[AK4683] AK4683 Asynchronous Multi-Channel Audio CODEC with DIR/T GENERAL DESCRIPTION The AK4683 is a single chip CODEC that includes two channels of ADC and four channels of DAC. The ADC outputs 24bit data and the DAC accepts up to 24bit input data. The ADC has the Enhanced Dual Bit architecture with wide dynamic range. The DAC introduces the new developed Advanced Multi-Bit architecture, and achieves wider dynamic range and lower outband noise. The AK4683 also has digital audio receiver (DIR) and transmitter (DIT) compatible with 192kHz, 24bits. The DIR can automatically detect a Non-PCM bit stream such as Dolby Digital (AC-3)*. The AK4683 has a dynamic range of 100dB for ADC, 106dB for DAC and is well suited for digital TV and home theater system. * Dolby Digital (AC-3) is a trademark of Dolby Laboratories. FEATURES ADC/DAC part Asynchronous ADC/DAC Operation 6:1 Input Selector with Pre-amp 2ch 24bit ADC - 64x Oversampling - Sampling Rate up to 96kHz - Linear Phase Digital Anti-Alias Filter - Single-Ended Input - S/(N+D): 90dB - Dynamic Range, S/N: 100dB - Digital HPF for Offset Cancellation - Channel Independent Digital Volume (+24/-103dB, 0.5dB/step) - Soft Mute - Overflow Flag 4ch 24bit DAC - 128x Oversampling - Sampling Rate up to 192kHz - 24bit 8 times Digital Filter - Single-Ended Outputs - S/(N+D): 90dB - Dynamic Range, S/N: 106dB - Channel Independent Digital Volume (+12/-115dB, 0.5dB/step) - Soft Mute - De-emphasis Filter (32kHz, 44.1kHz, 48kHz) - Zero Detect Function Stereo Headphone Amp with Volume - 50mW at 16ohm - Click-noise free at Power on/off High Jitter Tolerance MS0427-E-04 2013/10 -1- [AK4683] DIR/DIT Part - AES3, IEC60958, S/PDIF, EIAJ CP1201 Compatible - Low jitter Analog PLL - PLL Lock Range : 32kHz to 192kHz - Clock Source: PLL or X'tal - 4-channel Receiver input - 1-channel Transmission output (Through output or DIT) - Auxiliary digital input - De-emphasis for 32kHz, 44.1kHz, 48kHz and 96kHz - Detection Functions Non-PCM Bit Stream Detection DTS-CD Bit Stream Detection Sampling Frequency Detection (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz, 192kHz) Unlock & Parity Error Detection Validity Flag Detection - Up to 24bit Audio Data Format - 40-bit Channel Status Buffer - Burst Preamble bit Pc and Pd Buffer for Non-PCM bit stream - Q-subcode Buffer for CD bit stream TTL Level Digital I/F External Master Clock Input: - 256fs, 384fs, 512fs (fs=32kHz 48kHz) - 128fs, 192fs, 256fs (fs=64kHz 96kHz) - 128fs (fs=120kHz 192kHz) Master Clock Output: 128fs/256fs/384fs/512fs 2 Audio Serial I/F (PORTA, PORTB) - Master/Slave mode - I/F format 2 PORTA: Left/Right(20/24 bit) justified, I S, TDM 2 PORTB: Left/Right(20/24 bit) justified, I S 2 4-wire Serial and I C Bus P I/F for mode setting Operating Voltage: 4.5 to 5.5V Power Supply for output buffer: 2.7 to 5.5V 64pin LQFP Package (0.5mm pitch) MS0427-E-04 2013/10 -2- [AK4683] ■ Block Diagram MS0427-E-04 2013/10 -3- [AK4683] ■ Ordering Guide -20 +85C 64pin LQFP (0.5mm pitch) Evaluation Board for AK4683 AK4683EQ AKD4683 AVSS1 AVDD1 LIN1 RIN1 LIN2 RIN2 LIN3 RIN3 LIN4 RIN4 LIN5 RIN5 LIN6 RIN6 PVSS R ■ Pin Layout 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 RISEL RX0 2 47 ROPIN I2C 3 46 LOPIN RX1 4 45 LISEL RX2 5 44 AVSS2 RX3 6 43 AVDD2 INT 7 42 VCOM VOUT 8 41 ROUT2 CDTO 9 40 LOUT2 LRCKB 10 39 ROUT2 BICKB 11 38 LOUT2 SDTOB 12 37 MUTET OLRCKA 13 36 HPL ILRCKA 14 35 HPR BICKA 15 34 HVSS 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 HVDD SDTIA3 SDTIA2 SDTIA1 CSN CCLK CDTI PDN MCLK2 TX XTO XTI DVDD DVSS TVDD Top View MCKO SDTOA AK4683EQ SDTIB PVDD ■ Compatibility with AK4588 Functions DAC, ADC Asynchronous operation DAC ch# HP-Amp ADC Input selector AK4588 NOT Available 8ch - MS0427-E-04 AK4683 Available 4ch 2ch 6:1 2013/10 -4- [AK4683] PIN/FUNCTION No. 1 2 Pin Name PVDD RX0 I/O I 3 I2C I 4 5 6 7 RX1 RX2 RX3 INT VOUT I I I O O 8 DZF O OVF O 9 10 11 12 13 14 15 16 17 18 19 20 21 22 CDTO LRCKB BICKB SDTOB OLRCKA ILRCKA BICKA SDTOA MCKO TVDD DVSS DVDD XTI XTO O I/O I/O O I/O I/O I/O O O I O 23 TX O 24 MCLK2 I 25 PDN I 29 30 31 32 33 34 35 36 CDTI SDA CCLK SCL CSN TEST SDTIA1 SDTIA2 SDTIA3 SDTIB HVDD HVSS HPR HPL I I/O I I I I I I I I O O 37 MUTET - 26 27 28 Function PLL Power supply Pin, 4.5V5.5V Receiver Channel 0 Pin (Internal biased pin. Internally biased at PVDD/2) Control Mode Select Pin. “L”: 4-wire Serial, “H”: I2C Bus Receiver Channel 1 Pin Receiver Channel 2 Pin Receiver Channel 3 Pin Interrupt Pin V-bit Output Pin for Receiver Input Zero Input Detect Pin When the input data of DAC follow total 8192 LRCK cycles with “0” input data, this pin goes to “H”. And when RSTN1 bit is “0”, PWDA bit is “0”, this pin goes to “H”. Analog Input Overflow Detect Pin This pin goes to “H” if the analog input of Lch or Rch overflows. Control Data Output Pin in Serial Mode and I2C pin = “L”. Channel Clock B Pin Audio Serial Data Clock B Pin Audio Serial Data Output B Pin Output Channel Clock A Pin Input Channel Clock A Pin Audio Serial Data Clock A Pin Audio Serial Data Output A Pin Master Clock Output Pin Output Buffer Power Supply Pin, 2.7V5.5V Digital Ground Pin, 0V Digital Power Supply Pin, 4.5V5.5V X'tal Input Pin X'tal Output Pin Transmit Channel Output pin When DIT bit = “0”, RX0~3 Through. When DIT bit = “1”, Internal DIT Output. Master Clock Input Pin Power-Down Mode & Reset Pin When “L”, the AK4683 is powered-down, all registers are reset. And then all digital output pins go “L”. The AK4683 must be reset once upon power-up. Control Data Input Pin in Serial Mode and I2C pin = “L”. Control Data Pin in Serial Mode and I2C pin = “H”. Control Data Clock Pin in Serial Mode and I2C pin = “L” Control Data Clock Pin in Serial Mode and I2C pin = “H” Chip Select Pin in Serial Mode and I2C pin = “L”. This pin should be connected to DVSS in Serial Mode and I2C pin = “H”. Audio Serial Data Input A1 Pin Audio Serial Data Input A2 Pin Audio Serial Data Input A3 Pin Audio Serial Data Input B Pin HP Power Supply Pin, 4.5V5.5V HP Ground Pin, 0V HP Rch Output Pin HP Lch Output Pin HP Common Voltage Output Pin 1F capacitor should be connected to HVSS externally. MS0427-E-04 2013/10 -5- [AK4683] No. 38 39 40 41 Pin Name LOUT2 ROUT2 LOUT1 ROUT1 I/O O O O O 42 VCOM - 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 AVDD2 AVSS2 LISEL LOPIN ROPIN RISEL AVSS1 AVDD1 LIN1 RIN1 LIN2 RIN2 LIN3 RIN3 LIN4 RIN4 LIN5 RIN5 LIN6 RIN6 PVSS O O O O I I I I I I I I I I I I - 64 R - Function DAC2 Lch Positive Analog Output Pin DAC2 Rch Positive Analog Output Pin DAC1 Lch Positive Analog Output Pin DAC1 Rch Positive Analog Output Pin DAC/ADC Common Voltage Output Pin 2.2F capacitor should be connected to AVSS2 externally. DAC Power Supply Pin, 4.5V5.5V DAC Ground Pin, 0V Lch Feedback Resistor Output Pin Lch Feedback Resistor Input Pin. 0.5 x AVDD1. Rch Feedback Resistor Input Pin. 0.5 x AVDD1. Rch Feedback Resistor Output Pin ADC Ground Pin, 0V ADC Power Supply Pin, 4.5V5.5V Lch Input 1 Pin Rch Input 1 Pin Lch Input 2 Pin Rch Input 2 Pin Lch Input 3 Pin Rch Input 3 Pin Lch Input 4 Pin Rch Input 4 Pin Lch Input 5 Pin Rch Input 5 Pin Lch Input 6 Pin Rch Input 6 Pin PLL Ground pin External Resistor Pin 12k +/-1% resistor should be connected to PVSS externally. Note: All input pins except internal biased pin (RX0) and analog input pins (LIN1-6, RIN1-6) should not be left floating. ■ Handling of Unused Pin The unused I/O pins should be processed appropriately as below. Classification Analog Digital Pin Name RX0, LOUT1-2, ROUT1-2, LIN1-6, RIN1-6 INT, XTO, MCKO, VOUT/DZF/OVF, SDTOA-B, CDTO, TX RX1-3, CSN, CCLK, CDTI, XTI, MCLK2, OLRCKA, ILRCKA, BICKA, SDTIA1-3, LRCKB, BICKB, SDTIB MS0427-E-04 Setting These pins should be open. These pins should be open. These pins should be connected to DVSS. 2013/10 -6- [AK4683] ABSOLUTE MAXIMUM RATINGS (AVSS1, AVSS2, DVSS, PVSS, HVSS=0V; Note 1) Parameter Power Supplies ADC Analog DAC Analog Headphone Analog Digital PLL Output buffer |AVSS2-AVSS1| (Note 2) |AVSS2-DVSS| (Note 2) |AVSS2-PVSS| (Note 2) |AVSS2-HVSS| (Note 2) Symbol AVDD1 AVDD2 HVDD DVDD PVDD TVDD GND1 GND2 GND3 GND4 IIN min -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 - Input Current (any pins except for supplies) Analog Input Voltage (LIN, RIN pins) VINA -0.3 Digital Input Voltage Except for ILRCKA, OLRCKA, LRCKB, VIND1 -0.3 BICKA-B, RX0, I2C pins ILRCKA, OLRCKA, LRCKB, BICKA-B pins VIND2 -0.3 RX0, I2Cpins VIND3 -0.3 Ambient Temperature (power applied) Ta -20 Storage Temperature Tstg -65 Note 1. All voltages with respect to ground. Note 2. AVSS, DVSS and PVSS must be connected to the same analog ground plane. max 6.0 6.0 6.0 6.0 6.0 6.0 0.3 0.3 0.3 0.3 Units V V V V V V V V V V 10 mA AVDD1+0.3 V DVDD+0.3 V TVDD+0.3 PVDD+0.3 85 150 V V C C WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not guaranteed at these extremes. RECOMMENDED OPERATING CONDITIONS (AVSS, DVSS, PVSS=0V; Note 3) Parameter Power Supplies ADC Analog (Note 4) DAC Analog Headphone Analog Digital PLL Output buffer |DVDD - AVDD1| |DVDD - AVDD2| |DVDD - HVDD| |DVDD - PVDD| |AVDD1 – AVDD2| Symbol AVDD1 AVDD2 HVDD DVDD PVDD TVDD VDD1 VDD2 VDD3 VDD4 VDD5 min 4.5 4.5 AVDD2 4.5 4.5 2.7 -0.3 -0.3 -0.3 -0.3 -0.1 typ 5.0 5.0 5.0 5.0 5.0 5.0 0 0 0 0 0 max 5.5 5.5 5.5 5.5 5.5 DVDD +0.3 +0.3 +0.3 +0.3 +0.1 Units V V V V V V V V V V V Note 3. All voltages with respect to ground. Note 4. The power up sequences among AVDD1, AVDD2, DVDD, PVDD, HVDD and TVDD are not critical. WARNING: AKM assumes no responsibility for the usage beyond the conditions in this datasheet. MS0427-E-04 2013/10 -7- [AK4683] ANALOG CHARACTERISTICS (Ta=25C; AVDD1, AVDD2, HVDD, DVDD, PVDD, TVDD=5V; AVSS1, AVSS2, HVSS, DVSS, PVSS=0V; fs=48kHz; BICK=64fs; Signal Frequency=1kHz; 24bit Data; Measurement Frequency=20Hz20kHz at fs=48kHz, 20Hz~40kHz at fs=96kHz; 20Hz~40kHz at fs=192kHz, all blocks are synchronized, unless otherwise specified) Parameter min typ max Units Pre-Amp Characteristics: Feedback Resistance 10 50 k S/(N+D) (Note 5) 100 dB S/N (A-weighted) (Note 5) 108 dB Load Capacitance 20 pF ADC Analog Input Characteristics (Note 6) Resolution 24 Bits S/(N+D) (-0.5dBFS) fs=48kHz 84 92 dB fs=96kHz 86 dB DR (-60dBFS) fs=48kHz, A-weighted 92 100 dB fs=96kHz 96 dB fs=96kHz, A-weighted 100 dB S/N (Note 7) fs=48kHz, A-weighted 92 100 dB fs=96kHz 96 dB fs=96kHz, A-weighted 100 dB Interchannel Isolation (Note 8) 90 105 dB Interchannel Gain Mismatch 0.2 0.5 dB Gain Drift 50 ppm/C Input Voltage (Note 6) AIN=1.22xAVDD1 5.7 6.1 6.5 Vpp Power Supply Rejection (Note 9) 50 dB DAC Analog Output Characteristics Resolution 24 Bits S/(N+D) fs=48kHz 80 90 dB fs=96kHz 88 dB fs=192kHz 88 dB DR (-60dBFS) fs=48kHz, A-weighted 95 106 dB fs=96kHz 100 dB fs=96kHz, A-weighted 106 dB fs=192kHz 100 dB fs=192kHz, A-weighted 106 dB S/N (Note 10) fs=48kHz, A-weighted 95 106 dB fs=96kHz 100 dB fs=96kHz, A-weighted 106 dB fs=192kHz 100 dB fs=192kHz, A-weighted 106 dB Interchannel Isolation 90 110 dB Interchannel Gain Mismatch 0.2 0.5 dB Gain Drift 50 ppm/C Output Voltage AOUT=0.6xAVDD2 2.75 3.0 3.25 Vpp Load Resistance (AC Load) 5 k Load Capacitance 30 pF Power Supply Rejection (Note 9) 50 dB MS0427-E-04 2013/10 -8- [AK4683] Analog Volume Characteristics (OPGA): +0dB -16dB 0.1 1 dB -16dB -38dB 0.1 2 dB -38dB -50dB 4 dB Headphone-Amp Characteristics: DAC HPL/HPR pins, RL=16 Output Voltage (0.506xHVDD) 1.94 2.43 2.92 Vpp 70 dBFS S/(N+D) (3dBFS) S/N (A-weighted) 90 dB Interchannel Isolation 80 dB Interchannel Gain Mismatch 0.1 0.5 dB Load Resistance 16 C1 in Figure 1 30 pF Load Capacitance C2 in Figure 1 300 pF Power Supplies Power Supply Current Normal Operation (PDN pin = “H”) (Note 11) AVDD1+ AVDD2 fs=48kHz, fs=96kHz 37 52 mA fs=192kHz 19 27 mA HVDD 7 10 mA PVDD 8 11 mA DVDD+TVDD fs=48kHz (Note 12) 35 49 mA fs=96kHz 45 63 mA fs=192kHz 55 77 mA Power-down mode (PDN pin = “L”) (Note 13) 80 200 A Note 5. Measured at LISEL/RISEL pins when the input resistor=47kohm, the feedback resistor=24kohm and input level =2Vrms. Note 6. Measured through Pre-Amp -> ADC. Input resistor=47kohm, feedback resistor=24kohm. Note 7. S/N measured by CCIR-ARM is 96dB(@fs=48kHz). Note 8. This value is the interchannel isolation between all the channels of the LIN1-6 and RIN1-6. Note 9. PSR is applied to AVDD, DVDD, PVDD and TVDD with 1kHz, 50mVpp. Note 10. S/N measured by CCIR-ARM is 102dB(@fs=48kHz). Note 11. CL=20pF, X'tal=24.576MHz, CM1-0=“10”, CM1-0=“10”, OCKS1-0="10"@48kHz,"00"@96kHz, "11"@192kHz. Headphone = No output. The resister network is attached to TX pin. Note 12. TVDD=6mA(typ@fs=48kHz), 7mA(typ@fs=96kHz), 10mA(typ@fs=192kHz). Note 13. In the power-down mode. RX0 input is open and all digital input pins including clock pins (MCLK2, BICKA, BICKB, ILRCKA, OLRCKA, BICKB pins) and RX1-3 pins are held DVSS Step Size: Figure 1. Headphone Amplifier output circuit MS0427-E-04 2013/10 -9- [AK4683] FILTER CHARACTERISTICS (Ta=25C; AVDD1, AVDD2, DVDD, PVDD, HVDD=4.55.5V; TVDD=2.75.5V; fs=48kHz) Parameter Symbol min typ max Units ADC Digital Filter (Decimation LPF): Passband (Note 14) PB 0 18.9 kHz 0.1dB 20.0 kHz -0.2dB 23.0 kHz -3.0dB Stopband SB 28.0 kHz Passband Ripple PR dB 0.04 Stopband Attenuation SA 68 dB Group Delay (Note 15) GD 19 1/fs Group Delay Distortion 0 µs GD ADC Digital Filter (HPF): Frequency Response (Note 14) -3dB FR 1.0 Hz -0.1dB 6.5 Hz DAC Digital Filter: Passband (Note 14) -0.1dB PB 0 21.8 kHz -6.0dB 24.0 kHz Stopband SB 26.2 kHz Passband Ripple PR dB 0.02 Stopband Attenuation SA 54 dB Group Delay (Note 15) GD 21 1/fs DAC Digital Filter + Analog Filter: FR dB Frequency Response: 0 20.0kHz 0.2 FR dB 40.0kHz (Note 16) 0.3 FR dB 80.0kHz (Note 16) 1.0 Note 14. The passband and stopband frequencies are proportional to fs. For example, 21.8kHz at –0.1dB is 0.454 x fs (DAC). The reference frequency of these responses is 1kHz. Note 15. The calculating delay time which occurred by digital filtering. This time is from setting the input of analog signal to setting the 24bit data of both channels to the output register of PORTA or PORTB. For DAC, this time is from setting the 20/24bit data of both channels on input register of PORTA or PORTB to the output of analog signal. Note 16. 