TDK CGA4J2X7R1H104K125AA

SPECIFICATION
SPEC. No. 13a
D A T E : 2013 Feb.
To
Non-Controlled Copy
Upon the acceptance of this spec.
previous spec. (C2005-1420)
shall be abolished.
CUSTOMER’S PRODUCT NAME
TDK PRODUCT NAME
MULTILAYER CERAMIC CHIP CAPACITORS
CGA Series / Automotive Grade
General (Up to 50V)
Mid voltage (100 to 630V)
Please return this specification to TDK representatives.
If orders are placed without returned specification, please allow us to judge that specification is
accepted by your side.
RECEIPT CONFIRMATION
DATE:
TDK Corporation
Sales
Electronic Components
Sales & Marketing Group
APPROVED
Person in charge
YEAR
MONTH
DAY
TDK-EPC Corporation
Engineering
Ceramic Capacitors Business Group
APPROVED
CHECKED
Person in charge
1. SCOPE
This specification is applicable to chip type multilayer ceramic capacitors with a priority over the
other relevant specifications.
Production places defined in this specification shall be TDK-EPC Corporation Japan,
TDK(Suzhou)Co.,Ltd and TDK Components U.S.A. Inc.
EXPLANATORY NOTE:
This specification warrant the quality of the ceramic chip capacitor. The chips should be evaluated
or confirmed a state of mounted on your product.
If the use of the chips go beyond the bounds of this specification, we can not afford to guarantee.
2. CODE CONSTRUCTION
(Example) CGA4
(1)
J
(2)
3
(3)
X7R
(4)
1 C
(5)
225
(6)
K
(7)
T
(8)
(1) Type
Terminal electrode
B
L
G
W
B
T
Internal electrode
Ceramic dielectric
Please refer to product list for the dimension of each product.
(2) Thickness
* As for dimension tolerance, please contact with our sales
representative.
—1—
Thickness
Demension(mm)
A
0.30
B
0.50
C
0.60
E
0.80
F
0.85
H
1.15
J
1.25
K
1.30
L
1.60
M
2.00
N
2.30
P
2.50
Q
2.80
R
3.20
(3) Voltage condition in the life test
(Max. operating Temp./1000h)
Sign
Condition
1
Rated Voltage x 1
2
Rated Voltage x 2
3
Rated Voltage x 1.5
4
Rated Voltage x 1.2
(4) Temperature Characteristics (Details are shown in table 1 No.7 at page 4 and No.8 at page 5)
(5) Rated Voltage
Symbol
Rated Voltage
2J
DC 630 V
2W
DC 450 V
2E
DC 250 V
2A
DC 100 V
1H
DC
50 V
1V
DC
35 V
1E
DC
25 V
1C
DC
16 V
1A
DC
10 V
0J
DC 6.3 V
(6) Rated Capacitance
Stated in three digits and in units of pico farads (pF).
The first and Second digits identify the first and second significant figures of the capacitance,
the third digit identifies the multiplier.
R is designated for a decimal point.
Example 2R2 → 2.2pF
225
→ 2,200,000pF
(7) Capacitance tolerance
(8) Packaging
(Bulk is not applicable for CGA1 and CGA2 type.)
—2—
Symbol
Tolerance
C
± 0.25 pF
D
± 0.5
J
±
K
± 10 %
M
± 20 %
pF
Capacitance
10pF and under
5%
Over 10pF
Symbol
Packaging
B
Bulk
T
Taping
3. RATED CAPACITANCE AND TOLERANCE
3.1 Standard combination of rated capacitance and tolerances
Class
Temperature
Characteristics
1
Capacitance tolerance
C0G
X5R
X7R
X7S
X7T
2
Rated capacitance
10pF and
under
C (±0.25pF)
1, 1.5, 2, 2.2, 3, 3.3, 4, 4.7, 5
D (±0.5pF)
6, 6.8, 7, 8, 9, 10
12pF to
10,000pF
Over
10,000pF
J (± 5 %)
K (± 10 %)
E – 12 series
K (± 10 %)
E – 6 series
10uF and
under
K (± 10 %)
Over 10uF
M (± 20 %)
E – 6 series
3.2 Capacitance Step in E series
Capacitance Step
E series
E- 6
E-12
1.0
1.0
1.2
1.5
1.5
2.2
1.8
2.2
3.3
2.7
4. OPERATING TEMPERATURE RANGE
Min. operating
Max. operating
T.C.
Temperature
Temperature
3.3
4.7
3.9
4.7
5.6
6.8
6.8
8.2
Reference
Temperature
X5R
-55°C
85°C
25°C
C0G
X7R
X7S
X7T
-55°C
125°C
25°C
5. STORING CONDITION AND TERM
5 to 40°C at 20 to 70%RH
6 months Max.
6. P.C. BOARD
When mounting on an aluminum substrate, large case sizes such as CGA6, CGA8 and CGA9
types are more likely to be affected by heat stress from the substrate.
Please inquire separate specification for the large case sizes when mounted on the substrate.
7. INDUSTRIAL WASTE DISPOSAL
Dispose this product as industrial waste in accordance with the Industrial Waste Law.
—3—
8. PERFORMANCE
table 1
No.
Item
Performance
Test or inspection method
1
External Appearance
No defects which may affect
performance.
Inspect with magnifying glass (3×), in case
of CGA1 type, with magnifying glass (10×)
2
Insulation Resistance
10,000MΩ or 500MΩ·μF min.
(As for the capacitors of rated
voltage 16V DC and the item below,
10,000 MΩ or 100MΩ·μF min.,)
whichever smaller.
