Data Sheet

[AK4753]
AK4753
2-in, 4-out CODEC with DSP Functions
GENERAL DESCRIPTION
The AK4753 is a two input, four output audio CODEC with integrated digital signal processing. The
outputs can be configured either as single-ended or differential. An internal PLL allows the chip to run in
master clock free mode. The digital signal processing block includes an ALC/limiter, 5 configurable
biquads for EQ, volume control, and 4th-order filters for each output channel to enable a variety of
configurations. Wide dynamic range is achieved with 96dB S/N for the ADC, and 103dB S/N for the
DAC’s. A two-input 8-bit SAR ADC is integrated for processing of external potentiometers, supporting
volume and bass control functions. A small external EEP-ROM is used to store the coefficient values for
the DSP blocks. The AK4753 is controlled by an I2C control interface.
FEATURES
† Digital audio input interface
− Data format: MSB-first, two’s complement
− 16, 20, or 24-bits, I2S, MSB justified, LSB justified, or DSP mode
− Audio sampling rates: 8kHz to 48kHz
† Analog audio input
− Single-ended input stereo 24-bit audio ADC
− S/N: 96dB S/(N+D): 85dB
− Digital high-pass filter for DC-offset correction
† Analog audio output
− Four-channel 24-bit audio DAC
− Single-ended or differential output
− S/N: 103dB S/(N+D): 88dB
† 8-bit SAR ADC with two input selector
† Digital mixer for balancing inputs
† Digital signal processing block: DSP1, DSP2 independently
− Configurable ALC / limiter function
− Volume control: 0dB to -127dB, 0.5dB steps, mute
− Pre-gain setting: 0dB, +6dB, +12dB, +18dB
− Post-gain setting: 0dB, +3.5dB, +6dB, +8dB
− Five programmable biquads for EQ
− 4th-order high-pass filter or low-pass filter
† Integrated PLL for master clock-free operation
† PLL
− Input frequency: 24.576MHz, 24MHz, 22.5792MHz, 12.288MHz, 12MHz, and
11.2896MHz (XTI/MCKI pin)
1fs (LRCK pin), 32fs or 64fs (BICK pin)
− Input level: CMOS or AC-coupled (XTI/MCKI pin)
† Master clock input: 256fs, 512fs, 1024fs
† μP I/F: I2C bus-slave (400kHz Fast-mode)
2
† EEP-ROM control I/F: I C bus-master (400kHz Fast-mode)
† Ta = -30 ~ +85°C
† Power supply:
Analog (AVDD): 3.0 ~ 3.6V (typ 3.3V)
Digital (DVDD: 3.0 ~ 3.6V (typ 3.3V)
† Package: 32 pin QFN (4 x 4 mm, 0.4mm pitch)
MS1311-E-04
2013/04
-1-
[AK4753]
■ Block Diagram
MUTEN BYPASS PDN SDA
LRCK
BICK
SDTI
Serial
Audio
Interface
Control
SCL
STO EESCL EESDA EXTEE
Serial Interface
EEP Control
TEST
LOUT1/LOUT+
DSP1
AINL
Stereo
ADC
DAC1
ROUT1/LOUT-
DATT
AINR
LOUT2/ROUT+/MOUT+
DSP2
DAC2
ROUT2/ROUT-/MOUT-
VCOM
PLL
SAIN1
t1
SAIN2
t2
FLT
t1
A/D
t2
X’tal
Oscillator
XTI/MCKI
XTO
REG
AVDD
VSS1
DVDD VSS2
REG
DSP Block
HPF/LPF
4th order
Five
Biquads
Pre Gain
+18dB
Limiter
Post Gain
+8dB
Figure 1. Block Diagram
MS1311-E-04
2013/04
-2-
[AK4753]
■ Ordering Guide
AK4753EN
AKD4753
−30 ∼ +85°C
32 pin QFN (4 x 4 mm, 0.4mm pitch)
Evaluation Board for AK4753
BICK
LRCK
SDTI
STO
MUTEN
SCL
SDA
EESCL
24
23
22
21
20
19
18
17
■ Pin Layout
FLT
VSS2
29
Top View
12
TEST
REG
30
11
SAIN1
BYPASS
31
10
SAIN2
NC
32
9
AINR
8
13
AINL
AK4753EN
7
28
VSS1
DVDD
6
PDN
AVDD
14
5
27
LOUT1/LOUT+
XTI/MCKI
4
EXTEE
ROUT1/LOUT-
15
3
26
ROUT2/ROUT-/MOUT-
XTO
2
EESDA
LOUT2/ROUT+/MOUT+
16
1
25
VCOM
NC
MS1311-E-04
2013/04
-3-
[AK4753]
PIN/FUNCTION
No.
1
Pin Name
I/O
VCOM
O
LOUT2
O
ROUT+
O
MOUT+
O
ROUT2
O
ROUT−
O
MOUT−
O
ROUT1
O
LOUT−
O
LOUT1
O
LOUT+
O
6
7
8
9
10
11
AVDD
VSS1
AINL
AINR
SAIN2
SAIN1
I
I
I
I
12
TEST
I
13
FLT
O
14
PDN
I
15
EXTEE
I
16
17
18
19
EESDA
EESCL
SDA
SCL
I/O
O
I/O
I
20
MUTEN
O
21
STO
O
22
23
24
SDTI
LRCK
BICK
25
NC
2
3
4
5
I
I/O
I/O
-
Function
Common voltage output pin
This pin must be connected to VSS1 with the capacitors of 2.2μF capacitor in series.
Lch Line-Amp Output 2 Pin
Single-ended mode (SPC1-0 bits = “11”)
Rch Line-Amp Positive Output Pin
Differential mode (SPC1-0 bits = “00”, “01”)
Mono Line-Amp Positive Output Pin
Differential mode (SPC1-0 bits = “10”)
Rch Line-Amp Output 2 Pin
Single-ended mode (SPC1-0 bits = “11”)
Rch Line-Amp Negative Output Pin
Differential mode (SPC1-0 bits = “00”, “01”)
Mono Line-Amp Negative Output Pin
Differential mode (SPC1-0 bits = “10”)
Rch Line-Amp Output 1 Pin
Single-ended mode (SPC1-0 bits = “10”, “11”)
Lch Line-Amp Negative Output Pin
Differential mode (SPC1-0 bits = “00”, “01”)
Lch Line-Amp Output 1 Pin
Single-ended mode (SPC1-0 bits = “10”, “11”)
Lch Line-Amp Positive Output Pin
Differential mode (SPC1-0 bits = “00”, “01”)
Analog Power Supply Pin, 3.0V ~ 3.6V
Ground 1 Pin
L channel Analog Input Pin
R channel Analog Input Pin
8-bit SAR ADC Analog Input 2 Pin
8-bit SAR ADC Analog Input 1 Pin
TEST Input pin
This pin must be connected to VSS2.
PLL Loop Filter Pin
This pin must be connected to VSS1 with one resistor and one capacitor in series.
Power Down Pin
When “L”, the AK4753 is in power-down mode and is held in reset.
The AK4753 must be always reset upon power-up.
EEP-ROM Enable Pin
“H”: EEP-ROM download mode
“L”: Serial control mode
EEP-ROM Control Data Input/Output Pin
EEP-ROM Control Data Clock Output Pin
Control Data Input/Output Pin
Control Data Clock Input Pin
Mute Control Output Pin.
“H”: Normal Operation
“L”: Mute
EEP-ROM Status Output Pin
“H”: Read error
“L”: No error
Audio Serial Data Input Pin
Input/Output Channel Clock Pin
Audio Serial Data Clock Pin
No Connect Pin
No internal bonding. This pin must be connected to VSS2.
MS1311-E-04
2013/04
-4-
[AK4753]
No.
26
Pin Name
XTO
XTI
MCKI
DVDD
VSS2
I/O
O
I
I
-
Function
X’tal Clock Output Pin
X’tal / External Clock Input Pin
27
External Master Clock Input Pin
28
Digital Power Supply Pin, 3.0V ~ 3.6V
29
Ground 2 Pin
Regulator Ripple Filter Pin
30 REG
O
This pin must be connected to VSS2 with 2.2μF capacitor in series.
Bypass Control Input Pin
31 BYPASS
I
“H”: DSP Bypass mode
“L”: Normal Operation
No Connect Pin
32 NC
No internal bonding. This pin must be connected to VSS2.
Note 1. All input pins except analog input pins (AINL, AINR, SAIN1, SAIN2) must not be left floating.
■ Handling of Unused Pin
The unused I/O pins must be processed appropriately as below.
Classification
Pin Name
AINL, AINR, SAIN1, SAIN2, FLT, LOUT1/LOUT+,
Analog
ROUT1/LOUT-, LOUT2/ROUT+/MOUT+,
ROUT2/ROUT-/MOUTXTO, SDA, EESDA, EESCL, MUTEN, STO
Digital
LRCK, BICK, SDTI, XTI/MCKI, EXTEE, TEST, SCL
MS1311-E-04
Setting
Open
Open
These pins must be connected to VSS2.
2013/04
-5-
[AK4753]
ABSOLUTE MAXIMUM RATINGS
(All VSS pins =0V; Note 2)
Parameter
Symbol
min
max
Power Supplies:
Analog
AVDD
-0.3
4.2
Digital
DVDD
-0.3
4.2
Analog Input Voltage
(Note 3)
VINA1
-0.3
AVDD+0.3
Digital Input Voltage
(Note 4)
VIND
-0.3
DVDD+0.3
Input Current, Any Pin Except Supplies
IIN
-10
+10
Ambient Operating Temperature
Ta
-30
85
Storage Temperature
Tstg
-65
150
Note 2. All voltage with respect to ground. All VSS pins must be connected to the common analog ground.
Note 3. AINL pin, AINR pin, SAIN1 pin, SAIN2 pin.
Note 4. BYPASS, PDN, EESDA, XTI/MCKI, BICK, LRCK, SDTI, SCL, SDA, TEST pins
Unit
V
V
V
V
mA
°C
°C
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not
guaranteed at these extremes.
RECOMMENDED OPERATING CONDITIONS
(All VSS pins =0V; Note 2)
Parameter
Power Supplies (Note 5)
Symbol
min
typ
max
Unit
Analog
AVDD
3.0
3.3
3.6
V
Digital
DVDD
3.0
3.3
3.6
V
Difference
|DVDD-AVDD|
0
0.3
V
Note 5. The power up sequence between AVDD and DVDD is not critical. Each power supplies should be powered up
during the PDN pin = “L”. AVDD and DVDD must be the same voltage at the PDN pin = “H”. The PDN pin
should be “H” after all power supplies are powered up. All power supplies should be powered on, only a part
of these power supplies cannot be powered off. (Power off means power supplies equal to ground or power
supplies are floating.) Do not turn off only the AK4753 under the condition that a surrounding device is
powered on and the I2C bus is in use.
WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet.
MS1311-E-04
2013/04
-6-
CONFIDENTIAL
[AK4753]
ANALOG CHARACTERISTICS (CODEC)
(Ta=25°C; AVDD=DVDD=3.3V; VSS1=VSS2=0V; fs=44.1kHz; BICK=64fs; Signal Frequency=1kHz; 24-bit Data;
Measurement Band Width =20Hz∼20kHz; unless otherwise specified)
Parameter
min
typ
max
Unit
DAC Analog Output Characteristics: DAC → LOUT1/ROUT1, LOUT2/ROUT2 pins,
Single-ended mode (SPC1-0 bits = “11”),
HPF=LPF=EQ(5-BiQuads)=Limiter=OFF, DATT= 0dB, RL=5kΩ
Resolution
24
Bits
S/(N+D)
(0dBFS)
75
85
dB
DR
(-60dBFS with A-weighted)
87
97
dB
S/N
(A-weighted)
87
97
dB
Interchannel Isolation
80
95
dB
Interchannel Gain Mismatch
0
0.5
dB
Output Voltage
AOUT=0.68 x AVDD
1.98
2.24
2.51
Vpp
Load Resistance
(AC load)
5
kΩ
Load Capacitance
150
pF
Power Supply Rejection Ratio
(Note 6)
50
dB
DAC Analog Output Characteristics: DAC → LOUT+/-, ROUT+/- pins,
Differential mode (SPC1-0 bits = “00”),
HPF=LPF=EQ(5-BiQuads)=Limiter=OFF, DATT= 0dB, RL=5kΩ
S/(N+D)
(0dBFS)
78
88
dB
DR
(-60dBFS with A-weighted)
93
103
dB
S/N
(A-weighted)
93
103
dB
Interchannel Isolation
95
110
dB
Interchannel Gain Mismatch
0
0.5
dB
Output Voltage
AOUT=0.70 x AVDD
Vpp
±2.08
±2.31
±2.54
Load Resistance
(AC load)
5
kΩ
Load Capacitance
150
pF
Power Supply Rejection
(Note 6)
50
dB
ADC to DAC Characteristics: AINL/AINR pins → DAC → LOUT1/ROUT1, LOUT2/ROUT2 pins,
Single-ended mode (SPC1-0 bits = “11”),
HPF=LPF=EQ(5-BiQuads)=Limiter=OFF, DATT= 0dB, RL=5kΩ
Input Voltage
AIN=0.8xAVDD
2.38
2.64
2.90
Vpp
Input Resistance
24
35
kΩ
S/(N+D)
(-1dBFS)
73
84
dB
DR
(-60dBFS with A-weighted)
83
94
dB
S/N
(A-weighted)
83
94
dB
ADC to DAC Characteristics: AINL/AINR pins → DAC → LOUT+/-, ROUT+/- pins,
Differential mode (SPC1-0 bits = “00”, “01”),
HPF=LPF=EQ(5-BiQuads)=Limiter=OFF, DATT= 0dB, RL=5kΩ
Input Voltage
AIN=0.8xAVDD
2.38
2.64
2.90
Vpp
Input Resistance
24
35
kΩ
S/(N+D)
(-1dBFS)
74
85
dB
DR
(-60dBFS with A-weighted)
85
96
dB
S/N
(A-weighted)
85
96
dB
Note 6. PSRR is applied to AVDD and DVDD with 1kHz, 50mVpp.
MS1311-E-04
2013/04
-7-
CONFIDENTIAL
[AK4753]
Parameter
min
typ
max
Power Supplies
All Circuit Power-up (PDN pin = “H”) (Note 7)
Differential Mode (SPC1-0 bits = “00”)
AVDD
5.8
8.7
DVDD
4.2
6.3
Single-ended Mode (SPC1-0 bits = “11”)
AVDD
9.0
13.5
DVDD
4.6
6.9
Power-down (PDN pin = “L”) (Note 7)
AVDD + DVDD
1
10
Note 7. PLL Master Mode (MCKI=12MHz), PMAD=PMDIG=PMLO1=PMLO2=PMSAR=PMPLL bits = “1”.
Note 8. All digital input pins are fixed to DVDD or VSS2.
Unit
mA
mA
mA
mA
µA
ANALOG CHARACTERISTICS (8-bit SAR ADC)
(Ta=25°C; AVDD=DVDD =3.3V; VSS1=VSS2=0V; unless otherwise specified)
Parameter
min
typ
max
Units
8-bit SAR ADC Characteristics
Resolution
8
Bits
No Missing Codes
7
8
Bits
Integral Nonlinearity Error
LSB
±1
Differential Nonlinearity Error
LSB
±1
Analog Input Voltage Range
0
AVDD
V
Offset Error
LSB
±1
Gain Error
LSB
±1
Accuracy (Note 9)
%
±1.2
Potentiometer Resistance (Figure 2)
VR
100
kΩ
Note 9. Accuracy is the difference between the output code when 1.1V is input to SAIN1 or SAIN2 pin and the “ideal”
code at 1.1V.
AVDD
Potentiometer
VR
SAIN1/2
pin
SAR
ADC
Figure 2. Potentiometer Resistance
MS1311-E-04
2013/04
-8-
CONFIDENTIAL
[AK4753]
FILTER CHARACTERISTICS
(Ta =-30 ~ 85°C; AVDD=DVDD=3.0V ~ 3.6V; fs=44.1kHz; HPF=LPF=EQ(5-BiQuads)=Limiter=OFF)
Parameter
Symbol
min
typ
max
Unit
ADC Digital Filter (Decimation LPF):
Passband (Note 10)
PB
0
17.3
kHz
±0.16dB
19.4
kHz
−0.66dB
19.9
kHz
−1.1dB
22.1
kHz
−6.9dB
Stopband
SB
26.1
kHz
Passband Ripple
PR
dB
±0.16
Stopband Attenuation
SA
73
dB
Group Delay (Note 11)
GD
15
1/fs
Group Delay Distortion
0
ΔGD
μs
ADC Digital Filter (HPF):
Frequency Response
FR
0.9
Hz
−3.0dB
6.0
Hz
−0.1dB
DAC Digital Filter:
Passband (Note 12)
PB
0
20.0
kHz
±0.05dB
22.05
kHz
−6.0dB
Stopband
SB
24.1
kHz
Passband Ripple
PR
dB
±0.05
Stopband Attenuation
SA
53
dB
Group Delay (Note 13)
GD
25
1/fs
DAC Digital Filter (LPF) + SCF:
FR
dB
Frequency Response: 0 ∼ 20.0kHz
±0.4
Note 10. The passband and stopband frequencies scale with fs (system sampling rate). Each response refers to that of
1kHz.
Note 11. A calculating delay time which induced by digital filtering. This time is from the input of an analog signal to
the setting of 24-bit data of both channels to the ADC output register.
Note 12. The passband and stopband frequencies scale with fs (system sampling rate). Each response refers to that of
1kHz.
Note 13. A calculating delay time which induced by digital filtering. This time is from setting the 24-bit data of both
channels to input register to the output of analog signal.
DC CHARACTERISTICS
(Ta=-30 ~ 85°C; AVDD=DVDD= 3.0V ~ 3.6V)
Parameter
Symbol
min
High-Level Input Voltage
VIH
70%DVDD
Low-Level Input Voltage
VIL
Input Voltage at AC Coupling (XTI/MCKI pin)
VAC
40%DVDD
(Note 14)
High-Level Output Voltage
(Note 15)
VOH
DVDD−0.4
(Iout = −100μA)
Low-Level Output Voltage
(Note 15)
VOL
(Except SDA, EESDA, EESCL pins: Iout = 100μA)
(SDA, EESDA, EESCL pins: Iout = 3mA)
VOL
Input Leakage Current
Iin
Note 14. It is a case when AC coupling capacitor is connected to the XTI/MCKI pin.
Note 15. Except XTO pin.
MS1311-E-04
typ
-
max
30%DVDD
Unit
V
V
-
-
Vpp
-
-
V
-
0.4
0.4
±10
V
V
μA
2013/04
-9-
CONFIDENTIAL
SWITCHING CHARACTERISTICS
(Ta=-30 ~ 85°C, AVDD= DVDD= 3.0V ~ 3.6V, CL=20pF; unless otherwise specified)
Parameter
Symbol
min
typ
Crystal Resonator
Frequency
fXTAL
11.2896
PLL Master Mode (PLL Reference Clock = XTI/MCKI pin)
MCKI Input Timing
Frequency
fCLK
11.2896
Pulse Width Low
tCLKL
0.4/fCLK
Pulse Width High
tCLKH
0.4/fCLK
AC Pulse Width
tACW
18.5
LRCK Output Timing
Frequency
fs
Table 6
DSP Mode: Pulse Width High
tLRCKH
tBCK
Except DSP Mode: Duty Cycle
Duty
50
BICK Output Timing
Period
BCKO bit = “0”
tBCK
1/(32fs)
BCKO bit = “1”
tBCK
1/(64fs)
Duty Cycle
dBCK
50
PLL Slave Mode (PLL Reference Clock = LRCK pin)
LRCK Input Timing
Frequency
fs
7.35
DSP Mode: Pulse Width High
tLRCKH
tBCK−60
Except DSP Mode: Duty Cycle
Duty
45
BICK Input Timing
Period
tBCK
1/(64fs)
Pulse Width Low
tBCKL
130
Pulse Width High
tBCKH
130
PLL Slave Mode (PLL Reference Clock = BICK pin)
LRCK Input Timing
Frequency
fs
7.35
DSP Mode: Pulse Width High
tLRCKH
tBCK−60
Except DSP Mode: Duty Cycle
Duty
45
BICK Input Timing
Period
PLL3-0 bits = “0010”
tBCK
1/(32fs)
PLL3-0 bits = “0011”
tBCK
1/(64fs)
Pulse Width Low
tBCKL
0.4 x tBCK
Pulse Width High
tBCKH
0.4 x tBCK
-
MS1311-E-04
[AK4753]
max
Unit
12.288
MHz
24.576
-
MHz
ns
ns
ns
-
kHz
ns
%
-
ns
ns
%
48
1/fs − tBCK
55
kHz
ns
%
1/(32fs)
-
ns
ns
ns
48
1/fs − tBCK
55
kHz
ns
%
-
ns
ns
ns
ns
2013/04
- 10 -
CONFIDENTIAL
Parameter
External Slave Mode
MCKI Input Timing
Frequency
256fs
512fs
1024fs
Pulse Width Low
Pulse Width High
LRCK Input Timing
Frequency
256fs
512fs
1024fs
DSP Mode: Pulse Width High
Except DSP Mode: Duty Cycle
BICK Input Timing
Period (Note 16)
[AK4753]
Symbol
min
typ
max
Unit
fCLK
fCLK
fCLK
tCLKL
tCLKH
1.8816
3.7632
7.5264
0.4/fCLK
0.4/fCLK
-
12.288
13.312
13.312
-
MHz
MHz
MHz
ns
ns
fs
fs
fs
tLRCKH
Duty
7.35
7.35
7.35
tBCK−60
45
-
48
26
13
1/fs − tBCK
55
kHz
kHz
kHz
ns
%
-
-
-
-
ns
s
ns
ns
-
12.288
13.312
13.312
-
MHz
MHz
MHz
ns
ns
tBCK
50
48
-
kHz
ns
%
1/(32fs)
1/(64fs)
50
-
ns
ns
%
tBCK
312.5 or
1/(126fs)
130
130
Pulse Width Low
tBCKL
Pulse Width High
tBCKH
External Master Mode
MCKI Input Timing
Frequency
256fs
fCLK
1.8816
512fs
fCLK
3.7632
1024fs
fCLK
7.5264
Pulse Width Low
tCLKL
0.4/fCLK
Pulse Width High
tCLKH
0.4/fCLK
LRCK Output Timing
Frequency
fs
7.35
DSP Mode: Pulse Width High
tLRCKH
Except DSP Mode: Duty Cycle
Duty
BICK Output Timing
Period
BCKO bit = “0”
tBCK
BCKO bit = “1”
tBCK
Duty Cycle
dBCK
Note 16. The minimum value is longer time between 312.5ns and 1/(126fs)s.