40kHz@fs=96kHz, 80kHz@fs=192kHz MS0427-E-04 2013/10 - 10 - [AK4683] DC CHARACTERISTICS (Ta=25C; AVDD1, AVDD2, DVDD, PVDD, HVDD=4.55.5V; TVDD=2.75.5V) Parameter Symbol min typ High-Level Input Voltage (Except XTI pin) VIH 2.2 (XTI pin) VIH 70%DVDD Low-Level Input Voltage (Except XTI pin) VIL (XTI pin) VIL Input Voltage at AC Coupling (XTI pin) (Note 17) VAC 40%DVDD High-Level Output Voltage (Except TX pins: Iout=-400A) VOH TVDD-0.4 (TX pin: Iout=-400A) VOH DVDD-0.4 Low-Level Output Voltage (Iout=400A) VOL Iin Input Leakage Current (Except RX0 pin) Note 17. In case of connecting capacitance to XTI pin. max 0.8 30%DVDD - Units V V V V Vpp 0.4 10 V V V A max Units k mVpp mV kHz S/PDIF RECEIVER CHARACTERISTICS (RX0) (Ta=25C; AVDD1, AVDD2, DVDD, PVDD, HVDD=4.55.5V; TVDD=2.75.5V) Parameter Symbol min typ Input Resistance Zin 10 Input Voltage (internally biased at PVDD/2) VTH 200 Input Hysteresis VHY 50 Input Sample Frequency fs 32 - 192 PVDD RX0 pin 20k(typ) 20k(typ) PVSS VCOM Internal biased pin Circuit S/PDIF RECEIVER CHARACTERISTICS (RX1-3) (Ta=25C; AVDD1, AVDD2, DVDD, PVDD, HVDD=4.5~5.5V;TVDD=2.7~5.5V) Parameter Symbol min typ High-Level Input Voltage VIH 2.2 Low-Level Input Voltage VIL Input Sample Frequency fs 32 Iin Input Leakage Current - MS0427-E-04 max 0.8 192 10 Units V V kHz A 2013/10 - 11 - [AK4683] SWITCHING CHARACTERISTICS (Ta=25C; AVDD1, AVDD2, DVDD, PVDD, HVDD=4.55.5V; TVDD=2.75.5V; CL=20pF; Note 18) Parameter Symbol min typ max Master Clock Timing Crystal Resonator Frequency fXTAL 11.2896 24.576 External Clock Frequency fECLK 4.096 24.576 Duty dECLK 40 50 60 MCKO Output Frequency fMCK 4.096 24.576 Duty (Note 19) dMCLK 40 50 60 (Note 20) dMCK 33 PLL Clock Recover Frequency (RX0-3) fpll 32 192 Master Clock 256fsn, 128fsd: fCLK 8.192 12.288 Pulse Width Low tCLKL 27 Pulse Width High tCLKH 27 384fsn, 192fsd: fCLK 12.288 18.432 Pulse Width Low tCLKL 20 Pulse Width High tCLKH 20 512fsn, 256fsd, 128fsq: fCLK 16.384 24.576 Pulse Width Low tCLKL 15 Pulse Width High tCLKH 15 LRCKA (LRCKB) Timing (Slave Mode) Normal mode Normal Speed Mode fsn 32 48 Double Speed Mode fsd 64 96 Quad Speed Mode fsq 120 192 Duty Cycle Duty 45 55 TDM 256 mode LRCKA frequency fsd 32 48 “H” time tLRH 1/256fs “L” time tLRL 1/256fs TDM 128 mode LRCKA frequency fsd 64 96 “H” time tLRH 1/128fs “L” time tLRL 1/128fs LRCKA (LRCKB) Timing (Master Mode) Normal mode Normal Speed Mode fsn 32 48 Double Speed Mode fsd 64 96 Quad Speed Mode fsq 120 192 Duty Cycle Duty 50 TDM 256 mode LRCKA frequency fsn 32 48 “H” time (Note 21) tLRH 1/8fs TDM 128 mode LRCKA frequency fsd 64 96 “H” time (Note 21) tLRH 1/4fs Power-down & Reset Timing PDN Pulse Width (Note 22) tPD 150 PDN “” to SDTO valid (Note 23) tPDV 522 Note 18. SDTOA is specified against OLRCKA, SDTIA1-3 are measured against ILRCKA. Note 19. When MCKO1-0 bits = “01”, “10” or MCKO1-0 bits = “00” and CKSDT bit = “0”. Note 20. When MCKO1-0 bits = “00” and CKSDT bit = “1” and the EXTCLK is selected by CM1-0 bits. Duty = (“H” width) / (clock cycle) x 100 Note 21. “L” time at I2S format Note 22. The AK4683 can be reset by bringing PDN “L” to “H” upon power-up. Note 23. These cycles are the number of LRCKA (LRCKB) rising from PDN rising. MS0427-E-04 Units MHz MHz % MHz % % kHz MHz ns ns MHz ns ns MHz ns ns kHz kHz kHz % kHz ns ns kHz ns ns kHz kHz kHz % kHz ns kHz ns ns 1/fs 2013/10 - 12 - [AK4683] Parameter Symbol min typ max Units Audio Interface Timing (Slave Mode) Normal mode BICKA (BICKB) Period tBCK 81 ns BICKA (BICKB) Pulse Width Low tBCKL 32 ns Pulse Width High tBCKH 32 ns LRCKA (LRCKB) Edge to BICKA (BICKB) “” (Note 24) tLRB 20 ns BICKA (BICKB) “” to LRCKA (LRCKB) Edge (Note 24) tBLR 20 ns LRCKA (LRCKB) to SDTOA, SDTOB (MSB) tLRS 20 ns BICKA (BICKB) “” to SDTOA, SDTOB tBSD 20 ns SDTIA1-3, SDTIB Hold Time tSDH 20 ns SDTIA1-3, SDTIB Setup Time tSDS 20 ns TDM 256 mode BICKA Period tBCK 81 ns BICKA Pulse Width Low tBCKL 32 ns Pulse Width High tBCKH 32 ns LRCKA Edge to BICKA “” (Note 24) tLRB 20 ns BICKA “” to LRCKA Edge (Note 24) tBLR 20 ns BICKA “” to SDTOA tBSD 20 ns SDTIA1 Hold Time tSDH 10 ns SDTIA1 Setup Time tSDS 10 ns TDM 128 mode BICKA Period tBCK 81 ns BICKA Pulse Width Low tBCKL 32 ns Pulse Width High tBCKH 32 ns LRCKA Edge to BICKA “” (Note 24) tLRB 20 ns BICKA “” to LRCKA Edge (Note 24) tBLR 20 ns BICKA “” to SDTOA tBSD 20 ns SDTIA1-2 Hold Time tSDH 10 ns SDTIA1-2 Setup Time tSDS 10 ns Audio Interface Timing (Master Mode) Normal mode BICKA (BICKB) Frequency fBCK 64fs Hz BICKA (BICKB) Duty dBCK 50 % BICKA (BICKB) “” to LRCKA (LRCKB) Edge tMBLR -20 20 ns BICKA (BICKB)“” to SDTO tBSD 20 ns SDTIA1-3, B Hold Time tSDH 20 ns SDTIA1-3, B Setup Time tSDS 20 ns TDM 256 mode BICKA Frequency fBCK 256fs Hz BICKA Duty (Note 25) dBCK 50 % BICKA “” to LRCKA Edge tMBLR -12 12 ns BICKA “” to SDTOA tBSD 20 ns SDTIA1 Hold Time tSDH 10 ns SDTIA1 Setup Time tSDS 10 ns TDM 128 mode BICKA Frequency fBCK 128fs Hz BICKA Duty (Note 26) dBCK 50 % BICKA “” to LRCKA Edge tMBLR -12 12 ns BICKA “” to SDTOA tBSD 20 ns SDTIA1-2 Hold Time tSDH 10 ns SDTIA1-2 Setup Time tSDS 10 ns Note 24. BICK rising edge must not occur at the same time as LRCK edge. Note 25. When MCLK2/XTI is 512fs, dBCK is guaranteed. When 384fs and 256fs, dBCK can not be guaranteed. Note 26. When MCLK2/XTI is 256fs, dBCK is guaranteed. When 128fs, dBCK can not be guaranteed. MS0427-E-04 2013/10 - 13 - [AK4683] Parameter Symbol min Control Interface Timing (4-wire serial mode) CCLK Period tCCK 200 CCLK Pulse Width Low tCCKL 80 Pulse Width High tCCKH 80 CDTI Setup Time tCDS 50 CDTI Hold Time tCDH 50 CSN “H” Time tCSW 150 tCSS 50 CSN “” to CCLK “” tCSH 50 CCLK “” to CSN “” tDCD CDTO Delay tCCZ CSN “” to CDTO Hi-Z Control Interface Timing (I2C Bus mode) SCL Clock Frequency fSCL Bus Free Time Between Transmissions tBUF 4.7 Start Condition Hold Time (prior to first clock pulse) tHD:STA 4.0 Clock Low Time tLOW 4.7 Clock High Time tHIGH 4.0 Setup Time for Repeated Start Condition tSU:STA 4.7 SDA Hold Time from SCL Falling (Note 27) tHD:DAT 0 SDA Setup Time from SCL Rising tSU:DAT 0.25 Rise Time of Both SDA and SCL Lines tR Fall Time of Both SDA and SCL Lines tF Setup Time for Stop Condition tSU:STO 4.0 Pulse Width of Spike Noise Suppressed by Input Filter tSP 0 Capacitive load on bus Cb Note 27. Data must be held for sufficient time to bridge the 300 ns transition time of SCL. Note 28. I2C-bus is a trademark of NXP B.V. MS0427-E-04 typ max Units 45 70 ns ns ns ns ns ns ns ns ns ns 100 1.0 0.3 50 400 kHz s s s s s s s s s s ns pF 2013/10 - 14 - [AK4683] ■ Timing Diagram 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fsn, 1/fsd, 1/fsq VIH LRCK VIL tBCK VIH BICK VIL tBCKH tBCKL Clock Timing (Normal mode) 1/fCLK VIH MCLK VIL tCLKH tCLKL 1/fsn, 1/fsd VIH LRCK VIL tLRH tLRL tBCK VIH BICK VIL tBCKH tBCKL Clock Timing (TDM 256 mode, TDM 128 mode) LRCK= LRCKB, ILRCKA, OLRCKA, BICK= BICKA, BICKB, SDTI= SDTIA, SDTIB, SDTO= SDTOA, SDTOB. MS0427-E-04 2013/10 - 15 - [AK4683] VIH LRCK VIL tBLR tLRB VIH BICK VIL tLRS tBSD SDTO 50%TVDD tSDS tSDH VIH SDTI VIL Audio Interface Timing (Normal mode) VIH LRCK VIL tBLR tLRB VIH BICK VIL tBSD SDTO 50%TVDD tSDS tSDH VIH SDTI VIL Audio Interface Timing (TDM 256 mode, TDM 128 mode) MS0427-E-04 2013/10 - 16 - [AK4683] LRCK 50%TVDD tMBLR 50%TVDD BICK tBSD 50%TVDD SDTO tDXS tDXH VIH SDTI VIL Audio Interface timing (Master Mode) tPD PDN VIL Power Down & Reset Timing MS0427-E-04 2013/10 - 17 - [AK4683] VIH CSN VIL tCSS tCCK tCCKL tCCKH VIH CCLK VIL tCDH tCDS CDTI C1 C0 A4 R/W VIH VIL Hi-Z CDTO WRITE/READ Command Input Timing in 4-wire serial mode The ADC/DAC part doesn’t support READ command. tCSW VIH CSN VIL tCSH VIH CCLK CDTI VIL D3 D2 D1 VIH D0 VIL Hi-Z CDTO WRITE Data Input Timing in 4-wire serial mode VIH CSN VIL VIH CCLK VIL CDTI A1 VIH A0 VIL tDCD CDTO Hi-Z D7 D6 D5 50%TVDD READ Data Output Timing 1 in 4-wire serial mode The ADC/DAC part doesn’t support READ command.. MS0427-E-04 2013/10 - 18 - [AK4683] tCSW VIH CSN VIL tCSH VIH CCLK VIL VIH CDTI VIL tCCZ CDTO D3 D2 D1 D0 Hi-Z 50%TVDD READ Data Input Timing 2 in 4-wire serial mode The ADC/DAC part doesn’t support READ command. VIH SDA VIL tLOW tBUF tR tHIGH tF tSP VIH SCL VIL tHD:STA Stop tHD:DAT tSU:DAT tSU:STA tSU:STO Start Stop Start I2C Bus mode Timing The ADC/DAC part doesn’t support READ command. tPD VIH PDN VIL tPDV SDTO 50%TVDD Power-down & Reset Timing MS0427-E-04 2013/10 - 19 - [AK4683] OPERATION OVERVIEW (General) ■ Device Configuration and System Clocks The AK4683 integrates the stereo ADC with input selector, 4ch DAC with stereo HP amp, DIR and DIT. The AK4683 has two serial audio interfaces (PORTA, B) for two input/output dataset (Figure 2). Each block can independently select the operation clock from the three clock sources (recovered clock from DIR (RMCLK), X’tal clock (XTI) and external clock (MCLK2)) and also input data source/output data destination. By using the Clock Gen C, the loop-back such as AD-DA can operate even if the PORTA/B are powered down. DIR XTI MCKO MCLK2 MCKO0/1 bit DIR DIR XTI PORTA DIR MCLK2 X’tal Oscillator (XTI) CLKB0/1 bit MCLK2 DIR XTI MCLK2 MCLK2 XTI Clock Gen A CLKA0/1 bit ADC DIR XTI PORTB MCLK2 DAC Clock Gen B DIR XTI DIR XTI Clock MCLK2 Gen C CLKL0/1 bit MCLK2 DIT Note Figure 2. System Clock Note: Each block must select the same clock source each other when connected. The operation will not be normal when the clock sources are not same among a connection. The ADC and DAC are synchronized to the clock source that the connected block uses. Even if the RMCLK is selected, the X’tal/MCLK2 may be chosen by the setting of CM1-0bits. DIR and DIT must be synchronized when these two blocks operates. MS0427-E-04 2013/10 - 20 - [AK4683] ■ X’tal Oscillator The following circuits are available to feed the clock to XTI pin of the AK4683. 1) X’tal XTI C 25k(typ) C XTO AK4683 Note: External capacitance depends on the crystal oscillator (Typ. 10-40pF) Figure 3. X’tal mode 2) External clock - Note: Input clock must not exceed DVDD. XTI C External Clock X T I External Clock 25k(typ) 25k(typ) XTO X T O AK4683 A K 4 6 8 3 (Input: 40%DVDD, C=0.1F) (Input: CMOS Level) Figure 4. DC-coupled Input Figure 5. AC-coupled Input 3) XTI/XTO are not used XTI 25k(typ) XTO AK4683 Figure 6. OFF mode MS0427-E-04 2013/10 - 21 - [AK4683] ■ Master Clock Output The AK4683 has one master clock output pin. The clock source can be selected from the three clocks (recovered clock from DIR (RMCLK), X’tal clock (XTI) and external clock (MCLK2)). When the DIR is powered-down or unlocked state at CM1/0 bit = “10”, the CLKDT bit selects the clock source. The OCKS1/0 bits select the clock speed. The 512fs at fs=96kHz, 256fs/512fs at fs=192kHz are not available. CM1 bit 0 0 CM0 bit 0 1 1 0 1 1 UNLOCK 0 1 - Clock Source RMCLK EXTCLK RMCLK EXTCLK EXTCLK Table 1. Clock Mode Control CLKDT bit 0 1 Clock Source XTI MCLK2 (default) Table 2. EXTCLK Control OCKS1 bit 0 0 1 1 OCKS0 bit 0 1 0 1 MCLKO(RMCLK) 256fs 256fs 512fs 128fs fs (max) 96 kHz 96 kHz 48 kHz 192 kHz Table 3. MCLKO Speed MCKO1 bit 0 0 1 1 MCKO0 bit 0 1 0 1 MCKO Clock Source DIR X’tal(XTI) MCLK2 Reserved default Table 4. MCKO Clock Source Control OCKS1/0 bit RMCLK PLL EXTCLK CM0/1 bit x2/3 CKSDT bit CLKDT bit DIR X’tal Oscillator (XTI) XTI MCLK2 MCKO MCKO0/1 bit MCLK2 Figure 7. MCKO Clock MS0427-E-04 2013/10 - 22 - [AK4683] ■ Master/Slave Mode Change MSA and MSB bits control the master/slave mode of PORTA and PORTB respectively. The “1” is for master mode, “0” is for slave mode. The AK4683 is slave mode at power-down (PDN pin = “L”). To change to the master mode, write “1” to MSA/MSB bit. The ACKSAI, ACKSAO and ACKSB bits are ignored in master mode. Until when writing “1” to MSA/MSB bit, the ILRCKA, OLRCKA, BICKA, LRCKB and BICKB pin are input pins. Pull-up (or down) resistor with around 100kohm is required to prevent the floating of these input pins. MSA, MSB bit Mode 0 Slave Mode (default) 1 Master Mode Table 5. Select Master/Salve Mode Note: When PORTA and PORTB operate synchronously, PORTB must not be the Master Mode. In that case the PORTA must be the Master Mode, or both PORTA and PORTB must be the Slave Mode with supplying the same BICK and LRCK. ■ Other Detection Function The FUNC1-0 bit selects the function of VOUT / DZF / OVF pin. Mode 0 1 2 3 FUNC1 0 0 1 1 FUNC0 Mode 0 OFF (“L”) 1 ADC Overflow Detection 0 DAC Zero Detection 1 V bit output Table 6. Detection Function Control Default 1. Overflow Detection The AK4683 has overflow detect function for