Apply rated voltage for 60s.
As for the rated voltage 630V DC, apply
500V.
3
Voltage Proof
Withstand test voltage without
insulation breakdown or other
damage.
Class
Class1
Class2
Rated voltage
Apply voltage
100V and under
3 × rated voltage
Over 100V
1.5 × rated voltage
100V and under
2.5 × rated voltage
Over 100V
1.5 × rated voltage
Above DC voltage shall be applied for
1 to 5s.
Charge / discharge current shall not
exceed 50mA.
4
Capacitance
Within the specified tolerance.
Class
Capacitance
Measuring Measuring
frequency
voltage
1000pF and
1MHz±10%
under
Class1
0.5 - 5 Vrms.
Over 1000pF 1kHz±10%
Class2
10uF and
under
1kHz±10%
1.0±0.2Vrm s
0.5±0.2Vrms.
Over 10uF 120Hz±20% 0.5±0.2Vrms.
For information which product has which
measuring voltage, please contact with our
sales representative.
5
Q
(Class1)
Capacitance
30pF and over
Under 30pF
Q
See No.4 in this table for measuring
condition.
1,000 min.
400+20×C min.
C : Rated capacitance (pF)
6
7
Dissipation Factor
(Class2)
Temperature
Characteristics
of Capacitance
(Class1)
0.025 max.
0.03 max.
0.05 max.
0.075 max.
0.1 max.
See No.4 in this table for measuring
condition.
For information which product has which
measuring voltage, please contact with our
sales representative.
T.C.
Temperature Coefficient
C0G
0 ± 30 (ppm/°C)
Capacitance drift within ± 0.2% or
± 0.05pF, whichever larger.
—4—
Temperature coefficient shall be calculated
based on values at 25°C and 85°C
temperature.
Measuring temperature below 20°C shall
be -10°C and -25°C.
(continued)
No.
8
Item
Temperature
Characteristics
of Capacitance
(Class2)
Performance
Capacitance Change (%)
No voltage applied
X5R : ± 15
X7R : ± 15
X7S : ± 22
+22
X7T :
-33
Test or inspection method
Capacitance shall be measured by the
steps shown in the following table after
thermal equilibrium is obtained for each
step.
∆C be calculated ref. STEP3 reading
Step
Temperature(°C)
1
Reference temp. ± 2
2
Min. operating temp. ± 3
3
Reference temp. ± 2
4
Max. operating temp. ± 2
Measuring voltage : 0.1, 0.2, 0.5, 1.0Vrms.
For information which product has which
Measuring voltage, please contact with our
sales representative.
9
Robustness of
Terminations
No sign of termination coming
off, breakage of ceramic, or
other abnormal signs.
Reflow solder the capacitors on a
P.C.Board shown in Appendix 1a or
Appendix 1b and apply a pushing force of
17.7N with 10±1s.
(2N is applied for CGA1, CGA2 type)
Pushing force
P.C.Board
Capacitor
10
Bending
No mechanical damage.
Reflow solder the capacitors on
a P.C.Board shown in Appendix 2a or
Appendix 2b and bend it for 2mm. (1mm
is applied for 0.85mm thickness of Class2
items.)
20
50
F
R230
45
2
45
(Unit : mm)
—5—
(continued)
No.
11
Item
Solderability
Performance
Test or inspection method
New solder to cover over 75% of
termination.
25% may have pin holes or rough
spots but not concentrated in one
spot.
Ceramic surface of A sections
shall not be exposed due to
melting or shifting of termination
material.
Completely soak both terminations in
solder at 235±5°C for 2±0.5s.
Solder : H63A (JIS Z 3282)
Flux : Isopropyl alcohol (JIS K 8839)
Rosin(JIS K 5902) 25% solid
solution.
A section
12
Resistance
to solder
heat
External
appearance
No cracks are allowed and
terminations shall be covered at
least 60% with new solder.
Capacitance
Characteristics
Class1
C0G
Class2
X5R
X7R
X7S
X7T
Change from the
value before test
Capacitance drift
within ± 2.5% or
± 0.25pF,
whichever larger.
± 7.5 %
Capacitance
30pF and over
Under 30pF
Preheating condition
Temp. : 150±10°C
Time : 1 to 2min.
Flux : Isopropyl alcohol (JIS K 8839)
Rosin (JIS K 5902) 25% solid
solution.
Solder : H63A (JIS Z 3282)
Leave the capacitors in ambient
condition for 6 to 24h (Class1) or 24±2h
(Class2) before measurement.
Q
(Class1)
Completely soak both terminations in
solder at 260±5°C for 5±1s.
Q
1,000 min.
400+20×C min.
C : Rated capacitance (pF)
D.F.
(Class2)
Meet the initial spec.
Insulation
Resistance
Meet the initial spec.
Voltage
proof
No insulation breakdown or
other damage.
—6—
(continued)
No.
13
Item
Vibration
External
appearance
Performance
No mechanical damage.
Capacitance
Characteristics
Q
(Class1)
Test or inspection method
Class1
C0G
Class2
X5R
X7R
X7S
X7T
Change from the
value before test
Capacitance drift
within ± 2.5% or
± 0.25pF,
whichever larger.
± 7.5 %
Capacitance
30pF and over
Under 30pF
Reflow solder the capacitors on a
P.C.Board shown in Appendix1 before
testing.
Vibrate the capacitor with following
conditions.
Applied force : 5G max.
Frequency : 10-2000Hz
Duration : 20 min.
Cycle : 12 cycles in each 3 mutually
perpendicular directions.
Q
1,000 min.
400+20×C min.
C : Rated capacitance (pF)
D.F.