MS1311-E-04
2013/04
- 11 -
CONFIDENTIAL
Parameter
Symbol
min
Audio Interface Timing (DSP Mode)
Master Mode
tDBF
0.5 x tBCK −40
LRCK “↑” to BICK “↑” (Note 17)
tDBF
0.5 x tBCK −40
LRCK “↑” to BICK “↓” (Note 18)
SDTI Hold Time
tSDH
50
SDTI Setup Time
tSDS
50
Slave Mode
tLRB
0.4 x tBCK
LRCK “↑” to BICK “↑” (Note 17)
tLRB
0.4 x tBCK
LRCK “↑” to BICK “↓” (Note 18)
tBLR
0.4 x tBCK
BICK “↑” to LRCK “↑” (Note 17)
tBLR
0.4 x tBCK
BICK “↓” to LRCK “↑” (Note 18)
SDTI Hold Time
tSDH
50
SDTI Setup Time
tSDS
50
2
Audio Interface Timing (Right/Left justified & I S)
Master Mode
tMBLR
−40
BICK “↓” to LRCK Edge (Note 19)
SDTI Hold Time
tSDH
50
SDTI Setup Time
tSDS
50
Slave Mode
tLRB
50
LRCK Edge to BICK “↑” (Note 19)
tBLR
50
BICK “↑” to LRCK Edge (Note 19)
SDTI Hold Time
tSDH
50
SDTI Setup Time
tSDS
50
Note 17. MSBS, BCKP bits = “00” or “11”.
Note 18. MSBS, BCKP bits = “01” or “10”.
Note 19. BICK rising edge must not occur at the same time as LRCK edge.
MS1311-E-04
[AK4753]
typ
max
Unit
0.5 x tBCK
0.5 x tBCK
-
0.5 x tBCK +40
0.5 x tBCK +40
-
ns
ns
ns
ns
-
-
ns
ns
ns
ns
ns
ns
-
40
-
ns
ns
ns
-
-
ns
ns
ns
ns
2013/04
- 12 -
CONFIDENTIAL
Parameter
Symbol
min
typ
Control Interface Timing (I2C bus-slave): SCL, SDA pins (Note 20)
SCL Clock Frequency
fSCL1
Bus Free Time Between Transmissions
tBUF1
1.3
Start Condition Hold Time (prior to first clock pulse)
tHD1:STA
0.6
Clock Low Time
tLOW1
1.3
Clock High Time
tHIGH1
0.6
Setup Time for Repeated Start Condition
tSU1:STA
0.6
SDA Hold Time from SCL Falling (Note 21)
tHD1:DAT
0
SDA Setup Time from SCL Rising
tSU1:DAT
0.1
Rise Time of Both SDA and SCL Lines
tR1
Fall Time of Both SDA and SCL Lines
tF1
Capacitive Load on Bus
Cb1
Setup Time for Stop Condition
tSU1:STO
0.6
Pulse Width of Spike Noise Suppressed by Input Filter
tSP1
0
EEP-ROM Control Interface Timing (I2C bus-master): EESCL, EESDA pins (Note 20)
EESCL Clock Frequency
fSCL2
200
280
Bus Free Time Between Transmissions
tBUF2
1.3
Start Condition Hold Time (prior to first clock pulse)
tHD:STA2
0.6
Clock Low Time
tLOW2
1.3
Clock High Time
tHIGH2
0.6
Setup Time for Repeated Start Condition
tSU2:STA
0.6
EESDA Hold Time from EESCL Falling (Note 21)
tHD2:DAT
0
EESDA Setup Time from EESCL Rising
tSU2:DAT
0.1
Rise Time of Both EESDA and EESCL Lines
tR2
Fall Time of Both EESDA and EESCL Lines
tF2
Capacitive Load on Bus
Cb2
Setup Time for Stop Condition
tSU2:STO
0.6
Pulse Width of Spike Noise Suppressed by Input Filter
tSP2
0
Power-down & Reset Timing
PDN Pulse Width (Note 22)
tPD
10
Note 20. I2C-bus is a trademark of NXP B.V.
Note 21. Data must be held long enough to bridge the 300ns-transition time of SCL and EESCL.
Note 22. The AK4753 can be reset by the PDN pin = “L”.
MS1311-E-04
[AK4753]
max
Unit
400
0.3
0.3
400
50
kHz
μs
μs
μs
μs
μs
μs
μs
μs
μs
pF
μs
ns
400
0.9
0.3
0.3
400
50
kHz
μs
μs
μs
μs
μs
μs
μs
μs
μs
pF
μs
ns
-
ms
2013/04
- 13 -
CONFIDENTIAL
[AK4753]
■ Timing Diagram
1/fCLK
tACW
1000pF
tACW
Measurement
Point
MCKI Input
100kΩ
VAC
VSS2
VSS2
Figure 3. MCKI AC Coupling Timing
1/fCLK
VIH
MCKI
VIL
tCLKH
tCLKL
1/fs
50%DVDD
LRCK
tLRCKH
tLRCKL
tBCK
Duty = tLRCKH x fs x 100
tLRCKL x fs x 100
50%DVDD
BICK
tBCKH
tBCKL
dBCK = tBCKH / tBCK x 100
tBCKL / tBCK x 100
Figure 4. Clock Timing (PLL/EXT Master mode)
tLRCKH
LRCK
50%DVDD
tDBF
BICK
(BCKP = "0")
50%DVDD
BICK
(BCKP = "1")
50%DVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 5. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “0”)
MS1311-E-04
2013/04
- 14 -
CONFIDENTIAL
[AK4753]
tLRCKH
LRCK
50%DVDD
tDBF
BICK
(BCKP = "1")
50%DVDD
BICK
(BCKP = "0")
50%DVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 6. Audio Interface Timing (PLL/EXT Master mode, DSP mode, MSBS = “1”)
50%DVDD
LRCK
tMBLR
BICK
50%DVDD
tSDS
tSDH
VIH
SDTI
VIL
Figure 7. Audio Interface Timing (PLL/EXT Master mode, Except DSP mode)
1/fs
VIH
LRCK
VIL
tLRCKH
tBLR
tBCK
VIH
BICK
(BCKP = "0")
VIL
tBCKH
tBCKL
VIH
BICK
(BCKP = "1")
VIL
Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “0”)
MS1311-E-04
2013/04
- 15 -
CONFIDENTIAL
[AK4753]
1/fs
VIH
LRCK
VIL
tLRCKH
tBLR
tBCK
VIH
BICK
(BCKP = "1")
VIL
tBCKH
tBCKL
VIH
BICK
(BCKP = "0")
VIL
Figure 9. Clock Timing (PLL Slave mode; PLL Reference Clock = LRCK or BICK pin, DSP mode, MSBS = “1”)
tLRCKH
VIH
LRCK
VIL
tLRB
VIH
BICK
VIL
(BCKP = "0")
VIH
BICK
(BCKP = "1")
VIL
tSDS
SDTI
tSDH
VIH
MSB
VIL
Figure 10. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = “0”)
tLRCKH
VIH
LRCK
VIL
tLRB
VIH
BICK
VIL
(BCKP = "1")
VIH
BICK
(BCKP = "0")
VIL
tSDS
SDTI
tSDH
MSB
VIH
VIL
Figure 11. Audio Interface Timing (PLL Slave mode, DSP mode, MSBS = “1”)
MS1311-E-04
2013/04
- 16 -
CONFIDENTIAL
[AK4753]
1/fCLK
VIH
MCKI
VIL
tCLKH
tCLKL
1/fs
VIH
LRCK
VIL
tLRCKH
Duty = tLRCKH x fs x 100
tLRCKL x fs x 100
tLRCKL
tBCK
VIH
BICK
VIL
tBCKH
tBCKL
Figure 12. Clock Timing (EXT Slave mode)
VIH
LRCK
VIL
tLRB
tBLR
VIH
BICK
VIL
tSDS
tSDH
VIH
SDTI
VIL
Figure 13. Audio Interface Timing (PLL/EXT Slave mode, Except DSP mode)
VIH
SDA
VIL
tBUF
tLOW
tHIGH
tR
tF
tSP
VIH
SCL
VIL
tHD:STA
Stop
tHD:DAT
tSU:DAT
Start
tSU:STA
tSU:STO
Start
Stop
Figure 14. I2C Bus Mode Timing
tPD
PDN
VIL
Figure 15. Power Down & Reset Timing
MS1311-E-04
2013/04
- 17 -
[AK4753]
OPERATION OVERVIEW
■ Overview of AK4753
The AK4753 is an audio CODEC with integrated digital signal processors.
It is easy to use since the two inputs 8-bit SAR ADC and EEP-ROM I/F are integrated.
The SAR ADC has 2-channel input selector and the AD conversion is executed sequentially.
The SAIN1 value is used to control the internal DATT. The SAIN2 value is used to control the gain of the EQ. When
the analog input of the SAIN1/2 changes, the register value of the DATT/EQ is changed automatically.
This external EEP-ROM is used to store the coefficient values for the DSP blocks, and the setting data. When the
AK4753 is powered up, it reads the data in EEP-ROM at first, and maps these values into the internal registers.
The following contents are stored in EEP-ROM.
a. Fundamental function
-Output Configuration Setting (Stereo mode, 2.1-channel mode or 4-channel mode)
-PLL mode setting: master or slave, PLL Reference Clock, Sampling Frequency
-Audio Interface Format
-DATT
-Post-Gain and Pre-Gain setting for DSP1/2
-Limiter setting for DSP1/2
b. Coefficient data for DSP1/2
-Coefficient data of LPF/HPF
-Coefficient data of Five Biquads
MS1311-E-04
2013/04
- 18 -
[AK4753]
■ System Clock
There are the following four methods to interface with external devices. (Table 1, Table 2)
Mode
PLL Master Mode
PLL Slave Mode
(PLL Reference Clock: LRCK or BICK pin)
EXT Slave Mode
EXT Master Mode
PMPLL bit
M/S bit
PLL3-0 bits
1
1
Table 4
1
0
Table 4
0
0
x
0
1
x
Figure
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Table 1. Clock Mode Setting (x: Don’t care)
Mode
XTI/MCKI pin
BICK pin
Output
PLL Master Mode
Selected by PLL3-0 bits
(Selected by BCKO bit)
PLL Slave Mode
Input
GND
(PLL Reference Clock: LRCK or BICK pin)
(Selected by PLL3-0 bits)
Input
EXT Slave Mode
Selected by FS1-0 bits
(≥ 32fs)
Output
EXT Master Mode
Selected by FS1-0 bits
(Selected by BCKO bit)
Table 2. Clock pins state in Clock Mode
LRCK pin
Output
(1fs)
Input
(1fs)
Input
(1fs)
Output
(1fs)
■ Master Mode/Slave Mode
The M/S bit selects either master or slave mode. M/S bit = “1” selects master mode and “0” selects slave mode. When
the AK4753 is in power-down mode (PDN pin = “L”) and when exits reset state, the AK4753 is in slave mode. After
exiting reset state, the AK4753 goes to master mode by changing M/S bit = “1”.
When the AK4753 is in master mode, the LRCK and BICK pins are a floating state until M/S bit becomes “1”. The
LRCK and BICK pins of the AK4753 must be pulled-down or pulled-up by the resistor (about 100kΩ) externally to
avoid the floating state.
M/S bit
Mode
0
Slave Mode
1
Master Mode
Table 3. Select Master/Slave Mode
MS1311-E-04
(default)
2013/04
- 19 -
[AK4753]
■ Crystal Oscillator Circuit
A clock for the XTI/MCKI pin can be generated by the following three methods.
1. X’tal Mode (PWXTAL bit= “1”)
XTI
C
160kΩ
(typ)
C
AK4753
AK4683
XTO
Figure 16. X’tal Mode
Note: The value of the capacitor depends on a crystal (Typ.10-40pF).
2. External Clock Mode (PWXTAL bit= “1”)
Note: Do not input a clock beyond the voltage of DVDD.
XTI/MCKI
XTI/MCKI
External C
Clock
External
Clock
160kΩ
(typ)
160kΩ
(typ)
XTO
XTO
AK4753
AK4683
Figure 17. Direct Connection
(Input: CMOS Level)
AK4753
AK4683
Figure 18. AC Coupling Connection
(Input: ≥ 40%DVDD, C=1000pF)
3. OFF Mode of XTI/MCKI, XTO pins (PWXTAL bit= “0”)
XTI/MCKI
160kΩ
(typ)
XTO
AK4753
AK4683
Figure 19. OFF Mode
MS1311-E-04
2013/04
- 20 -
[AK4753]
■ PLL Mode (PMPLL bit = “1”)
When PMPLL bit = “1”, the built-in high precision PLL works according to the clock which is set by FS3-0 bits and
PLL3-0 bits. The PLL lock time is shown in Table 4, whenever the AK4753 is supplied to a stable clock after PLL is
powered-up (PMPLL bit = “0” →“1”) or sampling frequency changes.
1. PLL Mode setting
Mode
PLL3
bit
PLL2
bit
PLL1
bit
PLL0
bit
PLL Reference
Clock Input Pin
0
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
1
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
LRCK pin
BICK pin
BICK pin
XTI/MCKI pin
XTI/MCKI pin
XTI/MCKI pin
XTI/MCKI pin
XTI/MCKI pin
XTI/MCKI pin
Others
Others
Input
Frequency
FLT pin
Rp, Cp
Rp[Ω] Cp[F]
10k
100n
10k
4.7n
10k
4.7n
10k
4.7n
10k
4.7n
10k
4.7n
10k
4.7n
10k
4.7n
10k
4.7n
PLL Lock
Time
(max)
40 ms
4 ms
4 ms
4 ms
4 ms
4 ms
4 ms
4 ms
4 ms
1fs
(default)
32fs
64fs
11.2896MHz
12.288MHz
12MHz
24MHz
22.5792MHz
24.576MHz
N/A
(*fs: Sampling Frequency, N/A: Not Available)
Table 4. PLL Mode Setting
2. Sampling Frequency setting in PLL Mode (PLL reference clock pin: XTI/MCKI pin)
In the case of PLL2 bit = “1”, and the reference clock is input to the XTI/MCKI pin or the crystal oscillator circuit is
used, the sampling frequency can be set according to Table 5.
Mode
FS3 bit
FS2 bit
FS1 bit
FS0 bit
Sampling Frequency (Note 23)
0
0
0
0
0
8kHz mode
(default)
1
0
0
0
1
12kHz mode
2
0
0
1
0
16kHz mode
3
0
0
1
1
24kHz mode
4
0
1
0
0
7.35kHz mode
5
0
1
0
1
11.025kHz mode
6
0
1
1
0
14.7kHz mode
7
0
1
1
1
22.05kHz mode
10
1
0
1
0
32kHz mode
11
1
0
1
1
48kHz mode
14
1
1
1
0
29.4kHz mode
15
1
1
1
1
44.1kHz mode
Others
Others
N/A
(Reference Clock = XTI/MCKI pin) (N/A: Not Available)
Table 5. Sampling Frequency Setting (PMPLL bit = “1”)
Note 23. When the XTI/MCKI pin is the PLL reference clock input, the sampling frequency generated by PLL differs
from the sampling frequency of mode name in some combinations of MCKI frequency(PLL3-0 bits) and
sampling frequency (FS3-0 bits). Refer to Table 6 for the details of sampling frequency. In master mode,
LRCK and BICK output frequency correspond to sampling frequencies shown in Table 6. When the LRCK or
BICK pin is the PLL reference clock input, the sampling frequency generated by PLL is the same sampling
frequency of mode name.
MS1311-E-04
2013/04
- 21 -
[AK4753]
Input Frequency
MCKI[MHz]
11.2896
Sampling Frequency
Sampling Frequency
Mode
generated by PLL [kHz] (Note 24)
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.025000
22.05kHz mode
22.050000
44.1kHz mode
44.100000
7.35kHz mode
7.350000
14.7kHz mode
14.700000
29.4kHz mode
29.400000
12.288
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.025000
22.05kHz mode
22.050000
44.1kHz mode
44.100000
7.35kHz mode
7.350000
14.7kHz mode
14.700000
29.4kHz mode
29.400000
12
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.024877
22.05kHz mode
22.049753
44.1kHz mode
44.099507
7.35kHz mode
7.349918
14.7kHz mode
14.699836
29.4kHz mode
29.399671
Sampling frequency that differs from sampling frequency of mode name
Note 24. These are rounded off to six decimal places.
Table 6. Sampling Frequency at PLL mode (Reference clock is MCKI)
MS1311-E-04
2013/04
- 22 -
[AK4753]
Input Frequency
MCKI[MHz]
24
Sampling Frequency
Sampling Frequency
Mode
generated by PLL [kHz] (Note 24)
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.024877
22.05kHz mode
22.049753
44.1kHz mode
44.099507
7.35kHz mode
7.349918
14.7kHz mode
14.699836
29.4kHz mode
29.399671
22.5792
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.025000
22.05kHz mode
22.050000
44.1kHz mode
44.100000
7.35kHz mode
7.350000
14.7kHz mode
14.700000
29.4kHz mode
29.400000
24.576
8kHz mode
8.000000
12kHz mode
12.000000
16kHz mode
16.000000
24kHz mode
24.000000
32kHz mode
32.000000
48kHz mode
48.000000
11.025kHz mode
11.025000
22.05kHz mode
22.050000
44.1kHz mode
44.100000
7.35kHz mode
7.350000
14.7kHz mode
14.700000
29.4kHz mode
29.400000
Sampling frequency that differs from sampling frequency of mode name
Note 24 These are rounded off to six decimal places.
Table 6. Sampling Frequency at PLL mode (Reference clock is MCKI)
3. Sampling Frequency setting in PLL Mode (PLL reference clock pin: LRCK or BICK pin)
In the case of PLL2 bit = “0” and the reference clock is input to the LRCK or BICK pins, the sampling frequency is set
by FS3 and FS2 bits according to Table 7.
Mode
0
1
2
Others
Sampling Frequency
Range
0
0
x
x
(default)
7.35kHz ≤ fs ≤ 12kHz
0
1
x
x
12kHz < fs ≤ 24kHz
1
0
x
x
24kHz < fs ≤ 48kHz
Others
N/A
(PLL Reference: Clock: LRCK or BICK pin) (x: Don’t care, N/A: Not Available)
Table 7. Sampling Frequency Setting (PLL2 bit = “0” and PMPLL bit = “1”)
FS3 bit
FS2 bit
FS1 bit
FS0 bit
MS1311-E-04
2013/04
- 23 -
[AK4753]
■ PLL Un-Lock
1. PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)
In this mode, the BICK and LRCK pins go to “L” before the PLL goes to lock state after PMPLL bit = “0” →“1”
(Table 8). After the PLL is locked, a first period of LRCK and BICK may be invalid clock, but these clocks return to
normal state after a period of 1/fs. When sampling frequency is changed, the BICK and LRCK pins do not output
irregular frequency clocks but go to “L” by setting PMPLL bit to “0”.
PLL State
BICK pin
LRCK pin
PMPLL bit “0” Æ “1”
“L” Output
“L” Output
PLL Unlock (Except for the above)
Not fixed
Not fixed
PLL Lock
Table 9
1fs Output
Table 8. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)
■ PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)
When an external clock (11.2896MHz, 12MHz, 12.288MHz, 22.5792MHz, 24MHz or 24.576MHz) is input to the
XTI/MCKI pin or the crystal oscillator circuit is used, the BICK and LRCK clocks are generated by an internal PLL
circuit. The BICK output frequency is selected between 32fs or 64fs, by BCKO bit (Table 9).
AK4753
11.2896MHz, 12MHz, 12.288MHz
22.5792MHz, 24MHz, 24.576MHz
DSP
MCKI
BICK
LRCK
32fs, 64fs
1fs
BCLK
LRCK
SDTO
SDTI
Figure 20. PLL Master Mode (External Clock Mode)
AK4753
XTO
X’tal
11.2896MHz, 12MHz, 12.288MHz
22.5792MHz, 24MHz, 24.576MHz
DSP
XTI
BICK
32fs, 64fs
BCLK
LRCK
1fs
LRCK
SDTO
SDTI
Figure 21. PLL Master Mode (X’tal Mode)
BCKO bit
BICK Output Frequency
0
32fs
1
64fs
(default)
Table 9. BICK Output Frequency at Master Mode
MS1311-E-04
2013/04
- 24 -
[AK4753]
■ PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)
A reference clock of PLL is selected among the input clocks to the BICK or LRCK pin. Required clock for the AK4753
is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits (Table 4).
Sampling frequency corresponds to a range from 7.35kHz to 48kHz by changing FS3-0 bits (Table 7).
AK4753
DSP
MCKI
BICK
32fs or 64fs
1fs
LRCK
BCLK
LRCK
SDTO
SDTI
Figure 22. PLL Slave Mode (PLL Reference Clock: BICK pin)
AK4753
DSP
MCKI
≥ 32fs
BICK
1fs
LRCK
BCLK
LRCK
SDTO
SDTI
Figure 23. PLL Slave Mode (PLL Reference Clock: LRCK pin)
■ EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)
When PMPLL bit is “0”, the AK4753 changes to EXT mode. Master clock is input from the XTI/MCKI pin, the
internal PLL circuit is not operated. This mode is compatible with I/F of a normal audio CODEC. The clocks required
to operate the AK4753 are MCKI (256fs, 512fs or 1024fs), LRCK (fs) and BICK (≥32fs). The master clock (MCKI)
should be synchronized with LRCK. The phase between these clocks is not important. The input frequency of MCKI is
selected by FS1-0 bits (Table 10).