analog input. OVF pin goes to “H” if analog input of Lch or Rch overflows (more than -0.3dBFS). OVF output for overflowed analog input has the same group delay as ADC (GD = 16/fs = 333s @fs=48kHz). OVF pin is “L” for 522/fs (=10.9ms @fs=48kHz) after PDN = “”, and then overflow detection is enabled. The overflow detection is applied to the data between the digital HPF and the DATT. MS0427-E-04 2013/10 - 23 - [AK4683] 2. Zero Detection The AK4683 has one pin for zero detect flag output. The DZFM1-0 bits select the channel grouping (Table 7). The DZF pin goes “H” when all of the enabled channels are continuously zeros for 8192 LRCK cycles. DZF pin immediately goes to “L” if input data of any enabled channel is not zero after going DZF “H”. Mode 0 1 2 3 DZFM1 bit 0 0 1 1 DZFM0 bit 0 1 0 1 L1 Enable Enable - AOUT R1 L2 Enable Enable Enable Enable - R2 Enable Enable - (default) Table 7. Zero Detection Control 3. Validity Detection The AK4683 has Validity Detection function. DIR decodes the V bit and output “H” via pin. When unlocked, “L” is output. MS0427-E-04 2013/10 - 24 - [AK4683] OPERATION OVERVIEW (ADC/DAC/PORTA, B part) ■ System Clock The AK4683 has two audio serial interface (PORTA, B), can operate these PORTs with asynchronous. At each PORT, the external clocks, which are required to operate the AK4683, are MCLK, LRCK and BICK. The MCLK should be synchronized with LRCK but the phase is not critical. The CLKA1-0, CLKB1-0bits select the clock sources for each PORT (Table 8, Table 9). The MSA and MSB bits select the master/slave mode (Table 16, Table 17). The block that is connected to PORTA/B and the block that is connected to the PORT indirectly operate at the same clock as the PORTA/B selects. e. g. When the DAC selects the ADC data while the PORTB selects the ADC data also, the DAC operates same clock as the PORTB selects. The block that isn’t connected to PORTA/B is automatically connected to the Clock Gen C and operates the same clock as the Clock Gen C selects with the CLKL1-0 bits (Table 10). In master mode, the CKSIA2-0, OLRA1-0, BICKAF, CKSB2-0 bits select the clock frequency (Table 11, Table 12 , Table 13, Table 14). In master mode, external clock (MCLK) should always be supplied except in the power-down mode. The AK4683 is in power-down mode until MCLK will be supplied, when reset was canceled by Power-ON and so on. At PORTA, the input/output data has independent LRCK (ILRCKA/OLRCKA) and common BICK (BICKA). The ILRCK and OLRCK can operate at different sample rate but synchronized each other (Table 12). In slave mode, external clocks (MCLK, BICK, LRCK) should always be present whenever the AK4683 is in normal operation mode (PDN pin = “H”). The master clock (MCLK) should be synchronized with LRCK but the phase is not critical. If these clocks are not provided, the AK4683 may draw excess current because the device utilizes dynamic refreshed logic internally. If the external clocks are not present, the AK4683 should be in the power-down mode (PDN pin = “L”) or in the reset mode (RSTN1 bit = “0”). After exiting reset at power-up etc., the AK4683 is in the power-down mode until MCLK and LRCK are input. When the block selects RMCLK as clock source, the sample rate of the PORT in the master mode or ADC/DAC connecting to the Clock Gen C is forced to the same rate as DIR. The DFSAD, DFSDA1-0 bits should be controlled properly. Note: When PORTA and PORTB operate synchronously, PORTB must not be the in Master Mode. In that case the PORTA must be in the Master Mode, or both PORTA and PORTB must be in the Slave Mode with supplying the same BICK and LRCK. MS0427-E-04 2013/10 - 25 - [AK4683] CLKA1 bit 0 0 1 1 CLKA0 bit 0 1 0 1 PORTA Clock Source DIR X’tal(XTI) MCLK2 Reserved (default) Table 8. PORTA Clock Source Control CLKB1 bit 0 0 1 1 CLKB0 bit 0 1 0 1 PORTB Clock Source DIR X’tal(XTI) MCLK2 Reserved (default) Table 9. PORTB Clock Source Control CLKL1 bit 0 0 1 1 CLKL0 bit 0 1 0 1 Clock Gen C Clock Source DIR X’tal (XTI) MCLK2 Reserved (default) Table 10. Clock Gen C Clock Source Control CKSAI2 0 0 0 0 CKSAI1 0 0 1 1 CKSAI0 0 1 0 1 Clock Speed 128fs 192fs 256fs 384fs 1 1 1 1 0 0 1 1 0 1 0 1 512fs Reserved Reserved Reserved (default) Table 11. PORTA Input Data Clock Control (Master Mode) OLRA1 bit OLRA0 bit OLRCKA Clock Freq 0 0 ILRCKA x 1 0 1 ILRCKA x 1/2 1 0 ILRCKA x 2 1 1 Reserved Note: Select OLRA1-0 bits = “00” in TDM mode. (default) Table 12. PORTA Output Data Control (Master Mode) MS0427-E-04 2013/10 - 26 - [AK4683] BCAF bit PORTA BICK Frequency Mode 0 ILRCK x 64 (default) 1 ILRCK x128 Note: ILRCK x 128 is available when the MCLK=ILRCK x 256 or higher. BCAF bit is ignored in TDM mode. Table 13. PORTA BICK Control (Master Mode) CKSB2 0 0 0 0 CKSB1 0 0 1 1 CKSB0 0 1 0 1 Clock Speed 128fs 192fs 256fs 384fs 1 1 1 1 0 0 1 1 0 1 0 1 512fs Reserved Reserved Reserved (default) Table 14. PORTB Data Clock Control (Master Mode) CKSL2 0 0 0 0 CKSL1 0 0 1 1 CKSL0 0 1 0 1 Clock Speed 128fs 192fs 256fs 384fs 1 1 1 1 0 0 1 1 0 1 0 1 512fs Reserved Reserved Reserved (default) Table 15. Clock Gen C Clock Control In master mode, LRCKA (LRCKB) pin, BICKA (BICKB) pin are output pins. In slave mode, these are input pins (Table 18). MSA bit 0 1 PORTA Master/Slave Mode Slave Master (default) Table 16. PORTA Master/Slave Control MSB bit 0 1 PORTB Master/Slave Mode Slave Master (default) Table 17. PORTB Master/Slave Control MS0427-E-04 2013/10 - 27 - [AK4683] PDN pin L H H PWPOA(PWPOB) bit Master/Slave LRCKA BICKA (LRCKB) pin (BICKB) pin Slave Input Input Slave Input (*) Input (*) “0” Master “L” output “L” output Slave Input Input “1” Master Output Output (*): These are input pins, but input signals are ignored internally. Table 18. LRCKA (LRCKB) pin, BICKA (BICKB) pin The SDTOB1-0, SDTOA1-0 bits select the output data source of each PORT. SDTOA1 bit 0 0 1 1 SDTOA0 bit 0 1 0 1 SDTOA Source DIR ADC SDTIB Off (“L” Output) (default) Table 19. SDTOA Source Control SDTOB1 bit 0 0 1 1 SDTOB0 bit 0 1 0 1 SDTOB Source DIR ADC Off SDTIA1 (default) Table 20. SDTOB Source Control MS0427-E-04 2013/10 - 28 - [AK4683] ■ ADC, DAC Control There are two modes for controlling the sampling speed for ADC and DAC. One is the Manual Setting Mode using the DFSAD and DFSDA1-0 bits, and the other is Auto Setting Mode. When the block connects to both PORTA and PORTB, the PORTA setting is used. 1. Manual Setting Mode (ACSKAD / ACSKDA bit = “0”: Default) When the ADC and DAC are connected to each PORT placed in Manual Setting Mode, the sampling speed are selected by DFSAD, DFSDA1-0 bits (Table 21, Table 22). The frequencies and the duties of the clocks (ILRCKA, OLRCKA, LRCKB, BICKA, BICKB) may be unstable for the moment when changing the sampling speed mode. DFSAD 0 1 Sampling Speed (fs) Normal Speed Mode 32kHz~48kHz Double Speed Mode 64kHz~96kHz (default) Table 21.ADC sampling speed (Manual Setting Mode) DFSDA1 0 0 1 1 DFSDA0 0 1 0 1 Sampling Speed (fs) Normal Speed Mode 32kHz~48kHz Double Speed Mode 64kHz~96kHz Quad Speed Mode 120kHz~192kHz Not Available - (default) Table 22.DAC sampling speed (Manual Setting Mode) LRCKA (LRCKB) fs 32.0kHz 44.1kHz 48.0kHz MCLK (MHz) 256fs 384fs 512fs 8.1920 12.2880 16.3840 11.2896 16.9344 22.5792 12.2880 18.4320 24.5760 (Normal Speed Mode @Manual Setting Mode) BICKA (BICKB) (MHz) 64fs 2.0480 2.8224 3.0720 Table 23. System clock example LRCKA (LRCKB) fs 88.2kHz 96.0kHz MCLK (MHz) BICKA (BICKB) (MHz) 64fs 5.6448 6.1440 128fs 192fs 256fs 11.2896 16.9344 22.5792 12.2880 18.4320 24.5760 (Double Speed Mode @Manual Setting Mode) (Note: ADC is not available for 128fs and 192fs at Double Speed Mode (DFSAD=“1”)) Table 24. System clock example MS0427-E-04 2013/10 - 29 - [AK4683] LRCKA (LRCKB) Fs 176.4kHz 192.0kHz MCLK (MHz) BICKA (BICKB) (MHz) 64fs 11.2896 12.2880 128fs 192fs 256fs 22.5792 24.5760 (Quad Speed Mode @Manual Setting Mode) (Note: ADC is not available at the Quad Speed Mode) Table 25. System clock example 2. Auto Setting Mode (ACSKAD/ACSKDA bit = “1”) When the ADC and DACs are connected to each PORT placed in Auto Setting Mode, MCLK frequency is detected automatically (Table 26) and the internal master clock is set to the appropriate frequency (Table 27). In this mode, the setting of DFSAD, DFSDA1-0 bits are ignored. MCLK 512fs 256fs 128fs Sampling Speed Normal Double Quad Table 26. Sampling Speed (Auto Setting Mode) LRCKA (LRCKB) fs 32.0kHz 44.1kHz 48.0kHz 88.2kHz 96.0kHz 176.4kHz 192.0kHz MCLK (MHz) 128fs 22.5792 24.5760 256fs 22.5792 24.5760 - 512fs 16.3840 22.5792 24.5760 - Sampling Speed Normal Double Quad Table 27. System clock example (Auto Setting Mode) MS0427-E-04 2013/10 - 30 - [AK4683] The DAC12-10, DAC22-20 bits select the output data for each DAC. DAC1 and DAC2 must be connected to the same PORT. DAC12 bit 0 0 0 0 DAC11 bit 0 0 1 1 DAC10 bit 0 1 0 1 DAC1 Source DIR ADC SDTIB SDTIA1 1 1 1 1 0 0 1 1 0 1 0 1 SDTIA2 SDTIA3 Reserved Reserved (default) Table 28. DAC1 Source Control DAC22 bit 0 0 0 0 DAC21 bit 0 0 1 1 DAC20 bit 0 1 0 1 DAC2 Source DIR ADC SDTIB SDTIA1 1 1 1 1 0 0 1 1 0 1 0 1 SDTIA2 SDTIA3 Reserved Reserved (default) Table 29. DAC2 Source Control MS0427-E-04 2013/10 - 31 - [AK4683] ■ De-emphasis Filter The AK4683 includes the digital de-emphasis filter (tc=50/15s) by IIR filter. De-emphasis filter is not available in Double Speed Mode and Quad Speed Mode. This filter corresponds to three sampling frequencies (32kHz, 44.1kHz, 48kHz). De-emphasis of each DAC can be set individually by register. Mode 0 1 2 3 Sampling Speed Normal Speed Normal Speed Normal Speed Normal Speed DEM1 0 0 1 1 DEM0 0 1 0 1 DEM 44.1kHz OFF 48kHz 32kHz (default) Table 30. De-emphasis control ■ Digital High Pass Filter The ADC has a digital high pass filter for DC offset cancel. The cut-off frequency of the HPF is 1.0Hz at fs=48kHz and scales with sampling rate (fs). ■ Audio Serial Interface Format Each PORTA/B can select independent audio interface format. The TDMA1-0, DIFA1-0 bits control the audio format for PORTA and support normal mode, TDM256 mode and TDM128 mode. The DIFB1-0 bits control the audio format for PORTB and support only normal mode. The default is mode 2. In all modes the serial data is MSB-first, 2’s complement format. The SDTO pins are clocked out on the falling edge of BICK pins and the SDTI pins are latched on the rising edge of BICK pins. 1. Setting for the PORTA 1-1. Normal mode: TDMA1-0 bit = “00” The TDMA1-0 bits = “00” set the AK4683 audio serial interface format to the normal mode. The DIFA1-0 bits select following eight serial data format (Table 31). Mode 0 1 2 3 4 5 6 7 Master /slave DIFA1 DIFA0 SDTOA LRCKA BICKA I/O I/O Slave 0 0 24bit, L J 20bit, R J H/L I I 48fs Slave 0 1 24bit, L J 24bit, R J H/L I I 48fs Slave 1 0 24bit, L J 24bit, L J H/L I I 48fs Slave 1 1 24bit, I2S 24bit, I2S L/H I I 48fs Master 0 0 24bit, L J 20bit, R J H/L O 64fs O Master 0 1 24bit, L J 24bit, R J H/L O 64fs O Master 1 0 24bit, L J 24bit, L J H/L O 64fs O Master 1 1 24bit, I2S 24bit, I2S L/H O 64fs O Table 31 Audio Interface Format (Normal mode, L J: Left justified, R J: Right justified.) MS0427-E-04 SDTIA1-3 (default) 2013/10 - 32 - [AK4683] 1-2. TDM 256 mode: TDMA1-0 bit = “01” The TDMA1-0 bits = “01” set the AK4683 audio serial interface format to the TDM 256 mode. The serial data of all SDTIA (1,2,3) is input to the SDTIA1 pin. The input data to SDTIA2-3 pins is ignored. BICKA should be fixed to 256fs. “H” time and “L” time of I/OLRCKA pin should be 1/256fs at least. The DIFA1-0 bits select eight modes. Mode 8 9 10 11 12 13 14 15 Master DIFA1 DIFA0 SDTOA SDTIA1-3 LRCKA BICKA /slave I/O I/O Slave 0 0 24bit, L J 20bit, R J I 256fs I Slave 0 1 24bit, L J 24bit, R J I 256fs I Slave 1 0 24bit, L J 24bit, L J I 256fs I Slave 1 1 24bit, I2S 24bit, I2S I 256fs I Master 0 0 24bit, L J 20bit, R J O 256fs O Master 0 1 24bit, L J 24bit, R J O 256fs O Master 1 0 24bit, L J 24bit, L J O 256fs O Master 1 1 24bit, I2S 24bit, I2S O 256fs O Table 32. Audio Interface Format (TDM 256 mode, L J: Left justified, R J: Right justified.) (default) 1-3. TDM 128 mode: TDMA1-0 bit = “11” The TDMA1-0 bits = “11” set the AK4683 audio serial interface format to the TDM 1286 mode. The four channel serial data (SDTIA1, 2) is input to the SDTIA1 pin. Other two channel data (SDTIA3) is input to the SDTIA2 pin. Mode 16 17 18 19 20 21 22 23 Master DIFA1 DIFA0 SDTOA SDTIA1-3 LRCKA BICKA /slave I/O I/O Slave 0 0 24bit, L J 20bit, R J I 128fs I Slave 0 1 24bit, L J 24bit, R J I 128fs I Slave 1 0 24bit, L J 24bit, L J I 128fs I Slave 1 1 24bit, I2S 24bit, I2S I 128fs I Master 0 0 24bit, L J 20bit, R J O 128fs O Master 0 1 24bit, L J 24bit, R J O 128fs O Master 1 0 24bit, L J 24bit, L J O 128fs O 2 2 Master 1 1 24bit, I S 24bit, I S O 128fs O Table 33. Audio Interface Format (TDM 128 mode, L J: Left justified, R J: Right justified.) MS0427-E-04 (default) 2013/10 - 33 - [AK4683] 2. Setting for the PORTB 2-1: Normal mode: The PORTB supports only the normal mode. The DIFB1-0 bits select following eight serial data format (Table 34). Mode 0 1 2 3 4 5 6 7 Master /slave DIFB1 DIFB0 SDTOB SDTIB LRCKB BICKB I/O I/O Slave 0 0 24bit, L J 20bit, R J H/L I I 48fs Slave 0 1 24bit, L J 24bit, R J H/L I I 48fs Slave 1 0 24bit, L J 24bit, L J H/L I I 48fs Slave 1 1 24bit, I2S 24bit, I2S L/H I I 48fs Master 0 0 24bit, L J 20bit, R J H/L O 