(Class2)
14
Temperature External
cycle
appearance
Meet the initial spec.
No mechanical damage.
Capacitance
Characteristics
Q
(Class1)
Class1
C0G
Class2
X5R
X7R
X7S
X7T
Change from the
value before test
Capacitance drift
within ± 2.5% or
± 0.25pF,
whichever larger.
± 7.5 %
Reflow solder the capacitors on a
P.C.Board shown in Appendix 1a or
Appendix 1b before testing.
Expose the capacitors in the condition
step1 through step 4 and repeat 1,000
times consecutively.
Leave the capacitors in ambient
condition for 6 to 24h (Class 1) or
24±2h (Class 2) before measurement.
Step
Temperature(°C)
1
Min. operating
temp. ±3
Capacitance
Q
30pF and over
1,000 min.
2
Reference Temp. ±2
400+20×C min.
3
Max. operating
temp. ±2
4
Reference Temp. ±2
Under 30pF
C : Rated capacitance (pF)
D.F.
(Class2)
Meet the initial spec.
Insulation
Resistance
Meet the initial spec.
Voltage
proof
No insulation breakdown or
other damage.
—7—
Time (min.)
30 ± 3
2-5
30 ± 2
2-5
(continued)
No.
15
Item
Test or inspection method
Moisture
External
No mechanical damage.
Resistance appearance
(Steady
Capacitance
Change from the
Characteristics
State)
value before test
Reflow solder the capacitors on a
P.C.Board shown in Appendix 1a or
Appendix 1b before testing.
Capacitance drift
within ± 7.5% or
± 0.75pF,
whichever larger.
Leave at temperature 40±2°C, 90 to
95%RH for 500 +24,0h.
Q
(Class1)
D.F.
(Class2)
Insulation
Resistance
16
Performance
Moisture
External
Resistance appearance
Class1
C0G
Class2
X5R
X7R
X7S
X7T
Capacitance
Q
30pF and over
350 min.
10pF and over
under 30pF
275+5/2×C min.
Under 10pF
200+10×C min.
C : Rated capacitance (pF)
Characteristics
200% of initial spec. max.
1,000MΩ or 50MΩ·μF min.
(As for the capacitors of rated
voltage 16V DC and item
below, 1,000MΩ or 10MΩ·μF
min.,)
whichever smaller.
No mechanical damage.
Capacitance
Characteristics
Q
(Class1)
D.F.
(Class2)
Insulation
Resistance
± 12.5 %
Leave the capacitors in ambient
condition for 6 to 24h (Class1) or
24±2h (Class2) before measurement.
Change from the
value before test
Class1
C0G
Capacitance drift
within ± 7.5% or
± 0.75pF,
whichever larger.
Class2
X5R
X7R
X7S
X7T
± 12.5 %
Capacitance
Q
30pF and over
200 and over
Under 30pF
100+10/3×C min.
C : Rated capacitance (pF)
Characteristics
200% of initial spec. max.
500MΩ or 25MΩ·μF min.
(As for the capacitors of rated
voltage 16V DC and item
below, 500MΩ or 5MΩ·μF min.,)
whichever smaller.
—8—
Reflow solder the capacitors on a
P.C.Board shown in Appendix 1a or
Appendix 1b before testing.
Apply the rated voltage at temperature
85°C and 85%RH for 1000 +24,0h.
Charge/discharge current shall not
exceed 50mA.
Leave the capacitors in ambient
condition for 6 to 24h (Class1) or
24±2h (Class2) before measurement.
Voltage conditioning (only for class 2)
Voltage treat the capacitors under
testing temperature and voltage for 1
hour.
Leave the capacitors in ambient
condition for 24±2h before
measurement.
Use this measurement for initial value.
(continued)
No.
17
Item
Life
External
appearance
Performance
No mechanical damage.
Capacitance
Characteristics
Q
(Class1)
Class1
C0G
Class2
X5R
X7R
X7S
X7T
Change from the
value before test
Capacitance drift
within ± 7.5% or
± 0.75pF,
whichever larger.
± 15 %
Capacitance
Q
30pF and over
350 and over
Under 10pF
Insulation
Resistance
Reflow solder the capacitors on a
P.C.Board shown in Appendix 1a or
Appendix 1b before testing.
Below the voltage shall be applied at
maximum operating temperature ±2°C for
1,000 +48, 0h.
Applied voltage
Rated voltage x2
Rated voltage x1.5
Rated voltage x1.2
10pF and over to
275+5/2×C min.
under 30pF
D.F.
(Class2)
Test or inspection method
Rated voltage x1
For information which product has which
applied voltage, please contact with our
sales representative.
200+10×C min.
C : Rated capacitance (pF)
Characteristics
200% of initial spec. max.
1,000MΩ or 50MΩ·μF min.
(As for the capacitors of rated
voltage 16V DC and the item
below, 1,000 MΩ or 10MΩ·μF
min.,) whichever smaller.
Charge/discharge current shall not
exceed 50mA.
Leave the capacitors in ambient
condition for 6 to 24h (Class1) or
24±2h (Class2) before measurement.
Voltage conditioning (only for class 2)
Voltage treat the capacitors under
testing temperature and voltage for 1
hour.
Leave the capacitors in ambient
condition for 24±2h before
measurement.
Use this measurement for initial value.
*As for the initial measurement of capacitors (Class2) on number 8,12,13,14 and 15 leave capacitors at
150 –10,0°C for 1 hour and measure the value after leaving capacitors for 24±2h in ambient condition.
