PD - 97115A IRFB4310ZPbF IRFS4310ZPbF IRFSL4310ZPbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free D G S VDSS RDS(on) typ. max. ID (Silicon Limited) 100V 4.8m: 6.0m: 127A c ID (Package Limited) 75A D D D G D S G D S G D2Pak IRFS4310ZPbF TO-220AB IRFB4310ZPbF D S TO-262 IRFSL4310ZPbF G D S G ate Drain Source Absolute Maximum Ratings Max. Units ID @ TC = 25°C Symbol Continuous Drain Current, VGS @ 10V (Silicon Limited) Parameter 127c A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 90c ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 75 IDM Pulsed Drain Current d 560 PD @TC = 25°C Maximum Power Dissipation 250 W W/°C V Linear Derating Factor 1.7 VGS Gate-to-Source Voltage ± 20 dv/dt TJ Peak Diode Recovery f 18 Operating Junction and -55 to + 175 TSTG Storage Temperature Range V/ns °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) 10lbxin (1.1Nxm) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy e IAR Avalanche Currentc EAR Repetitive Avalanche Energy g 130 mJ See Fig. 14, 15, 22a, 22b, A mJ Thermal Resistance Typ. Max. RθJC Symbol Junction-to-Case k ––– 0.6 RθCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– RθJA Junction-to-Ambient, TO-220 k ––– 62 RθJA Junction-to-Ambient (PCB Mount) , D Pak jk ––– 40 www.irf.com Parameter 2 Units °C/W 1 4/27/07 IRFB/S/SL4310ZPbF Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS Parameter Min. Typ. Max. Units ––– ––– ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient ––– 0.11 ––– V/°C Reference to 25°C, ID = 5mAd RDS(on) Static Drain-to-Source On-Resistance ––– 4.8 6.0 mΩ VGS = 10V, ID = 75A g VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V IDSS Drain-to-Source Leakage Current μA RG ––– ––– 20 ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 0.7 ––– V Conditions 100 IGSS Drain-to-Source Breakdown Voltage VGS = 0V, ID = 250μA VDS = VGS, ID = 150μA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units gfs Forward Transconductance 150 ––– ––– S nC Conditions VDS = 50V, ID = 75A Qg Total Gate Charge ––– 120 170 Qgs Gate-to-Source Charge ––– 29 ––– VDS =50V Qgd Gate-to-Drain ("Miller") Charge ––– 35 Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 85 ––– ID = 75A, VDS =0V, VGS = 10V ID = 75A VGS = 10V g td(on) Turn-On Delay Time ––– 20 ––– tr Rise Time ––– 60 ––– ID = 75A td(off) Turn-Off Delay Time ––– 55 ––– RG = 2.7Ω tf Fall Time ––– 57 ––– VGS = 10V g Ciss Input Capacitance ––– 6860 ––– Coss Output Capacitance ––– 490 ––– VDS = 50V Crss Reverse Transfer Capacitance ––– 220 ––– ƒ = 1.0MHz, See Fig. 5 Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related)h ––– 570 ––– VGS = 0V, VDS = 0V to 80V i, See Fig. 11 920 ––– VGS = 0V, VDS = 0V to 80V h ns pF VDD = 65V VGS = 0V Diode Characteristics Symbol Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD (Body Diode)d Diode Forward Voltage trr Reverse Recovery Time Qrr Min. Typ. Max. Units ––– ––– Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time ––– ––– ––– ––– 40 ––– 49 ––– 58 ––– 89 ––– 2.5 560 1.3 A MOSFET symbol A showing the integral reverse V p-n junction diode. TJ = 25°C, IS = 75A, VGS = 0V g ns TJ = 25°C VR = 85V, TJ = 125°C IF = 75A di/dt = 100A/μs g nC TJ = 25°C D G S TJ = 125°C ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.047mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 600A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 ––– 127c Conditions Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C www.irf.com IRFB/S/SL4310ZPbF 1000 1000 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 BOTTOM 10 4.5V ≤ 60μs PULSE WIDTH Tj = 25°C 1 BOTTOM 100 4.5V ≤ 60μs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 2.5 1000 100 10 TJ = 25°C 1 VDS = 50V ≤ 60μs PULSE WIDTH 0.1 3.0 4.0 5.0 6.0 VGS = 10V 2.0 (Normalized) TJ = 175°C 2.0 ID = 75A RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 7.0 1.5 1.0 0.5 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 12000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 8000 Ciss 6000 4000 Coss 2000 Crss 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 75A VDS = 80V 16 VDS= 50V VDS= 20V 12 8 4 0 0 1 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 0 40 80 120 160 200 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB/S/SL4310ZPbF 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 TJ = 175°C 100 TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 1msec 100 10msec 10 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.1 2.0 LIMITED BY PACKAGE ID, Drain Current (A) 120 100 80 60 40 20 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage 140 50 10 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) 130 ID = 5mA 120 110 100 90 -60 -40 -20 TC, Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 3.0 EAS, Single Pulse Avalanche Energy (mJ) 600 2.5 2.0 Energy (μJ) DC 0.1 0.1 1.5 1.0 0.5 0.0 ID 11A 19A BOTTOM 75A TOP 500 400 300 200 100 0 0 20 40 60 80 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100μsec 100 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFB/S/SL4310ZPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.10 0.1 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ2 τ1 τ2 τ3 τ4 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) τ4 τ Ri (°C/W) 0.018756 0.159425 0.320725 0.101282 τι (sec) 0.000373 0.000734 0.005665 0.115865 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 140 120 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB/S/SL4310ZPbF 24 ID = 1.0A ID = 1.0mA ID = 250μA ID = 150μA 4.0 3.5 20 16 IRRM - (A) VGS(th) Gate threshold Voltage (V) 4.5 3.0 2.5 12 8 2.0 IF = 30A VR = 85V 4 1.5 1.0 TJ = 125°C TJ = 25°C 0 -75 -50 -25 0 25 50 75 100 125 150 175 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) Fig 16. Threshold Voltage Vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 24 600 20 500 16 400 QRR - (nC) IRRM - (A) TJ , Temperature ( °C ) 12 8 4 0 300 200 IF = 45A VR = 85V IF = 30A VR = 85V 100 TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 600 500 QRR - (nC) 400 300 200 100 0 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB/S/SL4310ZPbF Driver Gate Drive D.U.T + - - * RG • • • • D.U.T. ISD Waveform + VDD ** P.W. Period *** Reverse Recovery Current dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + -VDD 10% VGS 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit td(off) tr tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 20K 1K VCC S Vgs(th) Qgodr Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgs2 Qgs1 Fig 24b. Gate Charge Waveform 7 IRFB/S/SL4310ZPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRFB/S/SL4310ZPbF TO-262 Package Outline (Dimensions are shown in millimeters (inches)) TO-262 Part Marking Information EXAMPLE: THIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBER DAT E CODE P = DES IGNATES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S ITE CODE 9 IRFB/S/SL4310ZPbF D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L AS S EMBLY LOT CODE T HIS IS AN IRF530S WIT H LOT CODE 8024 For GB Production AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE 10 PART NUMBER F530S DAT E CODE www.irf.com IRFB/S/SL4310ZPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/07 www.irf.com 11