StrongIRFET IRFS7437PbF IRFSL7437PbF Applications l Brushed Motor drive applications l BLDC Motor drive applications l Battery powered circuits l Half-bridge and full-bridge topologies l Synchronous rectifier applications l Resonant mode power supplies l OR-ing and redundant power switches l DC/DC and AC/DC converters l DC/AC Inverters HEXFET® Power MOSFET D G S VDSS RDS(on) typ. max. ID (Silicon Limited) 40V 1.4mΩ 1.8mΩ 250A ID (Package Limited) 195A D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free c D S G G D S TO-262 IRFSL7437PbF D2Pak IRFS7437PbF G D S Gate Drain Source Standard Pack Form Tube Tube Tape and Reel Left Quantity 50 50 800 Ordering Information Base part number TO-262 D2Pak D2Pak 6 LIMITED BY PACKAGE 5 200 4 3 TJ = 125°C 2 TJ = 25°C 1 0 150 100 50 0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 VGS, Gate-to-Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage www.irf.com Complete Part Number IRFSL7437PbF IRFS7437PbF IRFS7437TRLPbF 250 ID = 100A ID , Drain Current (A) ( Ω) RDS (on), Drain-to -Source On Resistance m IRFSL7437PbF IRFS7437PbF IRFS7437PbF Package Type 25 50 75 100 125 150 175 TC , Case Temperature (°C) Fig 2. Maximum Drain Current vs. Case Temperature 1 September 06, 2012 IRFS/SL7437PbF Absolute Maximum Ratings Symbol Parameter Max. ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range VGS d Single Pulse Avalanche Energy Symbol RθJC RθJA e Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Thermal Resistance d j Junction-to-Ambient (PCB Mount) , D 2Pak x x 350 500 See Fig. 14, 15, 22a, 22b k Parameter Junction-to-Case V/ns °C Avalanche Characteristics d W W/°C V 300 10lbf in (1.1N m) Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw EAS (Thermally limited) EAS (tested) IAR EAR A 1000 230 1.5 ± 20 3.0 -55 to + 175 f dv/dt TJ TSTG Units c 250 180 195 j mJ A mJ Typ. Max. Units ––– ––– 0.65 40 °C/W Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance RDS(on) VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.069mH RG = 25Ω, IAS = 100A, VGS =10V. ISD ≤ 100A, di/dt ≤ 1166A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 September 06, 2012 Min. Typ. Max. Units 40 ––– ––– ––– 2.2 ––– ––– ––– ––– ––– ––– ––– 0.029 ––– 1.4 1.8 2.0 ––– 3.0 3.9 ––– 1.0 ––– 150 ––– 100 ––– -100 2.2 ––– Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 100A VGS = 6.0V, ID = 50A V VDS = VGS, ID = 150μA μA VDS = 40V, VGS = 0V VDS = 40V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω d Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. Rθ is measured at TJ approximately 90°C. This value determined from sample failure population, starting TJ = 25°C, L=0.095mH, RG = 25Ω, IAS = 100A, VGS =10V www.irf.com IRFS/SL7437PbF Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i 160 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 150 41 51 99 19 70 78 53 7330 1095 745 1310 1735 ––– 225 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 10V, ID = 100A ID = 100A VDS =20V VGS = 10V ID = 100A, VDS =20V, VGS = 10V VDD = 20V ID = 30A R G = 2.7Ω VGS = 10V VGS = 0V VDS = 25V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 32V , See Fig. 11 VGS = 0V, VDS = 0V to 32V g ns pF g Diode Characteristics Symbol IS Parameter VSD trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM www.irf.com d Min. Typ. Max. Units c Conditions MOSFET symbol showing the G ––– ––– 1000 A integral reverse p-n junction diode. ––– 1.0 1.3 V TJ = 25°C, IS = 100A, VGS = 0V ––– 30 ––– ns TJ = 25°C VR = 34V, ––– 30 ––– TJ = 125°C IF = 100A di/dt = 100A/μs ––– 24 ––– nC TJ = 25°C ––– 25 ––– TJ = 125°C ––– 1.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) ––– ––– 250 A g D S g 3 September 06, 2012 IRFS/SL7437PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 10 4.5V BOTTOM 100 4.5V ≤60μs PULSE WIDTH ≤60μs PULSE WIDTH Tj = 25°C 1 1 10 100 0.1 10 100 VDS, Drain-to-Source Voltage (V) Fig 3. Typical Output Characteristics Fig 4. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(A) 1 VDS, Drain-to-Source Voltage (V) 1000 TJ = 175°C 100 TJ = 25°C 10 VDS = 10V ≤60μs PULSE WIDTH 1.0 3 4 5 6 7 1.2 1.0 0.8 -60 -40 -20 0 20 40 60 80 100120140160180 Fig 6. Normalized On-Resistance vs. Temperature 14 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss Coss Crss 1000 1.4 TJ , Junction Temperature (°C) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 1.6 0.6 Fig 5. Typical Transfer Characteristics 100000 ID = 100A VGS = 10V 1.8 8 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) Tj = 175°C 10 0.1 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V ID= 100A 12 VDS = 32V VDS = 20V 10 8 6 4 2 0 100 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Capacitance vs. Drain-to-Source Voltage 4 September 06, 2012 40 80 120 160 200 QG Total Gate Charge (nC) Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com IRFS/SL7437PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 100μsec 100 1msec Limited by Package 10 10msec OPERATION IN THIS AREA LIMITED BY R (on) DS DC 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 2.0 0.1 2.5 VSD , Source-to-Drain Voltage (V) 10 Fig 10. Maximum Safe Operating Area Fig 9. Typical Source-Drain Diode Forward Voltage 1.2 50 Id = 1.0mA 1.0 48 0.8 Energy (μJ) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 1 VDS, Drain-toSource Voltage (V) 46 44 0.6 0.4 42 0.2 0.0 40 0 -60 -40 -20 0 20 40 60 80 100120140160180 20 30 40 50 VDS, Drain-to-Source Voltage (V) TJ , Temperature ( °C ) Fig 11. Drain-to-Source Breakdown Voltage RDS (on) , Drain-to-Source On Resistance (mΩ) 10 Fig 12. Typical COSS Stored Energy 8 VGS = 5.5V 7 VGS = 6.0V 6 5 VGS = 7.0V VGS = 8.0V VGS = 10V 4 3 2 1 0 100 200 300 400 500 ID , Drain Current (A) Fig 13. Typical On-Resistance vs. Drain Current www.irf.com 5 September 06, 2012 IRFS/SL7437PbF 1 Thermal Response ( ZthJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. (Single Pulse) 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current vs.Pulsewidth Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) EAR , Avalanche Energy (mJ) 350 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 100A 300 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 16. Maximum Avalanche Energy vs. Temperature 6 September 06, 2012 www.irf.com IRFS/SL7437PbF 10 IF = 60A VR = 34V 4.0 8 TJ = 25°C TJ = 125°C 3.5 3.0 ID = 150μA 2.5 ID = 1.0mA ID = 1.0A 2.0 6 IRR (A) VGS(th), Gate threshold Voltage (V) 4.5 4 2 1.5 1.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 TJ , Temperature ( °C ) 600 800 1000 Fig. 18 - Typical Recovery Current vs. dif/dt Fig 17. Threshold Voltage vs. Temperature 10 140 IF = 100A VR = 34V 8 TJ = 25°C TJ = 125°C 6 QRR (A) IRR (A) 400 diF /dt (A/μs) 4 120 IF = 60A VR = 34V 100 TJ = 25°C TJ = 125°C 80 60 40 2 20 0 0 0 200 400 600 800 1000 0 200 diF /dt (A/μs) 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt Fig. 19 - Typical Recovery Current vs. dif/dt QRR (A) 140 120 IF = 100A VR = 34V 100 TJ = 25°C TJ = 125°C 80 60 40 20 0 0 200 400 600 800 1000 diF /dt (A/μs) www.irf.com Fig. 21 - Typical Stored Charge vs. dif/dt 7 September 06, 2012 IRFS/SL7437PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG 20V VGS + V - DD IAS A 0.01Ω tp I AS Fig 23a. Unclamped Inductive Test Circuit RD VDS Fig 23b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 24a. Switching Time Test Circuit tr t d(off) Fig 24b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 25a. Gate Charge Test Circuit 8 September 06, 2012 Qgs1 Qgs2 Qgd Qgodr Fig 25b. Gate Charge Waveform www.irf.com IRFS/SL7437PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information T HIS IS AN IRF 530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE ASS EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER F 530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L AS SEMBLY LOT CODE OR INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DESIGNAT ES LEAD - F REE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = ASS EMBLY S IT E CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 September 06, 2012 IRFS/SL7437PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" PART NUMBER INT ERNATIONAL RECTIFIER LOGO DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C AS S EMBLY LOT CODE OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE P = DES IGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S ITE CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 September 06, 2012 www.irf.com IRFS/SL7437PbF Qualification information† Qualification level Moisture Sensitivity Level D2Pak TO-262 RoHS compliant Industrial†† (per JEDEC JESD47F††† guidelines) MS L1 (per JE DE C J-S T D-020D†††) Not applicable Yes Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. www.irf.com 11 September 06, 2012