—9—
Appendix - 1a
Appendix - 1b
P.C. Board for reliability test
P.C. Board for reliability test
Applied for CGA1, CGA2, CGA3, CGA4, CGA5
Applied for CGA6, CGA8, CGA9
100
100
a
b
40
a
Copper
Solder resist
Copper
Solder resist
Slit
(Unit : mm)
(Unit:mm)
Appendix - 2b
Appendix - 2a
P.C. Board for bending test
P.C. Board for bending test
Applied for CGA1, CGA2
Applied for CGA3, CGA4, CGA5, CGA6, CGA8, CGA9
100
100
b
b
40
40
c
1.0
a
1.0
Copper
Solder resist
Solder resist
a
c
b
40
c
c
(Unit : mm)
(Unit : mm)
b
Copper
Material : Glass Epoxy ( As per JIS C6484 GE4 )
P.C. Board thickness : Appendix-2a
Appendix-1a, 1b, 2b
TDK (EIA style)
0.8mm
1.6mm
Copper ( thickness 0.035mm )
Solder resist
— 10 —
CGA1(CC0201)
CGA2(CC0402)
CGA3(CC0603)
CGA4(CC0805)
CGA5(CC1206)
CGA6(CC1210)
CGA8(CC1812)
CGA9(CC2220)
Dimensions (mm)
a
b
c
0.3
0.4
1.0
1.2
2.2
2.2
3.5
4.5
0.8
1.5
3.0
4.0
5.0
5.0
7.0
8.0
0.3
0.5
1.2
1.65
2.0
2.9
3.7
5.6
9. INSIDE STRUCTURE AND MATERIAL
3
4
5
2
1
MATERIAL
No.
NAME
1
Dielectric
2
Electrode
3
4
Class1
Class2
CaZrO 3
BaTiO 3
Nickel (Ni)
Copper (Cu)
Termination
Nickel (Ni)
5
Tin (Sn)
10. RECOMMENDATION
As for CGA6(CC1210), CGA8(CC1812) and CGA9(CC2220) types, It is recommended
to provide a slit (about 1mm wide) in the board under the components to improve washing
Flux. And please make sure to dry detergent up completely before.
11. SOLDERING CONDITION
As for CGA1(CC0201), CGA2(CC0402), CGA6(CC1210) , CGA8(CC1812) and
CGA9(CC2220) types, reflow soldering only.
— 11 —
12. Caution
No.
Process
1
Operating
Condition
(Storage,
Transportation)
Condition
1-1. Storage
1) The capacitors must be stored in an ambient temperature of 5 to 40°C with a
relative humidity of 20 to 70%RH. The products should be used within 6 months
upon receipt.
2) The capacitors must be operated and stored in an environment free of dew
condensation and these gases such as Hydrogen Sulphide, Hydrogen Sulphate,
Chlorine, Ammonia and sulfur.
3) Avoid storing in sun light and falling of dew.
4) Do not use capacitors under high humidity and high and low atmospheric pressure
which may affect capacitors reliability.
2
Circuit design
! Caution
5) Capacitors should be tested for the solderability when they are stored for long
time.
1-2. Handling in transportation
In case of the transportation of the capacitors, the performance of the capacitors
may be deteriorated depending on the transportation condition.
(Refer to JEITA RCR-2335B 9.2 Handling in transportation)
2-1. Operating temperature
Operating temperature should be followed strictly within this specification, especially
be careful with maximum temperature.
1) Do not use capacitors above the maximum allowable operating temperature.
2) Surface temperature including self heating should be below maximum operating
temperature.
(Due to dielectric loss, capacitors will heat itself when AC is applied. Especially at
high frequencies around its SRF, the heat might be so extreme that it may damage
itself or the product mounted on. Please design the circuit so that the maximum
temperature of the capacitors including the self heating to be below the maximum
allowable operating temperature. Temperature rise at capacitor surface shall be
below 20°C)
3) The electrical characteristics of the capacitors will vary depending on the
temperature. The capacitors should be selected and designed in taking the
temperature into consideration.
2-2. Operating voltage
1) Operating voltage across the terminals should be below the rated voltage.
When AC and DC are super imposed, V0-P must be below the rated voltage.
——— (1) and (2)
AC or pulse with overshooting, VP-P must be below the rated voltage.
——— (3), (4) and (5)
When the voltage is started to apply to the circuit or it is stopped applying, the
irregular voltage may be generated for a transit period because of resonance or
switching. Be sure to use the capacitors within rated voltage containing these
Irregular voltage.
Voltage
(1) DC voltage
(2) DC+AC voltage
(3) AC voltage
Positional
Measurement V0-P
(Rated voltage)
V0-P
0
Voltage
VP-P
0
(4) Pulse voltage (A) (5) Pulse voltage (B)
Positional
Measurement VP-P
(Rated voltage)
0
VP-P
— 12 —
0
0
No.
Process
Condition
2
Circuit design
! Caution
2) Even below the rated voltage, if repetitive high frequency AC or pulse is applied,
the reliability of the capacitors may be reduced.
3) The effective capacitance will vary depending on applied DC and AC voltages.
The capacitors should be selected and designed in taking the voltages into
consideration.
2-3. Frequency
When the capacitors (Class 2) are used in AC and/or pulse voltages, the
capacitors may vibrate themselves and generate audible sound.
3
Designing
P.C.board
The amount of solder at the terminations has a direct effect on the reliability of the
capacitors.
1) The greater the amount of solder, the higher the stress on the chip capacitors,
and the more likely that it will break. When designing a P.C.board, determine the
shape and size of the solder lands to have proper amount of solder on the
terminations.
2) Avoid using common solder land for multiple terminations and provide individual
solder land for each terminations.