64fs O Master 0 1 24bit, L J 24bit, R J H/L O 64fs O Master 1 0 24bit, L J 24bit, L J H/L O 64fs O Master 1 1 24bit, I2S 24bit, I2S L/H O 64fs O Table 34. Audio Interface Format (Normal mode, L J: Left justified, R J: Right justified.) (default) LRCK 0 1 2 12 13 14 24 25 31 0 1 2 12 13 14 24 25 31 0 1 BICK (64fs) SDTO(o) 23 22 12 11 10 Don’t Care SDTI(i) 0 19 18 23 22 8 7 1 12 11 10 Don’t Care 0 0 19 18 SDTO-23:MSB, 0:LSB; SDTI-19:MSB, 0:LSB Lch Data 23 8 7 1 0 Rch Data Figure 8. Mode 0,4 Timing LRCK 0 1 2 8 9 10 24 25 31 0 1 2 8 9 10 24 25 31 0 1 BICK (64fs) SDTO(o) 23 22 16 15 14 Don’t Care SDTI(i) 0 23 22 23:MSB, 0:LSB 23 22 8 7 1 16 15 14 Don’t Care 0 0 23 22 Lch Data 23 8 7 1 0 Rch Data Figure 9. Mode 1 ,5 Timing LRCK 0 1 2 21 22 23 24 28 29 30 31 0 1 2 22 23 24 28 29 30 31 0 1 BICK (64fs) SDTO(o) SDTI(i) 23 22 2 1 0 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data 23 Don’t Care 23 Rch Data Figure 10. Mode 2,6 Timing MS0427-E-04 2013/10 - 34 - [AK4683] LRCK 0 1 2 3 22 23 24 25 29 30 31 0 1 2 3 22 23 24 25 29 30 31 0 1 BICK(64fs) SDTO(o) 23 22 2 1 0 SDTI(i) 23 22 2 1 0 23:MSB, 0:LSB Don’t Care 23 22 2 1 0 23 22 2 1 0 Lch Data Don’t Care Rch Data Figure 11. Mode 3 ,7 Timing 256 BICK LRCKA (mode 8) LRCKA (mode 12) BICKA(256fs) SDTOA(o) SDTIA1(i) 23 22 0 23 22 0 23 22 Lch Rch 32 BICK 32 BICK 19 18 0 19 18 0 L1 R1 32 BICK 32 BICK 19 18 0 19 18 0 19 18 0 19 18 0 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 19 32 BICK 32 BICK Figure 12. Mode 8 ,12 Timing 256 BICK LRCKA (mode 9) LRCKA (mode 13) BICKA(256fs) SDTOA(o) 23 22 0 23 22 Lch 32 BICK SDTIA1(i) 0 23 22 Rch 23 22 32 BICK 0 23 22 0 23 22 0 23 22 0 23 22 0 23 22 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 32 BICK 32 BICK Figure 13. Mode 9 ,13 Timing 256 BICK LRCKA (mode 10) LRCKA (mode 14) BICKA(256fs) SDTOA(o) 23 22 0 Lch 23 22 0 23 22 Rch 32 BICK SDTIA1(i) 23 22 0 32 BICK 23 22 0 23 22 L1 R1 32 BICK 32 BICK 0 23 22 0 23 22 0 23 22 0 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 23 22 32 BICK 32 BICK Figure 14. Mode 10 ,14 Timing MS0427-E-04 2013/10 - 35 - [AK4683] 256 BICK LRCKA (mode 11) LRCKA (mode 15) BICKA(256fs) SDTOA(o) 23 0 23 Lch 32 BICK SDTIA1(i) 23 0 23 Rch 32 BICK 0 23 0 23 0 23 0 23 0 23 0 L1 R1 L2 R2 L3 R3 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 32 BICK 23 32 BICK 32 BICK Figure 15. Mode 11 ,15 Timing 128 BICK LRCKA (mode 16) LRCKA (mode 20) BICKA(128fs) SDTOA(o) SDTIA1(i) SDTIA2(i) 23 22 0 0 23 22 Lch Rch 32 BICK 32 BICK 19 18 0 19 18 23 22 0 19 18 0 0 19 18 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 19 18 0 19 18 0 L3 R3 32 BICK 32 BICK 19 19 32 BICK 32 BICK Figure 16. Mode 16 ,20 Timing 128 BICK LRCKA (mode 17) LRCKA (mode 21) BICKA(128fs) 23 22 SDTIA1(i) SDTIA2(i) 0 0 23 22 Lch Rch 32 BICK 32 BICK 23 22 0 23 22 23 22 0 23 22 0 0 23 22 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 0 L3 R3 32 BICK 32 BICK 19 19 32 BICK 32 BICK Figure 17. Mode 17 ,21 Timing MS0427-E-04 2013/10 - 36 - [AK4683] 128 BICK LRCKA (mode 18) LRCKA (mode 22) BICKA(128fs) SDTOA(o) SDTIA1(i) SDTIA2(i) 23 22 0 0 23 22 Lch Rch 32 BICK 32 BICK 23 22 0 23 22 0 23 22 23 22 0 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 23 22 L3 0 23 22 23 22 R3 32 BICK 32 BICK 32 BICK 32 BICK Figure 18. Mode 18 ,22 Timing 128 BICK LRCKA (mode 19) LRCKA (mode 23) BICKA(128fs) SDTOA(o) SDTIA1(i) SDTIA2(i) 23 22 0 0 23 22 Lch Rch 32 BICK 32 BICK 23 22 0 23 22 0 23 0 23 22 23 22 0 L1 R1 L2 R2 32 BICK 32 BICK 32 BICK 32 BICK 23 22 0 L3 32 BICK 23 22 0 23 23 R3 32 BICK 32 BICK 32 BICK Figure 19. Mode 19 ,23 Timing MS0427-E-04 2013/10 - 37 - [AK4683] ■ Digital Volume Control The AK4683 has channel-independent digital volume control (256 levels, 0.5dB step). The ATTAD7-0 bit set the volume level of each ADC channel (Table 35), ATTDA7-0 set each DAC channel (Table 36). ATTAD7-0 00H 01H 02H : 2FH 30H 31H FEH FFH Attenuation Level +24dB +23.5dB +22.0dB : +0.5dB 0dB -0.5dB : -103dB MUTE (-) (default) Table 35. ADC Digital Volume ATTDA7-0 00H 01H 02H : 17H 18H 19H FEH FFH Attenuation Level +12dB +11.5dB +11.0dB : +0.5dB 0dB -0.5dB : -115dB MUTE (-) (default) Table 36. DAC Digital Volume Transition time between set values of ATTAD7-0 (ATTDA7-0) bits can be selected by ATSAD (ATSDA) bits (Table 37, Table 38). Transition between set values of Mode 0 and Mode 1is the soft transition. Therefore, the switching noise does not occur in the transition. Mode 0 1 ATSAD 0 1 ATT speed 1061/fs 256/fs (default) Table 37. Transition time between set values of ATTAD7-0 bits (ADC) Mode 0 1 ATSDA 0 1 ATT speed 1061/fs 256/fs (default) Table 38. Transition time between set values of ATTDA7-0 bits (DAC) The transition between set values is soft transition of 1061 levels in Mode 0. It takes 1061/fs (24ms@fs=48kHz) from 00H to FFH(MUTE) in Mode 0. If PDN pin goes to “L”, the ATTAD7-0(ATTDA7-0) bits are initialized to 30H(18H). The ATTs goes to their default value when RSTN1 bit = “0”. When RSTN1 bit return to “1”, the ATTs fade to their current value. MS0427-E-04 2013/10 - 38 - [AK4683] ■ Soft mute operation The ADC and DAC have the soft mute function. The soft mute operation is performed at digital domain. When the SMAD/SMDA bits go to “1”, the output signal is attenuated by - during ATT_DATAATT transition time (Table 37, Table 38) from the current ATT level. When the SMAD/SMDA bits are returned to “0”, the mute is cancelled and the output attenuation gradually changes to the ATT level during ATT_DATAATT transition time. If the soft mute is cancelled before attenuating to - after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. The soft mute is effective for changing the signal source without stopping the signal transmission. SMAD/SMDA bits ATT Level (1) (1) (3) Attenuation - GD (2) GD AOUT DZF (for SMDA) (4) 8192/fs Notes: (1) ATT_DATAATT transition time (Table 37, Table 38). For example, in Normal Speed Mode, this time is 1061/fs cycles (1792/fs) at ATT_DATA=00H. ATT transition of the soft-mute is from 00H to FFH (2) The analog output corresponding to the digital input has a group delay, GD. (3) If the soft mute is cancelled before attenuating to - after starting the operation, the attenuation is discontinued and returned to ATT level by the same cycle. (4) When the input data at all the channels of the group are continuously zeros for 8192 cycles, DZF pin of each channel goes to “H”. DZF pin immediately goes to “L” if the input data of either channel of the group are not zero after going DZF “H”. Figure 20. Soft mute and zero detection MS0427-E-04 2013/10 - 39 - [AK4683] ■ Input Selector, Input Attenuator The AK4683 includes 6ch stereo input selectors (Figure 21). The input selector is 6 to 1 selector. The AIN2-0 bits set the input channel (Table 39). AIN2 bit 0 0 0 0 1 1 1 1 AIN1 bit 0 0 1 1 0 0 1 1 AIN0 bit 0 1 0 1 0 1 0 1 Input Selector LIN1 / RIN1 LIN2 / RIN2 LIN3 / RIN3 LIN4 / RIN4 LIN5 / RIN5 LIN6 / RIN6 None None Default Table 39. Input Selector The input ATTs are constructed by adding the input resistor (Ri) for LIN1-6/RIN1-6 pins and the feedback resistor (Rf) between LOPIN (ROPIN) pin and LISEL (RISEL) pin (Figure 21). The voltage range of the LISEL(RISEL) pin should be less than typ. 0.62 x AVDD1 (Vpp). If the input voltage of the input selector exceeds typ. 0.62 x AVDD, the input voltage of the LISEL(RISEL) pins must be attenuated to typ. 0.62 x AVDD1 (Vpp) by the input ATTs. The Table 40 shows the example of Ri and Rf. Rf LOPIN Ri LIN1 Ri LIN2 Ri LIN3 Ri LIN4 Ri LIN5 Ri LIN6 Ri RIN1 Ri RIN2 Ri RIN3 Ri RIN4 Ri RIN5 Ri RIN6 LISEL To ADC Pre-Amp Pre-Amp To ADC ROPIN RISEL Rf Figure 21. Input ATT Input Range LISEL/R pin 1.02Vrms 4Vrms 47 12 11.86 (2.88Vpp) 1.02Vrms 2Vrms 47 24 5.84 (2.88Vpp) 1Vrms 1Vrms 47 47 0 (2.82Vpp) Note: Input range of internal ADC is 0.62 x AVDD1 (5V) = 3.1Vpp typ. Ri [k] Rf [k] ATT Gain [dB] Table 40. Input ATT example MS0427-E-04 2013/10 - 40 - [AK4683] [Input selector switching sequence] The input selector should be changed after soft mute to avoid the switching noise of the input selector (Figure 22). 1. Enable the soft mute before changing channel. 2. Change channel. 3. Disable the soft mute. SMUTE DATT Level (1) (1) Attenuation (2) - Channel LIN1/RIN1 LIN2/RIN2 Figure 22. Input channel switching sequence example The period of (1) varies in the setting value of DATT. It takes 1028/fs to mute when DATT value is +24dB. When changing channels, the input channel should be changed during (2). The period of (2) should be around 200ms because there is some DC difference between the channels. MS0427-E-04 2013/10 - 41 - [AK4683] ■ Power ON/OFF Sequence The each block of the AK4683 are placed in the power-down mode by bringing PDN pin “L” and both digital filters are reset at the same time. PDN pin “L” also reset the control registers to their default values. In the power-down mode, the analog outputs go to VCOM voltage and SDTOA,B, DZF/OVF pin go to “L”. This reset should always be done after power-up. In slave mode, after exiting reset at power-up etc., the AK4683 starts to operate from the rising edge of LRCK after MLCK, then the device is in the power-down mode until MCLK and LRCK are input. In slave mode or Internal Loop Mode, the AK4683 starts to operate by the input of MLCK after exiting reset. The analog initialization cycle of ADC starts after exiting the power-down mode. Therefore, the output data, SDTO becomes available after 522/fs cycles of LRCK clock. In case of the DAC, an analog initialization cycle starts after exiting the power-down mode. The analog outputs are VCOM voltage during the initialization. Figure 23 hows the sequences of the power-down and the power-up. The ADC and all DACs can be powered-down individually by PWAD bit , PWDA bit and PWDA2-1 bits. These bits don’t initialize the internal register values. When PWAD bit = “0” and selecting ADC, the SDTOA(SDTOB) pin goes to “L”. When PWDA bit and PWDA1-2 bits = “0”, the analog outputs go to VCOM voltage and DZF/OVF pin go to “H”. Since some click noise may occur, the analog output should muted externally if the click noise influences system application. Power PDN 522/fs ADC Internal State (1) Init Cycle 516/fs DAC Internal State Normal Operation Power-down Normal Operation Power-down (2) Init Cycle GD (3) GD ADC In (Analog) ADC Out (Digital) “0”data DAC In (Digital) “0”data (4) (5) “0”data “0”data GD (3) GD (6) DAC Out (Analog) (6) (7) Clock In Don’t care Don’t care MCLK,LRCK,SCLK 1011/fs (10) (8) DZF1/DZF2 External Mute (9) Mute ON Mute ON Notes: (1) The analog part of ADC is initialized after exiting the power-down state. (2) The analog part of DAC is initialized after exiting the power-down state. (3) Digital output corresponding to analog input and analog output corresponding to digital input have the group delay (GD). (4) ADC output is “0” data at the power-down state. (5) Click noise occurs at the end of initialization of the analog part. Please mute the digital output externally if the click noise influences system application. (6) Click noise occurs at the falling edge of PDN and at 512/fs(DAC1) and 512/fs +96ms(DAC2) after the rising edge of PDN. (7) When the external clocks (MCLK, BICKA (BICKB), LRCKA (LRCKB)) are stopped, the AK4683 should be in the power-down mode. (8) DZF/OVF pin is “L” in the power-down mode (PDN pin = “L”). (9) Please mute the analog output externally if the click noise (6) influences system application. (10) DZF pin = “L” for 1011/fs after PDN= “”. Figure 23. Power-down/up sequence example MS0427-E-04 2013/10 - 42 - [AK4683] ■ Status of analog output pins during power-down (PDN pin =”L”) The status of analog output pins is as follows. Pin Name HPL/HPR LOUT1/ROUT1/LOUT2/ROUT2 LISEL/RISEL HVSS VCOM Hi-Z ■ Reset Function When RSTN1 bit = “0”, ADC and DACs are powered-down but the internal register are not initialized. The analog outputs go to VCOM voltage, DZF/OVF pin goes to “H” and SDTOA/B pins go to “L”. Because some click noise occurs, the analog output should be muted externally if the click noise influences system application. The Figure 24 shows the power-up sequence. RSTN bit 4~5/fs (9) 1~2/fs (9) Internal RSTN bit 516/fs (1) ADC Internal State Normal Operation Digital Block Power-down DAC Internal State Normal Operation Digital Block Power-down Normal Operation Init Cycle Normal Operation GD (2) GD ADC In (Analog) ADC Out (Digital) DAC In (Digital) “0”data (3) (4) “0”data (2) GD DAC Out (Analog) GD (6) (5) (6) (7) Clock In MCLK,LRCK,SCLK Don’t care 45/fs (8) DZF1/DZF2 Notes: (1) The analog part of ADC is initialized after exiting the reset state. (2) Digital output corresponding to analog input and analog output corresponding to digital input have the group delay (GD). (3) ADC output is “0” data at the power-down state. (4) Click noise occurs when the internal RSTN bit becomes “1”. Please mute the digital output externally if the click noise influences system application. (5) When RSTN1 bit = “0”, the analog outputs go to VCOM voltage. (6) Click noise occurs at 45/fs after RSTN1 bit becomes “0”, and occurs at 12/fs after RSTN1 bit becomes “1”. This noise is output even if “0” data is input. (7) The external clocks (MCLK, BICKA (BICKB), LRCKA (LRCKB)) can be stopped in the reset mode. When exiting the reset mode, “1” should be written to RSTN1 bit after the external