MCKI Input
Sampling Frequency
Frequency
Range
x
0
0
256fs
(default)
7.35kHz ∼ 48kHz
x
0
1
1024fs
7.35kHz ∼ 13kHz
x
1
0
512fs
7.35kHz ∼ 26kHz
x
1
1
512fs
7.35kHz ∼ 26kHz
Table 10. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) (x: Don’t care)
Mode
0
1
2
3
FS3-2 bits
FS1 bit
FS0 bit
MS1311-E-04
2013/04
- 25 -
[AK4753]
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.
The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output
through LOUT1/ROUT1 and LOUT2/ROUT2 pins is shown in Table 11.
S/N
(fs=8kHz, 20kHzLPF + A-weighted)
256fs
87 dB
512fs
96 dB
1024fs
97 dB
Table 11. Relationship between MCKI and S/N of LOUT1/ROUT1 and LOUT2/ROUT2 pins (SPC1-0 bits = “00”)
MCKI
AK4753
DSP
256fs, 512fs or 1024fs
MCKI
MCLK
≥ 32fs
BICK
1fs
LRCK
BCLK
LRCK
SDTO
SDTI
Figure 24. EXT Slave Mode
■ EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)
The AK4753 becomes EXT Master Mode by setting PMPLL bit = “0” or the M/S bit = “1”. Master clock is input from
the XTI/MCKI pin or the crystal oscillator circuit is used, the internal PLL circuit is not operated. The clock required to
operate the AK4753 is XTI/MCKI (256fs, 512fs or 1024fs). The input frequency of XTI/MCKI is selected by FS1-0
bits (Table 12).
XTI/MCKI
Sampling Frequency
Input Frequency
Range
0
x
0
0
256fs
(default)
7.35kHz ∼ 48kHz
1
x
0
1
1024fs
7.35kHz ∼ 13kHz
2
x
1
0
512fs
7.35kHz ∼ 26kHz
3
x
1
1
512fs
7.35kHz ∼ 26kHz
Table 12. XTI/MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) (x: Don’t care)
Mode
FS3-2 bits
FS1 bit
FS0 bit
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.
The out-of-band noise can be improved by using higher frequency of the master clock. The S/N of the DAC output
through LOUT1/ROUT1 and LOUT2/ROUT2 pins is shown in Table 13.
S/N
(fs=8kHz, 20kHzLPF + A-weighted)
256fs
87 dB
512fs
96 dB
1024fs
97 dB
Table 13. Relationship between XTI/MCKI and S/N of LOUT1/ROUT1 and LOUT2/ROUT2 pins (SPC1-0 bits = “00”)
XTI/MCKI
MS1311-E-04
2013/04
- 26 -
[AK4753]
AK4753
DSP
256fs, 512fs or 1024fs
MCKI
BICK
LRCK
MCLK
32fs or 64fs
1fs
BCLK
LRCK
SDTO
SDTI
Figure 25. EXT Master Mode (External Clock Mode)
AK4753
XTO
X’tal
256fs, 512fs or 1024fs
DSP
XTI
BICK
32fs, 64fs
BCLK
LRCK
1fs
LRCK
SDTO
SDTI
Figure 26. EXT Master Mode (X’tal Mode)
BCKO bit
BICK Output Frequency
0
32fs
1
64fs
(default)
Table 14. BICK Output Frequency at Master Mode
MS1311-E-04
2013/04
- 27 -
[AK4753]
■ System Reset
Upon power-up, the AK4753 must be reset by bringing the PDN pin = “L”. This ensures that all internal registers reset
to their initial values. The PDN pin must be set to “L” at power-up.
When PMADC bit is changed from “0” to “1”, the initialization cycle of ADC starts. The ADC outputs settle to data
correspondent to the input signals after the end of initialization. The time from the input of analog signals to the output
of analog signals including the initialization cycle of ADC is 1098/fs=25ms@fs=44.1kHz.
■ Audio Interface Format
Eight types of the data formats are available and are selected by setting the DIF2-0 bits (Table 15). In all modes, the
serial data is MSB first, 2’s complement format. Audio interface formats can be used in both master mode and slave
mode. LRCK and BICK are output from the AK4753 in master mode, but must be input to the AK4753 in slave mode.
Mode
0
1
2
3
4
5
6
7
DIF2
bit
0
0
0
0
1
1
1
1
DIF1
bit
0
0
1
1
0
0
1
1
DIF0
bit
0
1
0
1
0
1
0
1
SDTI
LRCK
BICK
16-bit DSP Mode
H/L
≥32fs
16-bit LSB justified
H/L
≥32fs
16/20/24-bit MSB justified
H/L
32fs or ≥48fs
16/20/24-bit I2S compatible
L/H
32fs or ≥48fs
20-bit LSB justified
H/L
≥40fs
24-bit LSB justified
H/L
≥48fs
20-bit DSP Mode
H/L
≥48fs
24-bit DSP Mode
H/L
≥48fs
Table 15. Audio Interface Format
Figure
Table 16
Figure 31
Figure 33
Figure 34
Figure 32
Figure 32
Table 17
Table 18
(default)
In Mode 1/2/3/4/5, the SDTI is latched on the rising edge (“↑”) of BICK.
In Modes 0/6/7 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits.
When BCKP bit = “0”, the SDTI is latched on the falling edge (“↓”) of BICK.
When BCKP bit = “1”, the SDTI is latched on the rising edge (“↑”) of BICK.
MSBS bit can shift the position of the MSB data of SDTI to the position of the half cycle of the BICK.
MS1311-E-04
2013/04
- 28 -
[AK4753]
DIF2
DIF1
DIF0
MSBS
0
0
0
0
0
1
1
DIF2
DIF1
DIF0
MSBS
0
0
1
1
0
1
1
DIF2
DIF1
DIF0
MSBS
0
0
1
1
1
1
1
BCKP
Audio Interface Format
MSB data of SDTI is latched on the falling edge
0
(“↓”) of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the rising edge
1
(“↑”) of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the falling edge
(“↓”) of the first BICK after the falling edge (“↓”)
0
of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the rising edge
1
(“↑”) of the first BICK after the rising edge (“↑”) of
the first BICK after the rising edge (“↑”) of LRCK.
Table 16. Audio Interface Format in Mode 0
BCKP
Audio Interface Format
MSB data of SDTI is latched on the falling edge
0
(“↓”) of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the rising edge
1
(“↑”) of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the falling edge
(“↓”) of the first BICK after the falling edge (“↓”)
0
of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the rising edge
1
(“↑”) of the first BICK after the rising edge (“↑”) of
the first BICK after the rising edge (“↑”) of LRCK.
Table 17. Audio Interface Format in Mode 6
BCKP
Audio Interface Format
MSB data of SDTI is latched on the falling edge
0
(“↓”) of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the rising edge
1
(“↑”) of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the falling edge
(“↓”) of the first BICK after the falling edge (“↓”)
0
of the first BICK after the rising edge (“↑”) of
LRCK.
MSB data of SDTI is latched on the rising edge
1
(“↑”) of the first BICK after the rising edge (“↑”) of
the first BICK after the rising edge (“↑”) of LRCK.
Table 18. Audio Interface Format in Mode 7
MS1311-E-04
Figure
Figure 27
(default)
Figure 28
Figure 29
Figure 30
Figure
Figure 35
(default)
Figure 36
Figure 37
Figure 38
Figure
Figure 39
(default)
Figure 40
Figure 41
Figure 42
2013/04
- 29 -
[AK4753]
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
15
14
16
17
22
23
24
25
26
30
31
32
33
34
35
36
37
59
60
61
62
63
0
37
59
60
61
62
63
0
37
59
60
61
62
63
0
37
59
60
61
62
63
0
BICK(64fs)
Lch
SDTI(i)
Rch
15 14 13
1
0
15
9
8
7
6
1
0
1/fs
15:MSB, 0:LSB
Figure 27. Mode 0 Timing (BCKP bit= “0”, MSBS bit= “0”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
15
16
17
22
23
24
25
26
30
31
32
33
34
35
36
BICK(64fs)
Lch
SDTI(i)
Rch
15 14 13
1
0
15
9
8
7
6
1
0
1/fs
15:MSB, 0:LSB
Figure 28. Mode 0 Timing (BCKP bit= “1”, MSBS bit= “0”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
15
16
17
22
23
24
25
26
30
31
32
33
34
35
36
BICK(64fs)
Lch
SDTI(i)
Rch
15 14 13
1
0
15
9
8
7
6
1
0
1/fs
15:MSB, 0:LSB
Figure 29. Mode 0 Timing (BCKP bit= “0”, MSBS bit= “1”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
15
14
16
17
22
23
24
25
26
30
31
32
33
34
35
36
BICK(64fs)
Lch
SDTI(i)
15 14 13
Rch
1
0
15
9
8
7
6
1
0
1/fs
15:MSB, 0:LSB
Figure 30. Mode 0 Timing (BCKP bit= “1”, MSBS bit= “1”)
MS1311-E-04
2013/04
- 30 -
[AK4753]
LRCK
31
0
1
15
16
23
24
15 14
8
7
31
0
1
15
16
23
24
31
0
1
15
8
7
0 Don’t care
2
3
4
BICK(64fs)
SDTI(i)
Mode1
Don’t care
13
0 Don’t care
Lch DATA
Rch DATA
15:MSB, 0:LSB
Figure 31. Mode 1 Timing
LRCK
31
0
1
8
12
23
31
0
1
19
8
0 Don’t care
19 20
8
0 Don’t care
8
12
23
31
0
1
2
3
4
19
8
1
0 Don’t care
19
8
1
0 Don’t 22
care 21 20 19
5
BICK(64fs)
SDTI(i)
Mode4
Don’t care
SDTI(i)
Mode5
Don’t care
19
19:MSB, 0:LSB
23
23
23:MSB, 0:LSB
Lch DATA
Rch DATA
Figure 32. Mode 4/5 Timing
LRCK
BICK
SDTI(i)
16bit
15 14
0
SDTI(i)
20bit
19 18
4
0
20
SDTI(i)
24bit
23 22
8
4
20
0
Don’t
15 14
0
Don’t
19 18
4
0
20
Don’t
23 22
8
4
20
Lch DATA
0
Don’t
15 14 13 12
11
Don’t
19 18 17 16 15
Don’t
23 22 21 20 19
Rch DATA
Figure 33. Mode 2 Timing
LRCK
BICK
SDTI(i)
16bit
15 14
0
SDTI(i)
20bit
19 18
4
0
20
SDTI(i)
24bit
23 22
8
4
20
0
Don’t
15 14
0
Don’t
19 18
4
0
20
Don’t
23 22
8
4
20
Lch DATA
0
Don’t
15 14 13 12
11
Don’t
19 18 17 16 15
Don’t
23 22 21 20 19
Rch DATA
Figure 34. Mode 3 Timing
MS1311-E-04
2013/04
- 31 -
[AK4753]
LRCK
(Master)
LRCK
(Slave)
63
0
1
14
2
20
21
23
24
25
26
27
37
38
39
40
41
42
43
44
45
46
61
62
63
0
BICK(64fs)
Lch
SDTI(i)
Rch
19 18 17
0
19
16 15 14 13
9
2
1
0
1/fs
19:MSB, 0:LSB
Figure 35. Mode 6 Timing (BCKP bit= “0”, MSBS bit= “0”)
LRCK
(Master
)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
42
43
44
45
46
61
62
63
0
BICK(64fs)
Lch
SDTI(i)
Rch
19 18 17
0
19
16 15 14 13
9
2
1
0
1/fs
19:MSB, 0:LSB
Figure 36. Mode 6 Timing (BCKP bit= “1”, MSBS bit= “0”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
42
43
44
45
46
61
62
63
0
BICK(64fs)
Lch
SDTI(i)
Rch
19 18 17
0
19
16 15 14 13
9
2
1
0
1/fs
19:MSB, 0:LSB
Figure 37. Mode 6 Timing (BCKP bit= “0”, MSBS bit= “1”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
42
43
44
45
46
61
62
63
0
BICK(64fs)
SDTI(i)
Lch
Rch
19 18 17 20
19
16 15 14 13
9
2
1
0
1/fs
19:MSB, 0:LSB
Figure 38. Mode 6 Timing (BCKP bit= “1”, MSBS bit= “1”)
MS1311-E-04
2013/04
- 32 -
[AK4753]
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
46
47
48
49
50
61
62
63
0
50
61
62
63
0
50
61
62
63
0
50
61
62
63
0
BICK(64fs)
Lch
SDTI(i)
Rch
23 22 21
4
3
0
23 22 21
1
10
9
8
7
2
1
0
1/fs
23:MSB, 0:LSB
Figure 39. Mode 7 Timing (BCKP bit= “0”, MSBS bit= “0”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
46
47
48
49
BICK(64fs)
Lch
SDTI(i)
Rch
23 22 21
4
3
0
23 22 21
1
10
9
8
7
2
1
0
1/fs
23:MSB, 0:LSB
Figure 40. Mode 7 Timing (BCKP bit= “1”, MSBS bit= “0”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
46
47
48
49
BICK(64fs)
Lch
SDTI(i)
Rch
23 22 21
4
3
0
23 22 21
1
10
9
8
7
2
1
0
1/fs
23:MSB, 0:LSB
Figure 41. Mode 7 Timing (BCKP bit= “0”, MSBS bit= “1”)
LRCK
(Master)
LRCK
(Slave)
63
0
1
2
14
20
21
23
24
25
26
27
37
38
39
40
41
46
47
48
49
BICK(64fs)
Lch
SDTI(i)
23 22 21
Rch
4
3
0
23 22 21
1
10
9
8
7
2
1
0
1/fs
23:MSB, 0:LSB
Figure 42. Mode 7 Timing (BCKP bit= “1”, MSBS bit= “1”)
MS1311-E-04
2013/04
- 33 -
[AK4753]
■ DSP Input Signals Setting
The AK4753 has three input sources for DSP. The inputs of digital, analog and mix signals can be changed by SEL1-0
bits. In the initialization, the setting is SEL1-0 bits = “00” (Analog Input).
SEL1-0 bits
Digital-in
SW1
DSP
Block
MIX
ADC
Figure 43. DSP Input source
SEL1 bit
0
0
1
1
SEL0 bit
DSP input source
Note
0
Analog
Default
1
Digital
0
MIX
(Analog source)/2 + Digital source/2
1
N/A
Table 19. DSP Input Setting (N/A: Not Available)
■ Bypass Mode
The AK4753 has a BYPASS pin for the DSP bypass mode. When the BYPASS pin is “L”, the DSP blocks are enabled.
When the BYPASS pin is “H”, the DSP blocks are disabled and the DATT outputs are skipped over the DSP blocks to
the DAC.
BYPASS pin
Mode
H
DSP Bypass Mode
L
Normal Operation
Table 20. Bypass Mode
BYPASS pin
“L”
DSP1
“H”
“L”
“H”
DAC1
DATT
L+R
2
MIX
“H”
“L”
DSP2
“H”
DAC2
“L”
Figure 44. Bypass Mode
MS1311-E-04
2013/04
- 34 -
[AK4753]
<Bypass Mode Control Sequence>
The AK4753 has a mute control output pin (MUTEN pin) for external speaker amplifier. In order to prevent a pop noise
through the AK4753, the MTUEN pin is connected to a mute pin or a standby pin of the external speaker amplifier.
H
BYPASS pin
L
H
MUTEN pin
DSP Status
L
ON
OFF
LOUT/ROUT
pins
(1) 2ms 2ms (3)
(typ) (typ)
(4) 2ms 2ms (5)
(typ) (typ)
(2)
(2)
Figure 45. Bypass Mode Control Sequence
(1)
(2)
(3)
(4)
(5)
When the BYPASS pin turns “H”, the MUTEN pin is set “L”.
Pop noise occuers after 2ms(@fs=48kHz), when the DSP bypass mode is changed.
DSP bypass mode is chaneged, then the MUTEN pin is set “H” after 2ms(@fs=48kHz).
When the BYPASS pin turns “L”, the MUTEN pin is set “L”.
DSP bypass mode is chaneged, then the MUTEN pin is set “H” after 2ms(@fs=48kHz).
MS1311-E-04
2013/04
- 35 -
[AK4753]
■ Audio DAC outputs Configurations
The AK4753 has three modes as Audio DAC Configurations; Stereo Mode, 2.1-channels Mode and 4-channels Mode.
Each mode is selected by SPC1-0 bits. In the initialization, the setting of the SPC1-0 bits is “00” (Stereo Mode).
PMDIG
PMLO1
SPC1-0 bits
0: L1, R1
1: L1+L2, R1+R2
SEL1-0 bits SW2, 3, 4, 5, 6
L, R
Digital-in
SW1
DSP1
for L1, R1
L1, R1
SW3
0
1
HPF, LPF
EQ, Limiter
DAC1
DIG
L1 or L1+L2
DAC1L
ANA
+
SW5
−
0
1
−DAC1L or R1
or R1+R2 or R1+M
DAC1R
ANA
L1+L2, R1+R2
DATT
ADC
M=
L+R
2
or
L1+M, R1+M
SW2
0
MIX
1
0: L, R
DSP2
for L2, R2
HPF, LPF
EQ, Limiter
L2, R2 or M, M
DAC2
DIG
1: M, M
SW4
0
0: R1 or R1+R2
1: L2 or M
+
1
−
SW6
0
1
DAC2L
ANA
−DAC2L or 2R2 or M
DAC2R
ANA
PMLO2
Figure 46. Block Diagram of Signal Path
MS1311-E-04
2013/04
- 36 -
[AK4753]
1. Stereo Mode (SPC1-0 bits = “00”: SW2 = “0”, SW3= “0”, SW4= “0”, SW5= “0”, SW6= “0”)
Table 21 shows the signal status and output condition when SPC1-0 bits= “00”. This output configuration is suitable for
a traditional stereo speaker system. Refer to the Figure 55 for functions and signal paths of the DSP block.
SEL1-0 bit
SPC1-0 bit
0: L1, R1
SW2, 3, 4, 5, 6
DSP1
for L1, R1
L, R
Digital-in
SW1
L1, R1
SW3
0
1
HPF, LPF
EQ, Limiter
DAC1L
ANA
+
DAC1
DIG
SW5
0
1
−
L1+
DAC1R
ANA
L1−
DAC2L
ANA
R1+
DAC2R
ANA
R1−
DATT
ADC
SW2
0
MIX
SW4
0
DSP2
for L2, R2
DAC2
DIG
HPF, LPF
EQ, Limiter
1
+
1
−
SW6
0
1
Figure 47. Block Diagram for Signal Path (SPC1-0 bits =“00”)
Output Setting
SPC1 bit
SPC0 bit
0
(default)
Audio Signal
L1
0
(default)
R1
Signal and Output Block
Polarity
DAC
+
DAC1L
DAC1R
−
+
DAC2L
DAC2R
−
Pin
LOUT+
LOUT−
ROUT+
ROUT−
Output
L1+
L1−
R1+
R1−
Table 21. Stereo Mode Setting and Output Signal Details
Block1
Digital Source
L1 →
Digital-in
LOUT+
LOUT−
AK4753
Block2
L ch
Analog Source
R1→
Analog-in
R ch
ROUT+
ROUT−
L ch
2-channel
(Full-differential)
R ch
Figure 48. 2-channels (Stereo) mode
MS1311-E-04
2013/04
- 37 -
[AK4753]
2. Stereo mode (HPF, LPF individual mode)
(SPC1-0 bits = “01”: SW2 = “0”, SW3= “1”, SW4= “0”, SW5= “0”, SW6= “0”)
Table 22 shows the signal status and output condition when SPC1-0 bits = “01”. This output configuration is suitable
for a stereo speaker system which needs individual effects of DSP. L1(Hi), L2(Lo), R1 (Hi) and R2 (Lo) is an example
of the DSP setting. L1(Hi), R1(Hi) are signals which were after HPF in DSP1. And L2(Lo), R2(Lo) are signals which
were applied LPF in DSP2. Refer to the Figure 55 for functions and signal paths of the DSP block.
SEL1-0 bit
SPC1-0 bit
1: L1+L2, R1+R2
L, R
Digital-in
SW1
DAC1L
ANA
+
SW2, 3, 4, 5, 6
DSP1
for L1, R1
L1, R1
SW3
0
1
HPF, LPF
EQ, Limiter
DAC1
DIG
SW5
0
1
−
L1+L2, R1+R2
DAC1R
ANA
+( L1+L2 )
−( L1+L2 )
DATT
ADC
SW2
0
MIX
1
0: L, R
SW4
0
DSP2
for L2, R2
HPF, LPF
EQ, Limiter
L2, R2
DAC2
DIG
+
1
−
SW6
0
1
DAC2L
ANA
DAC2R
ANA
+( R1+R2 )
−( R1+R2 )
Figure 49. Block Diagram for Signal Path (SPC1-0 bits = “01”)
Output Setting
SPC1 bit
SPC0 bit
0
1
Signal and Output Block
Polarity
DAC
+
DAC1L
L1(Hi)+L2(Lo)
DAC1R
−
+
DAC2L
R1(Hi)+R2(Lo)
DAC2R
−
Audio Signal
Output
Pin
LOUT+
LOUT−
ROUT+
ROUT−
L+
L−
R+
R−
Table 22. Stereo Mode Setting and Output Signal Status Details
Block1
Digital Source
Digital-in
L1+L2→
LOUT+
LOUT−
AK4753
Block2
L ch
Analog Source
Analog-in
R1+R2→ ROUT+
ROUT−
R ch
L ch
2-channel
(Full-differential)
R ch
Figure 50. 2-channels (Stereo) Mode
MS1311-E-04
2013/04
- 38 -
[AK4753]
3. 2.1-channels mode (SPC1-0 bits = “10”: SW2 = “1”, SW3= “0”, SW4= “1”, SW5= “1”, SW6= “0”)
Table 23 shows the signal status and output condition when SPC1-0 bits = “10”. This output configuration is suitable
for a 2.1 channel application with a subwoofer. SW output is an example of the DSP setting.
L1(Hi), R1(Hi) are signals which were after HPF in DSP1. M(Lo) is signal which was after LPF in DSP2. Refer to the
Figure 55 for functions and signal paths of the DSP block.