3) Size and recommended land dimensions.
Chip capacitors
Solder land
C
B
Solder resist
A
Flow soldering
Type
(mm)
CGA3
(CC0603)
CGA4
(CC0805)
CGA5
(CC1206)
A
0.7 - 1.0
1.0 - 1.3
2.1 - 2.5
B
0.8 - 1.0
1.0 - 1.2
1.1 - 1.3
C
0.6 - 0.8
0.8 - 1.1
1.0 - 1.3
Symbol
Reflow soldering
CGA1
Type
Symbol
(CC0201)
CGA2
(CC0402)
CGA3
(CC0603)
(mm)
CGA4
(CC0805)
A
0.25 - 0.35
0.3 - 0.5
0.6 - 0.8
0.9 - 1.2
B
0.2 - 0.3
0.35 - 0.45
0.6 - 0.8
0.7 - 0.9
C
0.25 - 0.35
0.4 - 0.6
0.6 - 0.8
0.9 - 1.2
CGA5
(CC1206)
CGA6
(CC1210)
CGA8
(CC1812)
CGA9
(CC2220)
A
2.0 - 2.4
2.0 - 2.4
3.1 - 3.7
4.1 - 4.8
B
1.0 - 1.2
1.0 - 1.2
1.2 - 1.4
1.2 - 1.4
C
1.1 - 1.6
1.9 - 2.5
2.4 - 3.2
4.0 - 5.0
Type
Symbol
— 13 —
No.
3
Process
Designing
P.C.board
Condition
4) Recommended chip capacitors layout is as following.
Disadvantage against
bending stress
Advantage against
bending stress
Perforation or slit
Perforation or slit
Break P.C.board with
mounted side up.
Break P.C.board with
mounted side down.
Mounting
face
Mount perpendicularly to
perforation or slit
Perforation or slit
Mount in parallel with
perforation or slit
Perforation or slit
Chip
arrangement
(Direction)
Closer to slit is higher stress
ℓ1
Away from slit is less stress
ℓ2
Distance from
slit
(ℓ1 < ℓ2 )
— 14 —
(ℓ1 < ℓ2 )
No.
3
Process
Designing
P.C.board
Condition
5) Mechanical stress varies according to location of chip capacitors on the P.C.board.
E
Perforation
D
C
B
A
Slit
The stress in capacitors is in the following order.
A>B=C>D>E
6) Layout recommendation
Example
Use of common
solder land
Soldering with
chassis
Lead wire Chassis
chip
Solder
Use of common
solder land with
other SMD
Solder
land
Excessive solder
Need to
avoid
Excessive solder
PCB Adhesive
Solder land
ℓ1
Missing
solder
Lead wire
Solder land
Solder resist
Solder resist
Recommendation
Solder resist
ℓ2
ℓ2 > ℓ1
— 15 —
4
Process
Mounting
Condition
4-1. Stress from mounting head
If the mounting head is adjusted too low, it may induce excessive stress in the chip
capacitors to result in cracking. Please take following precautions.
1) Adjust the bottom dead center of the mounting head to reach on the P.C.board
surface and not press it.
2) Adjust the mounting head pressure to be 1 to 3N of static weight.
3) To minimize the impact energy from mounting head, it is important to provide
support from the bottom side of the P.C.board.
See following examples.
Not recommended
Single sided
mounting
Recommended
Crack
Support pin
Double-sides
mounting
Solder
peeling
Crack
Support pin
When the centering jaw is worn out, it may give mechanical impact on the capacitors
to cause crack. Please control the close up dimension of the centering jaw and
provide sufficient preventive maintenance and replacement of it.
4-2. Amount of adhesive
a
a
c
c
b
No.
Example : CGA4 (CC0805), CGA5 (CC1206)
a
0.2mm min.
b
70 - 100μm
c
Do not touch the solder land
— 16 —
Soldering
5-1. Flux selection
Although highly-activated flux gives better solderability, substances which increase
activity may also degrade the insulation of the chip capacitors. To avoid such
degradation, it is recommended following.
1) It is recommended to use a mildly activated rosin flux (less than 0.1wt% chlorine).
Strong flux is not recommended.
2) Excessive flux must be avoided. Please provide proper amount of flux.
3) When water-soluble flux is used, enough washing is necessary.
5-2. Recommended soldering profile by various methods
Reflow soldering
Wave soldering
Soldering
Preheating
Natural cooling
Peak
Temp
Peak
Temp
△T
0
Soldering
Natural cooling
Preheating
Temp.. (°C)
5
Condition
Temp. (°C)
Process
Over 60 sec.
Over 60 sec.
∆T
0
Over 60 sec.
Peak Temp time
Peak Temp time
Manual soldering
(Solder iron)
APPLICATION
As for CGA3 (CC0603), CGA4 (CC0805) and
300
CGA5 (CC1206), applied to wave soldering
and reflow soldering.
Temp.. (°C)
No.
As for CGA1 (CC0201), CGA2 (CC0402),
∆T
CGA6 (CC1210), CGA8 (CC1812),
CGA9 (CC2220) applied only to reflow
soldering.
Preheating
0
3sec. (As short as possible)
5-3. Recommended soldering peak temp and peak temp duration
Temp./Duration
Wave soldering
Reflow soldering
Peak temp(°C) Duration(sec.)
Peak temp(°C)
Duration(sec.)
Pb-Sn Solder
250 max.
3 max.
230 max.
20 max.
Lead Free Solder
260 max.
5 max.
260 max.
10 max.