clocks (MCLK, BICKA (BICKB), LRCKA (LRCKB)) are fed. (8) DZF pins go to “H” when the RSTN1 bit becomes “0”, and go to “L” at 6~7/fs after RSTN1 bit becomes “1”. (9) There is a delay, 4~5/fs from RSTN1 bit “0” to the internal RSTN bit “0”. Figure 24. Reset sequence example MS0427-E-04 2013/10 - 43 - [AK4683] ■ Headphone Output Power supply voltage for the Headphone-Amp is supplied from the HVDD pin and centered on the HVDD/2 voltage. When the MUTEN bit is “0”, the common voltage of Headphone-Amp falls and the outputs (HPL and HPR pins) go to “L” (HVSS). When the MUTEN bit is “1”, the common voltage rises to HVDD/2. A capacitor between the MUTET pin and ground reduces click noise at power-up. Rise/Fall time constant is proportional to HVDD voltage and the capacitor at MUTET pin. [Example]: A capacitor between the MUTET pin and ground = 1.0F, HVDD=5V: Rise/fall time constant: = 120ms(typ) When PWHP bit is “0”, the Headphone-Amp is powered-down, and the outputs (HPL and HPR pins) go to “L” (HVSS). PWHP bit MUTEN bit HPL pin, HPR pin (1) (2) (3) (4) (5) Figure 25. Power-up/Power-down Timing for Headphone-Amp (1) Headphone-Amp power-up (PWHP bit = “1”). The outputs are still HVSS. (2) Headphone-Amp common voltage rises up (MUTEN bit = “1”). Common voltage of Headphone-Amp is rising. (3) Start the audio output after finishing the setup pf common voltage to prevent the clipping. (4) Headphone-Amp common voltage falls down (MUTEN bit = “0”). Common voltage of Headphone-Amp is falling. (5) Headphone-Amp power-down (PWHP bit = “0”). The outputs are HVSS. If the power supply is switched off or Headphone-Amp is powered-down before the common voltage goes to HVSS, some CLICK noise occurs. The cut-off frequency (fc) of Headphone-Amp depends on the external resistor and capacitor. Table 41 shows the cut off frequency and the output power for various resistor/capacitor combinations. The headphone impedance RL is 16. Output powers are shown at HVDD = 5V. HP-AMP R C Headphone 16 AK4683 Figure 26. External Circuit Example of Headphone R [] 0 6.8 16 C [F] 220 100 100 47 100 47 fc [Hz] Output Power [mW]@0dBFS 45 50 100 70 25 149 50 12.5 106 Table 41. External Circuit Example MS0427-E-04 2013/10 - 44 - [AK4683] ■ Output Analog Volume (OPGA) Volume range of the output analog volume is 0dB to -50dB and MUTE with by zero crossing detection. The OPGA is operated by the clock for DAC. The zero crossing detection of Lch and Rch is worked independently. If there are no zero-crossings, the level will then change after a timeout period; the timeout period scales with fs. When ZCE is “0”, it is changed immediately without zero crossing detection. When writing to OPGA4-0 bits continually, it should take an interval of zero crossing timeout period or more. If the OPGA4-0 bits are changed before zero crossing, the volume of Lch and Rch may differ. When the volume that is same as the present is set, the zero crossing counter isn’t reset and timeout according to the previous writing timing. OPGA4-0 1FH 1EH 1DH : 10H 0FH 0EH 0DH : 05H 04H 03H 02H 01H 00H GAIN(dB) +0 -1 -2 : -15 -16 -18 -20 : -36 -38 -42 -46 -50 MUTE STEP LEVEL 1dB 17 2dB 11 4dB 3 1 (default) Table 42. Output Analog Volume Setting When ZCE bit is “1”, the Lch/Rch volume level are changed independently by zero crossing detection or zero crossing timeout operation. The count of timer is doubled when DAC double speed mode, four times when DAC quad speed mode. DAC2 Sampling Speed Normal Speed Mode Double Speed Mode Quad Speed Mode Zero crossing timeout 768/fs (16ms @fs=48kHz) 1536/fs (16ms @fs=96kHz) 3072/fs (16ms @fs=192kHz) Table 43. Zero crossing timeout The OPGA is enable at PWDA bit = PWDA2 bit = “1”. The initializing of OPGA starts when DAC is powered up. This initializing cycle is 96ms(@fs=48kHz). Writing to the OPGA4-0 during the initialization is ignored. The default volume value is mute after power up. Initialization time is 512/fs+96ms(@fs=48kHz) after PDN pin = “H”. DAC2 Sampling Speed Normal Speed Mode Double Speed Mode Quad Speed Mode OPGA Initialization Time 4608/fs (96ms @fs=48kHz) 9216/fs (96ms @fs=96kHz) 18432/fs (96ms @fs=192kHz) Table 44. OPGA Initialization Time MS0427-E-04 2013/10 - 45 - [AK4683] OPERATION OVERVIEW (DIR/DIT part) ■ 192kHz Clock Recovery On chip low jitter PLL has a wide lock range with 32kHz to 192kHz and the lock time is less than 20ms. The AK4683 has the sampling frequency detect function. By either the clock comparison against X’tal oscillator or using the channel status, the AK4683 detects the sampling frequency (32kHz, 44.1kHz, 48kHz, 88.2kHz, 96kHz, 176.4kHz and 192kHz). The PLL loses lock when the received sync interval is incorrect. ■ Clock Operation Mode When DIR is selected. The CM0/CM1 bits select the clock source and the data source of SDTO. In Mode 2, the clock source is automatically switched from PLL to XTI/MCLK2 when PLL goes unlock state. In Mode 3, the clock source is fixed to XTI/MCLK2, but PLL is also operating and the recovered data such as C bits can be monitored. For Mode 2 and 3, it is recommended that the frequency of XTI/MCLK2 is different from the recovered frequency from PLL. Mode 0 1 CM1 0 0 2 1 3 1 CM0 0 1 UNLOCK PLL Clock source SDTO ON PLL RX OFF EXTCLK DIT source 0 ON PLL RX 0 1 ON EXTCLK DIT source 1 ON EXTCLK DIT source ON: Oscillation (Power-up), OFF: STOP (Power-down) (default) Table 45. Clock Operation Mode select When 384fs of XTI/MCLK2 is supplied to DIR/DIT, CKSDT bit should be set to “1”. CKSDT bit 0 1 Clock Speed x1 x 2/3 (default) Table 46. XTI/MCLK2 speed MS0427-E-04 2013/10 - 46 - [AK4683] ■ Sampling Frequency and Pre-emphasis Detection The AK4683 has two methods for detecting the sampling frequency as follows. 1. Clock comparison between recovered clock and XTI/MCLK2 2. Sampling frequency information on channel status Those could be selected by XTL1, 0 bits. And the detected frequency is reported on FS3-0 bits. XTL1 0 0 1 1 XTL0 0 1 0 1 XTI/MCLK2 Frequency 11.2896MHz 12.288MHz 24.576MHz (Use channel status) (default) Table 47. Reference XTI/MCLK2 frequency Except XTL1,0= “1,1” XTL1,0= “1,1” Consumer Register output fs mode Professional mode Clock comparison (Note 2) (Note 1) Byte3 Byte0 Byte4 FS3 FS2 FS1 FS0 Bit3,2,1,0 Bit7,6 Bit6,5,4,3 0 0 0 0 44.1kHz 44.1kHz 0000 01 0000 0 0 0 1 Reserved Reserved 0001 (Others) 0 0 1 0 48kHz 48kHz 0010 10 0000 0 0 1 1 32kHz 32kHz 0011 11 0000 1 0 0 0 88.2kHz 88.2kHz (1000) 00 1010 1 0 1 0 96kHz 96kHz (1010) 00 0010 1 1 0 0 176.4kHz 176.4kHz (1100) 00 1011 1 1 1 0 192kHz 192kHz (1110) 00 0011 Note1: At least 3% range is identified as the value in the Table 48. In case of intermediate frequency of those two, FS3-0 bits indicate nearer value. When the frequency is much bigger than 192kHz or much smaller than 32kHz, FS3-0 bits may indicate “0001”. Note2: When consumer mode, Byte3 Bit3-0 are copied to FS3-0 bits. Table 48. fs Information The pre-emphasis information is detected and reported on PEM bit. This information is extracted from channel 1 at default. It can be switched to channel 2 by CS12 bit in control register. PEM Pre-emphasis 0 1 OFF ON Byte 0 Bits 3-5 0X100 0X100 Table 49. PEM in Consumer Mode PEM Pre-emphasis 0 1 OFF ON Byte 0 Bits 2-4 110 110 Table 50. PEM in Professional Mode MS0427-E-04 2013/10 - 47 - [AK4683] ■ De-emphasis Filter Control The AK4683 includes the digital de-emphasis filter (tc=50/15µs) by IIR filter corresponding to four sampling frequencies (32kHz, 44.1kHz, 48kHz and 96kHz). When DEAU bit=“1”, the de-emphasis filter is enabled automatically by sampling frequency and pre-emphasis information in the channel status. The AK4683 goes this mode at default. Therefore, in Parallel Mode, the AK4683 is always placed in this mode and the status bits in channel 1 control the de-emphasis filter. In Serial Mode, DEM0/1 and DFS bits can control the de-emphasis filter when DEAU bit is “0”. The internal de-emphasis filter is bypassed and the recovered data is output without any change if either pre-emphasis or de-emphasis Mode is OFF. PEM 1 1 1 1 1 0 FS3 0 0 0 1 FS2 0 0 0 0 x x FS1 0 1 1 1 FS0 0 0 1 0 x x (Others) Table 51. De-emphasis Auto Control at DEAU bit = “1” PEM 1 1 1 1 1 1 1 1 0 DFS 0 0 0 0 1 1 1 1 x DEM1 0 0 1 1 0 0 1 1 x DEM0 0 1 0 1 0 1 0 1 x Mode 44.1kHz 48kHz 32kHz 96kHz OFF OFF (default) Mode 44.1kHz OFF 48kHz 32kHz OFF OFF 96kHz OFF OFF (default) Table 52. De-emphasis Manual Control at DEAU bit = “0” ■ System Reset and Power-Down The AK4683 has a power-down mode for all circuits by PDN pin can be partially powerd-down by PWN bit. The RSTN2 bit initializes the register and resets the internal timing. The AK4683 should be reset once by bringing PDN pin = “L” upon power-up. PDN pin: All analog and digital circuit are placed in the power-down and reset mode by bringing PDN pin = “L”. All the registers are initialized, and clocks are stopped. Reading/Witting to the register are disabled. RSTN2 bit: All the registers except PWN and RSTN2 bits are initialized by bringing RSTN2 bit = “0”. The internal timings are also initialized. When RSTN2 bit = “0”, the clock are output but SDTO pin is hold to “L”. Witting to the register is not available except PWN and RSTN2 bits. Reading to the register is disabled. PWN bit: The clock recovery part is initialized by bringing PWN bit = “0”. In this case, clocks from PLL are stopped. The registers are not initialized and the mode settings are kept. Writing and Reading to the registers are enabled. MS0427-E-04 2013/10 - 48 - [AK4683] ■ Biphase Input and Through Output Eight receiver inputs (RX0-3) are available in Serial Control Mode. Only the RX0 input includes amplifier corresponding to unbalance mode and can accept the signal of 200mV or more. IPS1-0 bits select the receiver channel. The V bit can be output via pin. IPS1 bit 0 0 1 1 IPS0 bit 0 1 0 1 DIR Source RX0 RX1 RX2 RX3 (default) Table 53. Recovery Data Select (B) 1/4fs VOUT SDTO C(R191) V(L0) R190 V(R0) L191 V(L1) R191 L0 V(L39) L38 V(R39) V(L40) R38 L39 LRCK (except I2S) LRCK (I2S) Figure 27. V output timings MS0427-E-04 2013/10 - 49 - [AK4683] ■ Biphase Output The AK4683 can output either the through output (from RX) or transmitter output (DIT) via TX pin. Those could be selected by DIT bit. The source of the through output from TX0 could be selected among RX0-3 by OPS0, 1 bits. When output DIT data, V bit could be controlled by VIN bit and first 5 bytes of C bit could be controlled by CT39-CT0 bits in control registers. When bit0= “0”(consumer mode), bit20-23 (Audio channel) could not be controlled directly but be controlled by CT20 bit. When the CT20 bit is “1”, the AK4683 outputs “1000” as C20-23 for left channel and outputs “0100” at C20-23 for right channel automatically. When CT20 bit is “0”, the AK4683 outputs “0000” set as “1000” for sub frame 1, and “0100” for sub frame 2. U bits are fixed to “0”. DIT bit 0 0 0 0 1 OPS1 bit 0 0 1 1 * OPS0 bit 0 1 0 1 * TX Source RX0 RX1 RX2 RX3 DIT (default) Table 54. TX Source Control CM1-0 bit, CLKDT bit, CKSDT bit and OCKS1-0 select the clock source of DIT. This clock must be the same clock as the clock sources of PORT connecting to DIT. CM1 CM0 UNLOCK Clock Source (default) 0 0 RMCK 0 1 EXTCLK 0 RMCK 1 0 1 EXTCLK 1 1 EXTCLK Table 55. Clock Mode Control CLKDT bit 0 1 Clock Source XTI MCLK2 Table 56. EXTCLK Control CKSDT 0 0 0 0 1 1 1 1 OCKS1 0 0 1 1 0 0 1 1 OCKS0 0 1 0 1 0 1 0 1 EXTCLK 256fs 256fs 512fs 128fs 384fs 384fs 768fs 192fs fs(max) 96kHz 96kHz 48kHz 192kHz 48kHz 48kHz 32kHz 96kHz Table 57. MCLKO Speed MS0427-E-04 2013/10 - 50 - [AK4683] The DITD1-0 bits control the data source of DIT. DITD1 bit 0 0 1 1 DITD0 bit 0 1 0 1 DIT Source DIR ADC SDTIB SDTIA1(default) Table 58. DIT Source Control ■ Biphase signal input/output circuit (RX0, TX) Figure 28. Consumer Input Circuit (Coaxial Input) Note: In case of coaxial input, if a coupling level to this input from the next RX input line pattern exceeds 50mV, there is a possibility to occur an incorrect operation. In this case, it is possible to lower the coupling level by adding this decoupling capacitor. Optical Receiver Optical Fiber 470 RX0-3 O/E AK4683 Figure 29. Consumer Input Circuit (Optical Input) In case of coaxial input, as the input level of RX0 line is small, be careful not to crosstalk among RX input lines. For example, by inserting the shield pattern among them. The AK4683 includes the TX output buffer. The output level meets combination 0.5V+/-20% using the external resistor network. The T1 in Figure 30 is a transformer of 1:1. 3302% TX 75 cable 1002% DVSS T1 Figure 30. TX External Resistor Network MS0427-E-04 2013/10 - 51 - [AK4683] ■ Q-subcode buffers The AK4683 has Q-subcode buffer for CD application. The AK4683 takes Q-subcode into registers by following conditions. 1. The sync word (S0,S1) is constructed at least 16 “0”s. 2. The start bit is “1”. 