PD -97144 IRFS3107PbF IRFSL3107PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits G D Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free S VDSS RDS(on) typ. max. ID (Silicon Limited) 75V 2.5m: 3.0m: 230A c ID (Package Limited) 195A D D S G G D2Pak IRFS3107PbF D S TO-262 IRFSL3107PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 230c ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 160 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited) 195 IDM Pulsed Drain Current d 900 PD @TC = 25°C Maximum Power Dissipation 370 W Linear Derating Factor 2.5 VGS Gate-to-Source Voltage ± 20 W/°C V dv/dt TJ Peak Diode Recovery f 14 V/ns Operating Junction and -55 to + 175 TSTG Storage Temperature Range A °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) 10lbxin (1.1Nxm) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy e IAR Avalanche Currentd EAR Repetitive Avalanche Energy g 300 mJ See Fig. 14, 15, 22a, 22b, A mJ Thermal Resistance Symbol Parameter Typ. Max. RθJC Junction-to-Case kl ––– 0.40 RθJA Junction-to-Ambient (PCB Mount) jk ––– 40 www.irf.com Units °C/W 1 10/7/08 IRFS/SL3107PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Min. Typ. Max. Units 75 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.09 2.5 ––– ––– ––– ––– ––– 1.2 ––– ––– 3.0 4.0 20 250 100 -100 ––– Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 140A g V VDS = VGS, ID = 250μA μA VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) 230 ––– ––– ––– ––– Turn-On Delay Time ––– Rise Time ––– Turn-Off Delay Time ––– Fall Time ––– Input Capacitance ––– Output Capacitance ––– Reverse Transfer Capacitance ––– Effective Output Capacitance (Energy Related) ––– Effective Output Capacitance (Time Related)h ––– ––– 160 38 54 106 19 110 99 100 9370 840 580 1130 1500 ––– 240 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Conditions VDS = 50V, ID = 140A ID = 140A VDS =38V VGS = 10V g ID = 140A, VDS =0V, VGS = 10V VDD = 49V ID = 140A RG = 2.7Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0 MHz, See Fig. 5 VGS = 0V, VDS = 0V to 60V i, See Fig. 11 VGS = 0V, VDS = 0V to 60V h Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 230c A MOSFET symbol ISM (Body Diode) Pulsed Source Current ––– ––– A showing the integral reverse VSD trr (Body Diode)d Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time G p-n junction diode. TJ = 25°C, IS = 140A, VGS = 0V g VR = 64V, TJ = 25°C IF = 140A TJ = 125°C di/dt = 100A/μs g TJ = 25°C TJ = 125°C TJ = 25°C S ––– ––– 1.3 V ––– 54 ––– ns ––– 60 ––– ––– 103 ––– nC ––– 132 ––– ––– 3.6 ––– A Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140) Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.045mH RG = 25Ω, IAS = 140A, VGS =10V. Part not recommended for use above this value . 2 900 D ISD ≤ 140A, di/dt ≤ 1380A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C RθJC value shown is at time zero. www.irf.com IRFS/SL3107PbF 1000 1000 BOTTOM 100 4.5V ≤ 60μs PULSE WIDTH Tj = 25°C 10 BOTTOM ≤ 60μs PULSE WIDTH Tj = 175°C 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 2.5 1000 TJ = 25°C 10 VDS = 25V ≤ 60μs PULSE WIDTH 1 2.0 3.0 4.0 5.0 VGS = 10V 2.0 (Normalized) TJ = 175°C 100 ID = 140A RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current(Α) 4.5V 100 10 0.1 6.0 1.5 1.0 0.5 7.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 16000 Ciss 8000 4000 Coss Crss ID= 140A VDS = 60V VDS = 38V 12 8 4 0 0 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com Fig 4. Normalized On-Resistance vs. Temperature VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 1 20 40 60 80 100 120 140 160 180 16 VGS = 0V, f = 100 kHz Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 12000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 4.8V 4.5V 0 40 80 120 160 200 240 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFS/SL3107PbF 10000 TJ = 175°C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000 100 10 TJ = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100μsec 100 1msec LIMITED BY PACKAGE 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1.5 2.0 0.1 2.5 LIMITED BY PACKAGE ID , Drain Current (A) 200 150 100 50 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage 250 50 100 100 ID = 5mA 90 80 70 -60 -40 -20 TC , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 1400 EAS, Single Pulse Avalanche Energy (mJ) 4.0 3.0 Energy (μJ) 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) 2.0 1.0 ID 21A 49A BOTTOM 140A 1200 TOP 1000 800 600 400 200 0 0.0 0 20 40 60 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 80 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFS/SL3107PbF Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 τJ 0.01 0.001 R1 R1 τJ τ1 R2 R2 Ri (°C/W) τC τ2 τ1 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) R3 R3 τ2 τ3 τ3 τ τι (sec) 0.047711 0.000071 0.16314 0.000881 0.189304 0.007457 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth 350 300 EAR , Avalanche Energy (mJ) Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 140A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFS/SL3107PbF 32 ID = 1.0A ID = 1.0mA ID = 250μA 4.0 3.5 24 IRRM - (A) VGS(th) Gate threshold Voltage (V) 4.5 3.0 2.5 2.0 16 IF = 90A VR = 64V 8 TJ = 125°C TJ = 25°C 1.5 0 1.0 -75 -50 -25 0 25 50 75 100 100 125 150 175 200 300 500 600 700 800 900 dif / dt - (A / μs) TJ , Temperature ( °C ) Fig 16. Threshold Voltage Vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 32 800 24 600 QRR - (nC) IRRM - (A) 400 16 IF = 135A VR = 64V 8 100 200 300 400 500 600 700 IF = 90A VR = 64V 200 TJ = 125°C TJ = 25°C 0 400 TJ = 125°C TJ = 25°C 0 800 100 900 200 300 400 500 600 700 800 900 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 800 QRR - (nC) 600 400 200 0 IF = 135A VR = 64V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFS/SL3107PbF Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 22a. Unclamped Inductive Test Circuit RD VDS Fig 22b. Unclamped Inductive Waveforms VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 24a. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFS/SL3107PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS SEMBLY LINE "C" PART NUMBER INT ERNAT IONAL RECT IFIER LOGO DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C AS S EMBLY LOT CODE OR INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S IT E CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFS/SL3107PbF D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L AS S EMBLY LOT CODE OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER F530S DAT E CODE P = DES IGNAT ES LEAD - FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY S IT E CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRFS/SL3107PbF D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2008 10 www.irf.com