Solder
Recommended solder compositions
Sn-37Pb (Pb-Sn solder)
Sn-3.0Ag-0.5Cu (Lead Free Solder)
— 17 —
No.
Process
5
Soldering
Condition
5-4. Avoiding thermal shock
1) Preheating condition
Soldering
Type
Wave soldering
Reflow soldering
Manual soldering
2)
Temp. (°C)
CGA3(CC0603), CGA4(CC0805),
CGA5(CC1206)
CGA1(CC0201), CGA2(CC0402),
CGA3(CC0603), CGA4(CC0805),
CGA5(CC1206)
CGA6(CC1210), CGA8(1812),
CGA9(CC2220)
CGA1(CC0201), CGA2(CC0402),
CGA3(CC0603), CGA4(CC0805),
CGA5(CC1206)
CGA6(CC1210), CGA8(1812),
CGA9(CC2220)
∆T ≤ 150
∆T ≤ 150
∆T ≤ 130
∆T ≤ 150
∆T ≤ 130
Cooling condition
Natural cooling using air is recommended. If the chips are dipped into a solvent for
cleaning, the temperature difference (∆T) must be less than 100°C.
5-5. Amount of solder
Excessive solder will induce higher tensile force in chip capacitors when
temperature changes and it may result in chip cracking. In sufficient solder may
detach the capacitors from the P.C.board.
Higher tensile force in
chip capacitors to cause
crack
Excessive
solder
Maximum amount
Minimum amount
Adequate
Low robustness may
cause contact failure or
chip capacitors come off
the P.C.board.
Insufficient
solder
5-6. Solder repair by solder iron
1) Selection of the soldering iron tip
Tip temperature of solder iron varies by its type, P.C.board material and solder
land size. The higher the tip temperature, the quicker the operation. However,
heat shock may cause a crack in the chip capacitors.
Please make sure the tip temp. before soldering and keep the peak temp and
time in accordance with following recommended condition. (Please preheat the
chip capacitors with the condition in 5-4 to avoid the thermal shock.)
— 18 —
No.
Process
5
Soldering
Condition
Recommended solder iron condition (Pb-Sn Solder and Lead Free Solder)
Temp. (°C)
Duration (sec.)
Wattage (W)
Shape (mm)
300 max.
3 max.
20 max.
Ø 3.0 max.
2) Direct contact of the soldering iron with ceramic dielectric of chip capacitors
may cause crack. Do not touch the ceramic dielectric and the terminations by
solder iron.
5-7. Sn-Zn solder
Sn-Zn solder affects product reliability.
Please contact TDK in advance when utilize Sn-Zn solder.
5-8. Countermeasure for tombstone
The misalignment between the mounted positions of the capacitors and the land
patterns should be minimized. The tombstone phenomenon may occur especially
the capacitors are mounted (in longitudinal direction) in the same direction of the reflow
soldering.
(Refer to JEITA RCR-2335B Annex A (Informative) Recommendations to prevent the
tombstone phenomenon)
6
Cleaning
1) If an unsuitable cleaning fluid is used, flux residue or some foreign articles may
stick to chip capacitors surface to deteriorate especially the insulation resistance.
2) If cleaning condition is not suitable, it may damage the chip capacitors.
2)-1. Insufficient washing
(1) Terminal electrodes may corrode by Halogen in the flux.
(2) Halogen in the flux may adhere on the surface of capacitors, and lower
the insulation resistance.
(3) Water soluble flux has higher tendency to have above mentioned
problems (1) and (2).
2)-2. Excessive washing
When ultrasonic cleaning is used, excessively high ultrasonic energy output
can affect the connection between the ceramic chip capacitor's body and the
terminal electrode. To avoid this, following is the recommended condition.
Power : 20 W/ℓ max.
Frequency : 40 kHz max.
Washing time : 5 minutes max.
2)-3. If the cleaning fluid is contaminated, density of Halogen increases, and it may
bring the same result as insufficient cleaning.
— 19 —
No.
7
Process
Coating and
molding of the
P.C.board
Condition
1) When the P.C.board is coated, please verify the quality influence on the product.
2) Please verify carefully that there is no harmful decomposing or reaction gas
emission during curing which may damage the chip capacitors.
3) Please verify the curing temperature.
8
Handling after
chip mounted
! Caution
1) Please pay attention not to bend or distort the P.C.board after soldering in handling
otherwise the chip capacitors may crack.
Bend
Twist
2) When functional check of the P.C.board is performed, check pin pressure tends
to be adjusted higher for fear of loose contact. But if the pressure is excessive
and bend the P.C.board, it may crack the chip capacitors or peel the terminations
off. Please adjust the check pins not to bend the P.C.board.
Item
Not recommended
Recommended
Termination
peeling
Support pin
Board
bending
Check pin
Check pin
9
Handling of loose
chip capacitors
1) If dropped the chip capacitors may crack. Once dropped do not use it. Especially,
the large case sized chip capacitors are tendency to have cracks easily, so please
handle with care.
Crack
Floor
2) Piling the P.C.board after mounting for storage or handling, the corner of the P.C.
board may hit the chip capacitors of another board to cause crack.
P.C.board
Crack
— 20 —
No.
Process
Condition
10
Capacitance aging
The capacitors (Class 2) have aging in the capacitance. They may not be used in
precision time constant circuit. In case of the time constant circuit, the evaluation
should be done well.
11
Estimated life and
estimated failure
rate of capacitors
As per the estimated life and the estimated failure rate depend on the temperature
and the voltage. This can be calculated by the equation described in JEITA
RCR-2335B Annex 6 (Informative) Calculation of the estimated lifetime and the
estimated failure rate ( Voltage acceleration coefficient : 3 multiplication rule,
Temperature acceleration coefficient : 10°C rule)
The failure rate can be decreased by reducing the temperature and the voltage but
they will not be guaranteed.