3. Those 7bits Q-W follows to the start bit. 4. The distance between two start bits are 8-16 bits. The QINT bit in the control register goes “1” when the new Q-subcode differs from old one, and goes “0” when QINT bit is read. S0 S1 S2 S3 : S97 S0 S1 S2 S3 : 1 0 0 1 1 : 1 0 0 1 1 : 2 3 4 5 6 7 8 * 0 0 0 0 0 0 0 0… 0 0 0 0 0 0 0 0… Q2 R2 S2 T2 U2 V2 W2 0… Q3 R3 S3 T3 U3 V3 W3 0… : : : : : : : : Q97 R97 S97 T97 U97 V97 W97 0… 0 0 0 0 0 0 0 0… 0 0 0 0 0 0 0 0… Q2 R2 S2 T2 U2 V2 W2 0… Q3 R3 S3 T3 U3 V3 W3 0… : : : : : : : : (*) number of “0” : min=0; max=8. Figure 31. Configuration of U-bit(CD) Q Q2 Q3 Q4 CTRL Q5 Q6 Q7 Q8 ADRS Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 TRACK NUMBER INDEX Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41 Q42 Q43 Q44 Q45 Q46 Q47 Q48 Q49 MINUTE SECOND FRAME Q50 Q51 Q52 Q53 Q54 Q55 Q56 Q57 Q58 Q59 Q60 Q61 Q62 Q63 Q64 Q65 Q66 Q67 Q68 Q69 Q70 Q71 Q72 Q73 ZERO ABSOLUTE MINUTE ABSOLUTE SECOND Q74 Q75 Q76 Q77 Q78 Q79 Q80 Q81 Q82 Q83 Q84 Q85 Q86 Q87 Q88 Q89 Q90 Q91 Q92 Q93 Q94 Q95 Q96 Q97 ABSOLUTE FRAME CRC G(x)=x16+x12+x5+1 Figure 32. Q-subcode Addr 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH Register Name Q-subcode Address / Control Q-subcode Track Q-subcode Index Q-subcode Minute Q-subcode Second Q-subcode Frame Q-subcode Zero Q-subcode ABS Minute Q-subcode ABS Second Q-subcode ABS Frame D7 Q9 Q17 ··· ··· ··· ··· ··· ··· ··· Q81 D6 Q8 Q16 ··· ··· ··· ··· ··· ··· ··· Q80 D5 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· D4 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· D3 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· D2 ··· ··· ··· ··· ··· ··· ··· ··· ··· ··· D1 Q3 Q11 ··· ··· ··· ··· ··· ··· ··· Q75 D0 Q2 Q10 ··· ··· ··· ··· ··· ··· ··· Q74 Figure 33. Q-subcode register MS0427-E-04 2013/10 - 52 - [AK4683] ■ Error Handling There are the following eight events that make INT pin “H”. INT pin show the status of following conditions. 1. UNLOCK: “1” when the PLL loses lock. The AK4683 loses lock when the distance between two preambles is not correct or when those preambles are not correct. 2. PAR: “1” when parity error or biphase coding error is detected, and keeps “1” until this register is read. Updated every sub-frame cycle. Reading this register resets itself. 3. AUTO: “1” when Non-PCM bitstream is detected. Updated every 4096 frames cycle. 4. DTSCD: “1” when DTS-CD bitstream is detected. Updated every DTS-CD sync cycle. 5. AUDION: “1” when the “AUDIO” bit in recovered channel status indicates “1”. Updated every block cycle. 6. PEM: “1” when “PEM” in recovered channel status indicates “1”. Updated every block cycle. 7. QINT: “1” when Q-subcode differ from old one, and keeps “1” until this register is read. Updated every sync code cycle for Q-subcode. Reading this register resets itself. 8. CINT: “1” when received C bits differ from old one, and keeps “1” until this register is read. Updated every block cycle. Reading this register resets itself. INT pin is fixed to “L” when the PLL is off (CM1,0= “01”). Once the INT pin goes to “H”, this pin holds “H” for 1024/fs cycles (this value can be changed by EFH0/1 bits) after those events are removed. INT pin can mask those eight events individually. Once PAR, QINT and CINT bit goes to “1”, those registers are held to “1” until those registers are read. While the AK4683 loses lock, registers regarding C-bit or U-bits are not initialized and keep previous value. INT pin outputs the Ored signal among those eight events. However, each mask bits can mask each event. When each bit masks those events, the event does not affect INT pin operation (those mask do not affect those registers (UNLOCK, PAR, etc.) themselves. Once INT pin goes “H”, it maintains “H” for 1024/fs cycles (this value can be changed by EFH0-1 bits) after the all events are removed. Once those PAR, QINT or CINT bit goes “1”, it holds “1” until reading those registers. While the AK4683 loses lock, the channel status Q-subcode bits are not updated and hold the previous data. At initial state, INT outputs the Ored signal between UNLOCK and PAR. UNLOCK 1 0 0 0 0 0 0 0 PAR x 1 0 0 0 0 0 0 AUTO x x 1 x x x x x Event DTSCD AUDION x x x x x x 1 x x 1 x x x x x x PEM x x x x x 1 x x QINT x x x x x x 1 x CINT x x x x x x x 1 Pin SDTO* V* TX* “L” “L” Output Previous Data Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Output Note: when selected. Table 59. Error Handling MS0427-E-04 2013/10 - 53 - [AK4683] Error (UNLOCK, PAR,..) (Error) INT pin Hold Time (max: 4096/fs) Register (PAR,CINT,QINT) Hold ”1” Reset Register (others) Command MCKO, BICK, LRCK (UNLOCK) note MCKO, BICK, LRCK (except UNLOCK) note SDTO (UNLOCK) note SDTO (PAR error) note READ 06H Free Run (fs: around 20kHz) Previous Data SDTO (others) note Vpin (UNLOCK) note Vpin (except UNLOCK) note Normal Operation Note: When DIR is selected as source. Figure 34. INT0/1 pin timing MS0427-E-04 2013/10 - 54 - [AK4683] PDN pin ="L" to "H" Initialize Read 06H INT pin ="H" No Yes Release Muting Mute DAC output Read 06H (Each Error Handling) Read 06H (Resets registers) No INT pin ="H" Yes Figure 35. Error Handling Sequence Example 1 MS0427-E-04 2013/10 - 55 - [AK4683] PDN pin ="L" to "H" Initialize Read 06H No INT pin ="H" Yes Read 06H and Detect QSUB= “1” (Read Q-buffer) QCRC = “0” No New data is invalid Yes INT pin ="L" No Yes New data is valid Figure 36. Error Handling Sequence Example 2 (for Q/CINT) MS0427-E-04 2013/10 - 56 - [AK4683] ■ Non-PCM (AC-3, MPEG, etc.) and DTS-CD Bitstream Detection The AK4683 has a Non-PCM steam auto-detection function. When the 32bit mode Non-PCM preamble based on Dolby “AC3 Data Stream in IEC60958 Interface” is detected, the AUTO bit goes “1”. The 96bit sync code consists of 0x0000, 0x0000, 0x0000, 0x0000, 0xF872 and 0x4E1F. Detection of this pattern will set the AUTO bit “1”. Once the AUTO bit is set “1”, it will remain “1” until 4096 frames pass through the chip without additional sync pattern being detected. When those preambles are detected, the burst preambles Pc and Pd that follow those sync codes are stored to registers. The AK4683 also has the DTS-CD bitstream auto-detection function. When The AK4683 detects DTS-CD bitstreams, DTSCD bit goes to “1”. When the next sync code does not come within 4096 flames, DTSCD bit goes to “0” until when the AK4683 detects the stream again. ■ Burst Preambles in non-PCM Bitstreams sub-frame of IEC60958 0 3 4 preamble 7 8 11 12 Aux. 27 28 29 30 31 LSB MSB V U C P 16 bits of bitstream 0 Pa Pb Pc Pd 15 Burst_payload stuffing repetition time of the burst Figure 37. Data structure in IEC60958 Preamble word Pa Pb Pc Pd Length of field 16 bits 16 bits 16 bits 16 bits Contents sync word 1 sync word 2 Burst info Length code Value 0xF872 0x4E1F see Table 61 Numbers of bits Table 60. Burst preamble words MS0427-E-04 2013/10 - 57 - [AK4683] Bits of Pc Value 0-4 5, 6 7 8-12 13-15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16-31 0 0 1 0 Contents Repetition time of burst in IEC60958 frames data type NULL data Dolby AC-3 data reserved PAUSE MPEG-1 Layer1 data MPEG-1 Layer2 or 3 data or MPEG-2 without extension MPEG-2 data with extension MPEG-2 AAC ADTS MPEG-2, Layer1 Low sample rate MPEG-2, Layer2 or 3 Low sample rate reserved DTS type I DTS type II DTS type III ATRAC ATRAC2/3 reserved reserved, shall be set to “0” error-flag indicating a valid burst_payload error-flag indicating that the burst_payload may contain errors data type dependent info bit stream number, shall be set to “0” 4096 1536 384 1152 1152 1024 384 1152 512 1024 2048 512 1024 (Refer the IEC standards.) Table 61. Fields of burst info Pc MS0427-E-04 2013/10 - 58 - [AK4683] ■ Non-PCM Bitstream timing 1) When Non-PCM preamble is not coming within 4096 frames, PDN pin Bit stream Pa Pb Pc1 Pd1 Pa Pb Pc2 Pd2 Repetition time Pa Pb Pc3 Pd3 >4096 frames AUTO bit “0” Pc Register “0” Pd Register Pc1 Pc2 Pd1 Pc3 Pd2 Pd3 Figure 38. Timing example 1 2) When Non-PCM bit-stream stops (when MULK0=0), INT0 hold time INT0 pin <20mS (Lock time) Bit stream Pa Pb Pc1 Pd1 Stop Pa Pb Pcn Pdn 2~3 Syncs (B,M or W) <Repetition time AUTO bit Pc Register Pd Register Pc0 Pc1 Pd0 Pcn Pd1 Pdn Figure 39. Timing example 2 MS0427-E-04 2013/10 - 59 - [AK4683] OPERATION OVERVIEW (ADC/DAC part, DIR/DIT part) ■ Serial Control Interface The AK4683 has two registers, which are ADC/DAC part and DIR/DIT part. Each register is set by chip address pin. (1). 4-wire serial control mode (I2C pin = “L”) The internal registers may be either written or read by the 4-wire P interface pins: CSN, CCLK, CDTI & CDTO. The data on this interface consists of Chip address (2bits, C1-C0= “,10” for ADC/DAC part, “00” for DIR/DIT part), Read/Write (1bit), Register address (MSB first, 5bits) and Control data (MSB first, 8bits). Address and data is clocked in on the rising edge of CCLK and data is clocked out on the falling edge. For write operations, data is latched after the 16th rising edge of CCLK, after a high-to-low transition of CSN. For read operations, the CDTO output goes high impedance after a low-to-high transition of CSN. The maximum speed of CCLK is 5MHz. PDN pin = “L” resets the registers to their default values. When the state of P/S pin is changed, the AK4683 should be reset by PDN pin = “L”. Register of ADC/DAC part can not read. CSN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CCLK CDTI C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 WRITE D5 D4 D3 D2 D1 D0 Hi-Z CDTO CDTI C1 C0 R/W A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 READ Hi-Z CDTO C1-C0: R/W: A4-A0: D7-D0: D7 D6 D5 D4 D3 D2 D1 D0 Hi-Z Chip Address: (Fixed to “10” for ADC/DAC part, “00” for DIR/DIT part) READ/WRITE (0:READ, 1:WRITE) Register Address Control Data Figure 40. 4-wire Serial Control I/F Timing MS0427-E-04 2013/10 - 60 - [AK4683] (2). I2C bus control mode (I2C pin = “H”) AK4683 supports the standard-mode I2C-bus (max: 100kHz). Then AK4683 does not support a fast-mode I2C-bus system (max: 400kHz). (2)-1. Data transfer All commands are preceded by a START condition. After the START condition, a slave address is sent. After the AK4683 recognizes the START condition, the device interfaced to the bus waits for the slave address to be transmitted over the SDA line. If the transmitted slave address matches an address for one of the devices, the designated slave device pulls the SDA line to LOW (ACKNOWLEDGE). The data transfer is always terminated by a STOP condition generated by the master device. (2)-1-1. Data validity The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW except for the START and the STOP condition. SCL SDA DATA LINE STABLE : DATA VALID CHANGE OF DATA ALLOWED Figure 41. Data transfer (2)-1-2. START and STOP condition A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. All sequences start from the START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition. All sequences end by the STOP condition. SCL SDA START CONDITION STOP CONDITION Figure 42. START and STOP conditions MS0427-E-04 2013/10 - 61 - [AK4683] (2)-1-3. ACKNOWLEDGE ACKNOWLEDGE is a software convention used to indicate successful data transfers. The transmitting device will release the SDA line (HIGH) after transmitting eight bits. The receiver must pull down the SDA line during the acknowledge clock pulse so that that it remains stable “L” during “H” period of this clock pulse. The AK4683 will generates an acknowledge after each byte has been received. In the read mode, the slave, the AK4683 will transmit eight bits of data, release the SDA line and monitor the line for an acknowledge. If an acknowledge is detected and no STOP condition is generated by the master, the slave will continue to transmit data. If an acknowledge is not detected, the slave will terminate further data transmissions and await the STOP condition. The register of ADC/DAC part can not generate acknowledge for READ operations. Clock pulse for acknowledge SCL FROM MASTER 1 8 9 DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER START CONDITION acknowledge Figure 43. Acknowledge on the I2C-bus (2)-1-4. FIRST BYTE The first byte, which includes seven bits of slave address and one bit of R/W bit, is sent after the START condition. If the transmitted slave address matches an address for one of the device, the receiver who has been addressed pulls down the SDA line. The most significant five bits of the slave address are fixed as “00100”. The next two bits are CAD1 and CAD0 (device address bits). These two bits identify the specific device on the bus. The eighth bit (LSB) of the first byte (R/W bit) defines whether a write or read condition is requested by the master. A “1” indicates that the read operation is to be executed. A “0” indicates that the write operation is to be executed. 