SEL1-0 bit
SPC1-0 bit
0: L1, R1,
DSP1
for L1, R1
L, R
Digital-in
SW1
DAC1L
ANA
+
SW2, 3, 4, 5, 6
L1, R1
SW3
0
DAC1
DIG
SW5
−
HPF, LPF
EQ, Limiter
L1
DAC1R
ANA
1
R1
DATT
ADC
SW2
1
M=
L+R
2
SW4
1
DSP2
for L2, R2
HPF, LPF
EQ, Limiter
MIX
M, M
DAC2
DIG
1: M, M
−
+
SW6
0
DAC2L
ANA
DAC2R
ANA
+M
−M
Figure 51. Block Diagram for Signal Path (SPC1-0 bits = “10”)
Output Setting
SPC1 bit
SPC0 bit
1
0
Signal and Output Block
Polarity
DAC
non
DAC1L
L1(Hi)+R1(Hi)
non
DAC1R
+
DAC2L
M(Lo)
DAC2R
−
Audio Signal
Output
Pin
LOUT1
ROUT1
LOUT2
ROUT2
L
R
SW+
SW−
Table 23. 2.1-channels mode setting and Output Signal Status Details (SW: Subwoofer, M: Mono Mix)
Block1
Digital Source
Digital-in
L1,R1→
LOUT1
ROUT1
L ch
R ch
2-channel
(Single-ended)
AK4753
Block2
L ch
Analog Source
Analog-in
M→
R ch
MOUT+
MOUT−
SW ch 1-channel
(Full-differential)
Figure 52. 2.1-channels Mode (SW: Subwoofer, M: Mono Mix)
MS1311-E-04
2013/04
- 39 -
[AK4753]
4. 4-channels mode (SPC1-0 bits = “11”: SW2 = “0”, SW3= “0”, SW4= “1”, SW5= “1”, SW6= “1”)
Table 24 shows the signal status and output condition when SPC1-0 bits = “11”. This output configuration is suitable
for a Two-Way Speaker System.
L1(Hi), L2(Lo), R1 (Hi) and R2 (Lo) is an example of the DSP setting. L1(Hi), R1(Hi) are signals which were after
HPF in DSP1. L2(Lo) and R2(Lo) are signals which were after LPF in DSP2. Refer to the Figure 55 for functions and
signal paths of the DSP block.
SEL1-0 bit
SPC1-0 bit
0: L1, R1,
DSP1
for L1, R1
L, R
Digital-in
SW1
DAC1L
ANA
+
SW2, 3, 4, 5, 6
SW3
0
L1, R1
DAC1
DIG
SW5
−
HPF, LPF
EQ, Limiter
L1
DAC1R
ANA
1
R1
DATT
ADC
SW4
1
DSP2
for L2, R2
SW2
0
HPF, LPF
EQ, Limiter
MIX
L2, R2
DAC2
DIG
0: L, R
−
+
SW6
1
DAC2L
ANA
DAC2R
ANA
L2
R2
Figure 53. Block Diagram for Signal Path (SPC1-0 bits = “11”)
Output Setting
SPC1 bit
SPC0 bit
1
1
Signal and Output Block
Polarity
DAC
non
DAC1L
L1(Hi)+R1(Hi)
non
DAC1R
non
DAC2L
L2(Lo)+R2(Lo)
non
DAC2R
Audio Signal
Pin
LOUT1
ROUT1
LOUT2
ROUT2
Signal
L(Hi)
R(Hi)
L(Lo)
R(Lo)
Table 24. 4-channels Mode Setting and Output Signal Status Details
(Hi: High Frequency Signal, Lo: Low Frequency Signal)
Block1
Digital Source
Digital-in
L1,R1→
LOUT1
ROUT1
AK4753
Block2
L ch
Analog Source
Analog-in
R ch
L2,R2→
LOUT2
ROUT2
L(Hi) ch
R(Hi) ch
4-channel
(Single-ended)
L(Lo) ch
R(Lo) ch
Figure 54. 4-channels Mode and Output Bridge Configuration
(Example: Hi= High Frequency Signal, Lo= Low Frequency Signal are for Two-Way Speaker system.)
MS1311-E-04
2013/04
- 40 -
[AK4753]
■ DSP Functions and Signal Path
The AK4753 has two DSP circuit blocks and one digital volume circuit (DATT). Each DSP block can be set
individually for HPF/LPF, Five Biquads EQ, Pre-Gain, Limiter, and Post-Gain.
DSP1 for L1, R1
DATT
Any coefficient
DATT:
L/R7-0
ATS1-0
HPF/
LPF
Five
Biquads
Pre
Gain
Any coefficient
HPF/LPF:
1FA 19-0
1FB 19-0
1FC 19-0
Any coefficient
EQ1-5:
1E_1-5A 19-0
1E_1-5B 19-0
1E_1-5C19-0
Any coefficient
Pre-Gain:
1PREG 1-0
Limiter
Any coefficient
Post
Gain
Any coefficient
Post-Gain:
1PSTG 1-0
DSP2 for L2, R2
HPF/
LPF
Five
Biquads
Pre
Gain
Any coefficient
HPF/LPF:
2FA 19-0
2FB 19-0
2FC 19-0
Any coefficient
EQ1-5:
2E_1-5A 19-0
2E_1-5B 19-0
2E_1-5C 19-0
Any coefficient
Pre-Gain:
2PREG 1-0
Limiter
Any coefficient
Post
Gain
Any coefficient
Post-Gain:
2PSTG 1-0
Figure 55. DSP Functions and Signal Path
Refer to the each description of the function for detail settings. Available effects of the DSP are shown in Table 29.
Those effects in each function block of the DSP1 and DSP2 are set together, “L1 and R1” or “L2 and R2”.
MS1311-E-04
2013/04
- 41 -
[AK4753]
■ Digital Volume and Gain Control
The AK4753 has three volume controls as gain setting of the amplifier outputs. Digital volume control is the general
volume to adjust the output signal level in normal operation. Pre-Gain and Post-Gain are for gain setting of the signal
level in the signal path.
1. Digital Volume (DATT)
The Ak4753 has a built-in channel independent digital volume (DATT) with 256 levels in 0.5dB steps including
MUTE. The transition time between the set levels by L7-0 bits (R7-0 bits) can be set by DVTM bit. When DVTM bit =
“0” (Table 26), the transition time from 0dB(00H) to MUTE(FFH) is 1024/fs (21.3ms@fs=48kHz). When the PDN pin
is set to “L”, the volume level is initialized to MUTE(FFH). The transition between the set levels is soft transition.
Therefore a switching noise does not occur within the transition. When the PMSAR bit = “1”, the volume and gain
follows the SAR value and the register setting of DATT (L/R7-0 bits) is invalid.
L/R7-0 bits
Attenuation Level
00H
0dB
01H
−0.5dB
02H
−1.0dB
03H
−1.5dB
:
:
FDH
−126.5dB
FEH
−127.0dB
FFH
(default)
MUTE (−∞)
Table 25. Digital Volume ATT Value
ATT speed
0dB to MUTE
1 step
0
1024/fs
4/fs
(default)
1
256/fs
1/fs
Table 26. Transition Time among ATT7-0 Setting Values of the Digital Volume
DVTM bit
2. Pre-Gain
The AK4753 has the four steps volume before a limiter circuit. The volume levels of L channel and R channel are
in common in one DSP block, but levels between two DSP blocks are independent. Volume levels are set by
1PREG1-0 and 2PREG1-0 bits (Table 27). When the set level is changed, a switching noise occurs because the
volume level is re-written by the register directory.
1PREG1-0 bits
GAIN(dB)
Step
2PREG1-0 bits
00
0.0
(default)
01
+6.0
6.0dB
10
+12.0
11
+18.1
Table 27. Pre-Gain Setting
3. Post-Gain
The AK4753 has the four steps volume after the limiter circuit. The volume levels of L channel and R channel are
in common in one DSP block, but those levels between two DSP blocks are independent. Volume levels are set by
1PSTG1-0 and 2PSTG1-0 bits (Table 28). When the set level is changed, a switching noise occurs because the
volume level is re-written by the register directory.
1PSTG1-0 bits
GAIN(dB)
2PSTG1-0 bits
00
0.0
(default)
01
+3.5
10
+6.0
11
+8.0
Table 28. Post-Gain Setting
MS1311-E-04
2013/04
- 42 -
[AK4753]
■ DSP Block
Available setting of HPF, LPF and 5-programmable Biquads in Stereo mode, 2.1 channel mode and 4-channel mode are
shown in Table 29. HPF, LPF and 5EQ in Table 29 should be set carefully according to the frequency response of the
speaker which is actually used. The parameter of each setting can be set freely for application requests.
Mode
Output
Channel
Pin
Signal
DSP
setting
channel
Available setting channel
HPF
LPF
5 EQ
Pre-Gain
Limiter
Post-Gain
L+
DSP1
L1
L1
L1
L1
L1
L1
L−
Stereo
R+
R ch
DSP1
R1
R1
R1
R1
R1
R1
R−
L(Hi)+
DSP1
L1
(L1)
L1
L1
L1
L1
Out1
L(Lo)+
DSP2
(L2)
L2
L2
L2
L2
L2
L ch
DSP1
L1
(L1)
L1
L1
L1
L1
L(Hi)−
Out2
DSP2
(L2)
L2
L2
L2
L2
L2
Stereo
L(Lo)−
(HPF, LPF)
R(Hi)+
DSP1
R1
(R1)
R1
R1
R1
R1
Out3
R(Lo)+
DSP2
(R2)
R2
R2
R2
R2
R2
R ch
DSP1
R1
(R1)
R1
R1
R1
R1
R(Hi)−
Out4
DSP2
(R2)
R2
R2
R2
R2
R2
R(Lo)−
L ch
Out1
L(Hi)
DSP1
L1
(L1)
L1
L1
L1
L1
R ch
Out2
R(Hi)
DSP1
R1
(R1)
R1
R1
R1
R1
2.1-channels
Out3 M(Lo)+
SW ch
DSP2
(M)
M
M
M
M
M
Out4 M(Lo)−
L (Hi) ch
Out1 L1(Hi)
DSP1
L1
(L1)
L1
L1
L1
L1
R (Hi) ch
Out2 R1(Hi)
DSP1
R1
(R1)
R1
R1
R1
R1
4-channels
L (Lo) ch
Out3 L2(Lo)
DSP2
(L2)
L2
L2
L2
L2
L2
R (Lo) ch
Out4 R2(Lo)
DSP2
(R2)
R2
R2
R2
R2
R2
Table 29. Available Settings for DSP and Signal Path of Each Speaker Configuration (SW: Subwoofer, M: Mono Mix)
L ch
Out1
Out2
Out3
Out4
HPF / LPF
Any coefficient
HPF/LPF:
1FA 19-0, 2FA 19-0
1FB 19-0, 2FB 19-0
1FC 19-0, 2FC 19-0
Figure 56. Digital HPF/LPF
MS1311-E-04
2013/04
- 43 -
[AK4753]
■ HPF and LPF Coefficients
HPF and LPF are controlled by 1FILSEL and 2FILSEL bits. When 1FILSEL and 2FILSEL bits= “1”, this block works
as a HPF. When 1FILSEL and 2FILSEL bits= “0”, this block works as a LPF. ON/OFF switching of this block can be
controlled by 1FILEN and 2FILEN bits. When the block of HPF/LPF becomes OFF mode by 1FILEN and 2FILEN
bits= “0”, the audio data passes this block by 0dB gain. The setting of the coefficients should be made when the
AK4753 is in the state that 1FILEN bit =2FILEN bit= “0”.
fs: Sampling frequency
fc: Cutoff frequency (-6dB point)
Register setting (Note 25)
1FA19-0, 2FA19-0 bits = A
1FB19-0, 2FB19-0 bits = B
1FC19-0, 2FC19-0 bits = C
1FILSEL bit
2FILSEL bit
“0” (LPF)
“1” (HPF)
1
⎛1 ⎞
1 + 2 cos⎜ π ⎟ tan ⎛⎜ πfc ⎞⎟ + 1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
fs ⎠
⎝
⎝
⎝4 ⎠
A
1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
⎝
⎛1 ⎞
1 + 2 cos⎜ π ⎟ tan⎛⎜ πfc ⎞⎟ + 1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
fs ⎠
⎝
⎝
⎝4 ⎠
1 − 1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
⎝
2×
⎛1 ⎞
1 + 2 cos⎜ π ⎟ tan⎛⎜ πfc ⎞⎟ + 1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
fs ⎠
⎝
⎝
⎝4 ⎠
⎛1 ⎞
1 − 2 cos⎜ π ⎟ tan ⎛⎜ πfc ⎞⎟ + 1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
fs ⎠
⎝
⎝
⎝4 ⎠
⎛1 ⎞
1 + 2 cos⎜ π ⎟ tan⎛⎜ πfc ⎞⎟ + 1 tan 2 ⎛⎜ πfc ⎞⎟
fs ⎠
fs ⎠
⎝
⎝
⎝4 ⎠
B
C
⎛ 1 + 2 z −1 + z −2 ⎞
⎟
H ( z) = ⎜⎜ A
−1
−2 ⎟
⎝ 1 + Bz + Cz ⎠
Transfer
function
2
⎛ 1 − 2 z −1 + z −2 ⎞
⎟
H ( z ) = ⎜⎜ A
−1
−2 ⎟
⎝ 1 + Bz + Cz ⎠
2
The cutoff frequency should be set within the range as follows.
HPF:
LPF:
1.042x10-3≤fc/fs≤0.24
5.208x10-3≤fc/fs≤0.24
fc_min = 50Hz fc_max = 11.5kHz @ fs=48kHz
fc_min = 250Hz fc_max = 11.5kHz @ fs=48kHz
Other fs settings lower than above for LPF are shown in Table 30.
fc/fs
1.921x10-3
2.137x10-3
2.333x10-3
:
:
5.208x10-3
fc(@fs=48kHz)
A(dec)
B(dec)
C(dec)
94.8Hz
5
-259845
128793
103.9Hz
6
-259624
128576
112.0Hz
7
-259426
128382
:
:
:
:
:
:
:
:
250Hz
34
-256079
125144
Table 30. Low Frequency Band Setting of LPF
MS1311-E-04
2013/04
- 44 -
[AK4753]
■ Five Programmable Biquads
This block can be used as an equalizer or notch filter. 5-band equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) is ON/OFF
independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When the equalizer is OFF, the audio data passes this block by
0dB gain. E1A19-0, E1B19-0 and E1C19-0 bits set the coefficient of EQ1. E2A19-0, E2B19-0 and E2C19-0 bits set the
coefficient of EQ2. E3A19-0, E3B19-0 and E3C19-0 bits set the coefficient of EQ3. E4A19-0, E4B19-0 and E4C19-0
bits set the coefficient of EQ4. E5A19-0, E5B19-0 and E5C19-0 bits set the coefficient of EQ5. EQx (x=1~5)
coefficient should be set when EQx bit = “0” or PMDAC bit = “0”. When the SA2 bit = “1”, K1 gain must be set to “1”
for the DSP channel selected by the SA2SEL bit.
fs: Sampling frequency
fo1 ~ fo5: Center frequency
fb1 ~ fb5: Band width where the gain is 3dB different from center frequency
K1 ~ K5 : Gain ( -1 ≤ Kn < 3 )
Register setting (Note 25)
EQ1: E1A19-0 bits =A1, E1B19-0 bits =B1, E1C19-0 bits =C1
EQ2: E2A19-0 bits =A2, E2B19-0 bits =B2, E2C19-0 bits =C2
EQ3: E3A19-0 bits =A3, E3B19-0 bits =B3, E3C19-0 bits =C3
EQ4: E4A19-0 bits =A4, E4B19-0 bits =B4, E4C19-0 bits =C4
EQ5: E5A19-0 bits =A5, E5B19-0 bits =B5, E5C19-0 bits =C5
(MSB=E1A19, E1B19, E1C19, E2A19, E2B19, E2C19, E3A19, E3B19, E3C19, E4A19, E4B19, E4C19, E5A19,
E5B19, E5C19; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0, E4C0, E5A0,
E5B0, E5C0)
2
tan (πfbn/fs)
1 − tan (πfbn/fs)
An = Kn x
, Bn = cos(2π fon/fs) x
, Cn =
1 + tan (πfbn/fs)
1 + tan (πfbn/fs)
1 + tan (πfbn/fs)
(n = 1, 2, 3, 4, 5)
Transfer function
H(z) = 1 + h1(z) + h2(z) + h3(z) + h4(z) + h5(z)
1 − z −2
hn (z) = An
1− Bnz −1− Cnz −2
(n = 1, 2, 3, 4, 5)
The fbn should be set within the range as follows.
fbn/fs ≤ 0.25
The f0n (center frequency) should be set within the range as follows.
3.125x10-3 ≤ f0n/fs < 0.4969
When the f0n/fs is less than 3.125x10-3, the step width of the f0n which can be set up becomes the biggest in the case of
fbn/fs=0.25. (Table 31)
f0n/fs
8.542x10 -4
1.083x10 -3
1.229x10 -3
:
3.125x10 -3
f0n(@fs=48kHz)
An (dec) (Kn=-1)
Bn (dec)
41Hz
-65536
131070
52Hz
-65536
131069
59Hz
-65536
131068
:
:
:
150Hz
-65536
131047
Table 31. The Center Frequency in the low frequency band
(when the coefficients of An, Bn and Cn is fbn/fs=0.25)
Cn (dec)
0
0
0
:
0
Note 25. Translation the filter coefficient calculated by the equations above from real number to binary code (2’s
complement)
X = (Real number of filter coefficient calculated by the equations above) x 217
X should be rounded to integer, and then should be translated to binary code (2’s complement).
MSB of each filter coefficient setting register is sign bit.
MS1311-E-04
2013/04
- 45 -
[AK4753]
■ Limiter Operation
ALMT1 bit controls ON/OFF of the limiter operation of the DSP1 block. ALMT2 bit controls ON/OFF of the limiter
operation of the DSP2 block. DSP1 block and DSP2 block are controlled completely independent by Limiter Mode
Control, Timer Select and Reference Level control bits.
1. Limiter Movement
During a limiter operation, when either Lch or Rch exceeds the limiter detection level (Table 32), the VOL values
(same value for Lch and Rch) are attenuated automatically by the amount defined by the limiter ATT step set by
LMAT1-0 bits (Table 33).
When ZELMN bit = “0” (zero cross detection is enabled), LFSTN bit = “0” (fast limiter is enabled) and the output level
is less than full-scale, the VOL values (Lch and Rch) are changed by a limiter operation at the individual zero crossing
points of Lch and Rch or at the zero crossing timeout. ZTM1-0 bits set the zero crossing timeout period of both limiter
and recovery operation (Table 34). When the output level exceeds full-scale, VOL values are immediately (Period: 1/fs)
changed. When LFSTN bit= “1” (fast limiter is disabled), VOL values are changed at the individual zero crossing point
of each channels or at the zero crossing timeout regardless of the output level.
When ZELMN bit = “1” (zero cross detection is disabled), VOL values are immediately (period: 1/fs) changed by a
limiter operation. Attenuation step is fixed to 1 step regardless of the LMAT1-0 bits setting.
After completing the attenuate operation, unless ALMT1 bit or ALMT2 bit is changed to “0”, the operation repeats
when the input signal level exceeds limiter detection level.
LMTH1 bit LMTH0 bit
0
0
0
1
1
0
1
1
Limier Detection Level
Recovery Waiting Counter Reset Level
Limiter Output ≥ −2.5dBFS
−2.5dBFS > Limiter Output ≥ −4.1dBFS
Limiter Output ≥ −4.1dBFS
−4.1dBFS > Limiter Output ≥ −6.0dBFS
Limiter Output ≥ −6.0dBFS
−6.0dBFS > Limier Output ≥ −8.5dBFS
Limiter Output ≥ −8.5dBFS
−8.5dBFS > Limier Output ≥ −12dBFS
Table 32. Limiter Detection Level / Recovery Counter Reset Level
(default)
Limiter ATT Step (0.375dB/step)
Limiter Output Limiter Output Limiter Output Limiter Output
≥ LMTH
≥ FS
≥ FS + 6dB
≥ FS + 12dB
1
1
1
1
(default)
2
2
2
2
2
4
4
8
1
2
4
8
Table 33. Limiter ATT Step
LMAT1
bit
LMAT0
bit
0
0
1
1
0
1
0
1
ZTM1 bit
ZTM0 bit
0
0
1
1
0
1
0
1
Zero Crossing Timeout Period
8kHz
16kHz
44.1kHz
128/fs
16ms
8ms
2.9ms
256/fs
32ms
16ms
5.8ms
512/fs
64ms
32ms
11.6ms
1024/fs
128ms
64ms
23.2ms
Table 34. Zero Crossing Timeout Period
MS1311-E-04
(default)
2013/04
- 46 -
[AK4753]
2. Limiter Recovery Operation
A limiter recovery operation waits for the WTM2-0 bits (Table 35) to be set after completing a limiter operation. If the
input signal does not exceed “recovery waiting counter reset level” (Table 32) during the wait time, the limiter recovery
operation is completed. The VOL values (Lch and Rch) are automatically incremented by RGAIN1-0 bits (Table 36) up
to the set reference level (Table 37) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 34).
Then the VOL’s are set to the same value for both channels. This limiter recovery operation is executed at a period set
by WTM2-0 bits. When zero cross is detected at both channels during the wait period set by WTM2-0 bits, a limiter
recovery operation waits until WTM2-0 period and the next recovery operation is completed. If ZTM1-0 is longer than
WTM2-0 and no zero crossing occurs, a limiter recovery operation is made at a period set by ZTM1-0 bits.
For example, when the current VOL value is 30H and RGAIN1-0 bits are set to “01” (2 steps), VOL is changed to 32H
by the limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the VOL value
exceeds the reference level (REF7-0 bits), the VOL values are not increased.
When
“Limiter recovery waiting counter reset level (LMTH1-0) ≤ Output Signal < Limiter detection level (LMTH1-0)”
during a limiter recovery operation, the waiting timer of limiter recovery operation is reset.
When
“Limiter recovery waiting counter reset level (LMTH1-0) > Output Signal”,
the waiting timer of limiter recovery operation starts.
The limiter operation corresponds to the impulse noise. When the impulse noise is input, limiter recovery operation is
faster than a normal recovery operation (Fast Recovery Operation). When large noise is input to microphone
instantaneously, quality of small signal level in the large noise can be improved by this fast recovery operation. The
speed of fast recovery operation is set by RFST1-0 bits (Table 38).
