VISHAY SI4104DY-T1-E3

New Product
Si4104DY
Vishay Siliconix
N-Channel 100-V (D-S) MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
RDS(on) (Ω)
ID (A)a
Qg (Typ.)
100
0.105 at VGS = 10 V
4.6
8.5 nC
• Halogen-free According to IEC 61249-2-21
Definition
• TrenchET® Power MOSFET
• 100 % Rg Tested
• 100 % Avalanche Tested
• Compliant to RoHS Directive 2002/95/EC
APPLICATIONS
SO-8
S
1
8
D
S
2
7
D
S
3
6
D
5
D
G
4
• High Frequency DC/DC Converter
• High Frequency Boost Converter
• LED Backlight for LCD TV
D
G
Top View
S
Ordering Information: Si4104DY-T1-E3 (Lead (Pb)-free)
Si4104DY-T1-GE3 (Lead (Pb)-free and Halogen-free)
N-Channel MOSFET
ABSOLUTE MAXIMUM RATINGS TA = 25 °C, unless otherwise noted
Parameter
Drain-Source Voltage
Gate-Source Voltage
Continuous Drain Current (TJ = 150 °C)
Symbol
VDS
VGS
TC = 25 °C
TC = 70 °C
TA = 25 °C
TA = 70 °C
Pulsed Drain Current
Limit
100
± 20
4.6
3.7
3.2b, c
2.6b, c
15
4.1
2.0b, c
9
4
5.0
3.2
2.5b, c
1.6b, c
- 55 to 150
ID
IDM
Continuous Source-Drain Diode Current
TC = 25 °C
TA = 25 °C
IS
Single Pulse Avalanche Current
Single Pulse Avalanche Energy
L = 0.1 mH
IAS
EAS
TC = 25 °C
TC = 70 °C
Maximum Power Dissipation
TA = 25 °C
TA = 70 °C
Operating Junction and Storage Temperature Range
PD
TJ, Tstg
Unit
V
A
mJ
W
°C
THERMAL RESISTANCE RATINGS
Parameter
t ≤ 10 s
Maximum Junction-to-Ambientb, d
Maximum Junction-to-Foot (Drain)
Steady State
Notes:
a. Based on TC = 25 °C.
b. Surface Mounted on 1" x 1" FR4 board.
c. t = 10 s.
d. Maximum under Steady State conditions is 85 °C/W.
Document Number: 69936
S09-0764-Rev. B, 04-May-09
Symbol
RthJA
RthJF
Typical
38
20
Maximum
50
25
Unit
°C/W
www.vishay.com
1
New Product
Si4104DY
Vishay Siliconix
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
Parameter
Symbol
Test Conditions
Min.
VDS
VGS = 0 V, ID = 250 µA
100
Typ.
Max.
Unit
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
ΔVDS/TJ
ΔVGS(th)/TJ
Gate-Source Threshold Voltage
VGS(th)
VDS = VGS , ID = 250 µA
Gate-Source Leakage
IGSS
VDS = 0 V, VGS = ± 20 V
Zero Gate Voltage Drain Current
IDSS
On-State Drain Currenta
Drain-Source On-State Resistancea
Forward Transconductancea
112
ID = 250 µA
VGS(th) Temperature Coefficient
V
mV/°C
- 8.5
2.5
4.5
V
± 100
nA
VDS = 100 V, VGS = 0 V
1
VDS = 100 V, VGS = 0 V, TJ = 55 °C
10
µA
ID(on)
VDS ≥ 10 V, VGS = 10 V
RDS(on)
VGS = 10 V, ID = 5 A
0.085
gfs
VDS = 15 V, ID = 5 A
7
10
A
0.105
Ω
S
Dynamicb
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
18
Total Gate Charge
Qg
8.5
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
Gate Resistance
Rg
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
446
VDS = 50 V, VGS = 0 V, f = 1 MHz
VDS = 50 V, VGS = 10 V, ID = 5 A
tr
pF
13
3
nC
2.5
f = 1 MHz
td(on)
td(off)
47
VDD = 50 V, RL = 10 Ω
ID ≅ 5 A, VGEN = 10 V, Rg = 1 Ω
tf
0.3
1.3
2.5
9
18
9
18
10
20
8
16
Ω
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulse Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Reverse Recovery Fall Time
ta
Reverse Recovery Rise Time
tb
TC = 25 °C
4.6
A
15
IS = 2 A
IF = 10 A, dI/dt = 100 A/µs, TJ = 25 °C
0.82
1.2
V
54
80
ns
135
200
nC
48
ns
6
Notes:
a. Pulse test; pulse width ≤ 300 µs, duty cycle ≤ 2 %.
b. Guaranteed by design, not subject to production testing.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods may affect device reliability.