0 0 1 0 0 CAD1 CAD0 R/W (CAD1-CAD0 = fixed to “10” for ADC/DAC part, “00” for DIR/DIT part) Figure 44. The First Byte MS0427-E-04 2013/10 - 62 - [AK4683] (2)-2. WRITE Operations Set R/W bit = “0” for the WRITE operation of the AK4683. After receipt the start condition and the first byte, the AK4683 generates an acknowledge, and awaits the second byte (register address). The second byte consists of the address for control registers of AK4683. The format is MSB first, and those most significant 3-bits are “Don’t care”. * * * A4 A3 A2 A1 A0 (*: Don’t care) Figure 45. The Second Byte After receipt the second byte, the AK4683 generates an acknowledge, and awaits the third byte. Those data after the second byte contain control data. The format is MSB first, 8bits. D7 D6 D5 D4 D3 D2 D1 D0 Figure 46. Byte structure after the second byte The AK4683 is capable of more than one byte write operation by one sequence. After receipt of the third byte, the AK4683 generates an acknowledge, and awaits the next data again. The master can transmit more than one words instead of terminating the write cycle after the first data word is transferred. After the receipt of each data, the internal 5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address exceed 1FH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. S T A R T SDA Slave Address Register Address(n) Data(n) S T Data(n+x) O P Data(n+1) S P A C K A C K A C K A C K Figure 47. WRITE Operation MS0427-E-04 2013/10 - 63 - [AK4683] (2)-3. READ Operations Set R/W bit = “1” for the READ operation of the AK4683. After transmission of a data, the master can read next address’s data by generating the acknowledge instead of terminating the write cycle after the receipt the first data word. After the receipt of each data, the internal 5bits address counter is incremented by one, and the next data is taken into next address automatically. If the address exceed 1FH prior to generating the stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten. The AK4683 supports two basic read operations: CURRENT ADDRESS READ and RANDOM READ. ADC/DAC part register can not read. (2)-3-1. CURRENT ADDRESS READ The AK4683 contains an internal address counter that maintains the address of the last word accessed, incremented by one. Therefore, if the last access (either a read or write) was to address n, the next CURRENT READ operation would access data from the address n+1. After receipt of the slave address with R/W bit set to “1”, the AK4683 generates an acknowledge, transmits 1byte data which address is set by the internal address counter and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but generate the stop condition, the AK4683 discontinues transmission S T A R T SDA Slave Address Data(n) Data(n+1) S Data(n+x) T O P Data(n+2) S P A C K A C K A C K A C K Figure 48. CURRENT ADDRESS READ (2)-3-2. RANDOM READ Random read operation allows the master to access any memory location at random. Prior to issuing the slave address with the R/W bit set to “1”, the master must first perform a “dummy” write operation. The master issues the start condition, slave address(R/W=“0”) and then the register address to read. After the register address’s acknowledge, the master immediately reissues the start condition and the slave address with the R/W bit set to “1”. Then the AK4683 generates an acknowledge, 1byte data and increments the internal address counter by 1. If the master does not generate an acknowledge to the data but generate the stop condition, the AK4683 discontinues transmission. S T A R T SDA Slave Address S T A R T Word Address(n) S Slave Address Data(n) S Data(n+x) T O P Data(n+1) S A C K P A C K A C K A C K A C K Figure 49. RANDOM READ MS0427-E-04 2013/10 - 64 - [AK4683] ■ Register Map (ADC/DAC part) Addr 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H Register Name Powerdown 1 Powerdown 2 Clock Select 1 Clock Select 2 Clock Select 3 Clock Select 4 Sampling Speed Data Source Select 1 Data Source Select 2 Analog Input Control Audio Data Format De-emphasis/ ATT speed LIN Volume Control RIN Volume Control LOUT1 Volume Control ROUT1 Volume Control LOUT2 Volume Control ROUT2 Volume Control HPL Volume Control OVF/DZF/V Control D7 PWXTL PWPOB 0 CKSL2 CKSAI2 0 0 0 0 0 0 DEM11 D6 MUTEN PWPOA 0 CKSL1 CKSAI1 XTL1 D5 PWVR PWDA 0 CKSL0 CKSAI0 XTL0 DITD1 DAC21 0 DIFB1 DEM21 D4 PWHP PWAD 0 CLKL1 0 CKSDT ACKSB DITD0 DAC20 0 DIFB0 DEM20 ACKSAI ACKSAO 0 DAC22 0 0 DEM10 ATTAD7 ATTAD7 ATTDA7 ATTDA7 ATTDA7 ATTDA7 ATTAD6 ATTAD6 ATTDA6 ATTDA6 ATTDA6 ATTDA6 ATTAD5 ATTAD5 ATTDA5 ATTDA5 ATTDA5 ATTDA5 0 0 0 0 0 ZCE D3 0 0 CLKB1 CLKL0 OLRA1 CKSB2 0 D2 SMAD 0 CLKB0 MCKO1 OLRA0 CKSB1 DFSAD D1 SMDA PWDA2 CLKA1 MCKO0 BCAF CKSB0 D0 RSTN1 PWDA1 CLKA0 CLKDT MSA MSB SDTOB1 SDTOB0 DFSDA1 SDTOA1 DFSDA0 SDTOA0 0 0 TDMA1 0 DAC12 AIN2 TDMA0 ATSAD DAC11 AIN1 DIFA1 0 DAC10 AIN0 DIFA0 ATSDA ATTAD4 ATTAD4 ATTDA4 ATTDA4 ATTDA4 ATTDA4 ATTAD3 ATTAD3 ATTDA3 ATTDA3 ATTDA3 ATTDA3 ATTAD2 ATTAD2 ATTDA2 ATTDA2 ATTDA2 ATTDA2 ATTAD1 ATTAD1 ATTDA1 ATTDA1 ATTDA1 ATTDA1 ATTAD0 ATTAD0 ATTDA0 ATTDA0 ATTDA0 ATTDA0 OPGA4 VIN OPGA3 FUNC1 OPGA2 FUNC0 OPGA1 DZFM1 OPGA0 DZFM0 Note: For addresses from14H to 1FH, data must not be written. When PDN pin goes to “L”, the registers are initialized to their default values. When RSTN1 bit goes to “0”, the internal timing is reset and DZF pin goes to “H”, but registers are not initialized to their default values. MS0427-E-04 2013/10 - 65 - [AK4683] ■ Register Definitions Addr 00H Register Name Powerdown 1 Default D7 PWXTL 1 D6 MUTEN 0 D5 PWVR 1 D4 PWHP 0 D3 0 0 D2 SMAD 0 D1 SMDA 0 D0 RSTN1 1 RSTN1: Internal timing reset 0: Reset. DZF pin go to “H”, but registers are not initialized. 1: Normal operation (default) SMDA: DAC Soft Mute Enable 0: Normal operation (default) 1: All DAC outputs soft-muted SMAD: ADC Soft Mute Enable 0: Normal operation (default) 1: ADC outputs soft-muted PWHP: Power management for headphone amplifier 0: Power OFF (default) 1: Power ON PWVR: Power management for reference voltage 0: Power OFF 1: Power ON (default) MUTEN: Bias voltage control for headphone amp 0: bias = 0V (default). 1: Normal operation. Bias = 0.5xHVDD(typ). PWXTL: Power management for X’tal oscillator 0: Power OFF 1: Power ON (default) MS0427-E-04 2013/10 - 66 - [AK4683] Addr 01H Register Name Powerdown 2 Default D7 PWPOB 1 D6 PWPOA 1 D5 PWDA 1 D4 PWAD 1 D3 0 0 D2 0 0 D1 PWDA2 1 D0 PWDA1 1 D4 0 0 D3 CLKB1 0 D2 CLKB0 1 D1 CLKA1 0 D0 CLKA0 1 PWDA1: Power-down control of DAC1 Analog 0: Power-down 1: Normal operation (default) PWDA2: Power-down control of DAC2 Analog 0: Power-down 1: Normal operation (default) PWAD: Power-down control of ADC 0: Power-down 1: Normal operation (default) PWDA: Full-Power-down control of DAC1-2 0: Power-down 1: Normal operation (default) PWPOA: Power-down control of PORTA 0: Power-down 1: Normal operation (default) PWPOB: Power-down control of PORTB 0: Power-down 1: Normal operation (default) Addr 02H Register Name Clock Select 1 Default D7 0 0 D6 0 0 D5 0 0 CLKA1-0: Clock source control for PORTA 00: DIR 01: X’tal(XTI) (default) 10: MCLK2 11: (Reserved) CLKB1-0: Clock source control for PORTB 00: DIR 01: X’tal(XTI) (default) 10: MCLK2 11: (Reserved) MS0427-E-04 2013/10 - 67 - [AK4683] Addr 03H Register Name Clock Select 2 Default D7 D6 D5 D4 D3 D2 D1 D0 CKSL2 0 CKSL1 1 CKSL0 0 CLKL1 0 CLKL0 1 MCKO1 0 MCKO0 1 CLKDT 0 CLKDT: Clock source control for DIT Refer Table 56. MCLKO1-0: Clock source control for MCLKO Refer Table 4. CLKL1-0: Clock source control for Clock Gen C 00: DIR 01: X’tal(XTI) (default) 10: MCLK2 11: (Reserved) CLSL2-0: Clock control for Clock Gen C Refer Table 15 Addr 04H Register Name Clock Select 3 Default D7 D6 D5 D4 D3 D2 D1 D0 CKSAI2 0 CKSAI1 1 CKSAI0 0 SELAO 0 OLRA1 0 OLRA0 0 BCAF 0 MSA 0 MSA: Master/Slave control for input data of PORTA. Refer Table 16. BCAF: Bit clock control for PORTA Refer Table 13. OLRA1-0: Clock control for PORTA OLRCKA. Refer Table 12. SELAO: Clock control for DIR/DIT 0: Except for the case at “1”. (default) 1: Selects when the frequency of ILRCKA and OLRCKA are different, DITD[1:0]= “00” or “01” and both SDTOA[1:0] and DITD[1:0] select same data source. CKSAI2-0: Clock control for PORTA Input Data. Refer Table 11. MS0427-E-04 2013/10 - 68 - [AK4683] Addr 05H Register Name Clock Select 4 Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 XTL1 0 XTL0 0 CKSDT 0 CKSB2 0 CKSB1 1 CKSB0 0 MSB 0 MSB: Master/Slave control for input data of PORTB. Refer Table 17. CKSB2-0: Clock control for PORTB. Refer Table 14. CKSDT: Clock control for DIT. Refer Table 57. XTL1-0: X’tal Frequency control 00: 11.2896MHz (default) 01: 12.288MHz 10: 24.576MHz 11: (channel status) Addr 06H Register Name Sampling Speed Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 ACKSAI 0 ACKSAO 0 ACKSB 0 0 0 DFSAD 0 DFSDA1 0 DFSDA0 0 DFSDA1-0: DAC sampling speed control These settings are ignored in Auto Setting Mode. Refer Table 22. DFSAD: ADC sampling speed control This setting is ignored in Auto Setting Mode. Refer Table 21. ACSKB: Auto Setting Mode of PORTB 0: Disable, Manual Setting Mode (default) 1: Enable, Auto Setting Mode Master clock frequency is detected automatically at ACKSB bit “1”. In this case, the setting of DFSAD, DFSDA1-0 bits of the block connecting this PORT is ignored. When this bit is “0”, DFSAD, DFSDA1-0 bits set the sampling speed mode. ACSKAO: Auto Setting Mode of PORTA Output 0: Disable, Manual Setting Mode (default) 1: Enable, Auto Setting Mode Master clock frequency is detected automatically at ACKSAO bit “1”. In this case, the setting of DFSAD, DFSDA1-0 bits of the block connecting this PORT is ignored. When this bit is “0”, DFSAD, DFSDA1-0 bits set the sampling speed mode. ACSKAI: Auto Setting Mode of PORTA Input 0: Disable, Manual Setting Mode (default) 1: Enable, Auto Setting Mode Master clock frequency is detected automatically at ACKSAI bit “1”. In this case, the setting of DFSAD, DFSDA1-0 bits of the block connecting this PORT is ignored. When this bit is “0”, DFSAD, DFSDA1-0 bits set the sampling speed mode. MS0427-E-04 2013/10 - 69 - [AK4683] Addr 07H Register Name Data Source Select 1 Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 DITD1 1 DITD0 1 SDTOB1 0 SDTOB0 1 SDTOA1 0 SDTOA0 1 SDTOA1-0: Data source control for PORTA 00: DIR 01: ADC (default) 10: SDTIB 11: off (“L” output) SDTOB1-0: Data source control for PORTB 00: DIR 01: ADC (default) 10: off (“L” output) 11: SDTIA1 DITD1-0: Data source control for DIT 00: DIR 01: ADC 10: SDTIB 11: SDTIA1 (default) MS0427-E-04 2013/10 - 70 - [AK4683] Addr 08H Register Name Data Source Select 2 Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 DAC22 1 DAC21 0 DAC20 0 0 0 DAC12 0 DAC11 1 DAC10 1 DAC12-10: Data source control for DAC1 000: DIR 001: ADC 010: SDTIB 011: SDTIA1 (default) 100: SDTIA2 101: SDTIA3 DAC22-20: Data source control for DAC2 000: DIR 001: ADC 010: SDTIB 011: SDTIA1 100: SDTIA2 (default) 101: SDTIA3 Addr 09H Register Name Analog Input Control Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 0 0 0 AIN2 0 AIN1 0 AIN0 0 AIN2-0: ADC input selector control 000: LIN1/RIN1 (default) 001: LIN2/RIN2 010: LIN3/RIN3 011: LIN4/RIN4 100: LIN5/RIN5 101: LIN6/RIN6 110: None 111: None Addr 0AH Register Name Audio Data Format Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 DIFB1 1 DIFB0 0 TDMA1 0 TDMA0 0 DIFA1 1 DIFA0 0 DIFA1-0, TDMA1-0: Audio format control for PORTA Refer Table 31, Table 32, Table 33. DIFB1-0: Audio format control for PORTB Refer Table 34. Addr 0BH Register Name D7 D6 D5 D4 D3 D2 D1 D0 De-emphasis/ ATT speed DEM21 0 DEM20 1 DEM11 0 DEM10 1 0 0 ATSAD 0 0 0 ATSDA 0 Default ATSDA: DAC digital Attenuator transition time control ATSAD: ADC digital Attenuator transition time control Refer Table 37, Table 38. DEM11-10: DAC1 De-emphasis filter control DEM21-20: DAC2 De-emphasis filter control Refer Table 30. Default: “01”, OFF MS0427-E-04 2013/10 - 71 - [AK4683] Addr 0CH 0DH Register Name LIN Volume Control RIN Volume Control Default D7 D6 D5 D4 D3 D2 D1 D0 ATTAD7 ATTAD7 ATTAD6 ATTAD6 ATTAD5 ATTAD5 ATTAD4 ATTAD4 ATTAD3 ATTAD3 ATTAD2 ATTAD2 ATTAD1 ATTAD1 ATTAD0 ATTAD0 0 0 1 1 0 0 0 0 ATTAD7-0: ADC Attenuation level control Refer Table 35. Default: “30H”, 0bd Addr 0EH 0FH 10H 11H Register Name D7 D6 D5 D4 D3 D2 D1 D0 LOUT1 Volume Control ROUT1 Volume Control LOUT2 Volume Control ROUT2 Volume Control ATTDA7 ATTDA7 ATTDA7 ATTDA7 ATTDA6 ATTDA6 ATTDA6 ATTDA6 ATTDA5 ATTDA5 ATTDA5 ATTDA5 ATTDA4 ATTDA4 ATTDA4 ATTDA4 ATTDA3 ATTDA3 ATTDA3 ATTDA3 ATTDA2 ATTDA2 ATTDA2 ATTDA2 ATTDA1 ATTDA1 ATTDA1 ATTDA1 ATTDA0 ATTDA0 ATTDA0 ATTDA0 0 0 0 1 1 0 0 0 D5 0 D4 D3 D2 D1 D0 OPGA4 OPGA3 OPGA2 OPGA1 OPGA0 0 0 0 0 0 0 Default ATTDA7-0: DAC Attenuation level control Refer Table 36. Default: “18H”, 0db Addr 12H Register Name HP Volume Control Default D7 D6 0 0 0 0 OPGA5-0: HP OPGA Attenuation level control Refer Table 42. Default: “00H”, Mute Addr 13H Register Name OVF/DZF/V Control Default D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 ZCE 1 VIN 0 FUNC1 0 FUNC0 0 DZFM1 0 DZFM0 0 DZFM1-0: DZF mode setting Refer Table 7. FUNC1-0: OVF/DZF/V mode control 00: off (“L” output. Default) 01: ADC Overflow detection 10: DAC Zero data detection 11: V output VIN: DIT V bit control 0: V bit = “0” (default) 1: V bit = “1” ZCE: OPGA Zero-cross enable 0: Disable 1: Enable (default) MS0427-E-04 2013/10 - 72 - [AK4683] ■ Register Map (DIR/DIT part) Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0 00H CLK & Power Down Control CS12 1 CM1 CM0 OCKS1 OCKS0 PWN RSTN2 01H Format & De-em Control 0 1 1 0 DEAU DEM1 DEM0 DFS 02H Input/ Output Control 0 TXE 0 OPS1 OPS0 0 0 0 0 03H Input/ Output Control 1 EFH1 EFH0 0 0 DIT 0 IPS1 IPS0 04H INT MASK MPE0 MAUD0 MPAR0 05H TEST 1 0 1 06H PEM AUDION PAR V QCRC CCRC MQIT0 MAUT0 MCIT0 MULK0 MDTS0 1 0 1 Receiver status 0 QINT AUTO CINT 07H Receiver status 1 FS3 FS2 FS1 08H RX Channel Status Byte 0 CR7 CR6 CR5 CR4 CR3 CR2 CR1 CR0 09H RX Channel Status Byte 1 CR15 CR14 CR13 CR12 CR11 CR10 CR9 CR8 0AH RX Channel Status Byte 2 CR23 CR22 CR21 CR20 CR19 CR18 CR17 CR16 0BH RX Channel Status Byte 3 CR31 CR30 CR29 CR28 CR27 CR26 CR25 CR24 0CH RX Channel Status Byte 4 CR39 CR38 CR37 CR36 CR35 CR34 CR33 CR32 0DH TX Channel Status Byte 0 CT7 CT6 CT5 CT4 CT3 CT2 CT1 CT0 0EH TX Channel Status Byte 1 CT15 CT14 CT13 CT12 CT11 CT10 CT9 CT8 