WTM2
bit
0
0
0
0
1
1
1
1
WTM1
bit
0
0
1
1
0
0
1
1
WTM0
Recovery Operation Waiting Period
bit
8kHz
16kHz
44.1kHz
0
128/fs
16ms
8ms
2.9ms
1
256/fs
32ms
16ms
5.8ms
0
512/fs
64ms
32ms
11.6ms
1
1024/fs
128ms
64ms
23.2ms
0
2048/fs
256ms
128ms
46.4ms
1
4096/fs
512ms
256ms
92.9ms
0
8192/fs
1024ms
512ms
185.8ms
1
16384/fs
2048ms
1024ms
371.5ms
Table 35. Recovery Operation Waiting Period
RGAIN1 bit
0
0
1
1
RGAIN0 bit
GAIN STEP
0
1 step
0.375dB
1
2 step
0.750dB
0
3 step
1.125dB
1
4 step
1.500dB
Table 36. Recovery GAIN Step
MS1311-E-04
(default)
(default)
2013/04
- 47 -
[AK4753]
REF7-0 bits
GAIN(dB)
Step (dB)
F1H
0
(default)
F0H
-0.375
EFH
-0.75
:
:
A0H
-30.375
9FH
-30.75
9EH
-31.125
:
:
0.375
50H
-60.375
4FH
-60.75
4EH
-61.125
:
:
02H
-89.625
01H
-90.0
00H
MUTE
Table 37. Reference Level at Recovery Operation
RFST1 bit
RFST0 bit
Recovery Speed
0
0
4 times
(default)
0
1
8 times
1
0
16times
1
1
N/A
Table 38. Fast Recovery Speed Setting (N/A: not available)
3. Example of the Limiter Operation Setup
An example of the limiter setting is shown in Table 39.
fs=8kHz
Operation
−4.1dBFS
Enable
32ms
Register Name
Comment
LMTH1-0
ZELMN
ZTM1-0
Limiter detection Level
Limiter zero crossing detection
Zero crossing timeout period
Recovery waiting period
001
32ms
*WTM2-0 bits should be the same or
longer data as ZTM1-0 bits.
Reference level at recovery operation
F1H
0dB
Limiter ATT step
00
1 step
Recovery GAIN step
00
1 step
Fast Recovery Speed
00
4 times
Table 39. Example of the Limiter Operation Setting
WTM2-0
REF7-0
LMAT1-0
RGAIN1-0
RFST1-0
Data
01
0
01
MS1311-E-04
Data
01
0
11
fs=44.1kHz
Operation
−4.1dBFS
Enable
23.2ms
011
23.2ms
F1H
00
00
00
0dB
1 step
1 step
4 times
2013/04
- 48 -
[AK4753]
■ Line Outputs
Line outputs of the AK4753 have internal resisters in series. The resister value is 200Ω (typ). By just connecting small
capacitors between VSS1 and each the LOUT1/2 or ROUT1/2 pin, high frequency noise will be significantly reduced.
AK4753
LOUT1/2
ROUT1/2
200Ω (typ)
1μF
C
150pF
(max)
Figure 57. External Circuit for Stereo Line Outputs (In case of using high frequency noise reduction circuit.)
<Line Outputs Control Sequence>
The AK4753 has a mute control output pin (MUTEN pin) for external speaker amplifier. In order to prevent a pop noise
through the AK4753, the MTUEN pin is connected to a mute pin or a standby pin of the external speaker amplifier.
In the PLL mode, when the PLL is unlocked or the line outputs are disabled, the MUTEN outputs “L”. When the PLL is
locked and the line outputs are enabled, the MUTEN outputs “H”.
PMLO1/2 bit
MUTEN pin
MUTE On
MUTE Off
MUTE On
4ms (typ)
LOUT1/2,
ROUT1/2 pins
Normal Output
Figure 58. Line Outputs Control Sequence
MS1311-E-04
2013/04
- 49 -
[AK4753]
■ SAR 8-bit ADC
The AK4753 incorporates a 8-bit successive approximation resistor A/D converter for DC measurement.
By connecting potentiometers, the gain of DATT can be controlled by SAIN1and the gain of EQ1 can be controlled by
SAIN2.
The A/D converter output for the SAIN1 pin is a straight binary format as shown in Table 40.
Input Voltage
Output Code Attenuation Level
00H
0dB
(AVDD−1.0LSB) ~ AVDD
01H
-0.5dB
(AVDD−2.0LSB) ~ (AVDD−1.0LSB)
:
:
:
1.0LSB ~ 2.0LSB
FEH
-127dB
0 ~ 1.0LSB
FFH
MUTE (−∞)
Table 40. Output Code for the SAIN1 Pin
The A/D converter output for the SAIN2 pin is a straight binary format as shown in Table 41.
Input Voltage
Output Code
00H
(AVDD−1.0LSB) ~ AVDD
~
(AVDD-2.0LSB)
01H
(AVDD−1.0LSB)
:
:
1.0LSB ~ 2.0LSB
FEH
0 ~ 1.0LSB
FFH
Table 41. Output Code for the SAIN2 pin
Output Code
Gain@EQ1
00H ~ 04H
+12.0dB
05H ~ 09H
0AH ~ 0EH
+11.5dB
0FH ~ 13H
+11.0dB
14H ~ 18H
+10.5dB
:
:
7DH ~ 81H
0dB
:
:
E6H ~ EAH
-10.5dB
EBH ~ EFH
-11.0dB
F0H ~ F4H
-11.5dB
F5H ~ F9H
-12.0dB
FAH ~ FFH
Table 42. Gain Setting of EQ1
SA2SEL bit
K1
0
DSP1
1
DSP2
Table 43. Source for the SAIN2 pin
K1@EQ1
2.981
2.758
2.548
2.350
:
0
:
-0.701
-0.718
-0.734
-0.749
(default)
SA2 bit
SAIN2 pin
0
Disable
(default)
1
Enable
Table 44. Configuration for the SAIN2 pin
MS1311-E-04
2013/04
- 50 -
[AK4753]
CTM1 bit
CTM0 bit
0
0
1
1
0
1
0
1
Cycle Time
fs=8kHz fs=44.1kHz
4/fs
0.5ms
0.09ms
(default)
8/fs
1.0ms
0.18ms
16/fs
2.0ms
0.36ms
32/fs
4.0ms
0.73ms
Table 45. Cycle Time Setting
LRCK pin
Internal
Sequence
Sampling (SAIN1)
Conv
(SAIN1)
Sampling (SAIN 2)
Conv
(SAIN2)
7/8fs
1/8fs
7/8fs
1/8fs
Idol
Cycle Time (C TM1-0 bits)
Sampling (SAIN1)
Conv
(SAIN 1)
7/8fs
1/8fs
Cycle Time
Figure 59. SAR Control Sequence (SA2 bit = “1”)
MS1311-E-04
2013/04
- 51 -
[AK4753]
■ EEP-ROM Interface (EXTEE pin = “H”)
The AK4753 has EEP-ROM I/F to read out the coefficient values for the DSP blocks and the setting data from an
external EEP-ROM to the internal register. DSP function is easily realized in the system using EEP-ROM without extra
microprocessor. The external EEP-ROM must be connected to the EESCL and EESDA pin of the AK4753. The
AK4753 can operate as a master device on the I2C bus network. A connection example is shown in Figure 60.
1. EEP-ROM Data Read Operation
Before start downloading, data must be written to the EEP-ROM.
The AK4753 should be powered up when the PDN pin = “L”. After all power supplies are ON and the EXTEE pin=
“H”, the AK4753 starts downloading the data from the EEP-ROM when the PDN pin (Figure 61) is set to “H”. The
internal OSC of the AK4753 is powered-up by this start setting, and the register data are readout from the EEP-ROM.
The AK4753 I2C master device assumes that there is not another I2C master device on the same bus during
downloading data. Therefore, the I2C I/F of the microprocessor should be set to Hi-Z sate or powered-down. This data
download from EEP-ROM takes 6ms (max). In the EEP-ROM data read operation, error detection results of an
EEP-ROM data read can be monitored on the STO pin. The STO pin outputs “L” when no errors are found. When a
read error is detected, the internal logic circuit repeats data read from EEPROM for nine times (max). If errors are
detected for nine times, the read operation is stopped and the STO pin outputs “H”.
AK4753
DVDD
STO
2.2kΩ
2.2kΩ
EESCL
EEPROM
SCL
EEPROM
Interface
SDA
EESDA
EXTEE = “H”
PDN
start at “H”
Figure 60. Connection Example of the AK4753 and EEP-ROM (I2C)
DVDD, AVDD
PDN pin(i)
Internal OSC
EEP-ROM I/F
EEPROM → AK4753
Coefficient value for DSP,
Setting data
Figure 61. EEP-ROM Download Sequence
MS1311-E-04
2013/04
- 52 -
[AK4753]
S
T
A
R
T
EESDA
S
T
A
R
T
R/W="0"
Slave
S Address
"1010000"
Slave
S Address
Sub Address
(00H)
EA
EC
PK
S
T
O
P
R/W="1"
Data(n)
E A "1010000"
E C
P K
Data(n+1)
MA
AC
S
T K
E
R
MA
AC
SK
T
E
R
E A
E C
P K
Data(n+x)
MA
AC
S
T K
E
R
P
MN
A A
S
T C
E K
R
Figure 62. EEP-ROM Sequential Read Sequence
1
0
1
0
0
0
0
R/W
Figure 63. Slave Address Byte for EEP-ROM read operation
0
0
0
0
0
0
0
0
Figure 64. Sub Address Byte for EEP-ROM read operation
D7
D6
D5
D4
D3
D2
D1
D0
Figure 65. Data Byte for EEP-ROM read operation
2. EEP-ROM Memory Map
The AK4753 only supports 1k bytes or larger I2C type EEP-ROM. The EEP-ROM is used for storing the control
registers. The contents of EEP-ROM memory map are same as the register map.
(1) Fundamental function block
Addr
00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
Contents
Signal Path
SAR Control
Mode Setting 1
Mode Setting 2
Power Management
Lch DATT
Rch DATT
Gain Setting
DSP1 Limiter Mode Control
DSP1 Timer Select
DSP1 Reference Level
DSP2 Limiter Mode Control
DSP2 Timer Select
DSP2 Reference Level
MS1311-E-04
2013/04
- 53 -
[AK4753]
(2) DSP1 function block
Addr
0EH
0FH~17H
18H
19H~21H
22H~2AH
2BH~33H
34H~3CH
3DH~45H
Contents
DSP1 HPF/LPF Setting
DSP1 Filter Coefficient
DSP1 EQ Select
DSP1 EQ1 Coefficient
DSP1 EQ2 Coefficient
DSP1 EQ3 Coefficient
DSP1 EQ4 Coefficient
DSP1 EQ5 Coefficient
Addr
46H
47H~4FH
50H
51H~59H
5AH~62H
63H~6BH
6CH~74H
75H~7DH
7FH
Contents
DSP2 HPF/LPF Setting
DSP2 Filter Coefficient
DSP2 EQ Select
DSP2 EQ1 Coefficient
DSP2 EQ2 Coefficient
DSP2 EQ3 Coefficient
DSP2 EQ4 Coefficient
DSP2 EQ5 Coefficient
Reserved
(3) DSP2 function block
MS1311-E-04
2013/04
- 54 -
[AK4753]
■ Serial Control Interface (I2C-bus Control: EXTEE pin = “L”)
The AK4753 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at the SDA and SCL pins must be
connected to (DVDD+0.3)V or less voltage.
1. WRITE Operations
Figure 66 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A
HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 72). After the
START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction
bit (R/W). The most significant seven bits of the slave address are fixed as “0010010” (Figure 67). If the slave address
matches that of the AK4753, the AK4753 generates an acknowledge and the operation is executed. The master must
generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse
(Figure 73). A R/W bit value of “1” indicates that the read operation is to be executed, and “0” indicates that the write
operation is to be executed.
The second byte consists of the control register address of the AK4753. The format is MSB first, and those most
significant 1bit is fixed to zero (Figure 68). The data after the second byte contains control data. The format is MSB
first, 8bits (Figure 69). The AK4753 generates an acknowledge after each byte is received. Data transfer is always
terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is
HIGH defines a STOP condition (Figure 72).
The AK4753 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4753
generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating
the write cycle after the first data byte is transferred. After receiving each data packet the internal address counter is
incremented by one, and the next data is automatically taken into the next address. If the address exceeds 7DH prior to
generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten.
The data on the SDA line must remain stable during the HIGH period of the clock. HIGH or LOW state of the data line
can only be changed when the clock signal on the SCL line is LOW (Figure 74) except for the START and STOP
conditions.
S
T
A
R
T
SDA
S
T
O
P
R/W="0"
Slave
S Address
Sub
Address(n)
Data(n)
A
C
K
Data(n+1)
A
C
K
A
C
K
Data(n+x)
A
C
K
P
A
C
K
A
C
K
Figure 66. Data Transfer Sequence at I2C Bus Mode
0
0
1
0
0
1
0
R/W
A2
A1
A0
D2
D1
D0
Figure 67. The First Byte
0
A6
A5
A4
A3
Figure 68. The Second Byte
D7
D6
D5
D4
D3
Figure 69. The Third Byte
MS1311-E-04
2013/04
- 55 -
[AK4753]
2. READ Operations
Set the R/W bit = “1” for the READ operation of the AK4753. After transmission of data, the master can read the next
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data
word. After receiving each data packet the internal address counter is incremented by one, and the next data is
automatically taken into the next address. If the address exceeds 7DH prior to generating stop condition, the address
counter will “roll over” to 00H and the data of 00H will be read out.
The AK4753 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.
2-1. CURRENT ADDRESS READ
The AK4753 has an internal address counter that maintains the address of the last accessed word incremented by one.
Therefore, if the last access (either a read or write) were to address “n”, the next CURRENT READ operation would
access data from the address “n+1”. After receipt of the slave address with R/W bit “1”, the AK4753 generates an
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal
address counter by 1. If the master does not generate an acknowledge but generates a stop condition instead, the
AK4753 ceases the transmission.
S
T
A
R
T
SDA
S
T
O
P
R/W="1"
Slave
S Address
Data(n)
Data(n+1)
Data(n+2)
MA
AC
SK
T
E
R
A
C
K
MA
AC
SK
T
E
R
Data(n+x)
MA
AC
SK
T
E
R
MA
AC
SK
T
E
R
P
MN
AA
SC
T
EK
R
Figure 70. Current Address Read
2-2. RANDOM ADDRESS READ
The random read operation allows the master to access any memory location at random. Prior to issuing the slave
address with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start
request, a slave address (R/W bit = “0”) and then the register address to read. After the register address is
acknowledged, the master immediately reissues the start request and the slave address with the R/W bit “1”. The
AK4753 then generates an acknowledge, 1 byte of data and increments the internal address counter by 1. If the master
does not generate an acknowledge but generates a stop condition instead, the AK4753 ceases the transmission.
S
T
A
R
T
SDA
S
T
A
R
T
R/W="0"
Slave
S Address
Slave
S Address
Sub
Address(n)
A
C
K
A
C
K
S
T
O
P
R/W="1"
Data(n)
A
C
K
Data(n+1)
MA
AC
S K
T
E
R
Data(n+x)
MA
AC
S
T K
E
R
MA
AC
S
T K
E
R
P
MN
A A
S
T C
E K
R
Figure 71. Random Address Read
MS1311-E-04
2013/04
- 56 -
[AK4753]
SDA
SCL
S
P
start condition
stop condition
Figure 72. Start Condition and Stop Condition
DATA
OUTPUT BY
TRANSMITTER
not acknowledge
DATA
OUTPUT BY
RECEIVER
acknowledge
SCL FROM
MASTER
2
1
8
9
S
clock pulse for
acknowledgement
START
CONDITION
Figure 73. Acknowledge (I2C Bus)
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Figure 74. Bit Transfer (I2C Bus)
MS1311-E-04
2013/04
- 57 -
[AK4753]
■ Register Map
In this section, the fundamental functions (Address: 00H to 0DH), the DSP1 functions (Address: 0EH to 45H), and the
DSP2 functions (Address: 46H to 7DH) are shown in three subsections.
Note 26. PDN pin = “L” resets the registers to their default values.
Note 27. The bits defined as 0 must contain a “0” value.