12
Others
! Caution
The products listed on this specification sheet are intended for use in general
electronic equipment (AV equipment, telecommunications equipment, home
appliances, amusement equipment, computer equipment, personal equipment, office
equipment, measurement equipment, industrial robots) under a normal operation and
use condition.
The products are not designed or warranted to meet the requirements of the
applications listed below, whose performance and/or quality require a more stringent
level of safety or reliability, or whose failure, malfunction or trouble could cause
serious damage to society, person or property. Please understand that we are not
responsible for any damage or liability caused by use of the products in any of the
applications below or for any other use exceeding the range or conditions set forth in
this specification sheet. If you intend to use the products in the applications listed
below or if you have special requirements exceeding the range or conditions set forth
in this specification, please contact us.
(1) Aerospace/Aviation equipment
(2) Transportation equipment (cars, electric trains, ships, etc.)
(3) Medical equipment
(4) Power-generation control equipment
(5) Atomic energy-related equipment
(6) Seabed equipment
(7) Transportation control equipment
(8) Public information-processing equipment
(9) Military equipment
(10) Electric heating apparatus, burning equipment
(11) Disaster prevention/crime prevention equipment
(12) Safety equipment
(13) Other applications that are not considered general-purpose applications
When designing your equipment even for general-purpose applications, you are
kindly requested to take into consideration securing protection circuit/device or
providing backup circuits in your equipment.
— 21 —
13. PACKAGING LABEL
Packaging shall be done to protect the components from the damage during
transportation and storing, and a label which has the following information shall be
attached.
1) Inspection No.
2) TDK P/N
3) Customer's P/N
4) Quantity
*Composition of Inspection No.
Example
F 2
A – ΟΟ – ΟΟΟ
(a) (b) (c)
(d)
(e)
a) Line code
b) Last digit of the year
c) Month and A for January and B for February and so on. (Skip I)
d) Inspection Date of the month.
e) Serial No. of the day
14. BULK PACKAGING QUANTITY
Total number of components in a plastic bag for bulk packaging : 1,000pcs.
As for CGA1, CGA2 types, not available for bulk packaging.
— 22 —
15. TAPE PACKAGING SPECIFICATION
1. CONSTRUCTION AND DIMENSION OF TAPING
1-1. Dimensions of carrier tape
Dimensions of paper tape shall be according to Appendix 3, 4, 5.
Dimensions of plastic tape shall be according to Appendix 6, 7.
1-2. Bulk part and leader of taping
Bulk
160mm
Chips
Bulk
160mm min
Leader
Drawing direction
400mm min
1-3. Dimensions of reel
Dimensions of Ø178 reel shall be according to Appendix 8, 9.
Dimensions of Ø330 reel shall be according to Appendix 10, 11.
1-4. Structure of taping
Top cover tape
Top cover tape
Pitch hole
Pitch hole
Plastic carrier tape
Paper carrier tape
Bottom cover tape
(Bottom cover tape is not always applied.)
2. CHIP QUANTITY
Type
CGA1(CC0201)
CGA2(CC0402)
CGA3(CC0603)
CGA4(CC0805)
CGA5(CC1206)
CGA6(CC1210)
CGA8(CC1812)
CGA9(CC2220)
Thickness
of chip
Taping
Material
0.30 mm
0.50 mm
0.80 mm
0.60mm
0.85 mm
1.25 mm
0.60 mm
0.85 mm
1.15 mm
1.30 mm
1.60 mm
1.25 mm
1.60 mm
2.00 mm
2.30 mm
2.50 mm
1.60 mm
2.00 mm
2.30 mm
2.50 mm
2.80 mm
3.20 mm
1.60 mm
2.00 mm
2.30 mm
2.50 mm
Paper
Paper
Paper/ Plastic
Paper
Paper
Plastic
Paper
Plastic
Chip quantity(pcs.)
Ø 178mm reel
15,000
10,000
4,000
4,000
2,000
4,000
Ø 330mm reel
50,000
10,000
20,000
10,000
10,000
2,000
8,000
Plastic
2,000
8,000
1,000
5,000
1,000
Plastic
500
3,000
2,000
1,000
Plastic
— 23 —
500
3,000
3. PERFORMANCE SPECIFICATIONS
3-1. Fixing peeling strength (top tape)
0.05-0.7N. (See the following figure.)
TYPE 1 (Paper)
Direction of cover tape pulling
Carrier tape
Top cover tape
0~15°
Direction of pulling
TYPE 2 (Plastic)
Direction of cover tape pulling
Carrier tape
Top cover tape
0~15°
Direction of pulling
3-2. Carrier tape shall be flexible enough to be wound around a minimum radius
of 30mm with components in tape.
3-3. The missing of components shall be less than 0.1%
3-4. Components shall not stick to fixing tape.
3-5. The fixing tapes shall not protrude beyond the edges of the carrier tape
not shall cover the sprocket holes.
— 24 —
Appendix 3
Paper Tape
Pitch hole
J
E
D
A
C
B
t
G
H
F
T
(Unit:mm)
Symbol
Type
CGA1
(CC0201)
Symbol
Type
CGA1
(CC0201)
A
B
C
D
E
F
( 0.38 )
( 0.68 )
8.00 ± 0.30
3.50 ± 0.05
1.75 ± 0.10
2.00 ± 0.05
G
H
J
t
T
2.00 ± 0.05
4.00 ± 0.05
0.35 ± 0.02
0.40 min.
