IRF IRFS7437PBF

StrongIRFET™
IRFS7437PbF
IRFSL7437PbF
Applications
l Brushed Motor drive applications
l BLDC Motor drive applications
l Battery powered circuits
l Half-bridge and full-bridge topologies
l Synchronous rectifier applications
l Resonant mode power supplies
l OR-ing and redundant power switches
l DC/DC and AC/DC converters
l DC/AC Inverters
HEXFET® Power MOSFET
D
G
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
40V
1.4mΩ
1.8mΩ
250A
ID (Package Limited)
195A
D
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
l Halogen-Free
c
D
S
G
G
D
S
TO-262
IRFSL7437PbF
D2Pak
IRFS7437PbF
G
D
S
Gate
Drain
Source
Standard Pack
Form
Tube
Tube
Tape and Reel Left
Quantity
50
50
800
Ordering Information
Base part number
TO-262
D2Pak
D2Pak
6
LIMITED BY PACKAGE
5
200
4
3
TJ = 125°C
2
TJ = 25°C
1
0
150
100
50
0
4.0
6.0
8.0
10.0 12.0 14.0 16.0 18.0 20.0
VGS, Gate-to-Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
www.irf.com
Complete Part
Number
IRFSL7437PbF
IRFS7437PbF
IRFS7437TRLPbF
250
ID = 100A
ID , Drain Current (A)
( Ω)
RDS (on), Drain-to -Source On Resistance m
IRFSL7437PbF
IRFS7437PbF
IRFS7437PbF
Package Type
25
50
75
100
125
150
175
TC , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
1
September 06, 2012
IRFS/SL7437PbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
VGS
d
Single Pulse Avalanche Energy
Symbol
RθJC
RθJA
e
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Thermal Resistance
d
j
Junction-to-Ambient (PCB Mount) , D 2Pak
x
x
350
500
See Fig. 14, 15, 22a, 22b
k
Parameter
Junction-to-Case
V/ns
°C
Avalanche Characteristics
d
W
W/°C
V
300
10lbf in (1.1N m)
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
EAS (Thermally limited)
EAS (tested)
IAR
EAR
A
1000
230
1.5
± 20
3.0
-55 to + 175
f
dv/dt
TJ
TSTG
Units
c
250
180
195
j
mJ
A
mJ
Typ.
Max.
Units
–––
–––
0.65
40
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
RDS(on)
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Internal Gate Resistance
RG
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 195A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.069mH
RG = 25Ω, IAS = 100A, VGS =10V.
„ ISD ≤ 100A, di/dt ≤ 1166A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
September 06, 2012
Min. Typ. Max. Units
40
–––
–––
–––
2.2
–––
–––
–––
–––
–––
––– –––
0.029 –––
1.4
1.8
2.0
–––
3.0
3.9
–––
1.0
––– 150
––– 100
––– -100
2.2
–––
Conditions
V VGS = 0V, ID = 250μA
V/°C Reference to 25°C, ID = 1mA
VGS = 10V, ID = 100A
VGS = 6.0V, ID = 50A
V VDS = VGS, ID = 150μA
μA VDS = 40V, VGS = 0V
VDS = 40V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
d
… Pulse width ≤ 400μs; duty cycle ≤ 2%.
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ Rθ is measured at TJ approximately 90°C.
‰ This value determined from sample failure population,
starting TJ = 25°C, L=0.095mH, RG = 25Ω, IAS = 100A, VGS =10V
www.irf.com
IRFS/SL7437PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
h
i
160
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
150
41
51
99
19
70
78
53
7330
1095
745
1310
1735
–––
225
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
Conditions
VDS = 10V, ID = 100A
ID = 100A
VDS =20V
VGS = 10V
ID = 100A, VDS =20V, VGS = 10V
VDD = 20V
ID = 30A
R G = 2.7Ω
VGS = 10V
VGS = 0V
VDS = 25V
ƒ = 1.0 MHz, See Fig. 5
VGS = 0V, VDS = 0V to 32V , See Fig. 11
VGS = 0V, VDS = 0V to 32V
g
ns
pF
g
Diode Characteristics
Symbol
IS
Parameter
VSD
trr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
www.irf.com
d
Min. Typ. Max. Units
c
Conditions
MOSFET symbol
showing the
G
––– ––– 1000
A integral reverse
p-n junction diode.