www.vishay.com
2
Document Number: 69936
S09-0764-Rev. B, 04-May-09
New Product
Si4104DY
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1.5
20
VGS = 10 V thru 8 V
1.2
7V
ID - Drain Current (A)
ID - Drain Current (A)
16
12
8
6V
0.9
TC = 25 °C
0.6
TC = 125 °C
4
0.3
5V
TC = - 55 °C
0
0.0
0
1
2
3
4
5
0
2
4
6
8
VDS - Drain-to-Source Voltage (V)
VGS - Gate-to-Source Voltage (V)
Output Characteristics
Transfer Characteristics
0.20
600
0.17
480
10
C - Capacitance (pF)
RDS(on) - On-Resistance (Ω)
Ciss
0.14
VGS = 8 V
0.11
VGS = 10 V
360
240
120
0.08
Coss
0
6
12
18
24
0
30
20
40
60
80
ID - Drain Current (A)
VDS - Drain-to-Source Voltage (V)
On-Resistance vs. Drain Current and Gate Voltage
Capacitance
100
2.3
10
ID = 5 A
ID = 5 A
VDS = 30 V
2.0
8
6
VDS = 70 V
4
2
VGS = 10 V
1.7
(Normalized)
VDS = 50 V
R DS(on) - On-Resistance
VGS - Gate-to-Source Voltage (V)
Crss
0
0.05
VGS = 8 V
1.4
1.1
0.8
0
0
2
4
6
8
10
0.5
- 50
- 25
0
25
50
75
100
125
Qg - Total Gate Charge (nC)
TJ - Junction Temperature (°C)
Gate Charge
On-Resistance vs. Junction Temperature
Document Number: 69936
S09-0764-Rev. B, 04-May-09
150
www.vishay.com
3
New Product
Si4104DY
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
100
0.5
ID = 5 A
R DS(on) - On-Resistance (Ω)
I S - Source Current (A)
10
150 °C
1
25 °C
0.1
0.01
0.4
0.3
125 °C
0.2
0.1
25 °C
0.0
0.001
0.00
0.2
0.4
0.6
0.8
1.0
5
1.2
6
7
8
9
10
VGS - Gate-to-Source Voltage (V)
VSD - Source-to-Drain Voltage (V)
On-Resistance vs. Gate-to-Source Voltage
Source-Drain Diode Forward Voltage
0.8
100
0.5
Power (W)
VGS(th) Variance (V)
80
0.2
- 0.1
- 0.4
ID = 5 mA
60
40
- 0.7
20
- 1.0
- 1.3
- 50
ID = 250 µA
- 25
0
25
50
75
100
125
150
0
0.001
0.01
0.1
1
TJ - Temperature (°C)
Time (s)
Threshold Voltage
Single Pulse Power, Junction-to-Ambient
10
100
Limited by R DS(on)*
I D - Drain Current (A)
10
1
1 ms
10 ms
100 ms
0.1
TA = 25 °C
Single Pulse
0.01
0.1
1s
10 s
DC
1
10
100
VDS - Drain-to-Source Voltage (V)
* VGS > minimum VGS at which R DS(on) is specified
Safe Operating Area, Junction-to-Ambient
www.vishay.com
4
Document Number: 69936
S09-0764-Rev. B, 04-May-09
New Product
Si4104DY
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
6
I D - Drain Current (A)
5
4
3
2
1
0
0
25
50
75
100
125
150
0
25
TC - Case Temperature (°C)
6.0
2.0
4.8
1.6
3.6
1.2
Power (W)
Power (W)
Current Derating*
2.4
0.8
0.4
1.2
0.0
0.0
0
25
50
75
100
125
150
50
75
100
125
TC - Case Temperature (°C)
TA - Ambient Temperature (°C)
Power, Junction-to-Foot
Power, Junction-to-Ambient
150
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package
limit.
Document Number: 69936
S09-0764-Rev. B, 04-May-09
www.vishay.com
5
New Product
Si4104DY
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
1
Normalized Effective Transient
Thermal Impedance
Duty Cycle = 0.5
0.2
0.1
Notes:
0.1
PDM
0.05
t1
t2
1. Duty Cycle, D =
t1
t2
2. Per Unit Base = RthJA = 85 °C/W
0.02
3. TJM - TA = PDM Z thJA(t)
Single Pulse
4. Surface Mounted
0.01
10-4
10-3
10 -2
10 -1
1
Square Wave Pulse Duration (s)
10
100
1000
Normalized Thermal Transient Impedance, Junction-to-Ambient
Normalized Effective Transient
Thermal Impedance
1
Duty Cycle = 0.5
0.2
0.1
0.1
0.05
0.02
Single Pulse
0.01
10-4
10-3
10-2
10-1
Square Wave Pulse Duration (s)
1
10
Normalized Thermal Transient Impedance, Junction-to-Foot
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?69936.