Ø 1.5
+0.10
0
* The values in the parentheses ( ) are for reference.
Appendix 4
Paper Tape
Pitch hole
J
E
A
D
C
B
G
H
T
F
(Unit : mm)
Symbol
Type
CGA2
(CC0402)
Symbol
Type
CGA2
(CC0402)
A
B
C
D
E
F
( 0.65 )
( 1.15 )
8.00 ± 0.30
3.50 ± 0.05
1.75 ± 0.10
2.00 ± 0.05
G
H
J
T
2.00 ± 0.05
4.00 ± 0.10
Ø 1.5
+0.10
0
* The values in the parentheses ( ) are for reference
— 25 —
0.60 ± 0.05
Appendix 5
Paper Tape
Pitch hole
J
E
A
D
B
T
H
G
C
F
(Unit : mm)
Symbol
Type
CGA3
(CC0603)
CGA4
(CC0805)
CGA5
(CC1206)
Symbol
Type
CGA3
(CC0603)
CGA4
(CC0805)
CGA5
(CC1206)
A
B
( 1.10 )
( 1.90 )
( 1.50 )
( 2.30 )
( 1.90 )
( 3.50 )
G
H
2.00 ± 0.05
4.00 ± 0.10
C
D
E
F
8.00 ± 0.30
3.50 ± 0.05
1.75 ± 0.10
4.00 ± 0.10
J
T
Ø 1.5
+0.10
0
* The values in the parentheses ( ) are for reference.
— 26 —
1.20 max.
Appendix 6
Plastic Tape
Pitch hole
J
E
A
D
B
t
G
H
K
C
Q
F
(Unit : mm)
Symbol
Type
CGA3
(CC0603)
CGA4
(CC0805)
CGA5
(CC1206)
CGA6
(CC1210)
Symbol
Type
CGA3
(CC0603)
CGA4
(CC0805)
CGA5
(CC1206)
CGA6
(CC1210)
A
B
C
D
( 1.10 )
( 1.90 )
( 1.50 )
( 2.30 )
8.00 ± 0.30
3.50 ± 0.05
( 1.90 )
( 3.50 )
[12.0 ± 0.30]
[5.50 ± 0.05]
( 2.90 )
( 3.60 )
G
H
J
K
E
F
1.75 ± 0.10
4.00 ± 0.10
t
Q
1.50 max.
2.00 ± 0.05
4.00 ± 0.10
+0.10
Ø 1.5
0
0.30 max.
2.50 max.
3.20 max.
* The values in the parentheses ( ) are for reference.
* As for 2.5mm thickness products, apply values in the brackets [
— 27 —
].
Ø 0.50 min.
0.60 max.
Appendix 7
Plastic Tape
Pitch hole
J
E
A
D
B
t
H
G
C
Q
F
K
(Unit : mm)
Symbol
Type
CGA8
(CC1812)
CGA9
(CC2220)
Symbol
Type
CGA8
(CC1812)
CGA9
(CC2220)
A
B
( 3.60 )
( 4.90 )
( 5.40 )
( 6.10 )
G
H
2.00 ± 0.05
4.00 ± 0.10
C
D
E
F
12.0 ± 0.30
5.50 ± 0.05
1.75 ± 0.10
8.00 ± 0.10
J
K
t
Q
6.50 max.
0.60 max.
Ø 1.50 min.
Ø 1.5
+0.10
0
* The values in the parentheses ( ) are for reference.
— 28 —
Appendix 8
CGA1, CGA2, CGA3, CGA4, CGA5, CGA6 ( As for CGA6 type, any thickness of the item except 2.5mm )
(Material : Polystyrene)
E
W2
C
B
D
r
W1
A
(Unit : mm)
Symbol
A
B
C
D
E
W1
Dimension
Ø178 ± 2.0
Ø60 ± 2.0
Ø13 ± 0.5
Ø21 ± 0.8
2.0 ± 0.5
9.0 ± 0.3
Symbol
W2
r
Dimension
13.0 ± 1.4
1.0
Appendix 9
CGA6 ( Applied to 2.5mm thickness products ), CGA8, CGA9
(Material : Polystyrene)
E
W2
C
B
D
r
W1
A
(Unit : mm)
Symbol
A
B
C
D
E
W1
Dimension
Ø178 ± 2.0
Ø60 ± 2.0
Ø13 ± 0.5
Ø21 ± 0.8
2.0 ± 0.5
13.0 ± 0.3
Symbol
W2
r
Dimension
17.0 ± 1.4
1.0
— 29 —
Appendix 10
CGA1, CGA2, CGA3, CGA4, CGA5, CGA6 ( As for CGA6 type, any thickness of the item except 2.5mm )
(Material : Polystyrene)
E
C
B
D
r
t
W
A
(Unit : mm)
Symbol
A
B
C
D
E
W
Dimension
Ø382 max.
(Nominal
Ø330)
Ø50 min.
Ø13 ± 0.5
Ø21 ± 0.8
2.0 ± 0.5
10.0 ± 1.5
Symbol
t
r
Dimension
2.0 ± 0.5
1.0
Appendix 11
CGA6 (Applied to 2.5mm thickness products), CGA8, CGA9
(Material : Polystyrene)
E
C
B
D
r
W
A
t
(Unit : mm)
Symbol
A
B
C
D
E
W
Dimension
Ø382 max.
(Nominal
Ø330)
Ø50 min.
Ø13 ± 0.5
Ø21 ± 0.8
2.0 ± 0.5
14.0 ± 1.5
Symbol
t
r
Dimension
2.0 ± 0.5
1.0
— 30 —