–––
1.0
1.3
V TJ = 25°C, IS = 100A, VGS = 0V
–––
30
–––
ns TJ = 25°C
VR = 34V,
–––
30
–––
TJ = 125°C
IF = 100A
di/dt = 100A/μs
–––
24
–––
nC TJ = 25°C
–––
25
–––
TJ = 125°C
–––
1.3
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
–––
–––
250
A
g
D
S
g
3
September 06, 2012
IRFS/SL7437PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
10
4.5V
BOTTOM
100
4.5V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 25°C
1
1
10
100
0.1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
Fig 4. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(A)
1
VDS, Drain-to-Source Voltage (V)
1000
TJ = 175°C
100
TJ = 25°C
10
VDS = 10V
≤60μs PULSE WIDTH
1.0
3
4
5
6
7
1.2
1.0
0.8
-60 -40 -20 0 20 40 60 80 100120140160180
Fig 6. Normalized On-Resistance vs. Temperature
14
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
Coss
Crss
1000
1.4
TJ , Junction Temperature (°C)
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
1.6
0.6
Fig 5. Typical Transfer Characteristics
100000
ID = 100A
VGS = 10V
1.8
8
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
Tj = 175°C
10
0.1
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
ID= 100A
12
VDS = 32V
VDS = 20V
10
8
6
4
2
0
100
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
September 06, 2012
40
80
120
160
200
QG Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
IRFS/SL7437PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
TJ = 175°C
100
TJ = 25°C
10
1
100μsec
100
1msec
Limited by Package
10
10msec
OPERATION IN THIS AREA
LIMITED BY R (on)
DS
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
0.1
2.5
VSD , Source-to-Drain Voltage (V)
10
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
1.2
50
Id = 1.0mA
1.0
48
0.8
Energy (μJ)
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
1
VDS, Drain-toSource Voltage (V)
46
44
0.6
0.4
42
0.2
0.0
40
0
-60 -40 -20 0 20 40 60 80 100120140160180
20
30
40
50
VDS, Drain-to-Source Voltage (V)
TJ , Temperature ( °C )
Fig 11. Drain-to-Source Breakdown Voltage
RDS (on) , Drain-to-Source On Resistance (mΩ)
10
Fig 12. Typical COSS Stored Energy
8
VGS = 5.5V
7
VGS = 6.0V
6
5
VGS = 7.0V
VGS = 8.0V
VGS = 10V
4
3
2
1
0
100
200
300
400
500
ID , Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
www.irf.com
5
September 06, 2012
IRFS/SL7437PbF
1
Thermal Response ( ZthJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Avalanche Current (A)
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C. (Single Pulse)
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
EAR , Avalanche Energy (mJ)
350
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 100A
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
September 06, 2012
www.irf.com
IRFS/SL7437PbF
10
IF = 60A
VR = 34V
4.0
8
TJ = 25°C
TJ = 125°C
3.5
3.0
ID = 150μA
2.5
ID = 1.0mA
ID = 1.0A
2.0
6
IRR (A)
VGS(th), Gate threshold Voltage (V)
4.5
4
2
1.5
1.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
TJ , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
10
140
IF = 100A
VR = 34V
8
TJ = 25°C
TJ = 125°C
6
QRR (A)
IRR (A)
400
diF /dt (A/μs)
4
120
IF = 60A
VR = 34V
100
TJ = 25°C
TJ = 125°C
80
60
40
2
20
0
0
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
QRR (A)
140
120
IF = 100A
VR = 34V
100
TJ = 25°C
TJ = 125°C
80
60
40
20
0
0
200
400
600
800
1000
diF /dt (A/μs)
www.irf.com
Fig. 21 - Typical Stored Charge vs. dif/dt
7
September 06, 2012
IRFS/SL7437PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 23a. Unclamped Inductive Test Circuit
RD
VDS
Fig 23b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 24a. Switching Time Test Circuit
tr
t d(off)
Fig 24b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 25a. Gate Charge Test Circuit
8
September 06, 2012
Qgs1 Qgs2
Qgd
Qgodr
Fig 25b. Gate Charge Waveform
www.irf.com
IRFS/SL7437PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF 530S WIT H
LOT CODE 8024
ASS EMBLED ON WW 02, 2000
IN T HE ASS EMBLY LINE "L"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
F 530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
AS SEMBLY
LOT CODE
OR
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
P = DESIGNAT ES LEAD - F REE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEEK 02
A = ASS EMBLY S IT E CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
September 06, 2012
IRFS/SL7437PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: THIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS S EMBLY LINE "C"
PART NUMBER
INT ERNATIONAL
RECTIFIER
LOGO
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
AS S EMBLY
LOT CODE
OR
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DATE CODE
P = DES IGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S ITE CODE
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
September 06, 2012
www.irf.com
IRFS/SL7437PbF
Qualification information†
Qualification level
Moisture Sensitivity Level
D2Pak
TO-262
RoHS compliant
Industrial††
(per JEDEC JESD47F††† guidelines)
MS L1
(per JE DE C J-S T D-020D†††)
Not applicable
Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
†† Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
www.irf.com
11
September 06, 2012