1. Register Map of Fundamental function
Addr
Register Name
D7
D6
CTM1
CTM0
00H
SAR Control
01H
Signal Path
ALMT1 ALMT2
02H
Mode Setting 1
FS3
FS2
03H
Mode Setting 2
BCKO
M/S
Power
04H
PMPLL
0
Management
05H
Lch DATT
L7
L6
06H
Rch DATT
R7
R6
07H
Gain Setting
1PSTG1 1PSTG0
DSP1 Limiter
1LFSTN
1ZELMN
08H
Mode Control
DSP1
1RFST1
1RFST0
09H
Timer Select
DSP1
1REF7
1REF6
0AH
Reference Level
DSP2 Limiter
2LFSTN
2ZELMN
0BH
Mode Control
DSP2
2RFST1
2RFST0
0CH
Timer Select
DSP2
2REF7
2REF6
0DH
Reference Level
2. Register Map of DSP1 function
Addr
Register Name
D7
HPF/LPF
0EH
0
Setting
DSP1 Filter
0FH
1FA7
A Coefficient 1
DSP1 Filter
10H
1FA15
A Coefficient 2
DSP1 Filter
11H
0
A Coefficient 3
DSP1 Filter
12H
1FB7
B Coefficient 1
DSP1 Filter
13H
1FB15
B Coefficient 2
DSP1 Filter
14H
0
B Coefficient 3
DSP1 Filter
15H
1FC7
C Coefficient 1
DSP1 Filter
16H
1FC15
C Coefficient 2
DSP1 Filter
17H
0
C Coefficient 3
D5
D4
D3
D2
D1
SA2SEL
SA2
0
SPC1
FS1
BCKP
SPC0
FS0
MSBS
PMSAR
0
0
0
PMLO2
D0
0
PLL3
0
SEL1
PLL2
DIF2
PLL1
DIF1
SEL0
PLL0
DIF0
PMLO1
PMDIG
PWXTL
0
PMADC
L5
R5
1PREG1
L4
R4
1PREG0
L3
R3
2PSTG1
L2
R2
2PSTG0
L1
R1
2PREG1
L0
R0
2PREG0
1RGAIN1
1RGAIN0
1LMAT1
1LMAT0
1LMTH1
1LMTH0
1WTM2
1WTM1
1WTM0
1ZTM1
1ZTM0
DVTM
1REF5
1REF4
1REF3
1REF2
1REF1
1REF0
2RGAIN1
2RGAIN0
2LMAT1
2LMAT0
2LMTH1
2LMTH0
2WTM2
2WTM1
2WTM0
2ZTM1
2ZTM0
0
2REF5
2REF4
2REF3
2REF2
2REF1
2REF0
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
1FILSEL
1FILEN
1FA6
1FA5
1FA4
1FA3
1FA2
1FA1
1FA0
1FA14
1FA13
1FA12
1FA11
1FA10
1FA9
1FA8
0
0
0
1FA19
1FA18
1FA17
1FA16
1FB6
1FB5
1FB4
1FB3
1FB2
1FB1
1FB0
1FB14
1FB13
1FB12
1FB11
1FB10
1FB9
1FB8
0
0
0
1FB19
1FB18
1FB17
1FB16
1FC6
1FC5
1FC4
1FC3
1FC2
1FC1
1FC0
1FC14
1FC13
1FC12
1FC11
1FC10
1FC9
1FC8
0
0
0
1FC19
1FC18
1FC17
1FC16
MS1311-E-04
2013/04
- 58 -
[AK4753]
Addr
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
Register Name
DSP1 EQ Select
DSP1 EQ1
A Coefficient 1
DSP1 EQ1
A Coefficient 2
DSP1 EQ1
A Coefficient 3
DSP1 EQ1
B Coefficient 1
DSP1 EQ1
B Coefficient 2
DSP1 EQ1
B Coefficient 3
DSP1 EQ1
C Coefficient 1
DSP1 EQ1
C Coefficient 2
DSP1 EQ1
C Coefficient 3
DSP1 EQ2
A Coefficient 1
DSP1 EQ2
A Coefficient 2
DSP1 EQ2
A Coefficient 3
DSP1 EQ2
B Coefficient 1
DSP1 EQ2
B Coefficient 2
DSP1 EQ2
B Coefficient 3
DSP1 EQ2
C Coefficient 1
DSP1 EQ2
C Coefficient 2
DSP1 EQ2
C Coefficient 3
DSP1 EQ3
A Coefficient 1
DSP1 EQ3
A Coefficient 2
DSP1 EQ3
A Coefficient 3
DSP1 EQ3
B Coefficient 1
DSP1 EQ3
B Coefficient 2
DSP1 EQ3
B Coefficient 3
DSP1 EQ3
C Coefficient 1
DSP1 EQ3
C Coefficient 2
DSP1 EQ3
C Coefficient 3
D7
0
D6
0
D5
0
D4
1EQ5
D3
1EQ4
D2
1EQ3
D1
1EQ2
D0
1EQ1
1E1A7
1E1A6
1E1A5
1E1A4
1E1A3
1E1A2
1E1A1
1E1A0
1E1A15
1E1A14
1E1A13
1E1A12
1E1A11
1E1A10
1E1A9
1E1A8
0
0
0
0
1E1A19
1E1A18
1E1A17
1E1A16
1E1B7
1E1B6
1E1B5
1E1B4
1E1B3
1E1B2
1E1B1
1E1B0
1E1B15
1E1B14
1E1B13
1E1B12
1E1B11
1E1B10
1E1B9
1E1B8
0
0
0
0
1E1B19
1E1B18
1E1B17
1E1B16
1E1C7
1E1C6
1E1C5
1E1C4
1E1C3
1E1C2
1E1C1
1E1C0
1E1C15
1E1C14
1E1C13
1E1C12
1E1C11
1E1C10
1E1C9
1E1C8
0
0
0
0
1E1C19
1E1C18
1E1C17
1E1C16
1E2A7
1E2A6
1E2A5
1E2A4
1E2A3
1E2A2
1E2A1
1E2A0
1E2A15
1E2A14
1E2A13
1E2A12
1E2A11
1E2A10
1E2A9
1E2A8
0
0
0
0
1E2A19
1E2A18
1E2A17
1E2A16
1E2B7
1E2B6
1E2B5
1E2B4
1E2B3
1E2B2
1E2B1
1E2B0
1E2B15
1E2B14
1E2B13
1E2B12
1E2B11
1E2B10
1E2B9
1E2B8
0
0
0
0
1E2B19
1E2B18
1E2B17
1E2B16
1E2C7
1E2C6
1E2C5
1E2C4
1E2C3
1E2C2
1E2C1
1E2C0
1E2C15
1E2C14
1E2C13
1E2C12
1E2C11
1E2C10
1E2C9
1E2C8
0
0
0
0
1E2C19
1E2C18
1E2C17
1E2C16
1E3A7
1E3A6
1E3A5
1E3A4
1E3A3
1E3A2
1E3A1
1E3A0
1E3A15
1E3A14
1E3A13
1E3A12
1E3A11
1E3A10
1E3A9
1E3A8
0
0
0
0
1E3A19
1E3A18
1E3A17
1E3A16
1E3B7
1E3B6
1E3B5
1E3B4
1E3B3
1E3B2
1E3B1
1E3B0
1E3B15
1E3B14
1E3B13
1E3B12
1E3B11
1E3B10
1E3B9
1E3B8
0
0
0
0
1E3B19
1E3B18
1E3B17
1E3B16
1E3C7
1E3C6
1E3C5
1E3C4
1E3C3
1E3C2
1E3C1
1E3C0
1E3C15
1E3C14
1E3C13
1E3C12
1E3C11
1E3C10
1E3C9
1E3C8
0
0
0
0
1E3C19
1E3C18
1E3C17
1E3C16
MS1311-E-04
2013/04
- 59 -
[AK4753]
Addr
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
Register Name
DSP1 EQ4
A Coefficient 1
DSP1 EQ4
A Coefficient 2
DSP1 EQ4
A Coefficient 3
DSP1 EQ4
B Coefficient 1
DSP1 EQ4
B Coefficient 2
DSP1 EQ4
B Coefficient 3
DSP1 EQ4
C Coefficient 1
DSP1 EQ4
C Coefficient 2
DSP1 EQ4
C Coefficient 3
DSP1 EQ5
A Coefficient 1
DSP1 EQ5
A Coefficient 2
DSP1 EQ5
A Coefficient 3
DSP1 EQ5
B Coefficient 1
DSP1 EQ5
B Coefficient 2
DSP1 EQ5
B Coefficient 3
DSP1 EQ5
C Coefficient 1
DSP1 EQ5
C Coefficient 2
DSP1 EQ5
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
1E4A7
1E4A6
1E4A5
1E4A4
1E4A3
1E4A2
1E4A1
1E4A0
1E4A15
1E4A14
1E4A13
1E4A12
1E4A11
1E4A10
1E4A9
1E4A8
0
0
0
0
1E4A19
1E4A18
1E4A17
1E4A16
1E4B7
1E4B6
1E4B5
1E4B4
1E4B3
1E4B2
1E4B1
1E4B0
1E4B15
1E4B14
1E4B13
1E4B12
1E4B11
1E4B10
1E4B9
1E4B8
0
0
0
0
1E4B19
1E4B18
1E4B17
1E4B16
1E4C7
1E4C6
1E4C5
1E4C4
1E4C3
1E4C2
1E4C1
1E4C0
1E4C15
1E4C14
1E4C13
1E4C12
1E4C11
1E4C10
1E4C9
1E4C8
0
0
0
0
1E4C19
1E4C18
1E4C17
1E4C16
1E5A7
1E5A6
1E5A5
1E5A4
1E5A3
1E5A2
1E5A1
1E5A0
1E5A15
1E5A14
1E5A13
1E5A12
1E5A11
1E5A10
1E5A9
1E5A8
0
0
0
0
1E5A19
1E5A18
1E5A17
1E5A16
1E5B7
1E5B6
1E5B5
1E5B4
1E5B3
1E5B2
1E5B1
1E5B0
1E5B15
1E5B14
1E5B13
1E5B12
1E5B11
1E5B10
1E5B9
1E5B8
0
0
0
0
1E5B19
1E5B18
1E5B17
1E5B16
1E5C7
1E5C6
1E5C5
1E5C4
1E5C3
1E5C2
1E5C1
1E5C0
1E5C15
1E5C14
1E5C13
1E5C12
1E5C11
1E5C10
1E5C9
1E5C8
0
0
0
0
1E5C19
1E5C18
1E5C17
1E5C16
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
2FILSEL
2FILEN
2FA6
2FA5
2FA4
2FA3
2FA2
2FA1
2FA0
2FA14
2FA13
2FA12
2FA11
2FA10
2FA9
2FA8
0
0
0
2FA19
2FA18
2FA17
2FA16
2FB6
2FB5
2FB4
2FB3
2FB2
2FB1
2FB0
2FB14
2FB13
2FB12
2FB11
2FB10
2FB9
2FB8
0
0
0
2FB19
2FB18
2FB17
2FB16
2FC6
2FC5
2FC4
2FC3
2FC2
2FC1
2FC0
3. Register Map of DSP2 function
Addr
Register Name
D7
HPF/LPF
46H
0
Setting
DSP2 Filter
47H
2FA7
A Coefficient 1
DSP2 Filter
48H
2FA15
A Coefficient 2
DSP2 Filter
49H
0
A Coefficient 3
DSP2 Filter
4AH
2FB7
B Coefficient 1
DSP2 Filter
4BH
2FB15
B Coefficient 2
DSP2 Filter
4CH
0
B Coefficient 3
DSP2 Filter
4DH
2FC7
C Coefficient 1
MS1311-E-04
2013/04
- 60 -
[AK4753]
Addr
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
Register Name
DSP2 Filter
C Coefficient 2
DSP2 Filter
C Coefficient 3
DSP2 EQ
Select
DSP2 EQ1
A Coefficient 1
DSP2 EQ1
A Coefficient 2
DSP2 EQ1
A Coefficient 3
DSP2 EQ1
B Coefficient 1
DSP2 EQ1
B Coefficient 2
DSP2 EQ1
B Coefficient 3
DSP2 EQ1
C Coefficient 1
DSP2 EQ1
C Coefficient 2
DSP2 EQ1
C Coefficient 3
DSP2 EQ2
A Coefficient 1
DSP2 EQ2
A Coefficient 2
DSP2 EQ2
A Coefficient 3
DSP2 EQ2
B Coefficient 1
DSP2 EQ2
B Coefficient 2
DSP2 EQ2
B Coefficient 3
DSP2 EQ2
C Coefficient 1
DSP2 EQ2
C Coefficient 2
DSP2 EQ2
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
2FC15
2FC14
2FC13
2FC12
2FC11
2FC10
2FC9
2FC8
0
0
0
0
2FC19
2FC18
2FC17
2FC16
0
0
0
2EQ5
2EQ4
2EQ3
2EQ2
2EQ1
2E1A7
2E1A6
2E1A5
2E1A4
2E1A3
2E1A2
2E1A1
2E1A0
2E1A15
2E1A14
2E1A13
2E1A12
2E1A11
2E1A10
2E1A9
2E1A8
0
0
0
0
2E1A19
2E1A18
2E1A17
2E1A16
2E1B7
2E1B6
2E1B5
2E1B4
2E1B3
2E1B2
2E1B1
2E1B0
2E1B15
2E1B14
2E1B13
2E1B12
2E1B11
2E1B10
2E1B9
2E1B8
0
0
0
0
2E1B19
2E1B18
2E1B17
2E1B16
2E1C7
2E1C6
2E1C5
2E1C4
2E1C3
2E1C2
2E1C1
2E1C0
2E1C15
2E1C14
2E1C13
2E1C12
2E1C11
2E1C10
2E1C9
2E1C8
0
0
0
0
2E1C19
2E1C18
2E1C17
2E1C16
2E2A7
2E2A6
2E2A5
2E2A4
2E2A3
2E2A2
2E2A1
2E2A0
2E2A15
2E2A14
2E2A13
2E2A12
2E2A11
2E2A10
2E2A9
2E2A8
0
0
0
0
2E2A19
2E2A18
2E2A17
2E2A16
2E2B7
2E2B6
2E2B5
2E2B4
2E2B3
2E2B2
2E2B1
2E2B0
2E2B15
2E2B14
2E2B13
2E2B12
2E2B11
2E2B10
2E2B9
2E2B8
0
0
0
0
2E2B19
2E2B18
2E2B17
2E2B16
2E2C7
2E2C6
2E2C5
2E2C4
2E2C3
2E2C2
2E2C1
2E2C0
2E2C15
2E2C14
2E2C13
2E2C12
2E2C11
2E2C10
2E2C9
2E2C8
0
0
0
0
2E2C19
2E2C18
2E2C17
2E2C16
MS1311-E-04
2013/04
- 61 -
[AK4753]
Addr
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
Register Name
DSP2 EQ3
A Coefficient 1
DSP2 EQ3
A Coefficient 2
DSP2 EQ3
A Coefficient 3
DSP2 EQ3
B Coefficient 1
DSP2 EQ3
B Coefficient 2
DSP2 EQ3
B Coefficient 3
DSP2 EQ3
C Coefficient 1
DSP2 EQ3
C Coefficient 2
DSP2 EQ3
C Coefficient 3
DSP2 EQ4
A Coefficient 1
DSP2 EQ4
A Coefficient 2
DSP2 EQ4
A Coefficient 3
DSP2 EQ4
B Coefficient 1
DSP2 EQ4
B Coefficient 2
DSP2 EQ4
B Coefficient 3
DSP2 EQ4
C Coefficient 1
DSP2 EQ4
C Coefficient 2
DSP2 EQ4
C Coefficient 3
DSP2 EQ5
A Coefficient 1
DSP2 EQ5
A Coefficient 2
DSP2 EQ5
A Coefficient 3
DSP2 EQ5
B Coefficient 1
DSP2 EQ5
B Coefficient 2
DSP2 EQ5
B Coefficient 3
DSP2 EQ5
C Coefficient 1
DSP2 EQ5
C Coefficient 2
DSP2 EQ5
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
2E3A7
2E3A6
2E3A5
2E3A4
2E3A3
2E3A2
2E3A1
2E3A0
2E3A15
2E3A14
2E3A13
2E3A12
2E3A11
2E3A10
2E3A9
2E3A8
0
0
0
0
2E3A19
2E3A18
2E3A17
2E3A16
2E3B7
2E3B6
2E3B5
2E3B4
2E3B3
2E3B2
2E3B1
2E3B0
2E3B15
2E3B14
2E3B13
2E3B12
2E3B11
2E3B10
2E3B9
2E3B8
0
0
0
0
2E3B19
2E3B18
2E3B17
2E3B16
2E3C7
2E3C6
2E3C5
2E3C4
2E3C3
2E3C2
2E3C1
2E3C0
2E3C15
2E3C14
2E3C13
2E3C12
2E3C11
2E3C10
2E3C9
2E3C8
0
0
0
0
2E3C19
2E3C18
2E3C17
2E3C16
2E4A7
2E4A6
2E4A5
2E4A4
2E4A3
2E4A2
2E4A1
2E4A0
2E4A15
2E4A14
2E4A13
2E4A12
2E4A11
2E4A10
2E4A9
2E4A8
0
0
0
0
2E4A19
2E4A18
2E4A17
2E4A16
2E4B7
2E4B6
2E4B5
2E4B4
2E4B3
2E4B2
2E4B1
2E4B0
2E4B15
2E4B14
2E4B13
2E4B12
2E4B11
2E4B10
2E4B9
2E4B8
0
0
0
0
2E4B19
2E4B18
2E4B17
2E4B16
2E4C7
2E4C6
2E4C5
2E4C4
2E4C3
2E4C2
2E4C1
2E4C0
2E4C15
2E4C14
2E4C13
2E4C12
2E4C11
2E4C10
2E4C9
2E4C8
0
0
0
0
2E4C19
2E4C18
2E4C17
2E4C16
2E5A7
2E5A6
2E5A5
2E5A4
2E5A3
2E5A2
2E5A1
2E5A0
2E5A15
2E5A14
2E5A13
2E5A12
2E5A11
2E5A10
2E5A9
2E5A8
0
0
0
0
2E5A19
2E5A18
2E5A17
2E5A16
2E5B7
2E5B6
2E5B5
2E5B4
2E5B3
2E5B2
2E5B1
2E5B0
2E5B15
2E5B14
2E5B13
2E5B12
2E5B11
2E5B10
2E5B9
2E5B8
0
0
0
0
2E5B19
2E5B18
2E5B17
2E5B16
2E5C7
2E5C6
2E5C5
2E5C4
2E5C3
2E5C2
2E5C1
2E5C0
2E5C15
2E5C14
2E5C13
2E5C12
2E5C11
2E5C10
2E5C9
2E5C8
0
0
0
0
2E5C19
2E5C18
2E5C17
2E5C16
MS1311-E-04
2013/04
- 62 -
[AK4753]
■ Register Definitions of Fundamental Function
Addr
00H
Register Name
SAR Control
R/W
Default
D7
CTM1
R/W
0
D6
CTM0
R/W
0
D5
SA2SEL
R/W
0
D4
SA2
R/W
0
D3
PMSAR
R/W
0
D2
0
RD
0
D1
0
RD
0
D0
0
RD
0
D2
SEL1
R/W
0
D1
0
RD
0
D0
SEL0
R/W
0
D1
PLL1
R/W
0
D0
PLL0
R/W
0
PMSAR: SAR ADC Power Management
0: Power-down (default)
1: Power-up
SA2: SAIN2 Enable
0: SAIN2 Disable (default)
1: SAIN2 Enable
SA2SEL: SAIN2 Output Configuration setting (Table 43)
0: Setting for DSP1 (default)
1: Setting for DSP2
CTM1-0: Cycle Time setting (Table 45)
Default: “00”
Addr
01H
Register Name
Signal Path
R/W
Default
D7
ALMT1
R/W
0
D6
ALMT2
R/W
0
D5
SPC1
R/W
0
D4
SPC0
R/W
0
D3
0
RD
0
SEL1-0: DSP Input setting (Table 19)
00: Analog-in (default)
01: Digital-in
10: Mix
SPC1-0: Line Output Configuration setting (Table 21, Table 22, Table 23, Table 24)
Those bits select the output mode to 2-channels mode, 2.1-channels mode, and 4-channels mode.
Default: “00”
ALMT2: DSP2 Limiter Enable
0: Limiter Disable (default)
1: Limiter Enable
ALMT1: DSP1 Limiter Enable
0: Limiter Disable (default)
1: Limiter Enable
Addr
02H
Register Name
Mode Setting 1
R/W
Default
D7
FS3
R/W
0
D6
FS2
R/W
0
D5
FS1
R/W
0
D4
FS0
R/W
0
D3
PLL3
R/W
0
D2
PLL2
R/W
0
PLL3-0: PLL Reference Clock Select (Table 4)
Default: “0000” (LRCK pin)
FS3-0: Sampling Frequency Select (Table 5, Table 7) and MCKI Frequency Select (Table 10, Table 12)
FS3-0 bits select sampling frequency at PLL mode and MCKI frequency at EXT mode.
MS1311-E-04
2013/04
- 63 -
[AK4753]
Addr
03H
Register Name
Mode Setting 2
R/W
Default
D7
BCKO
R/W
1
D6
M/S
R/W
0
D5
BCKP
R/W
0
D4
MSBS
R/W
0
D3
0
RD
0
D2
DIF2
R/W
0
D1
DIF1
R/W
1
D0
DIF0
R/W
1
DIF2-0: Audio Interface Format (Table 15)
Default: “011” (I2S)
MSBS: LRCK Polarity at DSP Mode (Table 16, Table 17, Table 18)
0: The rising edge (“↑”) of LRCK is half clock of BICK before the channel change. (default)
1: The rising edge (“↑”) of LRCK is one clock of BICK before the channel change.
BCKP: BICK Polarity at DSP Mode (Table 16, Table 17, Table 18)
0: SDTI is latched by the falling edge (“↓”) of BICK. (default)
1: SDTI is latched by the rising edge (“↑”) of BICK.
M/S: Master / Slave Mode Setting
0: Slave Mode (default)
1: Master Mode
BCKO: BICK Output Frequency Select at Master Mode (Table 9)
Addr
04H
Register Name
Power
Management
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
PMPLL
0
PMLO2
PMLO1
PMDIG
PWXTL
0
PMADC
R/W
0
RD
0
R/W
0
R/W
0
R/W
0
R/W
0
RD
0
R/W
0
PMADC: ADC Power Management
0: Power-down (default)
1: Power-up
PWXTL: The power management of the crystal oscillation circuit
0: Power OFF (default)
1: Power ON
PMDIG: DSP & DAC Digital Power Management
0: Power-down (default)
1: Power-up
PMLO1: Line Out1 Power Management and External Mute Control
0: Power-down (default)
1: Power-up
PMLO2: Line Out2 Power Management and External Mute Control
0: Power-down (default)
1: Power-up
PMPLL: PLL Power Management
0: EXT Mode and Power-Down (default)
1: PLL Mode and Power-up
MS1311-E-04
2013/04
- 64 -
[AK4753]
Addr
05H
06H
Register Name
Lch DATT
Rch DATT
R/W
Default
D7
L7
R7
R/W
1
D6
L6
R6
R/W
1
D5
L5
R5
R/W
1
D4
L4
R4
R/W
1
D3
L3
R3
R/W
1
D2
L2
R2
R/W
1
D1
L1
R1
R/W
1
D0
L0
R0
R/W
1
D5
1PREG1
R/W
0
D4
1PREG0
R/W
0
D3
2PSTG1
R/W
0
D2
2PSTG0
R/W
0
D1
2PREG1
R/W
0
D0
2PREG0
R/W
0
L7-0, R7-0: Digital Attenuation Control (Table 25)
Default: “FFH” (MUTE)
Addr
07H
Register Name
Gain Setting
R/W
Default
D7
1PSTG1
R/W
0
D6
1PSTG0
R/W
0
2PREG1-0: DSp2 Pre-Gain setting (Table 27)
Default: “00”
2PSTG1-0: DSP2 Post-Gain setting (Table 28)
Default: “00”
1PREG1-0: DSP1 Pre-Gain setting (Table 27)
Default: “00”
1PSTG1-0: DSP1 Post-Gain setting (Table 28)
Default: “00”
Addr
08H
Register Name
DSP1 Limiter
Mode Control
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
1LFSTN
1ZELMN
1RGAIN1
1RGAIN0
1LMAT1
1LMAT0
1LMTH1
1LMTH0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
1LMTH1-0: DSP1 Limiter Detection Level / Recovery Counter Reset Level (Table 32)
Default: “00”
1LMAT1-0: DSP1 Limiter ATT Step (Table 33)
Default: “00”
1RGAIN1-0: DSP1 Recovery GAIN Step (Table 36)
Default: “00”
1ZELMN: DSP1 Zero Crossing Detection Enable at Limiter Operation
0: Enable (default)
1: Disable
1LFSTN: DSP1 Limiter functions when the output was bigger than full scale
0: When output is bigger than full scale, VOL value is changed instantly. (default)
1: The output is changed by the Limiter operation at the zero crossing point or at the zero crossing timeout.
MS1311-E-04
2013/04
- 65 -
[AK4753]
Addr
09H
Register Name
DSP1 Timer
Select
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
1RFST1
1RFST0
1WTM2
1WTM1
1WTM0
1ZTM1
1ZTM0
DVTM
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
1RFST1-0: DSP1 First recovery Speed (Table 38)
Default: “00” (4times)
1WTM2-0: DSP1 Recovery Waiting Period (Table 35)
Default: “000” (128/fs)
1ZTM1-0: DSP1 Limiter/Recovery Operation Zero Crossing Timeout Period (Table 34)
Default: “00” (128/fs)
DVTM: Digital Volume Transition Time Setting
0: 1061/fs (default)
1: 256/fs
This is the transition time between L/R7-0 bits = 00H and FFH.
Addr
0AH
Register Name
DSP1 Reference
Level
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
1REF7
1REF6
1REF5
1REF4
1REF3
1REF2
1REF1
1REF0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
R/W
0
R/W
0
R/W
1
1REF7-0: DSP1 Reference Level at Recovery Operation (Table 37)
Default: “F1H” (0dB)
Addr
0BH
Register Name
DSP2 Limiter
Mode Control
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
2LFSTN
2ZELMN
2RGAIN1
2RGAIN0
2LMAT1
2LMAT0
2LMTH1
2LMTH0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
2LMTH1-0: DSP2 Limiter Detection Level / Recovery Counter Reset Level (Table 32)
Default: “00”
2LMAT1-0: DSP2 Limiter ATT Step (Table 33)
Default: “00”
2RGAIN1-0: DSP2 Recovery GAIN Step (Table 36)
Default: “00”
2ZELMN: DSP2 Zero Crossing Detection Enable at Limiter Operation
0: Enable (default)
1: Disable
2LFSTN: DSP2 Limiter functions when the output was bigger than full scale
0: When output is bigger than full scale, VOL value is changed instantly. (default)
1: The output is changed by the Limiter operation at the zero crossing point or at the zero crossing timeout.
MS1311-E-04
2013/04
- 66 -
[AK4753]
Addr
0CH
Register Name
DSP2 Timer
Select
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
2RFST1
2RFST0
2WTM2
2WTM1
2WTM0
2ZTM1
2ZTM0
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
RD
0
2RFST1-0: DSP2 First recovery Speed (Table 38)
Default: “00” (4times)
2WTM2-0: DSP2 Recovery Waiting Period (Table 35)
Default: “000” (128/fs)
2ZTM1-0: DSP2 Limiter/Recovery Operation Zero Crossing Timeout Period (Table 34)
Default: “00” (128/fs)
Addr
0DH
Register Name
DSP2 Reference
Level
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
2REF7
2REF6
2REF5
2REF4
2REF3
2REF2
2REF1
2REF0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
R/W
0
R/W
0
R/W
1
2REF7-0: DSP2 Reference Level at Recovery Operation (Table 37)
Default: “F1H” (0dB)
MS1311-E-04
2013/04
- 67 -
[AK4753]
■ Register Definitions of DSP1 Function
Each setting of the function is shown below. To distinguish DSP1 and DSP2, “1” is added to the head of each bit name
for DSP1, and “2” is added for DSP2.
