance of 49.2 Ohms to match a 50 Ohm channel. The termination voltages are 2.5 V for VTS and 1.2 V for VT. The resistor values R1 = 38.3 Ohms, R2 = 19.1 Ohms, R3 = 54.9 Ohms and RRC = 200 Ohms can be used to match a 28 Ohm channel. Table 5. Example Resistor Values and Termination Voltages for a 50 Ohm Channel1 Symbol Parameter Value Tolerance Unit R1 Termination resistor 39.2 +/- 1% Ω R2 Termination resistor 66.5 +/- 1% Ω R3 Termination resistor 93.1 +/- 1% Ω RT Termination resistor 49.9 +/- 1% Ω RRC Swing control resistor 200 +/- 1% Ω VTS VT Source termination voltage 2.5 +/-5% V Termination voltage 1.2 +/-5% V Notes: 1 A different set of resistors is used in Figure 2 when testing for maximum output current of the clock driver (IOLABS). These resistors are: R1 = 23Ω, R2 = 36.5Ω, R3 = 52.3Ω, RT=28Ω, RRC = 118Ω Supply Voltage CLK_INC VTH Input CLK_INT CLK_INT XDR Input Clock Generator XDR Clock Generator a. Differential input b. Single-ended input Figure 1. Differential and single-ended reference clock inputs 1227G—11/05/07 12 ICS9220 Input Clock Signal The ICS9220 receives either a differential or single-ended reference clock (CLK_INT/C). When the reference input clock is from a differential clock source, it must meet the voltage levels and timing requirements listed in the DC Characteristics – Inputs and AC Characteristics – Inputs tables. For a singled-ended clock input, an external voltage divider and a supply voltage, as shown in Figure 2, provide a reference voltage VTH at the CLK_INC pin to determine the proper switching point for CLK_INT. The range of VTH is specified in the DC Characteristics – Inputs table. VTS ODCLK_T R1 Measurement Point ZCH R2 VT RT R3 Swing Current Control ISET Differential Driver VTS ODCLK_C Measurement Point R1 ZCH R2 RRC VT RT R3 Figure 2. Example System Clock Driver Equivalent Circuit VH 80% V(t) 20% VL tF tR Figure 3. Input and Output Voltage Waveforms ODCLK_T Vx+ Vx,nom Vx- ODCLK_C Figure 4. Crossing-point Voltage 1227G—11/05/07 13 ICS9220 Power Sequencing Supply voltages for the ICS9220 must be applied before, or at the same time and external input and output signals. ODCLK_T ODCLK_C tCYCLE,i+1 tCYCLE,i tJ = tCYCLE,i - tCYCLE, i+1 over 10,000 consecutive cycles Figure 5. Cycle-to-cycle Jitter ODCLK_T ODCLK_C t4CYCLE, i+1 t4CYCLE, i tJ = t4CYCLE, i - t4CYCLE, i+1 over 10,000 consecutive cycles Figure 6. Short-term Jitter Cycle (i) ODCLK_T ODCLK_C tPW- (i) Cycle (i+1) tPW+ (i) tPW- (i+1) tCYCLE (i) tCYCLE (i+1) tDC,ERR = tPW+(i) - tPW+(i+1) and tPW-(i) - tPW-(i+1) Figure 7. Cycle-to-cycle Duty Cycle Error 1227G—11/05/07 14 tPW+ (i+1) ICS9220 fNOM (1-PM,IN)*fNOM 0.5/fM,IN t 1/fM,IN Figure 8. Input frequency Modulation 1227G—11/05/07 15 ICS9220 4.40 mm. Body, 0.65 mm. Pitch TSSOP (173 mil) c N SYMBOL L E1 INDEX AREA A A1 A2 b c D E E1 e L N a aaa E 1 2 α D A A2 In Inches COMMON DIMENSIONS MIN MAX -.047 .002 .006 .032 .041 .007 .012 .0035 .008 SEE VARIATIONS 0.252 BASIC .169 .177 0.0256 BASIC .018 .030 SEE VARIATIONS 0° 8° -.004 VARIATIONS N A1 -Ce (25.6 mil) In Millimeters COMMON DIMENSIONS MIN MAX -1.20 0.05 0.15 0.80 1.05 0.19 0.30 0.09 0.20 SEE VARIATIONS 6.40 BASIC 4.30 4.50 0.65 BASIC 0.45 0.75 SEE VARIATIONS 0° 8° -0.10 SEATING PLANE b aaa C 28 D mm. MIN 9.60 D (inch) MAX 9.80 Reference Doc.: JEDEC Publication 95, MO-153 10-0035 Ordering Information ICS9220yG LF-T Example: ICS XXXX y G LF- T Designation for tape and reel packaging Lead Free, RoHS Compliant Package Type G = TSSOP Revision Designator (will not correlate with datasheet revision) Device Type Prefix ICS = Standard Device 1227G—11/05/07 16 MIN .378 MAX .386 ICS9220 Revision History Rev. D E F G Issue Date 10/11/06 04/06/07 04/09/07 11/05/07 Description Final Release Updated AC output short term jitter specifications Updated AC output short term jitter specifications Updated to extended temperature range 1227G—11/05/07 17 Page # 10 10 -