www.vishay.com
6
Document Number: 69936
S09-0764-Rev. B, 04-May-09
Package Information
Vishay Siliconix
SOIC (NARROW): 8-LEAD
JEDEC Part Number: MS-012
8
6
7
5
E
1
3
2
H
4
S
h x 45
D
C
0.25 mm (Gage Plane)
A
e
B
All Leads
q
A1
L
0.004"
MILLIMETERS
INCHES
DIM
Min
Max
Min
Max
A
1.35
1.75
0.053
0.069
A1
0.10
0.20
0.004
0.008
B
0.35
0.51
0.014
0.020
C
0.19
0.25
0.0075
0.010
D
4.80
5.00
0.189
0.196
E
3.80
4.00
0.150
e
0.101 mm
1.27 BSC
0.157
0.050 BSC
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.50
0.93
0.020
0.037
q
0°
8°
0°
8°
S
0.44
0.64
0.018
0.026
ECN: C-06527-Rev. I, 11-Sep-06
DWG: 5498
Document Number: 71192
11-Sep-06
www.vishay.com
1
VISHAY SILICONIX
TrenchFET® Power MOSFETs
Application Note 808
Mounting LITTLE FOOT®, SO-8 Power MOSFETs
Wharton McDaniel
Surface-mounted LITTLE FOOT power MOSFETs use
integrated circuit and small-signal packages which have
been been modified to provide the heat transfer capabilities
required by power devices. Leadframe materials and
design, molding compounds, and die attach materials have
been changed, while the footprint of the packages remains
the same.
See Application Note 826, Recommended Minimum Pad
Patterns With Outline Drawing Access for Vishay Siliconix
MOSFETs, (http://www.vishay.com/ppg?72286), for the
basis of the pad design for a LITTLE FOOT SO-8 power
MOSFET. In converting this recommended minimum pad
to the pad set for a power MOSFET, designers must make
two connections: an electrical connection and a thermal
connection, to draw heat away from the package.
0.288
7.3
0.050
1.27
0.196
5.0
0.027
0.69
0.078
1.98
0.2
5.07
Figure 1. Single MOSFET SO-8 Pad
Pattern With Copper Spreading
Document Number: 70740
Revision: 18-Jun-07
0.050
1.27
0.088
2.25
0.088
2.25
0.027
0.69
0.078
1.98
0.2
5.07
Figure 2. Dual MOSFET SO-8 Pad Pattern
With Copper Spreading
The minimum recommended pad patterns for the
single-MOSFET SO-8 with copper spreading (Figure 1) and
dual-MOSFET SO-8 with copper spreading (Figure 2) show
the starting point for utilizing the board area available for the
heat-spreading copper. To create this pattern, a plane of
copper overlies the drain pins. The copper plane connects
the drain pins electrically, but more importantly provides
planar copper to draw heat from the drain leads and start the
process of spreading the heat so it can be dissipated into the
ambient air. These patterns use all the available area
underneath the body for this purpose.
Since surface-mounted packages are small, and reflow
soldering is the most common way in which these are
affixed to the PC board, “thermal” connections from the
planar copper to the pads have not been used. Even if
additional planar copper area is used, there should be no
problems in the soldering process. The actual solder
connections are defined by the solder mask openings. By
combining the basic footprint with the copper plane on the
drain pins, the solder mask generation occurs automatically.
A final item to keep in mind is the width of the power traces.
The absolute minimum power trace width must be
determined by the amount of current it has to carry. For
thermal reasons, this minimum width should be at least
0.020 inches. The use of wide traces connected to the drain
plane provides a low impedance path for heat to move away
from the device.
www.vishay.com
1
APPLICATION NOTE
In the case of the SO-8 package, the thermal connections
are very simple. Pins 5, 6, 7, and 8 are the drain of the
MOSFET for a single MOSFET package and are connected
together. In a dual package, pins 5 and 6 are one drain, and
pins 7 and 8 are the other drain. For a small-signal device or
integrated circuit, typical connections would be made with
traces that are 0.020 inches wide. Since the drain pins serve
the additional function of providing the thermal connection
to the package, this level of connection is inadequate. The
total cross section of the copper may be adequate to carry
the current required for the application, but it presents a
large thermal impedance. Also, heat spreads in a circular
fashion from the heat source. In this case the drain pins are
the heat sources when looking at heat spread on the PC
board.
0.288
7.3
Application Note 826
Vishay Siliconix
RECOMMENDED MINIMUM PADS FOR SO-8
0.172
(4.369)
0.028
0.022
0.050
(0.559)
(1.270)
0.152
(3.861)
0.047
(1.194)
0.246
(6.248)
(0.711)
Recommended Minimum Pads
Dimensions in Inches/(mm)
Return to Index
APPLICATION NOTE
Return to Index
www.vishay.com
22
Document Number: 72606
Revision: 21-Jan-08
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000