Addr
0EH
Register Name
HPF/LPF
Setting
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
1FILSEL
1FILEN
RD
0
RD
0
RD
0
RD
0
RD
0
RD
0
R/W
0
R/W
0
1FILEN: High Pass and Low Pass Filter Enable bit
0: HPF and LPF Disable (default)
1: HPF and LPF Enable
1FILSEL: HPF or LPF Select bit
0: LPF becomes effective (default)
1: HPF becomes effective
Addr
0FH
10H
11H
12H
13H
14H
15H
16H
17H
Register Name
DSP1 Filter
A Coefficient 1
DSP1 Filter
A Coefficient 2
DSP1 Filter
A Coefficient 3
DSP1 Filter
B Coefficient 1
DSP1 Filter
B Coefficient 2
DSP1 Filter
B Coefficient 3
DSP1 Filter
C Coefficient 1
DSP1 Filter
C Coefficient 2
DSP1 Filter
C Coefficient 3
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
1FA7
1FA6
1FA5
1FA4
1FA3
1FA2
1FA1
1FA0
1FA15
1FA14
1FA13
1FA12
1FA11
1FA10
1FA9
1FA8
0
0
0
0
1FA19
1FA18
1FA17
1FA16
1FB7
1FB6
1FB5
1FB4
1FB3
1FB2
1FB1
1FB0
1FB15
1FB14
1FB13
1FB12
1FB11
1FB10
1FB9
1FB8
0
0
0
0
1FB19
1FB18
1FB17
1FB16
1FC7
1FC6
1FC5
1FC4
1FC3
1FC2
1FC1
1FC0
1FC15
1FC14
1FC13
1FC12
1FC11
1FC10
1FC9
1FC8
0
0
0
0
1FC19
1FC18
1FC17
1FC16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
1FA19-0, 1FB19-0, 1FC19-0: HPF and LPF Coefficient Setting bit
Default: “00000H”
MS1311-E-04
2013/04
- 68 -
[AK4753]
Addr
18H
Register Name
DSP1 EQ
Select
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
1EQ5
1EQ4
1EQ3
1EQ2
1EQ1
RD
0
RD
0
RD
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
1EQ1: Equalizer 1 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 1EQ1 bit is “1”, settings of 1E1A19-0, 1E1B19-0 and 1E1C19-0 bits are enabled. When 1EQ1 bit is “0”, the
audio data passes this block by 0dB gain.
1EQ2: Equalizer 2 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 1EQ2 bit is “1”, settings of 1E2A19-0, 1E2B19-0 and 1E2C19-0 bits are enabled. When 1EQ2 bit is “0”, the
audio data passes this block by 0dB gain.
1EQ3: Equalizer 3 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 1EQ3 bit is “1”, settings of 1E3A19-0, 1E3B19-0 and 1E3C19-0 bits are enabled. When 1EQ3 bit is “0”, the
audio data passes this block by 0dB gain.
1EQ4: Equalizer 4 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 1EQ4 bit is “1”, settings of 1E4A19-0, 1E4B19-0 and 1E4C19-0 bits are enabled. When 1EQ4 bit is “0”, the
audio data passes this block by 0dB gain.
1EQ5: Equalizer 5 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 1EQ5 bit is “1”, settings of 1E5A19-0, 1E5B19-0 and 1E5C19-0 bits are enabled. When 1EQ5 bit is “0”, the
audio data passes this block by 0dB gain.
Addr
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H
21H
Register Name
DSP1 EQ1
A Coefficient 1
DSP1 EQ1
A Coefficient 2
DSP1 EQ1
A Coefficient 3
DSP1 EQ1
B Coefficient 1
DSP1 EQ1
B Coefficient 2
DSP1 EQ1
B Coefficient 3
DSP1 EQ1
C Coefficient 1
DSP1 EQ1
C Coefficient 2
DSP1 EQ1
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
1E1A7
1E1A6
1E1A5
1E1A4
1E1A3
1E1A2
1E1A1
1E1A0
1E1A15
1E1A14
1E1A13
1E1A12
1E1A11
1E1A10
1E1A9
1E1A8
0
0
0
0
1E1A19
1E1A18
1E1A17
1E1A16
1E1B7
1E1B6
1E1B5
1E1B4
1E1B3
1E1B2
1E1B1
1E1B0
1E1B15
1E1B14
1E1B13
1E1B12
1E1B11
1E1B10
1E1B9
1E1B8
0
0
0
0
1E1B19
1E1B18
1E1B17
1E1B16
1E1C7
1E1C6
1E1C5
1E1C4
1E1C3
1E1C2
1E1C1
1E1C0
1E1C15
1E1C14
1E1C13
1E1C12
1E1C11
1E1C10
1E1C9
1E1C8
0
0
0
0
1E1C19
1E1C18
1E1C17
1E1C16
MS1311-E-04
2013/04
- 69 -
[AK4753]
Addr
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
Register Name
DSP1 EQ2
A Coefficient 1
DSP1 EQ2
A Coefficient 2
DSP1 EQ2
A Coefficient 3
DSP1 EQ2
B Coefficient 1
DSP1 EQ2
B Coefficient 2
DSP1 EQ2
B Coefficient 3
DSP1 EQ2
C Coefficient 1
DSP1 EQ2
C Coefficient 2
DSP1 EQ2
C Coefficient 3
DSP1 EQ3
A Coefficient 1
DSP1 EQ3
A Coefficient 2
DSP1 EQ3
A Coefficient 3
DSP1 EQ3
B Coefficient 1
DSP1 EQ3
B Coefficient 2
DSP1 EQ3
B Coefficient 3
DSP1 EQ3
C Coefficient 1
DSP1 EQ3
C Coefficient 2
DSP1 EQ3
C Coefficient 3
DSP1 EQ4
A Coefficient 1
DSP1 EQ4
A Coefficient 2
DSP1 EQ4
A Coefficient 3
DSP1 EQ4
B Coefficient 1
DSP1 EQ4
B Coefficient 2
DSP1 EQ4
B Coefficient 3
DSP1 EQ4
C Coefficient 1
DSP1 EQ4
C Coefficient 2
DSP1 EQ4
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
1E2A7
1E2A6
1E2A5
1E2A4
1E2A3
1E2A2
1E2A1
1E2A0
1E2A15
1E2A14
1E2A13
1E2A12
1E2A11
1E2A10
1E2A9
1E2A8
0
0
0
0
1E2A19
1E2A18
1E2A17
1E2A16
1E2B7
1E2B6
1E2B5
1E2B4
1E2B3
1E2B2
1E2B1
1E2B0
1E2B15
1E2B14
1E2B13
1E2B12
1E2B11
1E2B10
1E2B9
1E2B8
0
0
0
0
1E2B19
1E2B18
1E2B17
1E2B16
1E2C7
1E2C6
1E2C5
1E2C4
1E2C3
1E2C2
1E2C1
1E2C0
1E2C15
1E2C14
1E2C13
1E2C12
1E2C11
1E2C10
1E2C9
1E2C8
0
0
0
0
1E2C19
1E2C18
1E2C17
1E2C16
1E3A7
1E3A6
1E3A5
1E3A4
1E3A3
1E3A2
1E3A1
1E3A0
1E3A15
1E3A14
1E3A13
1E3A12
1E3A11
1E3A10
1E3A9
1E3A8
0
0
0
0
1E3A19
1E3A18
1E3A17
1E3A16
1E3B7
1E3B6
1E3B5
1E3B4
1E3B3
1E3B2
1E3B1
1E3B0
1E3B15
1E3B14
1E3B13
1E3B12
1E3B11
1E3B10
1E3B9
1E3B8
0
0
0
0
1E3B19
1E3B18
1E3B17
1E3B16
1E3C7
1E3C6
1E3C5
1E3C4
1E3C3
1E3C2
1E3C1
1E3C0
1E3C15
1E3C14
1E3C13
1E3C12
1E3C11
1E3C10
1E3C9
1E3C8
0
0
0
0
1E3C19
1E3C18
1E3C17
1E3C16
1E4A7
1E4A6
1E4A5
1E4A4
1E4A3
1E4A2
1E4A1
1E4A0
1E4A15
1E4A14
1E4A13
1E4A12
1E4A11
1E4A10
1E4A9
1E4A8
0
0
0
0
1E4A19
1E4A18
1E4A17
1E4A16
1E4B7
1E4B6
1E4B5
1E4B4
1E4B3
1E4B2
1E4B1
1E4B0
1E4B15
1E4B14
1E4B13
1E4B12
1E4B11
1E4B10
1E4B9
1E4B8
0
0
0
0
1E4B19
1E4B18
1E4B17
1E4B16
1E4C7
1E4C6
1E4C5
1E4C4
1E4C3
1E4C2
1E4C1
1E4C0
1E4C15
1E4C14
1E4C13
1E4C12
1E4C11
1E4C10
1E4C9
1E4C8
0
0
0
0
1E4C19
1E4C18
1E4C17
1E4C16
MS1311-E-04
2013/04
- 70 -
[AK4753]
Addr
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
Register Name
DSP1 EQ5
A Coefficient 1
DSP1 EQ5
A Coefficient 2
DSP1 EQ5
A Coefficient 3
DSP1 EQ5
B Coefficient 1
DSP1 EQ5
B Coefficient 2
DSP1 EQ5
B Coefficient 3
DSP1 EQ5
C Coefficient 1
DSP1 EQ5
C Coefficient 2
DSP1 EQ5
C Coefficient 3
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
1E5A7
1E5A6
1E5A5
1E5A4
1E5A3
1E5A2
1E5A1
1E5A0
1E5A15
1E5A14
1E5A13
1E5A12
1E5A11
1E5A10
1E5A9
1E5A8
0
0
0
0
1E5A19
1E5A18
1E5A17
1E5A16
1E5B7
1E5B6
1E5B5
1E5B4
1E5B3
1E5B2
1E5B1
1E5B0
1E5B15
1E5B14
1E5B13
1E5B12
1E5B11
1E5B10
1E5B9
1E5B8
0
0
0
0
1E5B19
1E5B18
1E5B17
1E5B16
1E5C7
1E5C6
1E5C5
1E5C4
1E5C3
1E5C2
1E5C1
1E5C0
1E5C15
1E5C14
1E5C13
1E5C12
1E5C11
1E5C10
1E5C9
1E5C8
0
0
0
0
1E5C19
1E5C18
1E5C17
1E5C16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
1E1A19-0, 1E1B19-0, 1E1C19-0: Equalizer 1 Coefficient (20-bit x3)
Default: “00000H”
1E2A19-0, 1E2B19-0, 1E2C19-0: Equalizer 2 Coefficient (20-bit x3)
Default: “00000H”
1E3A19-0, 1E3B19-0, 1E3C19-0: Equalizer 3 Coefficient (20-bit x3)
Default: “00000H”
1E4A19-0, 1E4B19-0, 1E4C19-0: Equalizer 4 Coefficient (20-bit x3)
Default: “00000H”
1E5A19-0, 1E5B19-0, 1E5C19-0: Equalizer 5 Coefficient (20-bit x3)
Default: “00000H”
MS1311-E-04
2013/04
- 71 -
[AK4753]
■ Register Definitions of DSP2 Function
Each setting of the function is shown below. To distinguish DSP1 and DSP2, “1” is added to the head of each bit name
for DSP1, and “2” is added for DSP2.
Addr
46H
Register Name
HPF/LPF
Setting
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
2FILSEL
2FILEN
RD
0
RD
0
RD
0
RD
0
RD
0
RD
0
R/W
0
R/W
0
2FILEN: High Pass and Low Pass Filter Enable bit
0: HPF and LPF Disable (default)
1: HPF and LPF Enable
2FILSEL: HPF or LPF Select bit
0: LPF becomes effective (default)
1: HPF becomes effective
Addr
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
Register Name
DSP2 Filter
A Coefficient 1
DSP2 Filter
A Coefficient 2
DSP2 Filter
A Coefficient 3
DSP2 Filter
B Coefficient 1
DSP2 Filter
B Coefficient 2
DSP2 Filter
B Coefficient 3
DSP2 Filter
C Coefficient 1
DSP2 Filter
C Coefficient 2
DSP2 Filter
C Coefficient 3
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
2FA7
2FA6
2FA5
2FA4
2FA3
2FA2
2FA1
2FA0
2FA15
2FA14
2FA13
2FA12
2FA11
2FA10
2FA9
2FA8
0
0
0
0
2FA19
2FA18
2FA17
2FA16
2FB7
2FB6
2FB5
2FB4
2FB3
2FB2
2FB1
2FB0
2FB15
2FB14
2FB13
2FB12
2FB11
2FB10
2FB9
2FB8
0
0
0
0
2FB19
2FB18
2FB17
2FB16
2FC7
2FC6
2FC5
2FC4
2FC3
2FC2
2FC1
2FC0
2FC15
2FC14
2FC13
2FC12
2FC11
2FC10
2FC9
2FC8
0
0
0
0
2FC19
2FC18
2FC17
2FC16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
2FA19-0, 2FB19-0, 2FC19-0: HPF and LPF Coefficient Setting bit
Default: “00000H”
MS1311-E-04
2013/04
- 72 -
[AK4753]
Addr
50H
Register Name
DSP2 EQ
Select
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
2EQ5
2EQ4
2EQ3
2EQ2
2EQ1
RD
0
RD
0
RD
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
2EQ1: Equalizer 1 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 2EQ1 bit is “1”, settings of 2E1A19-0, 2E1B19-0 and 2E1C19-0 bits are enabled. When 2EQ1 bit is “0”, the
audio data passes this block by 0dB gain.
2EQ2: Equalizer 2 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 2EQ2 bit is “1”, settings of 2E2A19-0, 2E2B19-0 and 2E2C19-0 bits are enabled. When 2EQ2 bit is “0”, the
audio data passes this block by 0dB gain.
2EQ3: Equalizer 3 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 2EQ3 bit is “1”, settings of 2E3A19-0, 2E3B19-0 and 2E3C19-0 bits are enabled. When 2EQ3 bit is “0”, the
audio data passes this block by 0dB gain.
2EQ4: Equalizer 4 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 2EQ4 bit is “1”, settings of 2E4A19-0, 2E4B19-0 and 2E4C19-0 bits are enabled. When 2EQ4 bit is “0”, the
audio data passes this block by 0dB gain.
2EQ5: Equalizer 5 Coefficient Setting Enable
0: Disable (default)
1: Enable
When 2EQ5 bit is “1”, settings of 2E5A19-0, 2E5B19-0 and 2E5C19-0 bits are enabled. When 2EQ5 bit is “0”, the
audio data passes this block by 0dB gain.
Addr
51H
52H
53H
54H
55H
56H
57H
58H
59H
Register Name
DSP2 EQ1
A Coefficient 1
DSP2 EQ1
A Coefficient 2
DSP2 EQ1
A Coefficient 3
DSP2 EQ1
B Coefficient 1
DSP2 EQ1
B Coefficient 2
DSP2 EQ1
B Coefficient 3
DSP2 EQ1
C Coefficient 1
DSP2 EQ1
C Coefficient 2
DSP2 EQ1
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
2E1A7
2E1A6
2E1A5
2E1A4
2E1A3
2E1A2
2E1A1
2E1A0
2E1A15
2E1A14
2E1A13
2E1A12
2E1A11
2E1A10
2E1A9
2E1A8
0
0
0
0
2E1A19
2E1A18
2E1A17
2E1A16
2E1B7
2E1B6
2E1B5
2E1B4
2E1B3
2E1B2
2E1B1
2E1B0
2E1B15
2E1B14
2E1B13
2E1B12
2E1B11
2E1B10
2E1B9
2E1B8
0
0
0
0
2E1B19
2E1B18
2E1B17
2E1B16
2E1C7
2E1C6
2E1C5
2E1C4
2E1C3
2E1C2
2E1C1
2E1C0
2E1C15
2E1C14
2E1C13
2E1C12
2E1C11
2E1C10
2E1C9
2E1C8
0
0
0
0
2E1C19
2E1C18
2E1C17
2E1C16
MS1311-E-04
2013/04
- 73 -
[AK4753]
Addr
5AH
5BH
5CH
5DH
5EH
5FH
60H
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
Register Name
DSP2 EQ2
A Coefficient 1
DSP2 EQ2
A Coefficient 2
DSP2 EQ2
A Coefficient 3
DSP2 EQ2
B Coefficient 1
DSP2 EQ2
B Coefficient 2
DSP2 EQ2
B Coefficient 3
DSP2 EQ2
C Coefficient 1
DSP2 EQ2
C Coefficient 2
DSP2 EQ2
C Coefficient 3
DSP2 EQ3
A Coefficient 1
DSP2 EQ3
A Coefficient 2
DSP2 EQ3
A Coefficient 3
DSP2 EQ3
B Coefficient 1
DSP2 EQ3
B Coefficient 2
DSP2 EQ3
B Coefficient 3
DSP2 EQ3
C Coefficient 1
DSP2 EQ3
C Coefficient 2
DSP2 EQ3
C Coefficient 3
DSP2 EQ4
A Coefficient 1
DSP2 EQ4
A Coefficient 2
DSP2 EQ4
A Coefficient 3
DSP2 EQ4
B Coefficient 1
DSP2 EQ4
B Coefficient 2
DSP2 EQ4
B Coefficient 3
DSP2 EQ4
C Coefficient 1
DSP2 EQ4
C Coefficient 2
DSP2 EQ4
C Coefficient 3
D7
D6
D5
D4
D3
D2
D1
D0
2E2A7
2E2A6
2E2A5
2E2A4
2E2A3
2E2A2
2E2A1
2E2A0
2E2A15
2E2A14
2E2A13
2E2A12
2E2A11
2E2A10
2E2A9
2E2A8
0
0
0
0
2E2A19
2E2A18
2E2A17
2E2A16
2E2B7
2E2B6
2E2B5
2E2B4
2E2B3
2E2B2
2E2B1
2E2B0
2E2B15
2E2B14
2E2B13
2E2B12
2E2B11
2E2B10
2E2B9
2E2B8
0
0
0
0
2E2B19
2E2B18
2E2B17
2E2B16
2E2C7
2E2C6
2E2C5
2E2C4
2E2C3
2E2C2
2E2C1
2E2C0
2E2C15
2E2C14
2E2C13
2E2C12
2E2C11
2E2C10
2E2C9
2E2C8
0
0
0
0
2E2C19
2E2C18
2E2C17
2E2C16
2E3A7
2E3A6
2E3A5
2E3A4
2E3A3
2E3A2
2E3A1
2E3A0
2E3A15
2E3A14
2E3A13
2E3A12
2E3A11
2E3A10
2E3A9
2E3A8
0
0
0
0
2E3A19
2E3A18
2E3A17
2E3A16
2E3B7
2E3B6
2E3B5
2E3B4
2E3B3
2E3B2
2E3B1
2E3B0
2E3B15
2E3B14
2E3B13
2E3B12
2E3B11
2E3B10
2E3B9
2E3B8
0
0
0
0
2E3B19
2E3B18
2E3B17
2E3B16
2E3C7
2E3C6
2E3C5
2E3C4
2E3C3
2E3C2
2E3C1
2E3C0
2E3C15
2E3C14
2E3C13
2E3C12
2E3C11
2E3C10
2E3C9
2E3C8
0
0
0
0
2E3C19
2E3C18
2E3C17
2E3C16
2E4A7
2E4A6
2E4A5
2E4A4
2E4A3
2E4A2
2E4A1
2E4A0
2E4A15
2E4A14
2E4A13
2E4A12
2E4A11
2E4A10
2E4A9
2E4A8
0
0
0
0
2E4A19
2E4A18
2E4A17
2E4A16
2E4B7
2E4B6
2E4B5
2E4B4
2E4B3
2E4B2
2E4B1
2E4B0
2E4B15
2E4B14
2E4B13
2E4B12
2E4B11
2E4B10
2E4B9
2E4B8
0
0
0
0
2E4B19
2E4B18
2E4B17
2E4B16
2E4C7
2E4C6
2E4C5
2E4C4
2E4C3
2E4C2
2E4C1
2E4C0
2E4C15
2E4C14
2E4C13
2E4C12
2E4C11
2E4C10
2E4C9
2E4C8
0
0
0
0
2E4C19
2E4C18
2E4C17
2E4C16
MS1311-E-04
2013/04
- 74 -
[AK4753]
Addr
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
Register Name
DSP2 EQ5
A Coefficient 1
DSP2 EQ5
A Coefficient 2
DSP2 EQ5
A Coefficient 3
DSP2 EQ5
B Coefficient 1
DSP2 EQ5
B Coefficient 2
DSP2 EQ5
B Coefficient 3
DSP2 EQ5
C Coefficient 1
DSP2 EQ5
C Coefficient 2
DSP2 EQ5
C Coefficient 3
R/W
Default
D7
D6
D5
D4
D3
D2
D1
D0
2E5A7
2E5A6
2E5A5
2E5A4
2E5A3
2E5A2
2E5A1
2E5A0
2E5A15
2E5A14
2E5A13
2E5A12
2E5A11
2E5A10
2E5A9
2E5A8
0
0
0
0
2E5A19
2E5A18
2E5A17
2E5A16
2E5B7
2E5B6
2E5B5
2E5B4
2E5B3
2E5B2
2E5B1
2E5B0
2E5B15
2E5B14
2E5B13
2E5B12
2E5B11
2E5B10
2E5B9
2E5B8
0
0
0
0
2E5B19
2E5B18
2E5B17
2E5B16
2E5C7
2E5C6
2E5C5
2E5C4
2E5C3
2E5C2
2E5C1
2E5C0
2E5C15
2E5C14
2E5C13
2E5C12
2E5C11
2E5C10
2E5C9
2E5C8
0
0
0
0
2E5C19
2E5C18
2E5C17
2E5C16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
2E1A19-0, 2E1B19-0, 2E1C19-0: Equalizer 1 Coefficient (20-bit x3)
Default: “00000H”
2E2A19-0, 2E2B19-0, 2E2C19-0: Equalizer 2 Coefficient (20-bit x3)
Default: “00000H”
2E3A19-0, 2E3B19-0, 2E3C19-0: Equalizer 3 Coefficient (20-bit x3)
Default: “00000H”
2E4A19-0, 2E4B19-0, 2E4C19-0: Equalizer 4 Coefficient (20-bit x3)
Default: “00000H”
2E5A19-0, 2E5B19-0, 2E5C19-0: Equalizer 5 Coefficient (20-bit x3)
Default: “00000H”
MS1311-E-04
2013/04
- 75 -
[AK4753]
SYSTEM DESIGN
Figure 75 and Figure 76 shows the system connection diagram. An evaluation board (AKD4753) is available for fast
evaluation as well as suggestions for peripheral circuitry.