0FH TX Channel Status Byte 2 CT23 CT22 CT21 CT20 CT19 CT18 CT17 CT16 10H TX Channel Status Byte 3 CT31 CT30 CT29 CT28 CT27 CT26 CT25 CT24 11H TX Channel Status Byte 4 CT39 CT39 CT39 CT39 CT39 CT39 CT39 CT32 12H Burst Preamble Pc Byte 0 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0 13H Burst Preamble Pc Byte 1 PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8 14H Burst Preamble Pd Byte 0 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 15H Burst Preamble Pd Byte 1 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 16H Q-subcode Address / Control Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 17H Q-subcode Track Q17 Q16 Q15 Q14 Q13 Q12 Q11 Q10 18H Q-subcode Index Q25 Q24 Q23 Q22 Q21 Q20 Q19 Q18 19H Q-subcode Minute Q33 Q32 Q31 Q30 Q29 Q28 Q27 Q26 1AH Q-subcode Second Q41 Q40 Q39 Q38 Q37 Q36 Q35 Q34 1BH Q-subcode Frame Q49 Q48 Q47 Q46 Q45 Q44 Q43 Q42 1CH Q-subcode Zero Q57 Q56 Q55 Q54 Q53 Q52 Q51 Q50 1DH Q-subcode ABS Minute Q65 Q64 Q63 Q62 Q61 Q60 Q59 Q58 1EH Q-subcode ABS Second Q73 Q72 Q71 Q70 Q69 Q68 Q67 Q66 1FH Q-subcode ABS Frame Q81 Q80 Q79 Q78 Q77 Q76 Q75 When PDN pin goes “L”, the registers are initialized to their default values. When RSTN bit goes “0”, the internal timing is reset and the registers are initialized to their default values. All data can be written to the register even if PWN bit is “0”. The “0” register should be written “0”, the “1” register should be written “1” data. Q74 MS0427-E-04 1 0 UNLCK DTSCD FS0 0 2013/10 - 73 - [AK4683] ■ Register Definitions Reset & Initialize Addr Register Name 00H CLK & Power Down Control R/W Default D7 CS12 R/W 0 D6 1 R/W 1 D5 CM1 R/W 0 D4 CM0 R/W 0 D3 D2 OCKS1 OCKS0 R/W R/W 0 0 D1 PWN R/W 1 D0 RSTN2 R/W 1 RSTN2: Timing Reset & Register Initialize 0: Reset & Initialize 1: Normal Operation (default) PWN: Power Down 0: Power Down 1: Normal Operation (default) OCKS1-0: Master Clock Frequency Select Refer Table 3, Table 57. CM1-0: Master Clock Operation Mode Select Refer Table 1, Table 45, Table 55. CS12: Channel Status Select 0: Channel 1 (default) 1: Channel 2 Selects which channel status is used to derive C-bit buffers, AUDION, PEM, FS3, FS2, FS1, FS0, Pc and Pd. The de-emphasis filter is controlled by channel 1 in the Parallel Mode. Format & De-emphasis Control Addr Register Name 01H Format & De-em Control R/W Default D7 0 R/W 0 D6 1 R/W 1 D5 1 R/W 1 D4 0 R/W 0 D3 DEAU R/W 1 D2 DEM1 R/W 0 D1 DEM0 R/W 1 D0 DFS R/W 0 DFS: 96kHz De-emphasis Control Refer Table 52. DEM1-0: 32, 44.1, 48kHz De-emphasis Control Refer Table 52. DEAU: De-emphasis Auto Detect Enable 0: Disable 1: Enable (default) MS0427-E-04 2013/10 - 74 - [AK4683] Input/Output Control Addr Register Name 02H Input/ Output Control 0 R/W Default D7 TXE R/W 1 D6 0 R/W 0 D5 OPS1 R/W 0 D4 OPS0 R/W 0 D3 0 R/W 0 D2 0 R/W 0 D1 0 R/W 0 D0 0 R/W 0 D5 0 R/W 0 D4 0 R/W 0 D3 DIT R/W 1 D2 0 R/W 0 D1 IPS1 R/W 0 D0 IPS0 R/W 0 D1 MAN0 R/W 1 D0 MPR0 R/W 0 OPS1-0: Output Through Data Select for TX pin Refer Table 54. TXE: TX Output Enable 0: Disable. TX0 pin outputs “L”. 1: Enable (default) Addr Register Name 03H Input/ Output Control 1 R/W Default D7 EFH1 R/W 0 D6 EFH0 R/W 1 IPS1-0: Input Recovery Data Select Refer Table 53. DIT: Through data/Transmit data select for TX1 pin 0: Through data (RX data). 1: Transmit data (DAUX2 data. Default.). (U bit for DIT is fixed to “0”) EFH1-0: Interrupt 0 Pin Hold Count Select 00: 512 LRCK2 01: 1024 LRCK (default) 10: 2048 LRCK 11: 4096 LRCK Mask Control for INT Addr Register Name 04H INT MASK R/W Default MPR0: MAN0: MPE0: MDTS0: MUL0: MCI0: MAT0: MQI0: D7 MQI0 R/W 1 D6 MAT0 R/W 1 D5 MCI0 R/W 1 D4 MUL0 R/W 0 D3 MDTS0 R/W 1 D2 MPE0 R/W 1 Mask Enable for PAR bit Mask Enable for AUDN bit Mask Enable for PEM bit Mask Enable for DTSCD bit Mask Enable for UNLOCK bit Mask Enable for CINT bit Mask Enable for AUTO bit Mask Enable for QINT bit 0: Mask disable 1: Mask enable MS0427-E-04 2013/10 - 75 - [AK4683] Receiver Status 0 Addr Register Name 06H Receiver status 0 R/W Default D7 QINT RD 0 D6 AUTO RD 0 D5 CINT RD 0 D4 D3 UNLCK DTSCD RD RD 0 0 D2 PEM RD 0 D1 AUDION RD 0 D0 PAR RD 0 PAR: Parity Error or Biphase Error Status 0: No Error 1: Error It is “1” if Parity Error or Biphase Error is detected in the sub-frame. AUDION: Audio Bit Output 0: Audio 1: Non Audio This bit is made by encoding channel status bits. PEM: Pre-emphasis Detect. 0: OFF 1: ON This bit is made by encoding channel status bits. DTSCD: DTS-CD Auto Detect 0: No detect 1: Detect UNLCK: PLL Lock Status 0: Locked 1: Unlocked CINT: Channel Status Buffer Interrupt 0: No change 1: Changed AUTO: Non-PCM Auto Detect 0: No detect 1: Detect QINT: Q-subcode Buffer Interrupt 0: No change 1: Changed QINT, CINT and PAR bits are initialized when 06H is read. MS0427-E-04 2013/10 - 76 - [AK4683] Receiver Status 1 Addr Register Name 07H Receiver status 1 R/W Default D7 FS3 RD 0 D6 FS2 RD 0 D5 FS1 RD 0 D4 FS0 RD 1 D3 0 RD 0 D2 V RD 0 D1 QCRC RD 0 D0 CCRC RD 0 D2 CR2 CR10 CR18 CR26 CR34 D1 CR1 CR9 CR17 CR25 CR33 D0 CR0 CR8 CR16 CR24 CR32 D2 CT2 CT10 CT18 CT26 CT34 D1 CT1 CT9 CT17 CT25 CT335 D0 CT0 CT8 CT16 CT24 CT32 CCRC: Cyclic Redundancy Check for Channel Status 0:No Error 1:Error QCRC: Cyclic Redundancy Check for Q-subcode 0:No Error 1:Error V: Validity of channel status 0:Valid 1: Invalid FS3-0: Sampling Frequency detection (refer Table 48.) Receiver Channel Status Addr 08H 09H 0AH 0BH 0CH Register Name RX Channel Status Byte 0 RX Channel Status Byte 1 RX Channel Status Byte 2 RX Channel Status Byte 3 RX Channel Status Byte 4 R/W Default D7 CR7 CR15 CR23 CR31 CR39 D6 CR6 CR14 CR22 CR30 CR38 D5 CR5 CR13 CR21 CR29 CR37 D4 CR4 CR12 CR20 CR28 CR36 D3 CR3 CR11 CR19 CR27 CR35 RD Not Initialized CR39-0: Receiver Channel Status Byte 4-0 Transmitter Channel Status Addr 0DH 0EH 0FH 10H 11H Register Name TX Channel Status Byte 0 TX Channel Status Byte 1 TX Channel Status Byte 2 TX Channel Status Byte 3 TX Channel Status Byte 3 R/W Default D7 CT7 CT15 CT23 CT31 CT39 D6 CT6 CT14 CT22 CT30 CT38 D5 CT5 CT13 CT21 CT29 CT37 D4 D3 CT4 CT3 CT12 CT11 CT20 CT19 CT28 CT27 CT36 CT35 R/W 0 CT39-0: Transmitter Channel Status Byte 4-0 MS0427-E-04 2013/10 - 77 - [AK4683] Burst Preamble Pc/Pd in non-PCM encoded Audio Bitstreams Addr 12H 13H 14H 15H Register Name Burst Preamble Pc Byte 0 Burst Preamble Pc Byte 1 Burst Preamble Pd Byte 0 Burst Preamble Pd Byte 1 R/W Default D7 PC7 PC15 PD7 PD15 D6 PC6 PC14 PD6 PD14 D5 PC5 PC13 PD5 PD13 D4 PC4 PC12 PD4 PD12 D3 PC3 PC11 PD3 PD11 D2 PC2 PC10 PD2 PD10 D1 PC1 PC9 PD1 PD9 D0 PC0 PC8 PD0 PD8 D2 Q4 Q12 Q20 Q28 Q36 Q44 Q52 Q60 Q68 Q76 D1 Q3 Q11 Q19 Q27 Q35 Q43 Q51 Q59 Q67 Q75 D0 Q2 Q10 Q18 Q26 Q34 Q42 Q50 Q58 Q66 Q74 RD Not Initialized PC15-0: Burst Preamble Pc Byte 0 and 1 PD15-0: Burst Preamble Pd Byte 0 and 1 Q-subcode Buffer Addr 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH Register Name Q-subcode Address / Control Q-subcode Track Q-subcode Index Q-subcode Minute Q-subcode Second Q-subcode Frame Q-subcode Zero Q-subcode ABS Minute Q-subcode ABS Second Q-subcode ABS Frame R/W Default D7 Q9 Q17 Q25 Q33 Q41 Q49 Q57 Q65 Q73 Q81 D6 Q8 Q16 Q24 Q32 Q40 Q48 Q56 Q64 Q72 Q80 D5 Q7 Q15 Q23 Q31 Q39 Q47 Q55 Q63 Q71 Q79 D4 Q6 Q14 Q22 Q30 Q38 Q46 Q54 Q62 Q70 Q78 D3 Q5 Q13 Q21 Q29 Q37 Q45 Q53 Q61 Q69 Q77 RD Not Initialized MS0427-E-04 2013/10 - 78 - [AK4683] SYSTEM DESIGN Figure 50 shows the system connection diagram. The evaluation board is available which demonstrates application circuits, the optimum layout, power supply arrangements and measurement results. 5 Analog in + 10u 12k + 10u 0.1u AVSS1 49 LIN1 51 AVDD1 50 LIN2 53 RIN1 52 LIN3 55 RIN2 54 LIN4 57 RIN3 56 LIN5 59 RIN4 58 LIN6 61 RIN5 60 RIN6 62 PVSS 63 R 64 0.1u S/PDIF sources 1 PVDD RISEL 48 2 RX0 ROPIN 47 3 I2C LOPIN 46 4 RX1 LISEL 45 5 RX2 AVSS2 44 6 RX3 AVDD2 43 7 INT + 0.1u VCOM 42 8 DZF + 2.2u ROUT2 41 MUTE LOUT2 40 MUTE ROUT2 39 MUTE 11 BICKB LOUT2 38 MUTE 12 SDTOB MUTET 37 AK4683 9 CDTO/TEST 10 LRCKB 1u 13 OLRCKA HPL 36 14 ILRCKA HPR 35 + 32 SDTIB 29 SDTIA 1 30 SDTIA 2 31 SDTIA3 27 SCL 26 SDA 25 PDN 23 TX 22 XTO 21 XTI 20 DVDD 47u 6.8 47u Analog out Headphone 0.1u 10u + HVDD 33 Analog 5V X’tal 0.1u C C 3.3V to 5V Digital Audio DSP1 HVSS 34 6.8 Analog 5V 10u 19 DVSS 18 TVDD + 0.1u 10u 17 MCKO 16 SDTOA 24 MCLK2 15 BICKA 28 CSN/TEST Audio DSP2 0.1u 10u Micro Controller 5V Digital S/PDIF out Digital Ground Analog Ground Figure 50. Typical Connection Diagram( I2C serial control mode) Notes: - “C” depends on the crystal. - AVSS, DVSS, PVSS and HVSS must be connected to the same analog ground plane. - Digital signals, especially clocks, should be kept away from the R pin in order to avoid an effect to the clock jitter performance. - In case of coaxial input, ground of RCA connector and terminator should be connected to PVSS of the AK4683 with low impedance on PC board. MS0427-E-04 2013/10 - 79 - [AK4683] 1. Grounding and Power Supply Decoupling The AK4683 requires careful attention to power supply and grounding arrangements. AVDD1, AVDD2, DVDD, PVDD and HVDD are usually supplied from analog supply in system. If AVDD1, AVDD2, DVDD, PVDD and HVDD are supplied separately, the power up sequence is not critical. AVSS1, AVSS2, DVSS PVSS and HVSS of the AK4683 must be connected to analog ground plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto the printed circuit board. Decoupling capacitors should be as near to the AK4683 as possible, with the small value ceramic capacitor being the nearest. 2. Voltage Reference Inputs The voltage of AVDD1, AVDD2 sets the analog input/output range. VCOM is a signal ground of this chip. An electrolytic capacitor 2.2F parallel with a 0.1F ceramic capacitor attached between VCOM pin and AVSS1 pin eliminates the effects of high frequency noise. No load current may be drawn from VCOM pin. All signals, especially clocks, should be kept away from the AVDD1, AVDD2 and VCOM pins in order to avoid unwanted coupling into the AK4683. 3. Analog Inputs The AK4683 receives the analog input through the single-ended Pre-amp using external resistors. Adjust the input level/gain at Pre-amp to match the input range 1.22 x AVDD1 Vpp (typ. Fs=48kHz, Ri =47kohm, Rf = 24kohm). Each input pins are biased internally. The ADC output data format is 2’s complement. The internal digital HPF removes the DC offset. The AK4683 samples the analog inputs at 64fs. The digital filter rejects noise above the stop band except for multiples of 64fs. The AK4683 includes an anti-aliasing filter (RC filter) to attenuate a noise around 64fs. 4. Analog Outputs The analog outputs are also single-ended and centered around the VCOM voltage. The input signal range scales with the supply voltage and nominally 0.6 x AVDD2 Vpp. The DAC input data format is 2’s complement. The output voltage is a positive full scale for 7FFFFFH(@24bit) and a negative full scale for 800000H(@24bit). The ideal output is VCOM voltage for 000000H(@24bit). The internal analog filters remove most of the noise generated by the delta-sigma modulator of DAC beyond the audio passband. DC offsets on analog outputs are eliminated by AC coupling since DAC outputs have DC offsets of a few mV. 5. Attention to the PCB Wiring LIN1-6 and RIN1-6 pins are the summing nodes of the Pre-Amp. Attention should be given to avoid coupling with other signals on those nodes. This can be accomplished by making the wire length of the input resistors as short as possible. The same theory also applies to the LOPIN/ROPIN pins and feedback resistors; keep the wire length to a minimum. Unused input pins among LIN1-6 and RIN1-6 pins should be left open. MS0427-E-04 2013/10 - 80 - [AK4683] PACKAGE 64pin LQFP(Unit: mm) 12.0 Max 1.85 10.0 1.40 0.00~0.25 33 32 48 12.0 49 64 17 16 1 0.5 0.20.1 0.09~0.25 0.10 M 0~10 0.500.25 0.10 ■ Package & Lead frame material Package molding compound: Lead frame material: Lead frame surface treatment: Epoxy Cu Solder (Pb free) plate MS0427-E-04 2013/10 - 81 - [AK4683] MARKING AKM AK4683EQ XXXXXXX 1 1) 2) 3) 4) Pin #1 indication Asahi Kasei Logo Marking Code: AK4683EQ Date Code: XXXXXXX(7 digits) REVISION HISTORY Date (Y/M/D) 05/09/30 Revision 00 05/11/15 01 07/4/1 02 10/09/17 03 13/10/25 04 Reason First Edition Error Correction Comment Addition Specification Change Error Correction Page Contents 30 Table 28, 29: “off” → “SDTIB” 38 67 “(Table 16)” → “(Table 37, Table 38)” CLKDT: “Table 58” → “Table 56” SELAO: “DIT[1:0]” → “DITD[1:0]” Notes were added for the synchronous operation of PORTA and PORTB. PACKAGE The package dimensions were changed. ■ ADC, DAC Control DFSAD1-0 → DFSAD DFSAD0 → DFSAD 23, 25 81 29 MS0427-E-04 2013/10 - 82 - [AK4683] IMPORTANT NOTICE 0. Asahi Kasei Microdevices Corporation (“AKM”) reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document (“Product”), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products. 1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS. 2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing. 3. Though AKM works continually to improve the Product’s quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. 4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. 5. Please contact AKM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations. 6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM. 7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM. MS0427-E-04 2013/10 - 83 -