Digital In
μP
Digital Ground
18
17
EESCL
20
MUTEN
19
21
STO
SCL
22
SDTI
SDA
23
30
LRCK
VSS2
24
29
14
FLT
13
TEST
12
REG
SAIN1
11
31
BYPASS
SAIN2
10
32
NC
AINR
9
AK4753
AVDD
VSS1
AINL
7
8
LOUT1
6
ROUT1
Top View
5
“L”: Normal Operation
“H”: DSP Bypass mode
DVDD
15
PDN
4
2.2u
28
16
EXTEE
ROUT2
0.1u
10u
27
XTI
EESDA
LOUT2
10u
C
XTO
3
10
NC
26
2
Power Supply
3.0 ∼ 3.6V
25
VCOM
C
1
X’tal
BICK
Analog Ground
Rp Cp
AVDD
Potentiometer
(Bass Gain Control)
AVDD
Potentiometer
(Vol Control)
2.2u
Analog In
0.1u
“L”: Mute
“H”: Normal Operation
Speaker
External
Speaker-Amp
Notes:
- VSS1 and VSS2 of the AK4753 must be distributed separately from the ground of external controllers.
- All digital input pins must not be left floating.
- When the EXT mode is used (PMPLL bit = “0”), FLT pin can be open.
- When the PLL mode is used (PMPLL bit = “1”), “Cp” and “Rp” must be set according to Table 5.
- “C” value is dependent on the crystal.
- When the AK4753 is used in master mode, LRCK and BICK pins are floating before M/S bit is changed to
“1”. Therefore, around 100kΩ pull-up/down resistor must be connected to LRCK and BICK pins of the
AK4753.
- 0.1μF capacitors at power supply pins should be ceramic capacitors. Other capacitors do not have specific
types.
Figure 75. System Connection Diagram (Serial Control Mode: EXTEE pin = “L”)
MS1311-E-04
2013/04
- 76 -
[AK4753]
Digital In
EEP-ROM
Digital Ground
18
17
EESCL
20
MUTEN
19
21
STO
SCL
22
SDTI
SDA
23
30
LRCK
VSS2
24
29
14
FLT
13
TEST
12
REG
SAIN1
11
31
BYPASS
SAIN2
10
32
NC
AINR
9
AK4753
AVDD
VSS1
AINL
7
8
LOUT1
6
ROUT1
Top View
5
“L”: Normal Operation
“H”: DSP Bypass mode
DVDD
15
PDN
4
2.2u
28
EXTEE
ROUT2
0.1u
10u
27
XTI
LOUT2
10u
C
XTO
16
3
10
26
EESDA
2
Power Supply
3.0 ∼ 3.6V
NC
VCOM
C
25
1
X’tal
BICK
Analog Ground
DVDD
RESET IC
Rp Cp
AVDD
Potentiometer
(Bass Gain Control)
AVDD
Potentiometer
(Vol Control)
2.2u
Analog In
0.1u
“L”: Mute
“H”: Normal Operation
Speaker
External
Speaker-Amp
Notes:
- VSS1 and VSS2 of the AK4753 must be distributed separately from the ground of external controllers.
- All digital input pins must not be left floating.
- When the EXT mode is used (PMPLL bit = “0”), FLT pin can be open.
- When the PLL mode is used (PMPLL bit = “1”), “Cp” and “Rp” must be set according to Table 5.
- “C” value is dependent on the crystal.
- When the AK4753 is used in master mode, LRCK and BICK pins are floating before M/S bit is changed to
“1”. Therefore, around 100kΩ pull-up/down resistor must be connected to LRCK and BICK pins of the
AK4753.
- 0.1μF capacitors at power supply pins should be ceramic capacitors. Other capacitors do not have specific
types.
Figure 76. System Connection Diagram (EEP-ROM Download Mode: EXTEE pin = “H”)
MS1311-E-04
2013/04
- 77 -
[AK4753]
1. Grounding and Power Supply Decoupling
The AK4753 requires careful attention to power supply and grounding arrangements. If AVDD and DVDD are supplied
separately, the power-up sequence is not critical. VSS1 and VSS2 of the AK4753 must be connected to the analog
ground plane. System analog ground and digital ground must be connected together near to where the supplies are
brought onto the printed circuit board. Decoupling capacitors must be as near to the AK4753 as possible, with the small
value ceramic capacitor being the nearest.
2. Internal Regulated Voltage Power Supply
The input voltage to the REG pin is used as power supply (typ. 1.8V) for the internal digital circuit. A 2.2μF±50%
ceramic capacitor connected between the REG and VSS2 pins eliminates the effects of high frequency noise. This
capacitor in particular should be connected as close as possible to the pin. No load current may be drawn from the REG
pin. All digital signals, especially clocks, should be kept away from the REG pin in order to avoid unwanted coupling
into the AK4753.
3. Voltage Reference
VCOM is a signal ground of this chip. A 2.2μF±50% ceramic capacitor connected between this pin and the VSS1 pin
eliminates the effects of high frequency noise. This capacitor in particular should be connected as close as possible to
the pin. No load current may be drawn from the VCOM pin. All digital signals, especially clocks, must be kept away
from the VCOM pin in order to avoid unwanted coupling into the AK4753.
4. Analog Inputs
The line inputs are single-ended. The input signal range scales with nominally at typ. 2.64Vpp (0.8 x AVDD), centered
around the internal signal ground (AVDD/2). Usually the input signal is AC coupled using a capacitor. The cut-off
frequency is fc = 1/ (2πRC). The AK4753 can accept input voltages from VSS1 to AVDD.
5. Analog Outputs
The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFFFH
(@24-bit) and a negative full scale for 800000H (@24-bit). The ideal output is VCOM voltage for 000000H (@24-bit).
The line outputs are single-ended or differential and centered at AVDD/2.
MS1311-E-04
2013/04
- 78 -
[AK4753]
CONTROL SEQUENCE
■ Clock Setup
When any circuits of the AK4753 are powered-up, the clocks must be supplied.
1. PLL Master Mode
Example:
Audio I/F Format: MSB justified
BICK frequency at Master Mode: 64fs
Input Master Clock Select at PLL Mode: 11.2896MHz
Sampling Frequency: 44.1kHz
Power Supply
(1)
PDN pin
Regulator
VCOM
PWXTL bit
PMPLL bit
(Addr:04H, D2,D7)
XTI/MCKI pin
(1) Power Supply & PDN pin = “L” Æ “H”
(2)
Regulator, VCOM Power-up
1ms(max)
(3)
(3) Addr:02H, Data:F4H
Addr:03H, Data:C2H
(4)
Input
M/S bit
(4) Addr:04H, Data:84H
(Addr:01H, D3)
4ms (max)
BICK pin
LRCK pin
(5)
Output
BICK and LRCK output
Figure 77. Clock Set Up Sequence (1)
<Example>
(1) After Power Up, PDN pin “L” Æ “H”
“L” time of 10ms or more is needed to reset the AK4753.
(2) Power Up VCOM and Regulator
Power up time is 1ms (max). To write register is forbidden during this period.
(3) FS3-0, PLL3-0, BCKO, BCKP, MSBS and DIF2-0 bits must be set during this period.
(4) PWXTL and PMPLL bits change from “0” to “1”. Then PLL starts after the crystal oscillator becomes stable
or XTI/MCKI pin is supplied from an external source. PLL lock time is 4ms (max).
(5) The AK4753 starts to output the LRCK and BICK clocks after the PLL became stable. Then normal
operation starts.
MS1311-E-04
2013/04
- 79 -
[AK4753]
2. PLL Slave Mode (LRCK or BICK pin)
Example:
Audio I/F Format : MSB justified
PLL Reference clock: BICK
BICK frequency: 64fs
Sampling Frequency: 44.1kHz
Power Supply
(1)
PDN pin
Regulator
VCOM
PMPLL bit
4fs(1)
of Power Supply & PDN pin = “L” Æ “H”
(2)
1ms(max)
Regulator, VCOM Power-up
(3)
(Addr:04H, D7)
LRCK pin
BICK pin
(4)
Input
(3) Addr:02H, Data:83H
Addr:03H, Data:02H
40ms (max)
(5)
Internal Clock
Output
(4) Addr:04H, Data:80H
Figure 78. Clock Set Up Sequence (2)
<Example>
(1) After Power Up: PDN pin “L” Æ “H”
“L” time of 10ms or more is needed to reset the AK4753.
(2) Power Up VCOM and Regulator
Power up time is 1ms (max). To write register is forbidden during this period.
(3) FS3-2, PLL3-0, BCKP, MSBS and DIF2-0 bits must be set during this period.
(4) PWXTL and PMPLL bits change from “0” to “1”. Then PLL starts after PLL reference clock (LRCK or
BICK pin) is supplied from an external source. PLL lock time is 40ms (max) when LRCK is a PLL reference
clock. PLL lock time is 4ms (max) when BICK is a PLL reference clock.
(5) Normal operation stats after that the PLL is locked.
MS1311-E-04
2013/04
- 80 -
[AK4753]
3. EXT Slave Mode
Example:
Audio I/F Format: MSB justified
Input MCKI frequency: 256fs
Sampling Frequency: 44.1kHz
Power Supply
(1)
PDN pin
(1) Power Supply & PDN pin = “L” Æ “H”
(2)
Regulator
VCOM
MCKI pin
BICK pin
LRCK pin
(3)
1ms(max)
Regulator, VCOM Power-up
(4)
Input
(3) Addr:02H, Data:00H
Addr:03H, Data:02H
MCKI, BICK and LRCK input
Figure 79. Clock Set Up Sequence (3)
<Example>
(1) After Power Up: PDN pin “L” Æ “H”
“L” time of 10ms or more is needed to reset the AK4753.
(2) Power Up VCOM and Regulator
Power up time is 1ms (max). To write register is forbidden during this period.
(3) FS1-0, BCKP, MSBS and DIF2-0 bits must be set during this period.
(4) Normal operation starts after the MCKI, LRCK and BICK are supplied.
4. EXT Master Mode
Example:
Audio I/F Format: MSB justified
Input MC KI frequency: 256fs
BICK frequency: 64fs
Sampling Frequency: 44.1kHz
Power Supply
(1)
PDN pin
Regulator
VCOM
PWXTL bit
(1) Power Supply & PDN pin = “L” Æ “H”
(2)
Regulator, VCOM Power-up
1ms(max)
(3)
(Addr:04H, D2)
(4)
XTI/MCKI pin
Input
M/S bit
(4) Addr:03H, Data:C2H
(Addr:03H, D6)
BICK pin
LRCK pin
(3) Addr:02H, Data:00H
Addr:03H, Data:82H
Output
BICK and LRCK output
Figure 80. Clock Set Up Sequence (4)
<Example>
(1) After Power Up: PDN pin “L” Æ “H”
“L” time of 10ms or more is needed to reset the AK4753.
(2) Power Up VCOM and Regulator
Power up time is 1ms (max). To write register is forbidden during this period.
(3) FS1-0, BCKO, BCKP, MSBS and DIF2-0 bits must be set during this period.
(4) M/S bit should be set to “1” after the crystal oscillator becomes stable or MCKI is supplied from an external
source. Then LRCK and BICK are output.
MS1311-E-04
2013/04
- 81 -
[AK4753]
■ DAC Outputs
FS3-0 bits
(Addr:02H, D7-4)
Example:
0000
PLL Master Mode
Audio I/F Format: MSB justified
Input MCKI frequency:11.2896MHz
Sampling Frequency: 44.1kHz
Input Signal Setting: Analog
DAC Output Configuration: 2.1ch mode
Digital Volume: −30dB
Limiter and EQ: Enable
1111
(1)
Siglnal Path
(Addr:01H)
00H
E0H
(2)
L/R7-0 bits
(Addr:05H&06H, D7-0)
FFH
(1) Addr:02H, Data:F4H
00H
(3)
Gain Setting
(Addr:07H)
(2) Addr:01H, Data:E0H
XX....X
XX....X
(4)
DSP1 Limiter Control
(Addr:08-0AH)
(3) Addr:05H &06H, Data:00H
XX....X
XX....X
(4) Addr:07H, Data:55H
(5)
DSP2 Limiter Control
(Addr:0B-0DH)
XX....X
XX....X
(5) Addr:08H, Data:01H
Addr:09H, Data:1EH
Addr:0AH, Data:30H
(6)
DSP1 Filter Coef
(Addr:0E-17H)
XX....X
XX....X
(7)
DSP1 EQ Coef
(Addr:18-45H)
XX....X
XX....X
(6) Addr:0BH, Data:01H
Addr:0CH, Data:1EH
Addr:0DH, Data:30H
XX....X
(7) Addr:0EH, Data:03H
(8)
DSP2 Filter Coef
(Addr:46-4FH)
XX....X
(9)
DSP2 EQ Coef
(Addr:50-7DH)
(8) Addr:18H, Data:1FH
XX....X
XX....X
(10)
Limiter State
(9) Addr:46H, Data:01H
Limiter Disable
Limiter Enable
Limiter Disable
(10) Addr:50H, Data:1FH
PMLO1/2 bits
PMDIG bit
PMADC bit
(11)
(12)
(11) Addr:04H, Data:BDH
(Addr:04H, D5-4,D3,D0)
4ms (typ)
MUTEN pin
LOUT1/2 pins
MOUT+/- pins
Mute On
Mute Off
Mute On
Normal Output
Playback
(12) Addr:04H, Data:84H
Figure 81. DAC Output Sequence
<Example>
At first, clocks must be supplied according to “Clock Set Up” sequence.
(1) Set up a sampling frequency (FS3-0 bits). When the AK4753 is PLL mode, DAC of (11) must be powered-up
in consideration of PLL lock time after a sampling frequency is changed.
(2) Set up the path of Analog Input Æ DAC Æ 2.1ch Output and the ALMT1/2 bits: SEL1-0 bits = “00” Æ “00”,
SPC1-0 bits = “00” Æ “10”, ALMT1/2 bits = “0” → “1”
(3) Set up the output digital volume (Addr = 05H, 06H)
After DAC is powered-up, the digital volume changes from default value (Mute) to the register setting value
by the soft transition.
(4) Set up the Pre-Gain and Post-Gain: 1PREG1-0 bits = 2PREG1-0 bits = “00” → “01”, 1PSTG1-0 bits =
2PSTG1-0 bits = “00” → “01”
(5) Set up 1LMTH1-0, 1LMAT1-0, 1RGAIN1-0, 1ZELMN, 1LFSTN, 1ZTM1-0, 1WTM2-0 and 1RFSN1-0 bits
(Addr = 08H, 09H) and the REF value (Addr: 0AH) for Limiter of DSP1
Set up 2LMTH1-0, 2LMAT1-0, 2RGAIN1-0, 2ZELMN, 2LFSTN, 2ZTM1-0, 2WTM2-0 and 2RFSN1-0 bits
(Addr = 0BH, 0CH) and the REF value (Addr: 0DH) for Limiter of DSP2
(6) Set up Coefficient of LPF/HPF for DSP1 (Addr: 0EH ~ 17H)
(7) Set up Coefficient of EQ for DSP1 (Addr: 18H ~ 45H)
(8) Set up Coefficient of LPF/HPF for DSP2 (Addr: 46H ~ 4FH)
(9) Set up Coefficient of EQ for DSP2 (Addr: 50H ~ 7DH)
(10) Power Up the ADC, DSP, DAC and Line-Amp: PMADC = PMDIG = PMLO1 = PMLO2 bits = “0” → “1”
When ALMT1 bit or ALMT2 bit = “1”, Limiter operation starts from the gain set by L/R7-0 bits after the
initialization cycle of ADC (1059/fs = 24ms @fs=44.1kHz).
(11) Power Down the ADC, DSP, DAC and Line-Amp: PMADC = PMDIG = PMLO1 = PMLO2 bits = “1” →
“0”
MS1311-E-04
2013/04
- 82 -
[AK4753]
■ Stop of Clock
When the AK4753 is not used, the master clock can be stopped.
1. PLL Master mode
Example:
PWXTL bit
PMPLL bit
(Addr:04H, D2,D7)
External MCKI
Audio I/F Format: MSB justified
BICK frequency at Master Mode: 64fs
Input Master Clock Select at PLL Mode: 11.2896MHz
(1)
(1) Addr:04H, Data:00H
(2)
Input
(2) Stop an external MCKI
Figure 82. Clock Stopping Sequence (1)
<Example>
(1) Power down Cristal Oscillator and PLL: PWXTL, PMPLL bits = “1” → “0”
(2) Stop an external master clock.
2. PLL Slave Mode (LRCK or BICK pin)
(1)
PMPLL bit
Example
Audio I/F Format : MSB justified
PLL Reference clock: BICK
BICK frequency: 64fs
(Addr:04H, D7)
(2)
External BICK
Input
(1) Addr:04H, Data:00H
(2)
External LRCK
Input
(2) Stop the external clocks
Figure 83. Clock Stopping Sequence (2)
<Example>
(1) Power down PLL: PMPLL bit = “1” → “0”
(2) Stop the external BICK and LRCK clocks.
3. EXT Slave Mode
(1)
External MCKI
Input
Example
(1)
External BICK
Input
External LRCK
Input
Audio I/F Format :MSB justified
Input MCKI frequency:256fs
(1)
(1) Stop the external clocks
Figure 84. Clock Stopping Sequence (3)
<Example>
(1) Stop the external MCKI, BICK and LRCK clocks.
MS1311-E-04
2013/04
- 83 -
[AK4753]
4. EXT Master Mode
(1)
Example
PWXTL bit
Audio I/F Format :MSB justified
Input MCKI frequency:256fs
(Addr:04H, D2)
External MCKI
Input
BICK
Output
"H" or "L"
LRCK
Output
"H" or "L"
(1) Addr:04H, Data:00H
or
Stop the external MCKI
Figure 85. Clock Stopping Sequence (4)
<Example>
(1) Power down Cristal oscillator (PWXTL bit = “1” → “0”) or stop MCKI clock. BICK and LRCK are fixed to
“H” or “L”.
■ Power Down
Power supply current can also be shut down (typ. 1μA) by stopping clocks and setting PDN pin = “L”. When the PDN
pin = “L”, the registers are initialized.
MS1311-E-04
2013/04
- 84 -
[AK4753]
PACKAGE
32pin QFN (Unit: mm)
0.75 ± 0.05
2.8 ± 0.1
B
17
24
16
4.0 ± 0.1
2.8 ± 0.1
25
Exposed
Pad
32
9
0.35 ± 0.10
8
A
1
0.05MAX
4.0 ± 0.1
C0.35
0.10 M C A B
0.20 ± 0.05
0.08 C
C
0.4 BSC
* Note: The exposed pad on the underside must be open or connected to the ground.
■ Package & Lead frame material
Package molding compound:
Lead frame material:
Lead frame surface treatment:
Epoxy Resin, Halogen (bromine and chlorine) free
Cu Alloy
Solder (Pb free) plate
MS1311-E-04
2013/04
- 85 -
[AK4753]
MARKING
4753
XXXX
1
XXXX: Date code identifier (4 digits)
MS1311-E-04
2013/04
- 86 -
[AK4753]
REVISION HISTORY
Date (Y/M/D)
11/07/15
12/10/31
Revision
00
01
Reason
First Edition
Specification
Change
Page
Contents
11
Switching Characteristics
External Slave Mode
BICK Input Timing, Period:
312.5ns → 312.5ns or 1/(126fs)s
Note 16 was added.
■ PLL Mode
A detailed description was added:
Note 23 and Note 24 were added.
Table 6 was added.
■ PLL Mode
Description and Note 23: MCKI pin → XTI/MCKI pin
Table 6 was changed.
■ PLL Mode
3. Sampling Frequency setting in PLL Mode
PLL reference clock pin: BICK pin → LRCK or BICK pin
13/02/06
02
Description
Addition
21-23
13/03/21
03
Error
Correction
21-23
13/04/04
04
Error
Correction
23
MS1311-E-04
2013/04
- 87 -
[AK4753]
IMPORTANT NOTICE
0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the
information contained in this document without notice. When you consider any use or application
of AKM product stipulated in this document (“Product”), please make inquiries the sales office of
AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and
application examples of AKM Products. AKM neither makes warranties or representations with
respect to the accuracy or completeness of the information contained in this document nor grants
any license to any intellectual property rights or any other rights of AKM or any third party with
respect to the information in this document. You are fully responsible for use of such information
contained in this document in your product design or applications. AKM ASSUMES NO
LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM
THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require
extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may
cause loss of human life, bodily injury, serious property damage or serious public impact, including
but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry,
medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic
signaling equipment, equipment used to control combustions or explosions, safety devices,
elevators and escalators, devices related to electric power, and equipment used in finance-related
fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product’s quality and reliability, you are
responsible for complying with safety standards and for providing adequate designs and safeguards
for your hardware, software and systems which minimize risk and avoid situations in which a
malfunction or failure of the Product could cause loss of human life, bodily injury or damage to
property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information
contained in this document for any military purposes, including without limitation, for the design,
development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or
missile technology products (mass destruction weapons). When exporting the Products or related
technology or any information contained in this document, you should comply with the applicable
export control laws and regulations and follow the procedures required by such laws and
regulations. The Products and related technology may not be used for or incorporated into any
products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or
foreign laws or regulations.
5. Please contact AKM sales representative for details as to environmental matters such as the RoHS
compatibility of the Product. Please use the Product in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of
noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set
forth in this document shall immediately void any warranty granted by AKM for the Product and
shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior
written consent of AKM.
MS1311-E-04
2013/04
- 88 -